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Introduction: Magnetoencephalography (MEG) is a powerful technique for

studying the human brain function. However, accurately estimating the number

of sources that contribute to the MEG recordings remains a challenging problem

due to the low signal-to-noise ratio (SNR), the presence of correlated sources,

inaccuracies in head modeling, and variations in individual anatomy.

Methods: To address these issues, our study introduces a robust method for

accurately estimating the number of active sources in the brain based on the F-

ratio statistical approach, which allows for a comparison between a full model with

a higher number of sources and a reduced model with fewer sources. Using this

approach, we developed a formal statistical procedure that sequentially increases

the number of sources in the multiple dipole localization problem until all sources

are found.

Results: Our results revealed that the selection of thresholds plays a critical role

in determining the method’s overall performance, and appropriate thresholds

needed to be adjusted for the number of sources and SNR levels, while they

remained largely invariant to di�erent inter-source correlations, translational

modeling inaccuracies, and di�erent cortical anatomies. By identifying optimal

thresholds and validating our F-ratio-based method in simulated, real phantom,

and human MEG data, we demonstrated the superiority of our F-ratio-based

method over existing state-of-the-art statistical approaches, such as the Akaike

Information Criterion (AIC) and Minimum Description Length (MDL).

Discussion: Overall, when tuned for optimal selection of thresholds, our method

o�ers researchers a precise tool to estimate the true number of active brain

sources and accurately model brain function.

KEYWORDS

F-ratio, source localization, Alternating Projection (AP), source enumeration, MEG, AIC,

MDL

1. Introduction

Magnetoencephalography (MEG) is a powerful non-invasive neuroimaging technique

that offers high temporal resolution for studying human brain function (Hämäläinen et al.,

1993; Baillet, 2017). Localization of MEG sources has garnered significant interest in recent

years since it can reveal the origins of neural signals and offer valuable insights into

the complex workings of the human brain. By identifying the sources of neural activity,

researchers can study the underlying mechanisms of cognition, perception, and other brain

functions (Ahveninen et al., 2006; Giorgetta et al., 2013; Klepp et al., 2015; Pancholi et al.,

2023). Additionally, source localization can aid in diagnosing and studying neurological

disorders and identifying abnormal brain activity (Oishi et al., 2002; Westlake et al., 2012;

Wilkinson et al., 2020; Xu et al., 2021; Giri, 2022; Giri et al., 2022).
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MEG source localization methods typically involve solving an

inverse problem, which entails estimating current sources within

the brain based on the measured MEG data. This is challenging

because the measured signals are influenced by several factors,

such as the geometry and conductivity of the head, sensor noise,

and the ill-posed nature of the problem. Mathematically, the

localization problem can be cast as finding the location and

moment of the set of dipoles whose field best matches the M/EEG

measurements (Mosher et al., 1992). Localization methods can be

broadly categorized into distributed and discrete solutions.

Distributed source imaging approaches aim to estimate a density

map of active dipoles across the entire cortex. Commonly used

methods include minimum norm estimators (MNE) (Hämäläinen

et al., 1993, 1994), dynamic statistical parametric mapping (dSPM)

(Dale et al., 2020), and standardized low-resolution electromagnetic

tomography (sLORETA) (Pascual-Marqui et al., 2002). However,

these methods assume a significantly larger number of unknown

sources in a discrete surface or volumetric grid compared

to the number of MEG sensors. The ill-posed nature of the

problem poses a significant challenge, especially in the presence

of multiple active regions in the brain (Darvas et al., 2004). Non-

linear source estimation methods, such as Mixed Norm Estimate

(MxNE) (Strohmeier et al., 2016) and time-frequency mixed-

norm estimates (TF-MxNE) (Gramfort et al., 2013), address this

issue by incorporating l1-norm penalty regularizers that favor

sparse collections of focal dipolar sources. Other sparse approaches

include hierarchical reconstructions of cortical and subcortical

sources (Gramfort et al., 2012; Krishnaswamy et al., 2017; Rezaei

et al., 2021). While these methods have shown some success, they

tend to be computationally demanding and have limited accuracy

when dealing with complex multi-dipole configurations.

On the other hand, discrete multiple dipole localizationmethods

avoid the ill-posedness associated with distributed methods by

finding a small set of equivalent current dipoles (ECDs) whose

field best matches the M/EEG measurements in a least-squares

sense (Mosher et al., 1992). Dipole localization methods offer a

more classical approach to brain source localization and provide

more intuitive interpretations of brain activity by estimating

the location, orientation and amplitude of neural sources.

