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The planning and management of groundwater in the absence of in situ climate

data is a delicate task, particularly in arid regions where this resource is crucial for

drinking water supplies and irrigation. Here the motivation is to evaluate the role

of remote sensing data and Input feature selectionmethod in the Long Short Term

Memory (LSTM) neural network for predicting groundwater levels of five wells

located in di�erent hydrogeological contexts across the Oum Er-Rbia Basin (OER)

in Morocco: irrigated plain, floodplain and low plateau area. As input descriptive

variable, four remote sensing variables were used: the Integrated Multi-satellite

Retrievals (IMERGE) Global Precipitation Measurement (GPM) precipitation,

Moderate resolution Imaging Spectroradiometer (MODIS) normalized di�erence

vegetation index (NDVI), MODIS land surface temperature (LST), and MODIS

evapotranspiration. Three LSTM models were developed, rigorously analyzed and

compared. The LSTM-XGB-GS model, was optimized using the GridsearchCV

method, and uses a single remote sensing variable identified by the input

feature selection method XGBoost. Another optimized LSTM model was also

constructed, but uses the four remote sensing variables as input (LSTM-GS).

Additionally, a standalone LSTM model was established and also incorporating

the four variables as inputs. Scatter plots, violin plots, Taylor diagram and three

evaluation indices were used to verify the performance of the three models. The

overall result showed that the LSTM-XGB-GS model was the most successful,

consistently outperforming both the LSTM-GS model and the standalone LSTM

model. Its remarkable accuracy is reflected in high R2 values (0.95 to 0.99

during training, 0.72 to 0.99 during testing) and the lowest RMSE values (0.03

to 0.68m during training, 0.02 to 0.58m during testing) and MAE values (0.02

to 0.66m during training, 0.02 to 0.58m during testing). The LSTM-XGB-GS

model reveals how hydrodynamics, climate, and land-use influence groundwater

predictions, emphasizing correlations like irrigated land-temperature link and

floodplain-NDVI-evapotranspiration interaction for improved predictions.
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Finally, this study demonstrates the great support that remote sensing data can

provide for groundwater prediction using ANN models in conditions where in situ

data are lacking.
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deep neural network, groundwater level, remote sensing, long-short term memory

(LSsTM), XGBoost, Morocco

1. Introduction

Groundwater is of crucial importance as an essential source
of drinking water, providing around half of the world’s drinking
water supply. It also plays a vital role in supporting agriculture,
meeting almost 40% of irrigation needs, contributing to food
security and the sustainability of water resources (Dumont,
2021; Elshall et al., 2022). This importance is even greater in
the context of North Africa, particularly in countries such as
Morocco, where the challenges posed by arid and semi-arid
environments amplify its value. Despite its undeniable importance,
the current state of monitoring and warning systems for this
resource is very worrying. The scarcity of effective mechanisms
for monitoring and responding to the state of groundwater
highlights the urgent need to improve our approach to resource
management in these regions (Hamed et al., 2018; Sherif et al.,
2023). Within hydrogeology, the conventional techniques for
observing groundwater, which encompass wells and piezometers
used to gauge groundwater levels and outline its development, are
put into practice. However, in many African basins, the monitoring
and assessment of groundwater resources is inadequate, lacking
the comprehensive coverage needed to understand the complex
dynamics of its environment (World Meteorological Organization,
2020). In certain instances, the piezometric networks currently
in operation suffer from dysfunctionality, riddled with gaps that
result in data lags spanning several months, and occasionally, even
years. This temporal lag critically impedes the capacity for real-time
evaluation of groundwater quantitative and qualitative changes,
particularly during drought periods. In response, modeling and
forecasting of groundwater quantity and quality variables have
become essential to support water resources management and
strategy (Cui et al., 2022).

Artificial neural networks (ANNs) have proven to be very
effective tools for predicting groundwater variables, mainly due to
their remarkable ability to capture complex and subtle patterns
in the data (Rajaee et al., 2019; Zhu et al., 2022). By integrating
historical and heterogeneous data, ANNs can apprehend non-
linear patterns and variations that are challenging to discern
using traditional conceptual and physical-based methods. Their
capacity to generalize from training data empowers them to
generate accurate forecasts, even amidst changing conditions,
all while not necessarily requiring a complete comprehension
of the underlying hydrogeological processes (Rajaee et al.,
2019). Moreover, ANNs can be adjusted and refined over time,
continuously enhancing their forecasting performance. They
can also be integrated with optimization techniques to swiftly
calibrate models, thereby expediting the decision-making process

in groundwater management. ANNs were first used in groundwater
monitoring in the late 1990s and early 2000s, and it has since
become a well-established area of research (Maier et al., 2010;
Rajaee et al., 2019; Tao et al., 2022). Several studies demonstrated
that ANN models such as Multilayer Perceptron (MLP) Neural
Network, Input Delay Neural Network (IDNN) and Recurrent
Neural Network (RNN) are able to predict groundwater level up
to several months, even years in advance (Coulibaly et al., 2001;
Daliakopoulos et al., 2005; Nayak et al., 2006; Nourani et al., 2008,
2022; Trichakis et al., 2011; Taormina et al., 2012; Moghaddam
et al., 2019; Sahu et al., 2020; Kouadri et al., 2022). Moreover,
ANNs can be used to model spatial variations in the water table
if observations from a well network are available (Sharafati et al.,
2020; Malakar et al., 2021). ANNs can also be used to improve
the performance of spatiotemporal groundwater predictions for
aquifers, either as a replacement for or in conjunction with existing
physical models (Nourani et al., 2011; Taormina et al., 2012;
Wunsch et al., 2021).

In this study, we focus on the application of the Long Short-
Term Memory (LSTM) model to predict time series data related
to groundwater levels. LSTM is an improved architecture of the
Recurrent Neural Network (RNN) (Hochreiter and Schmidhuber,
1997). Designed for sequential data, the LSTM model suits the
prediction of groundwater variables with temporal dependencies.
Its key advantage lies in retaining information from the time series’
beginning, enabling it to capture long-term patterns relevant for
groundwater variables influenced by climate, cyclical phenomena,
and extended temporal scales. LSTM architecture employs memory
gates to control the flow of information, allowing it to capture
seasonal trends, irregular fluctuations, and gradual shifts in
groundwater levels (Shin et al., 2020; Van Houdt et al., 2020; Kim
et al., 2021). Thanks to its aptitude for retaining information from
prior periods, the LSTM model excels in predicting time series
characterized by intricate oscillations and non-linear trends. In
modeling complex groundwater behavior, the LSTM’s adeptness at
handling time-based patterns and extensive dependencies makes
it a crucial tool for accurate forecasting (Zhang et al., 2018; Vu
et al., 2021; Khan et al., 2023). The LSTM model has several hybrid
and optimization forms, such as the LSTM-Weighted Mean of
Vectors Optimizer (INFO), LSTM- Ant Lion Optimizer (ALO)
and LSTM- Ensemble Empirical Mode Decomposition (EEMD),
which proved effective in predicting hydrological variables such as
water temperature and streamflow (Yuan et al., 2018; Huang et al.,
2023; Ikram et al., 2023). By merging the strengths of LSTMs with
pertinent historical and environmental data, this approach presents
a robust tool for precision prediction and proficient management of
groundwater levels.
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Predicting groundwater level using complex neural
network architectures like LSTM model requires an access to
a comprehensive database that covers a complex chronicle
of fluctuations in groundwater levels, alongside an array of
pertinent explanatory factors (Rajaee et al., 2019). Of particular
significance are climatic series, notably including variables such
as precipitation patterns and temperature records (Ghose et al.,
2018; Kouziokas et al., 2018; Zhang et al., 2018). Furthermore,
hydrological time series, such as river discharge, contribute to the
complex interaction of water movements between surface and
subsurface environments (Mohanty et al., 2015; Sahu et al., 2020).
Equally vital are parameters like evapotranspiration rates, which
quantify the transfer of moisture from the Earth’s surface into the
atmosphere through processes like plant transpiration and soil
evaporation (Ghose et al., 2018; Zhang et al., 2018). Additionally,
the inclusion of pumping rates, serves as a critical determinant
of groundwater availability and variation (Trichakis et al., 2011;
Mohanty et al., 2015). However, a notable constraint and challenge
in the application of ANNs for groundwater prediction lies in
the availability and reliability of these input data. Reliable in

situ measurements of climatic variables such as precipitation,
temperature and evapotranspiration are often hampered by
measurement irregularities and the presence of erroneous
data (Kuglitsch et al., 2009; Toreti et al., 2012; Ledesma and
Futter, 2017). Constraints related to terrain accessibility, changes in
measurement conditions, relocation of weather stations, changes in
land use, adoption of new instruments and changes in observation
times all contribute to the potential unreliability of collected data.

These challenges are particularly pronounced in regions where
the monitoring infrastructure is inadequate, notably in Africa,
where only one-eighth of the minimum density of weather
stations is available (World Meteorological Organization, 2020).
The scarcity of these crucial observation points within these
regions, directly affects the potential accuracy and robustness of
ANNs when applied to groundwater prediction models. Although
ANNs excel at capturing complex relationships within data, their
effectiveness relies heavily on the quality and quantity of data fed
into the model (Sahu et al., 2020).

In such context of increasing in situ data scarcity, climate and
Earth observation data derived from remote sensing have offered
researchers a great opportunity to study and analyse hydro-geo-
dynamic processes in a new way (Li et al., 2022; Zhang and Zhang,
2022). Remote sensing technology, with its ability to collect large
amounts of climate and Earth observation data with considerable
and complex heterogeneity on dynamic Earth systems such as soil,
water and vegetation, and complemented by the ability of satellites
to repeatedly cover large areas through regular visits, has found
great application in modeling hydrological processes (Becker, 2006;
Chawla et al., 2020; Adams et al., 2022; Li et al., 2022). However,
the convergence of remotely sensed data and artificial intelligence
for groundwater level prediction only became apparent in late 2019
and early 2020 (Bhanja et al., 2019; Sharafati et al., 2020; Malakar
et al., 2021; Sureshkumar et al., 2022; Stateczny et al., 2023; Zhang
et al., 2023). These recent studies have highlighted the potential
of integrating remote sensing data as input parameters in ANN
models. Yet, there are still several aspects of this approach that
need to be studied in more detail. Indeed, groundwater aquifers

are characterized by a wide diversity and heterogeneity of geo-
environmental features such as depth, unconfined or confined
aquifer conditions, and different types of usage like irrigation
and water supply. These factors can significantly condition and
influence the use of remote sensing data as descriptive variables
to model their groundwater variables (Adams et al., 2022). On
the other hand, remote sensing data also encompass various
characteristics that can impact their ability to explain variations in
groundwater variables, such as spatial and temporal resolution and
data presented in various forms (Adams et al., 2022).

Advances in remote sensing technologies, the deployment of
numerous satellites and the development of data storage systems
have led to the accumulation of an enormous volume of climate
and environmental data (Sahu et al., 2020). In the light of this,
a crucial question arises as to the optimum approach: should we
exploit a diverse range of explanatory factors or rely on a single
variable that most effectively reveals variations in groundwater
levels? The choice between these approaches adds another layer
of complexity to the application of remote sensing data for
groundwater prediction through ANN models. While employing
multiple variables might capture a broader spectrum of influencing
factors and interactions, it can also introduce challenges related
to data dimensionality, potential multicollinearity, and increased
computational complexity (Dormann et al., 2013; Anh et al.,
2023). On the other hand, focusing on a single variable that has
the strongest correlation with groundwater levels might simplify
the modeling process but could oversimplify the hydrodynamic
mechanism within the aquifer system. Currently, there is no
general consensus in the literature regarding the optimal choice
of variables. The number and selection of variables depend on the
specific objectives and characteristics of the study case (Rajaee et al.,
2019).

In order to shed light on these issues and provide valuable
insights, this study aims two main objectives: firstly, to assess
the effectiveness of incorporating remote sensing data into
LSTM models for predicting groundwater levels; and secondly,
to investigate the ramifications of input feature selection on
prediction accuracy. Additionally, the research this study seeks to
extend its examination by considering predictions across diverse
hydrodynamic and land cover-land use conditions. To achieve
this, three LSTM models for groundwater level prediction were
developed, rigorously analyzed and compared. The first model,
named LSTM-XGB-GS, was optimized using the GridsearchCV
method, which is a hyperparameter optimization technique (Chen
et al., 2023). This model uses a single variable identified by the
XGBoost method, an input feature selection technique (Zhang B.
et al., 2022; Jiang et al., 2023). This selected variable is considered
the most effective in explaining variations in groundwater level
among four remotely sensed variables: GPM precipitation, MODIS
NDVI, MODIS evapotranspiration, and MODIS LST. Another
optimized LSTM model was also constructed, but uses the four
variables as input (LSTM-GS). Additionally, a standalone LSTM
model was established and also incorporating the four variables as
inputs. These models were employed to predict groundwater levels
in five wells located within significantly diverse geo-environmental
and land use conditions, including an irrigated zone, an alluvial
plain, and a confined aquifer in a plateau area, within the Oum
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FIGURE 1

(A) Location of the study area, (B) main geographical areas, (C) altitude variation and (D) the main aquifers in the study area.

Er-Rbia river Basin (OER) in Morocco. The models developed
in this study will pave the way for the establishment of a single,
global groundwater level prediction model capable of helping water
managers to predict groundwater levels in regions characterized by
variable hydrogeodynamic conditions and land use.

2. Materials and methods

2.1. Study area

The study area is located in the OER River Basin, in the
north-central part of Morocco, between latitudes 31◦ 00’ and 33◦

00’ North and longitudes 5◦ 00’ and 9◦ 00’ West (Figure 1A).
The study area comprises two main regions with very different
hydrogeological, land use and relief contexts: the phosphate plateau
and the Tadla plain (Figure 1B). The climate in the study area
is semi-arid to arid with a continental character. Precipitation is
irregularly distributed in time and space within the basin. There
is a dry season from May to October and a wet season from
November to April. During the dry season the minimum inter-
annual monthly rainfall averages are as low as 0.8mm, however the

average maximum is over 72mm during the winter. From north
to south, the increase in altitude is accompanied by an increase in
precipitation amount and a decrease in temperature.