The most well-known methods are beamformers (Van Veen

et al., 1997; Vrba and Robinson, 2001) and MUltiple SIgnal

Classification (MUSIC) (Mosher et al., 1992), and their recursive

variants Recursively Applied and Projected MUSIC (RAP-MUSIC)

(Mosher and Leahy, 1999), Truncated RAP-MUSIC (Mäkelä

et al., 2018), and RAP Beamformer (Ilmoniemi and Sarvas,

2019). While recursive variants generally perform better than

their non-recursive counterparts, they still face limitations such

as reduced effectiveness, reliance on high signal-to-noise ratio

(SNR), and potential cancellation of correlated sources. Recent

advancements in this field have addressed some of these concerns,

including Alternating Projections (AP) (Adler et al., 2022), double-

scanning (DS-MUSIC) (Mäkelä et al., 2017; Ilmoniemi and

Sarvas, 2019), hemispherical harmonics MUSIC (HSH-MUSIC)

(Giri et al., 2018), head harmonics MUSIC (H2 MUSIC) (Giri

et al., 2019), and Flex-MUSIC (Hecker et al., 2023). Estimating

the number of independent signal components is a prerequisite

for dipole localization methods to accurately estimate dipole

sources. However, determining the correct number of active

sources contributing to the recorded signals remains a fundamental

challenge in MEG data analysis (Wendel et al., 2009), significantly

impacting the success of brain source localization. We focus on

addressing this specific problem here.

Estimating the number of active sources in MEG data poses

significant challenges due to multiple factors. First, MEG signals

generally exhibit a low SNR, which makes it difficult to differentiate

between simultaneously active sources. Second, the presence of

correlated sources adds complexity by potentially causing multiple

sources to be mistakenly identified as a single source. Last, errors in

translational head modeling and variations in individual anatomy

introduce additional noise and variability, hampering accurate

estimation of the location and strength of underlying sources.

Early attempts to estimate the number of dipoles relied on

subjective thresholds (Bartlett, 1954; Lawley, 1956; Chen et al.,

1991). These approaches involved setting a threshold that separated

the eigenvalues of the data covariance matrix from the complete

set of eigenvalues. Chen et al. (1991) proposed a method that

detected the number of sources by imposing an upper bound on

the eigenvalue magnitudes of the correlation matrix derived from

the array output. In addition to conventional eigenvalue-based

techniques, a few methods have also employed eigenvectors for

estimating the number of sources (Di and Tian, 1984; Jiang and

Ingram, 2004).

To overcome the limitations of subjective thresholds, two main

classes of methods have been developed for estimating the number

of signal sources using the distribution of the eigenvalues of the

data covariance matrix. The first class involves techniques based

on principal component analysis (PCA) (Green et al., 1988; Yao

et al., 2018), independent component analysis (ICA) (Ikeda and

Toyama, 2000), and factor analysis (Malinowski, 1977a,b). The

second class consists of information theoretic approaches (Wax

and Kailath, 1985; Knösche et al., 1998), such as the Akaike

information criterion (AIC) (Akaike, 1974) and the minimum

description length (MDL) (Rissanen, 1978; Schwarz, 1978). The

work from Wax and Kailath (1985) derived the eigenvalue forms

of AIC and MDL methods, which can be directly applied to

array signal processing problems. These methods aim to strike a

balance between model fit and complexity using principles from

information theory. However, these approaches assume source

independence, which is not always valid in the brain. As a result,

they tend to perform poorly (Zhang et al., 1989; Chen et al., 1991;

Salman et al., 2015; Yao et al., 2018), especially in the presence

of correlated sources, noise, low SNR, and limited time samples.

Hence, there is a need for more robust and accurate methods to

estimate the number of active sources in MEG signals.

To address these limitations, we propose a robust method

for accurately estimating the number of active sources in the

brain using the F-ratio statistical approach. Our method introduces

formal decision criteria that sequentially increase the number of

sources in the multiple dipole localization problem until all sources

are found. Our method is based on the F-ratio test, which is

commonly used in statistics to compare the variances of two

samples. It is sensitive to differences in the variances of the samples

and can be used to determine whether adding a source to the model

significantly improves the fit of the model to the data. The F-ratio
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statistical approach allows for a comparison between a full model

with a higher number of sources and a reduced model with fewer

sources.