In the OER River Basin, groundwater aquifers are subject
to constant monitoring, encompassing both qualitative and
quantitative variables. This region benefits from a particularly
extensive historical groundwater dataset, unlike other parts of
Morocco where data is sparse. The comprehensive database
available in the OER basin owes its central role as one of Morocco’s
agricultural hubs (Ouatiki et al., 2019; Khellouk et al., 2021;
Lionboui et al., 2021). Five wells are investigated in this study,
wells P1 (Figure 2A) and P2 (Figure 2B) are located in the Tadla
Plain which is characterized by a generally regular topography at
an average altitude of 400m and a gentle slope toward the west
(Figures 1B, C). The Tadla plain is divided by the OER wadi into
two hydrogeological zones: the Beni Amir aquifer to the north and
the Beni Moussa aquifer to the south, in which the P1 and P2 wells
are located (Figure 1D). The water table of the Tadla plain is formed
by Villafranchian and Quaternary lacustrine limestone arranged
in discontinuous lenses separated by low permeability formations.
The agricultural areas in this plain cover 320 000 ha that include
124 000 ha as irrigated areas (Lionboui et al., 2021).
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FIGURE 2

Location of wells (A) P1, (B) P2, (C) P3 and P4, (D) P5.

TABLE 1 Distribution of groundwater level data for training and test periods.

Training period Test period

Well Start date End date Number of
observations

Split ration Start date End date Number of
observations

Split ration

P1 01/01/2009 01/12/2017 108 90% 01/01/2018 01/12/2018 12 10%

P2 01/01/2008 01/12/2017 120 91% 01/01/2018 01/12/2018 12 9%

P3 01/09/2006 01/12/2017 136 92% 01/01/2018 01/12/2018 12 8%

P4 01/12/2006 01/12/2017 133 92% 01/01/2018 01/12/2018 12 8%

P5 01/06/2006 01/12/2015 115 90% 01/01/2016 01/12/2016 12 10%

Wells P3, P4 (Figure 2C) and P5 (Figure 2D) are located in
the phosphate plateau (Figure 1B). These wells belong to the
Turonian deep water table which is the most important one
in the Tadla (Figure 1D), circulating in limestone and dolomitic
limestone formations. However, these three wells are located in
distinct hydrological contexts. Wells P3 and P4 are located in the
floodplain of theWadi Zem, which dissipates further south into the
alluvium without merging with the OER River. Well P5, shows the
greatest depth to the water table (average depth = 72m), is located
further north in the center of the phosphate plateau in a semi-
arid environment near the phosphate mines (Figure 2D). Table 1

presents the descriptive statistics of groundwater level observed for
each well.

2.2. Datasets

2.2.1. Observed groundwater level records
Monthly groundwater level observations were provided by the

Oum Er-Rbia basin agency. The length of the time series of the five
wells is not uniform (Figure 3). However, the difference in length
is not very high, ranging from 1 to 3 years of difference (Table 1).
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FIGURE 3

Monthly variation of the observed groundwater level, IMERG-GPM precipitation, MODIS evapotranspiration, MODIS LST and MODIS NDVI of the five

studied wells.

The time series for each well was divided into training and test
periods. The length of the training period varies between wells due
to the non-uniformity of the time series, but the length of the test
period is constant and has been set as the last year of the time
series in each well (Table 1). The decision to assign a single year
allows a comprehensive assessment of the model’s adaptability to
distinct seasonal profiles and facilitates direct comparison of its
performance between wells, providing valuable information on its
ability to handle variable seasonal fluctuations and data patterns
under different hydrodynamic conditions. For neural networks
developed for big data processing, this variation in the length of
time series is negligible and does not influence model performance
between wells (Vu et al., 2021; Wei et al., 2021). Table 2 presents the
statistical description of the groundwater level in each well.

2.2.2. Remote sensing data
The groundwater level is influenced by several geo-

environmental and climates factors such as precipitation,
evapotranspiration, soil moisture, hydrodynamic parameters of
the aquifer, pumping and irrigation activities, and aquifer recharge
(Rinderer et al., 2016; Iqbal et al., 2020; Band et al., 2021). In
this work four remotely sensed variables were used, namely
precipitation, land surface temperature, evapotranspiration and
normalized difference vegetation index (NDVI). Precipitation,
temperature and evapotranspiration are the most frequently used
climate variables for forecasting groundwater level (Rajaee et al.,
2019; Tao et al., 2022). This is due to their strong influence on
groundwater fluctuations and their availability thanks to the
several satellite products that provide global coverage with several
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TABLE 2 Groundwater level description.

Well Mean
(m)

Std (m) Min (m) Max (m) Mean
depth
(m)

P1 413.89 2.62 408.14 418.82 15.11

P2 448.24 2.16 443.99 453.99 38.76

P3 639.05 2.5 632.25 644.33 10

P4 631.6 2.57 627 636.62 11.41

P5 593.37 0.11 593.06 593.63 75.63

spatial and temporal resolutions. Furthermore, thanks to its long
archives at low and moderate spatial resolutions are available,
NDVI has become one of the most widely used remote sensing
products for ecosystem analysis, mapping, and land monitoring
at regional scales (Azzali and Menenti, 2000; Epting et al., 2005;
Fu and Burgher, 2015; Marchetti et al., 2016; Htitiou et al., 2021;
Lebrini et al., 2021).

The monthly variation of NDVI at the studied wells was
extracted from the NDVI product (MOD13Q1) version 6
of the Terra Moderate Resolution Imaging Spectroradiometer
(MODIS), with a spatial resolution of 250 meters and a temporal
frequency of 16 days. The temperature variation at each well
was determined using the MODIS MYD11A2 product Version 6,
which provides an average 8-day per-pixel land surface temperature
and emissivity (LST&E) at a spatial resolution of 1 km. Monthly
evapotranspiration data are obtained from the MODIS MOD16A2
evapotranspiration product version 6 with a spatial resolution of
500m and a temporal resolution of 8 days. Monthly precipitation
data for each well were obtained from the Integrated Multi-
Satellite Retrievals (IMERG) for Global Precipitation Mission
(GPM) program with a spatial resolution of 10 km (Huffman et al.,
2020). Figure 3 illustrates monthly changes in MODIS LST and
NDVI for each well, while Figure 3 represents monthly changes in
MODIS evapotranspiration and IMERG-GPM precipitation.

2.3. Data pre-processing

2.3.1. Handling missing data
The database of the wells studied had several missing monthly

values scattered throughout the time series. However, it should
be noted that these wells were selected from a large network of
wells because they do not have more than two successive missing
monthly values. Missing values can present many problems in the
data set. They can reduce the statistical power of the data, and
increase its bias (Kang, 2013). It is therefore necessary to process
these missing values in order to maintain the characteristics of the
data. In this study, we employ linear interpolation, which performs
well in cases of brief missing data, given that consecutive missing
data points within the time series do not exceed two observations
(Bikše et al., 2023). This method estimates the absent monthly
groundwater level by leveraging the values of neighboring months,
thus seamlessly integrating the missing data into the groundwater
level time series (Huang, 2021).

2.3.2. Feature scaling
Feature scaling is a crucial step in the pre-processing of data

for forecasting models. Inputs with high values disproportionately
mask the impact of inputs with lower values. The range of
predictors should also be matched to the range of the hidden layer
transfer function (Cabaneros et al., 2019; Chen et al., 2020). The
standardization method has been incorporated into the algorithm
of the groundwater level prediction model used in this study. Thus,
the input variables are scaled in such a way that they end up having
the properties of a standard normal distributionwith amean of zero
and a standard deviation of 1. This is done by simply calculating
the Z-score of each observation in the data set for each variable,
as follows:

Z (i) =
Value i − Std

Mean
(1)

Where Z (i) is the normalized value of each observation, Value i

is the input value for month (i), Std and Mean are respectively
the standard deviation and the average input value of the whole
time series.

2.4. Input features selection

Predicting groundwater levels using remote sensing data from
several climate variables for several wells with very different
dynamics necessitates an understanding of the data that goes into
the model. As a result, a variable importance analysis can help us
understand the relationship between the descriptive variables and
the target variable, and determine which features are not relevant
to the model in each well (Sahu et al., 2020; Sharafati et al., 2020;
Khaire and Dhanalakshmi, 2022).

Traditionally, important variables are chosen using correlation
coefficient analysis, with the selected variables being those with the
highest correlations with groundwater levels (Derbela and Nouiri,
2020; Band et al., 2021; El Bilali et al., 2021; Vu et al., 2021).
However, strongly correlated input variables can have a negative
impact on the performance of a modeling algorithm. When using
multiple correlated variables, the effect of collinearity occurs,
resulting in unstable and unreliable model results. To avoid this,
choosing the best single variable eliminates the need to use multiple
variables and their potential interactions, preventing over-learning
and allowing the model to generalize better to new, unknown data
(Dormann et al., 2013; Anh et al., 2023).

Thus, before building the model, it is critical to examine
the correlations between the input variables and the variable
to be predicted in order to assess their relationships in a
fairly straightforward and descriptive manner. However, it is
recommended to use input feature selection techniques, which
calculate a score for all input features of a given model that simply
represent the importance of each variable (Sahu et al., 2020). A
higher score means that the variable will have a greater effect on
the model that is used to predict the groundwater level. In this
study we used the Extreme Gradient Boosting (XGBoost) method,
which constructs boosted trees to obtain the scores of the variables,
indicating their importance for the modeling model (Hastie et al.,
2009; Breiman et al., 2017; Zheng et al., 2017). The scores provided
by XGBoost indicate the usefulness or value of each variable in
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building the boosted decision trees in the model. The more a
variable is used to make key decisions with the decision trees,
the higher its relative importance (Friedman, 2002; Zheng et al.,
2017). XGBoost counts the importance by “gain”, which is the main
reference factor of the variables importance in the tree branches
(Hastie et al., 2009; Breiman et al., 2017; Zheng et al., 2017):

ω2
l (T) =

1

M

∑M

m=1
τ 2t (Tm) (2)

With T as a decision tree, ωl importance score for each predictor
variable, M is the additive number of trees et τ 2t is the estimated
maximum improvement of the variable in the risk of squared error
over that of a constant fit.

2.5. Recurrent neural network model: LSTM

Specifically designed for handling sequential data, the LSTM
model is highly suitable for forecasting both qualitative and
quantitative groundwater variables, which often exhibit temporal
dependencies. One of the main advantages of the LSTMmodel is its
ability to retain information on events that occurred at the start of
the time series, even as it processes new data. This feature is crucial
for capturing long-term dependencies and patterns present in time
series data. This is especially relevant for groundwater variables, as
they are influenced by climatic seasonality and other phenomena
with return times spanning several years or even longer periods.

The mathematical representation of a RNN is defined by the
equation (Hochreiter and Schmidhuber, 1997; Gers et al., 2000):

ht = σ (bh + U.Xt +W.ht−1) (3)

yt = bo + (V .ht) (4)

Where, ht is the initial state at time t, ht−1 is the hidden state of the
cell at time t-1, X is the input vector with the sequence, σ and the
activation function of TanH, bh and bo bias vector, U is the weight
(vector) for the hidden layer, V is the weight (vector) for the output
layer,W is the same weight vector for different time steps, and y the
output vector with the sequence.

The RNN uses the time backpropagation approach, which is
a type of gradient descent algorithm that is used to update the
weight and minimize errors using a derived chain rule. However,
the way the RNN is structured does not allow for effective long-
term dependency treatment, as its learning process leads to the
vanishing gradients (Hochreiter, 1998). This problem is due to the
fact that during the backpropagation the weights are the same for
all time steps, as the weight is updated continuously, so that the
gradient becomes either too weak or too strong with the updates.
One of the solutions to this problem is the use of long-term
memory (LSTM) (Graves, 2012). The LSTM was built to avoid
the problem of long-term dependencies, by having an additional
feature compared to RNNs, which is called memory or the internal
stat, which is specifically designed to store information over long
periods of time.

This memory deals with the evanescent gradient problem by
implementing a structure consisting of four elements, namely

the CEC cell (the Constant Error Carrousel) and three types
of gates: input gates, output gates and forget gates, which
ensure the preservation of previous information with a stable
gradient calculation. The information is processed by a sequential
calculation using the following equations iteratively along the
time series:

it = σ (wixt + Uiht−1 + bi) (5)

ft = σ (wf xt + Uf ht−1 + bf ) (6)

ot = σ (woxt + Uoht−1 + bo) (7)

C̄ = Tanh(xt + Ucht−1 + bc) (8)

Ct = ft ⊗Ct−1 + it ⊗ Ct (9)

ht = ot ⊗ Tanh (Ct) (10)

where wi, wf and wo denote the matrix of weights of the input,
forget and output gates at the input, respectively. Similarly, Ui,
Uf , and Uo denote the weights matrix of the input, forget and
output gates to the hidden, respectively. bi, bf , and bo denote the
bias vectors of the input, oblivion and output gates, respectively.
σ is a non-linear activation function by elements: logistic sigmoid.
it , ft , ot and Ct are the input, forget, output gates and state
vectors of the cell at time t, respectively, which are all the
same size as the output vector of the cell ht. The element-wise
multiplication of two vectors is denoted with ⊗ (Zhang et al.,
2018).

The LSTM is designed to handle large databases. However,
with a large number of parameters, LSTM can easily be over-
fitted, especially when data is limited. To solve this problem, the
’Dropouts’ method is used where randomly selected neurons are
ignored during training. They are randomly ’dropped’. This avoids
over-fitting the model.

The three LSTM models developed in this study consist
of two layers connected with the dense layer. It should be
noted that the exact number of LSTM layers to be used as
hidden layers in order to obtain the optimized results remained
unknown. However, in general, two layers have proven to be
sufficient to detect the complex interrelationships between the
variable to be predicted and the input data (Zhang et al.,
2018).

2.6. LSTM hyperparameters tuning using
GridsearchCV

In deep neural networks models there are a set of parameters
called hyperparameters that must be defined before the training
process. Hyperparameters are frequently set manually or at
random; however, this type of setting remains difficult to perform
and becomes extremely tedious, when network architecture
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TABLE 3 Hyperparameters options investigated.

Hyperparameters Options investigated

Number of neurones 20, 50, 70 and 120

Batsh size 6, 12, 24 and 48

Learning rate 0.001, 0.01 and 0.1

dropout rate 0.1, 0.2, and 0.3

Epoch 50, 100 and 200

is complex. Several hyperparameter tuning algorithm are
therefore used to identify the optimal combination of model
hyperparameters in an efficient, fast and reliable manner (Bowes
et al., 2019). The GridsearchCV method, a traditional method
of hyperparameter optimization, was used in this study, which
is simply an exhaustive search in a specified subset of a learning
algorithm’s hyperparameter space (Chang et al., 2022; Elzain et al.,
2022; Anh et al., 2023). In other words, it iterates through all
of the hyperparameters entered into the parameter grid to find
the best parameter combination. Furthermore, GridsearchCV
performance is often measured using cross validation on the
training set (Ghawi and Pfeffer, 2019). In this study, the LSTM
hyperparameters tuned are the number of neurones, batsh size,
learning rate, dropout rate and number of epochs (Table 3). These
parameters have a significant impact on prediction performance
and are considered the most important to optimize (Bowes et al.,
2019). The dropout rate helps avoid overfitting during the training
process by skipping randomly chosen neurons. The batsh size
is the number of samples introduced to the model in order to
distinguish common features in the training data set and prior
to performing a weight update. The number of epochs defines
the number of complete iterations of the training data set to
be executed.