We validated the F-ratio-based method on simulated, real

phantom, and human MEG data, and compared its performance

to that of other state-of-the-art statistical approaches, such as AIC

and MDL. We found that the F-ratio-based method outperformed

competingmethods in terms of accuracy and reliability. One crucial

aspect we investigated was the selection of appropriate thresholds

for the F-ratio values. We found that this selection played a

critical role in determining the overall performance of our method.

Through systematic analyses, we identified optimal thresholds that

needed to be adjusted according to the number of sources and

SNR levels. Importantly, these thresholds exhibited remarkable

consistency across different inter-source correlations, translational

modeling inaccuracies, and cortical anatomies. When fine-tuned

with the optimal selection of thresholds, our F-ratio-based method

emerged as a precise and robust tool for estimating the true number

of active sources in MEG data.

2. Materials and methods

In this section, we provide a concise overview of the notations

used to describe the measurement data, forward matrix, and

sources. We also present the problem formulation for estimating

multiple ECDs in the brain. Subsequently, we describe the F-ratio

statistical procedure, which serves as the foundation to estimate the

number of active sources in the brain, and outline the experimental

procedures we use to assess performance.

2.1. Measurement model and notations

Consider an array of M MEG sensors detecting signals from

Q ECD sources located at positions {pq}
Q
q=1. At time t, the MEG

measurement vector y(t) can be described as a superposition of the

contributions from Q source signals {sq(t)}
Q
q=1 and additive noise:

y(t) =

Q
∑

q=1

l(pq)sq(t)+ n(t), where Q < M (1)

The topography l(pq) of the qth dipole at location pq is defined

as l(pq) = L(pq)o, where L(pq) ∈ R
M×3 is the lead field matrix

and o ∈ R
3×1 is the orientation vector. Depending on the problem,

the orientation vector omay either be known, referred to as a fixed-

oriented dipole, or it may be unknown, referred to as freely-oriented.

Additionally, the measurements are subject to the presence of

additive white Gaussian noise, which is represented by n(t) ∈

R
M×1.

Several source localization methods exist for estimating the

Q ECD sources, with each dipole source characterized by its

location, orientation, and amplitude. Recently, we introduced a

method called Alternating Projections (AP) (Adler et al., 2022),

which offers several advantages. AP source localization method

is robust to forward model errors, can handle high inter-source

correlation values, and is effective even in low SNR scenarios. It

is important to note that estimating the true number of active

sources Q is a fundamental requirement for all the aforementioned

dipole localizationmethods to accurately estimate the dipole source

parameters.

2.2. F-ratio based method

The F-test is a widely used statistical technique that leverages

the F-ratio to assess the presence of a significant difference between

the variances of two data sets. In the context of determining the true

number of sources, this technique holds particular value. It enables

us to test the hypothesis that incorporating an additional source

results in a substantial improvement in the variance accounted for

by the model. By employing the F-test, we can make informed

decisions regarding the optimal number of sources to include in

order to provide the most accurate explanation for the observed

data.

In probability theory and statistics, the F-statistic, also known

as the F-ratio, is defined as the ratio between two independent

chi-square distributions, denoted as X1 ∼ χ2
DOF1

and X2 ∼

χ2
DOF2

, where DOF1 and DOF2 represent the respective degrees of

freedom. Mathematically, the F-ratio is expressed as:

F =
X1/DOF1

X2/DOF2
(2)

This formula provides a means to calculate the F-ratio by

dividing the observed value of X1 normalized by its degrees of

freedom, DOF1, by the observed value of X2 normalized by its

degrees of freedom, DOF2. In this study, we use this idea to

compare two hypothesized models based on the variance they

explain. The first model, referred to as the “reduced model”,

explains the data with K number of sources:

y(t) = yR(t)+ nR(t), (3)

yR(t) =

K
∑

q=1

l(pq)sqR(t) (4)

where yR(t) represent the estimated signals and nR(t)

represents noise of a reduced model. On the other hand, the second

model, called the “full model,” includes one more source compared

to the reduced model, with K + 1 sources:

y(t) = yF(t)+ nF(t), (5)

yF(t) =

K+1
∑

q=1

l(pq)sqF(t) (6)

where yF(t) represent the estimated signals and nF(t) represents

noise of a full model. The estimation of yR(t) and yF(t) signals

is achieved by solving an inverse problem using a dipole

fitting method. By comparing the residual variance of these two

models, we can assess their performance and determine the most

appropriate model for the given data. Since we assume that the

noise added to the measured signal is white Gaussian noise, it can

be deduced that the sum of square errors between the measured

signal y(t) and the estimated signals yR(t) and yF(t), denoted as
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FIGURE 1

Flowchart of the F-ratio method for estimating the number of sources.

‖y(t)− yR(t)‖
2
2 and ‖y(t)− yF(t)‖

2
2 respectively, follows chi-square

distributions. Therefore, the F-ratio test can be written as Supek and

Aine (1993):

FR→F =

∑N
t=1 ‖‖y(t)− yR(t)‖‖

2
2

DOFR

/

∑N
t=1 ‖‖y(t)− yF(t)‖‖

2
2

DOFF

(7)

where N is the number of time samples. For the fixed-oriented

case, the degrees of freedom (DOF) for the reduced and full models

are given by DOFR = MN − (3 + N)K and DOFF = MN − (3 +

N)(K + 1), respectively. For the freely-oriented case, the DOF for

the reduced and full models are DOFR = MN − (4 + N)K and

DOFF = MN−(4+N)(K+1), respectively. These formulas account

for a total ofMN degrees of freedom, with three degrees of freedom

deducted for position, one for orientation (in the freely-oriented

case), and N for amplitude, for each dipole.

Note that the formulas for estimating the DOF assume

independence among all data points, which is not the case in

experimental data. To address this issue, in experimental data

we implemented a two-step whitening process involving both

temporal and spatial filtering. The first step involved temporal

whitening, as depicted in the flowchart of the F-ratio method

(Figure 1). The MEG data of each trial was whitened temporally

using a six-order linear predictive coding (LPC) technique. This

method helped alleviate temporal correlations within the data,

reducing their impact on the results. Subsequently, the LPC-filtered

trials were averaged. The second step was spatial whitening, which

was achieved by applying a whitening filter derived from inverting

the noise covariance matrix. This step further mitigated inter-

dependencies among the data points, enhancing the reliability of

the analysis. A more detailed discussion of the two-step whitening

process is presented in Section 2.4.

It is important to note that the calculated F-ratio values

are influenced by the residuals obtained after dipole fitting, and

therefore, are dependent on the chosen source localization method

used for solving the ECD localization problem in MEG. In our

study, we specifically examined the behavior of the F-ratio statistical

procedure when employing the AP localization method. The AP

method solves the inverse problem iteratively and sequentially by

minimizing the least-squares (LS) criterion. For amore detailed and

comprehensive discussion of the AP method, we refer readers to

Adler et al. (2022).

To estimate the number of sources, a systematic approach

involving the comparison of a reduced model and a full model is

illustrated in Figure 1. The formal comparison begins by initializing

the reduced model with zero sources and the full model with one

source to compute the F-ratio value. The decision regarding the

number of sources involves comparing the resulting F-ratio value,

denoted as F0→1, with a threshold value, Fth. If the reduced model

is rejected (F0→1 > Fth), indicating evidence of at least one

source, the analysis proceeds to compare a reduced model with

one source against a full model with two sources, represented as

F1→2. This sequential process continues, increasing the number

of sources, until reaching a step where the reduced model

cannot be rejected, providing an estimation of the true number

of sources.
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2.3. Performance evaluation with
simulations

We evaluated the performance of the F-ratio method in

diverse simulated scenarios, considering variations in the number

of sources, SNR levels, inter-source correlations, translational

modeling errors, and cortical anatomies.

The SNR was defined as the ratio between the Frobenius

norm of the signal-magnetic-field spatiotemporal matrix and

that of the noise matrix, following the approach described in

Sekihara et al. (2001). To quantify inter-source correlation, we

employed the Pearson’s correlation coefficient. To establish the

desired correlation among the sources, we utilized the Cholesky

decomposition method. Initially, we generated fundamental cosine

signals for each simulated source, with randomized phase and

frequencies ranging from 10Hz to 30Hz. Next, we applied the

Cholesky decomposition to factorize the symmetric positive

definite target correlation matrix into the product of a lower

triangular matrix and its conjugate transpose. By multiplying

lower triangular matrix with the fundamental cosine signals, we

generated a set of correlated dipole waveforms. This procedure

ensured that the resulting source time courses closely matched the

correlation coefficients specified by the target correlation matrix,

thus incorporating the desired inter-source correlations in our

simulations.