2.7. Model evaluation criteria

Three prediction performance evaluation indices were used,
namely, mean absolute error (MAE), root mean squared error
(RMSE) and the R2. The MAE measures the average magnitude
of errors in a set of predictions, regardless of their direction. It
is the average, over the training or test sample, of the absolute
differences between the prediction and the actual observation, with
all individual differences having the same weight. It is less sensitive
to outliers, making it more suitable for cases where extreme values
might be present in the dataset. The RMSE is a quadratic scoring
rule that also measures the average magnitude of the error. It is
the square root of the average of the squared differences between
the prediction and the actual observation. RMSE ensures that
outliers and large errors have a substantial impact on the evaluation,
providing a more robust assessment of the model’s performance.
R2 is an indicator used in data analysis to judge the quality of
a model and to measure the degree of accuracy in reproducing
observed values, R2 values are between (0, 1) where an R2 score
close to 1 represents optimal model prediction. The selection of
performance indices in this study is based on their widespread use

and established importance in hydrogeological modeling, including
groundwater level prediction (Rajaee et al., 2019).

MAE =
1

n

∑n

j=1

∣

∣yj − ŷj
∣

∣ (11)

RMSE =

√

1

n

∑n

j=1
(yj − ŷj)

2
(12)

R2 =

∑n
j=1 (yj − ȳj)

2
−

∑n
j=1 (yj − ŷj)

2

∑n
j=1 (yj − ȳj)

2 (13)

where yj is the measured value at time j, ȳj is the average of yj (j=
1,..., N) and i ŷj is the predicted value at time j.

3. Results

3.1. Input variable selection

The groundwater level shows very distinct correlation values
with the input variables and within the five wells (Figure 4). In well
P1, the groundwater level shows a weak correlation with NDVI and
evapotranspiration; on the other hand it shows a slight positive
correlation with precipitation (0.3) and negative correlation with
land surface temperature (−0.3). The groundwater level in well
P2 has low correlations with the four input variables, the highest
correlation is 0.21 obtained with evapotranspiration.Well P3 shows
relatively high positive correlation values of groundwater level with
NDVI (0.43) and evapotranspiration (0.39), while precipitation and
land surface temperature show no significant correlations. The level
of groundwater in well P4 shows slight correlation values with
NDVI (0.28) and evapotranspiration (0.3). In well P5, the level of
groundwater has weak correlations with all four input variables,
and the correlation value that is slightly high (0.28) is observed with
evapotranspiration (Figure 4). Moreover, it can be observed that
within the five wells. the input variables exhibit strong correlations
(both positive and negative) among themselves.

The benefit of using XGBoost is that once the boosted trees
are constructed, it is quite simple to retrieve the importance scores
for each variable. The XGBoost result shows that land surface
temperature is the most important input variable for groundwater
level in the wells P1 and P5. Furthermore, precipitation, NDVI, and
evapotranspiration are the important input variables, respectively,
for P2, P3, and P4 (Figure 5). Thus, based on these results, the most
important input variable for each well is used as a predictor variable
in the LSTM-XGB-GS model.

3.2. Hyperparameter tuning results

The outcomes of hyperparameter tuning reveal a notable
distinction between the LSTM-XGB-GS model and the LSTM-GS
model. Conversely, for each individual model, the differences are
relatively minor across the wells (Table 4). In the case of the LSTM-
XGB-GS model, the optimal number of neurons is 70, except for
well P2 where it is 50. The preferred batch size is 48 for wells P1,
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FIGURE 4

Correlation heath-map of groundwater level of the five wells with NDVI, MODIS Land surface temperature (T), MODIS evapotranspiration (EV) and

IMERG-GPM precipitation (P).

P2, and P3, 24 for well P4, and 12 for well P5. Across most wells, the
favored learning rate is 0.001, with the exception of well P5 where
it is 0.01. The highest dropout rate (0.3) is utilized for wells P1, P4,
and P5, while for wells P2 and P3, the optimal dropout rate is 0.2.
The optimal number of epochs for all wells stands at 200.

For the LSTM-GS model, the most effective number of neurons
is 120 for wells P1 and P2, and 70 for wells P3, P4, and P5. The
optimal batch size across all wells, except for well P2, is 48. Well
P2 features a batch size of 24. Learning rates of 0.001 are consistent
across all wells. The highest dropout rate (0.3) is employed for wells
P3 and P4, while for wells P2 and P5, the ideal dropout rate is
0.2, and for P1 it’s 0.1. The optimum number of epochs remains
consistent at 200 for all wells.

These results highlight the sensitivity of the LSTM model to
the quantity and selection of input data, a factor that can have an
impact on the results of individual models and wells.

3.3. Assessment of model performance
using evaluation criteria

The performance of the models, in terms of three statistical
indices during both the training and test periods, is presented

in Table 4. The optimized model with the best input feature
(LSTM-XGB-GS) demonstrated significantly superior performance
compared to both the optimized model with all input features
(LSTM-GS) and the standalone model (LSTM) across all five wells.

The R2 values of the LSTM-XGB-GS model during the training
period ranged from 0.95 to 0.99, while the corresponding values
for LSTM-GS and LSTM were found to be in the range of 0.89 to
0.99 and 0.67 to 0.84, respectively. Upon analyzing the computed
RMSE and MAE values, it was observed that the LSTM-XGB-
GS model achieved the minimum values for all five studied wells.
The RMSE ranged from 0.03 to 0.68 meters, while the MAE
ranged from 0.03 to 0.51 meters. Specifically, the wells in the
irrigated areas P1 and P2, as well as those in the floodplain P3 and
P4, exhibited acceptable values of RMSE (0.33m, 0.57m, 0.68m,
and 0.25m, respectively) and MAE (0.22m, 0.45m, 0.51m, and
0.20m, respectively). Notably, the P5 well located on the phosphate
plateau demonstrated the lowest values of RMSE (0.03m) andMAE
(0.02m). Furthermore, it is worthmentioning that the LSTMmodel
showed the lowest modeling performance in terms of RMSE and
MAE during the training period.

During the test period, the LSTM-XGB-GS model
demonstrated good to excellent performance, achieving an
R2 between 0.72 and 0.99. On the other hand, the LSTM-GS model
exhibited varying performance, ranging from poor to excellent
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FIGURE 5

Input features importance for each well using XGBoost.

depending on the well location, with an R2 between 0.27 and
0.97. Meanwhile, the LSTM standalone model showed the poorest
performance across all five wells, attaining an R2 between 0.09
and 0.96.

As for the RMSE and MAE indices, the LSTM-XGB-GS
model consistently displayed the lowest values among the three
models for all five wells. In particular, when utilizing MODIS
LST as the input variable for well P1, the LSTM-XGB-GS model
yielded RMSE and MAE values of 0.20m and 0.15m, respectively
(Table 5). For well P2, employing IMERG-GPM precipitation
as the input, the LSTM-XGB-GS model resulted in RMSE and
MAE values of 0.66m and 0.58m, respectively. For well P3,
using MODIS NDVI as the input, the model provided acceptable
RMSE and MAE values of 0.42m and 0.39m, respectively.
Similarly, well P4, with MODIS evapotranspiration as the input,
demonstrated acceptable RMSE and MAE values of 0.35m and
0.29m, respectively. Notably, the phosphate plateau well P5,

utilizing MODIS LST, exhibited the best prediction performance
during the test period, with both RMSE and MAE values
at 0.02 m.

3.4. Assessment of model performance
using scatter plots and time series plot

The scatter plots of groundwater levels observed and predicted
using the three models during the training and test periods
are shown in Figure 6. In general, the results show that
the groundwater level predicted by the three models closely
reflect, or even align with, the trend in the observed data
(the black line) during the training period. This alignment
is also supported by the R2 values, which exceed 0.7 for
all models over the five wells (Table 5). It should be noted,
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TABLE 4 Hyperparameters tuning for LSTMmodels.

LSTM-XGB-GS

Neurons Batch
size

Learning
rate

Dropout
rate

Epoch

P1 70 48 0.001 0.3 200

P2 50 48 0.001 0.1 200

P3 70 48 0.001 0.1 200

P4 70 24 0.001 0.3 200

P5 70 12 0.01 0.3 200

LSTM-GS

Neurons Batch
size

Learning
rate

Dropout
rate

Epoch

P1 120 48 0.001 0.1 200

P2 120 24 0.001 0.2 200

P3 70 48 0.001 0.3 200

P4 70 48 0.001 0.3 200

P5 70 48 0.001 0.2 200

however, that the scatterplot associated with the LSTM-XGB-
GS model adheres more closely to the trend in the observed
data than the scatterplots for the LSTM-GS model and the
stand-alone LSTM model. The latter two show slightly more
dispersed scatterplots, with some values far from the trend of the
observed data.

The results from the test period give a clearer overview
of the prediction performance of the models compared with
the results from the training period. Most notably, the scatter
plot for the LSTM-XGB-GS model shows better alignment
with the trend in the observed data, with points showing
reduced dispersion and closer proximity to the trend line.
Conversely, the scatterplots of the LSTM-GS and standalone
LSTM models are less closely aligned with the trend of the
observed data, with points showing increased scatter. These
observations are also supported by the R2 values, where the
LSTM-XGB-GS model has the highest values for all five wells
(Table 5).

Time series plots of monthly variations in groundwater
levels observed and predicted over the test period by the three
models is shown in Figure 7. The plots show that all three
models effectively capture seasonal fluctuations and variations
in groundwater levels in each well. However, the LSTM-XGB-
GS model shows superior performance in reproducing the
groundwater levels observed. It shows remarkable alignment with
minimal overestimation or underestimation. In particular, for
wells P1 and P4, the LSTM-XGB-GS model almost perfectly
reproduces the observed data. On the other hand, the LSTM-
GS and standalone LSTM models, although capable of capturing
seasonal variations in groundwater levels, show significant
overestimates and underestimates. This discrepancy is most
pronounced, although slightly attenuated, in well P4, where
the values of the latter two models are very close to the
observed data.

TABLE 5 Models evaluation criteria for groundwater level prediction

during training and testing periods.

LSTM-XGB-GS

Training period Test period

Well RMSE MAE R2 RMSE MAE R2

P1 0.33 0.22 0.98 0.2 0.15 0.99

P2 0.57 0.45 0.96 0.66 0.58 0.86

P3 0.68 0.51 0.96 0.42 0.39 0.72

P4 0.25 0.2 0.99 0.35 0.29 0.99

P5 0.03 0.02 0.95 0.02 0.02 0.98

LSTM-GS

Training period Test period

Well RMSE MAE R2 RMSE MAE R2

P1 0.61 0.43 0.94 0.54 0.40 0.87

P2 0.78 0.56 0.87 0.94 0.76 0.57

P3 0.87 0.66 0.89 0.86 0.80 0.27

P4 0.39 0.31 0.98 0.34 0.30 0.97

P5 0.03 0.03 0.94 0.02 0.02 0.93

LSTM

Training period Test period

Well RMSE MAE R2 RMSE MAE R2

P1 1.08 0.76 0.84 0.87 0.75 0.63

P2 1.21 0.95 0.67 0.69 0.59 0.52

P3 1.16 0.74 0.80 0.57 0.47 0.62

P4 0.54 0.36 0.84 0.69 0.49 0.96

P5 0.06 0.04 0.71 0.04 0.04 0.09

3.5. Assessment of models performance
using violin plot and Taylor diagram

Finally, the ability of the three models to reproduce the
probability distribution of observed groundwater level data during
the training and test periods for all five wells was visually
evaluated by preparing violin plots. The violin plots displaying
the observed and predicted groundwater level data by the models
during the training period are presented in Figure 8. The violin
plots demonstrate that all three models have a similar overall
shape to the observed groundwater level data, with their median
values closely aligned, suggesting similarity in the distribution of
predicted and observed groundwater level data. However, it was
also observed that the violin plots of the LSTM-XGB-GS model
appear slightly narrower compared to the other models and the
observed data for wells P1, P2, P3, and P5. This indicates a slightly
lower variance in the predictions. Additionally, the LSTM-XGB-
GS model shows a slight tendency to underestimate maximum
values and overestimate minimum values for these wells. On
the other hand, the LSTM-GS model exhibits a high degree of
similarity with the observed data for wells P1, P2, and P4, without
underestimating or overestimating extreme values. In contrast, the
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FIGURE 6

Scatterplots of groundwater levels observed and predicted by the three models over the training and test periods.

LSTM model shows some divergence from the observed data, with
underestimation and overestimation of maximum and minimum
values, except for well P4, where the LSTM model exhibits a
distribution similar to the observed values.

The violin plots of the test period show that the LSTM-XGB-
GS model exhibits the highest similarity to the observed data
compared to the other two models (Figure 8). For wells P1, P4,
and P5, the LSTM-XGB-GS model displays a similar shape and
range to the observed data, with a median value at the same level
and less underestimation and overestimation of the maximum
and minimum values compared to the other models. For well
P2, all three models overestimate the median and extreme values
compared to the observed data, but the LSTM-XGB-GS model
shows the lowest divergence and a shape similar to the observed
data. For well P3, all three models display a wider shape than the
observed data; however, the LSTM-XGB-GS model exhibits the
least divergence by showing a median value at the same level as the
observed data, with the lowest overestimation and underestimation
of extreme values.

The performances of the different models were also assessed
using the Taylor diagram. The Taylor diagram graphically compares

two statistics, namely the standard deviation and correlation,
to provide a reliable and more direct evaluation of the relative
performance of the different models. The results for the five
wells are presented in Figure 9. In the Taylor diagram, the
dashed black circle represents the observed groundwater level,
and the black star denotes the reference point for the observed
data. A model is considered proficient if it is close to the
reference point. During the training period (Figure 9), the
LSTM-XGB-GS model exhibited the best performance across all
five wells. On the other hand, the standalone LSTM model
showed the weakest performance in predicting the observed data.
However, for well P5, the performances of the LSTM-XGB-
GS and LSTM-GS models were roughly equal. For the results
of the test period (Figure 9), the LSTM-XGB-GS model also
displayed the best performance in predicting the observed data
during the test period. Conversely, the standalone LSTM model
demonstrated better performance than the LSTM-GS model for
wells P2 and P3. However, for the P5 well, the performance
of the LSTM-XGB-GS and LSTM-GS models was fairly equal
compared to the standalone LSTMmodel, whose performance was
much lower.
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FIGURE 7

Monthly variations of groundwater level observed and predicted over the test period.
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FIGURE 8

Violin plots showing the relative performance of the three models in replicating distribution of observed groundwater level data during the training

and test periods.

4. Discussion

4.1. Importance of the input feature
selection and model optimization on
groundwater prediction

The good performance achieved by the LSTM-XGB-GS
model in this study clearly emphasizes the importance and
impact of identifying the best input feature and fine-tuning
the hyperparameters for groundwater level prediction. The
hydrodynamic characteristics of aquifers and the groundwater
levels fluctuation in monitoring wells exhibit significant variations
influenced by several factors (Rinderer et al., 2016; Iqbal et al., 2020;
Band et al., 2021), primarily encompassing hydro-geodynamic and
climatic conditions, as well as land use and land cover. To achieve
enhanced model performance, it becomes imperative to pinpoint
the variable that reflects the dominant factor that explains most
the variation of the groundwater level in each well. Moreover,
the optimization of the LSTM model’s hyperparameters using the
GridSearchCV method enables a more effective capture of patterns
and relationships between groundwater level and the selected
remote sensing variable.

However, it is worth noting that the number of observed
values in the five wells averages 134, which represents a relatively
small dataset for ensuring the LSTMmodel’s optimal performance.
LSTM model initially designed for learning on large datasets,
commonly known as “big data,” shows remarkable performance.
However, the model’s formidable learning capacity can present
difficulties when applied to a limited dataset of groundwater
level observations. In such cases, the LSTM model becomes
susceptible to over-fitting, which can compromise its predictive
accuracy (Baek and Kim, 2018). This overfitting issue is evident

in the case of the LSTM-GS model. By employing all available
remote sensing variables without specifically selecting the most
informative ones for eachwell, the LSTM-GSmodel becomes overly
specialized in capturing the training data, leading to decreased
performance when confronted with new, unseen data during the
testing phase (Table 5). Furthermore, the poor performance of the
LSTM standalone model was expected, since it uses all available
input variables without the hyperparameters optimization. As a
result, this model is prone to overfitting and its ability to accurately
capture fluctuations in groundwater levels is limited. This has been
observed in several other studies, where standalone ANN models
exhibited the weakest performance in predicting groundwater
variables (Rahman et al., 2020; Cui et al., 2022; Zhang et al., 2023).

4.2. Model performance assessment in
irrigated and floodplain areas

Despite the high fluctuation of groundwater levels in well
P1 (Standard deviation > 2m) (Table 2), the integration of
the best input feature (MODIS LST) using XGBoost and the
hyperparameter optimization of the LSTM-XGB-GS model led to
a remarkably accurate prediction of its groundwater levels during
the test period (Figure 7). This good prediction performance can
be attributed to the relationship between irrigation and land surface
temperature, as evidenced by several studies (Bright et al., 2017; Liu
et al., 2019; Yang et al., 2020; Zhang Z. et al., 2022). These studies,
demonstrated that in arid regions, irrigation has been shown to
substantially alter the land surface temperature, resulting in lower
daytime land surface temperature in irrigated areas compared
to adjacent non-irrigated regions (Yang et al., 2020). Given that
irrigation in the Beni Moussa aquifer heavily relies on pumping
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FIGURE 9

Taylor diagram representing the statistical performance of the three models in predicting observed groundwater level data during the training and

test periods.

water from the aquifer (Lionboui et al., 2021), a direct relationship
may exist between the dynamics of groundwater levels and the
variations in land surface temperature. Consequently, this interplay
between land surface temperature and groundwater levels could
explain LSTM-XGB-GS model’s good performance in simulating
groundwater levels for well P1.

The LSTM-XGB-GS prediction results for wells P2 and P3 are
generally acceptable and reliable. However, a noticeable decrease
in model prediction performance is observed when compared to
their training period or to the other wells (Table 5). This decrease
in performance can be attributed to several factors. To begin with,
the correlation coefficient for groundwater level in well P2 does not
exhibit a distinct correlation with any of the four input variables
(Figure 4). XGBoost indicates that IMERG-GPM precipitation is
ranked first, but it is not isolated from the other variables since
they all hold roughly the same level of importance (Figure 5).
This observation might be explained by the significant unsaturated
zone at well P2, where the depth to the water table is 36.78m
(Table 2). At certain depths, surface climatic conditions such as land
surface temperature and evapotranspirationmay have only a minor
influence on short-term groundwater fluctuations. Conversely,

changes in the precipitation regime can have a long-term impact
on groundwater levels. Nevertheless, the effect of precipitation on
groundwater is not always immediate; it can vary from month
to month and is heavily dependent on the aquifer’s hydrological
conditions (Jan et al., 2013; Grinevskii, 2014; Cai and Ofterdinger,
2016; Qi et al., 2018;Mogaji and Lim, 2020). Moreover, the IMERG-
GPM product’s low spatial resolution (10 km) might hinder its
ability to accurately capture the fine-scale spatial variability in
precipitation, which is crucial in this semi-arid irrigated plain
(Ouatiki et al., 2019). Additionally, numerous evaluations of the
IMERG-GPM product have revealed certain biases and estimation
errors, leading to significant over- and underestimations of the
duration and intensity of precipitation (Ramsauer et al., 2018;
Ouatiki et al., 2019; Kazamias et al., 2022; Pradhan et al., 2022).

In addition, NDVI exhibits a strong positive correlation with
well P3 in the floodplain (Figure 4), supporting the findings of
XGBoost, where NDVI is identified as the most important input
feature. This good correlation/importance can be attributed to the
temporal variation of NDVI in floodplain areas, where it has been
shown to effectively capture seasonal and inter-annual variability in
vegetation dynamics and the hydro-sedimentological regime along
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and across the floodplain (Shrestha et al., 2013; Powell et al., 2014;
Marchetti et al., 2016). Moreover, NDVI values provide insights
into the relationship between groundwater and plant growth. In
cases where a high NDVI area is experiencing drought, it indicates
that vegetation is consuming more groundwater, which potentially
impact groundwater levels variation (Hassan et al., 2019; Hadri
et al., 2021; Lebrini et al., 2021; Moumane et al., 2021; Sajjad et al.,
2022; Zhang Z. et al., 2022). However, given the positioning of well
P3 in the floodplain, it is plausible that the influence of the nearby
wadi contributes significantly to the observed decline in model
performance between the training and test periods. The dynamic
interactions that occur between the wadi and the aquifer have the
potential to elucidate a substantial part of the fluctuations observed
in the water table, as highlighted by previous studies (May et al.,
2011; Wang et al., 2014; Kazamias et al., 2022). To establish this
hypothesis with greater certainty, a more conclusive assessment of
the modeling performance would require the integration of flow
data from the wadi. Unfortunately, such data were not available in
the present case.

The strong relationship between groundwater levels in well
P4 and MODIS evapotranspiration (Figures 4, 5) clearly enabled
accurate prediction of groundwater level fluctuations in this well.
This can be explained by the fact that the floodplains in this
region serve as designated irrigation areas, used to extract water
from surface and groundwater reservoirs. This is particularly
important during prolonged periods of limited rainfall, when
the extracted water supports plant growth, resulting in increased
evapotranspiration (Zhang et al., 2018; Hssaisoune et al., 2020;
Ahmed et al., 2021; Malakar et al., 2021). In this context, the
measurement of evapotranspiration is of key importance and is
considered an essential climatic parameter for vigilant monitoring
and effective management of irrigation operations and floodplain
ecosystems. Many research studies have seamlessly integrated
evapotranspiration data acquired from remote sensing resources,
including MODIS data, to assess irrigation needs and decipher
hydrological models (Droogers et al., 2010; Van Houdt et al., 2020;
Vogels et al., 2020).

It’s important to acknowledge that groundwater resources in
irrigated and floodplain areas bear a substantial impact from
intensive pumping activities (Zhang et al., 2018; Malakar et al.,
2021). This phenomenon accounts for the substantial fluctuations
in groundwater levels within irrigated (wells P1 and P2) and
floodplain (wells P3 and P4) regions, as evidenced by their
high standard deviations (> 2m) (Table 2). The influence of
farming practices, particularly irrigation and pumping, is even
more pronounced in semi-arid and arid climates, where high
pressure and reliance on groundwater are prevalent during water
scarcity periods (Wang et al., 2014; Kirby et al., 2015; Mao et al.,
2017; Pulido-Bosch et al., 2018; Salem et al., 2018; Tweed et al.,
2018; Cavelan et al., 2022). In Morocco, the combination of
meteorological drought driven by reduced rainfall and elevated
temperatures has escalated irrigation water demand. Consequently,
irrigation sources often shift from surface water to groundwater
during these periods. Such challenges have been closely monitored
and evaluated across the OER Basin and its irrigated areas,
where human activities have exerted significant pressure on
water resources, leading to notable declines in groundwater levels

averaging from 71.9 to 148.8 cm/year (Ahmed et al., 2021) and
∼30m over the past three decades (Hssaisoune et al., 2020). As
a consequence, the model prediction performances highlight the
importance of precise knowledge regarding groundwater pumping
rates and volumes. Such information proves critical for enhancing
future groundwater modeling and forecasting in arid and semi-
arid climates characterized by intense irrigation and pumping
activities. These insights enable effective training of models to
adeptly capture the abrupt shifts in hydraulic head that result
from these activities. However, the challenge often lies in obtaining
accurate data concerning the quantity of water pumped from
individual wells (Trichakis et al., 2011).

4.3. Model performance assessment of a
stationary groundwater level

Well P5, located in the phosphate plateau area, achieves the
best modeling results during the training and testing periods in
both LSTM-XGB-GS and LSTM-GS models (Table 5), and the
simulated groundwater level maintains the same trend, distribution
and quasi-stationary aspect of the observed groundwater level
variation. This result was anticipated given that well P5 have
the lowest groundwater level fluctuation (standard deviation of
0.11m) and the deepest water table depth (mean depth of 72m)
(Table 2). These aspects suggest that groundwater levels in well
P5 remain relatively unaffected by climatic conditions or surface
activities such as irrigation or pumping, as demonstrated by the
low correlation values of the groundwater level with the four
input variables (Figure 4). In general, groundwater level prediction
studies that have shown excellent performance (RMSEs and MAEs
< 0.1m), have often been applied to groundwater levels that did not
show large groundwater fluctuations, or they showed a long-term
trend, over the whole time series (Bowes et al., 2019; Band et al.,
2021; Ghazi et al., 2021; Wunsch et al., 2021). This near-stationary
or regular dynamics allow ANNmodels, and in particular recurrent
neural networks such as the LSTM, to adequately predict the
time series, as the output variable becomes increasingly easy to
predict as the time series advances. in such conditions, it would be
possible to predict the groundwater level of the well P5 by adopting
only a univariate prediction approach, which relies solely on the
groundwater level observed data as input to the LSTM optimized
model (Raghavendra and Deka, 2016; Mohanasundaram et al.,
2019; Roy et al., 2021; Sarma and Singh, 2022).

5. Conclusion

The primary goal of this study is to assess the contribution
of remote sensing data and the input feature selection approach
within neural network models to predict groundwater levels in the
OER basin in Morocco. This region faces great challenges such as
drought and excessive groundwater water resource usage due to
intense irrigation. These challenges highlight the urgent need for
dependable and precise groundwater level prediction techniques.
To achieve this, three LSTM models for groundwater level
prediction were developed, rigorously analyzed and compared. The
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first LSTM model, named LSTM-XGB-GS, was optimized using
the GridsearchCV method, and uses a single variable identified
by the XGBoost method. This selected variable is considered the
most effective in explaining variations in groundwater level among
four remotely sensed variables: GPM precipitation, MODIS NDVI,
MODIS evapotranspiration, and MODIS LST. Another optimized
LSTM model was also constructed, but uses the four variables as
input (LSTM-GS). Additionally, a standalone LSTM model was
established and also incorporating the four variables as inputs. The
performance prediction of these models was evaluated in five wells
strategically located across diverse areas within the Tadla plain in
Morocco. Specifically, two wells (P1 and P2) are located in irrigated
zones, another two wells (P3 and P4) are positioned in alluvial
floodplains, and one well (P5) is situated on the plateau region
recognized as the Phosphate Plateau.

The results of the study demonstrate the consistent
outperformance of the LSTM-XGB-GS model compared with
the LSTM-GS model and the standalone LSTM model. The
LSTM-XGB-GS model demonstrates remarkable accuracy during
both training and test periods, as evidenced by high R2 values,
notably ranging from 0.95 to 0.99 during training periods and 0.72
to 0.99 during testing periods. Furthermore, the LSTM-XGB-GS
model achieves the lowest RMSE and MAE values across all wells,
illustrating its superior predictive capabilities. More specifically,
well P1 demonstrates accurate predictions using the LSTM-XGB-
GS model with MODIS LST as the optimal input, attributed to
the connection between irrigation and land surface temperature.
However, well P2 experiences reduced prediction performance
of the LSTM-XGB-GS model due to its water table depth and
limitations arising from the low spatial resolution of IMERG-GPM
data. Despite a strong NDVI correlation with groundwater levels in
the floodplain well P3, the low prediction performance of LSTM-
XGB-GSmodel could potentially be influenced by interactions with
the wadi flow. In the floodplain well P4, the significant relationship
between groundwater levels and MODIS evapotranspiration

notably enhances the LSTM-XGB-GS predictions performance.
Lastly, the low variation groundwater levels of well P5 contribute
to robust model predictions, enabling accurate prediction due to

its distinctive characteristics.
Finally, this study demonstrates the support that remote

sensing data can provide for groundwater prediction using the
ANNs model in conditions where in situ data are lacking. It’s
also highlights the distinctive characteristics and behavior of

groundwater levels in each well, which can be attributed to well
construction, hydrodynamic conditions, aquifer characteristics,

and the type of land cover and land use. Consequently, there is a
pronounced need to develop a generalized neural network model
structure, architecture, and generalized input variables, enabling
faster and more efficient predictions of groundwater levels for
multiple wells simultaneously at the basin scale.
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