The sensor array geometry was based on the Megin Triux MEG

system, which consists of a 306-channel probe unit with 204 planar

gradiometer sensors and 102 magnetometer sensors. The MEG

source space geometries were modeled using the cortical manifold

extracted from MR data of adult humans, employing Freesurfer

(Fischl et al., 2004). In our analysis, we used cortical anatomies

from four different adult humans. Simulated sources were restricted

to approximately 15,000 grid points distributed over the cortex.

The reconstructed sources were estimated on a distinct grid of

50,000 points covering the cortex. To avoid the “inverse crime”

problem, where identical parameters are used for data synthesis and

inversion in an inverse problem, the simulation and reconstruction

grids were non-overlapping with an average distance of 0.7 mm

between neighboring points (Colton and Kress, 1998). The forward

matrix for both grids was computed using the boundary element

method implemented in OpenMEEG (Gramfort et al., 2010) within

the BrainStorm software (Tadel et al., 2011). Simulated MEG data

was generated by randomly selecting sources from the simulation

grids. Gaussian white noise was then added to the MEG sensors to

model instrumentation noise at specified SNR levels. In order to

evaluate the effect of head model errors, we introduced translations

to the reconstruction grid before computing the forward matrix.

Last, we employed the AP method to solve the inverse problem in

the fixed oriented case. All experiments were conducted with 100

Monte Carlo simulations to ensure statistical robustness.

2.4. Performance evaluation with a real
phantom

We assessed the performance of the F-ratio method using the

freely-oriented dipoles model with phantom data provided in the

phantom tutorial (Taylor et al., 2016) of the Brainstorm software

(Tadel et al., 2011). The phantom experiment was conducted

using the Megin Neuromag system, which consists of a 306-

channel probe unit with 204 planar gradiometer sensors and 102

magnetometer sensors.

The data comprised MEG recordings obtained from the

sequential activation of 32 artificial dipoles. To activate the

phantom dipoles, an internal signal generator was used along with

an external multiplexer box that connected the signal to each

individual dipole. Each dipole was activated 20 times with an

amplitude of 200 nAm, resulting in a total of 20 trials for each

experimental condition. It is important to note that the chosen

amplitude of 200 nAm falls within the range typically observed in

inter-ictal spikes associated with epilepsy, as observed in raw data

(Oishi et al., 2002).

For each dipole and each trial, the MEG data was whitened

temporally using a six-order LPC technique. In particular, baseline

data of a 200ms pre-stimulus interval was used to compute the LPC

coefficients of sixth order. These coefficients were then averaged

across sensors and subsequently applied to the post-stimulus data

modeled as an moving average (MA) filter. The purpose of this step

was to eliminate temporal dependencies in the post-stimulus data,

as observed in the auto-regressive (AR) model of baseline data.

Following this, the LPC-filtered post-stimulus measurements were

averaged across the 20 trials. In addition to temporal prewhitening,

spatial prewhitening was also performed on the average data using

a regularized noise covariance matrix in the Brainstorm software

(Tadel et al., 2011). The regularization process included adding an

identity matrix scaled to 10% of the largest eigenvalue of the noise

covariance matrix.

To simulate the concurrent activation of multiple sources, we

combined averaged data from different dipoles since only one

dipole could be activated at a time. To introduce variability and

avoid perfect coherence, we added a random delay ranging from

0 to 50 ms for each dipole.

The reconstruction source space was defined as a sphere

centered within the MEG sensor array, with a radius of 64.5 mm.

It was sampled using a regular volumetric grid of points with a

resolution of 2.5 mm, resulting in a total of 56,762 grid points. The

forward matrix was estimated based on a single sphere head model

using the BrainStorm software (Tadel et al., 2011). The performance

of the F-ratio method was evaluated using the AP method for

localizing dipoles in the freely-oriented case.

2.5. Performance evaluation with human
MEG data

The effectiveness of the F-ratio method in practical scenarios

was assessed using human MEG data recorded from a single

human participant during an auditory task. Prior to participation,

the subject provided written informed consent, and the study

was approved by the local ethics committee (Institutional Review

Board of the Massachusetts Institute of Technology), following the

principles of the Declaration of Helsinki. During the experiment,

binaural sounds (beeps) were delivered to the subject using tubal-

insert earphones. These auditory stimuli are known to elicit specific
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brain responses that are localized in the bilateral primary auditory

cortex. A total of 166 trials were recorded, with an interstimulus

interval of 2150 ms between each auditory stimulus. The MEG data

were acquired using a MEGIN Triux MEG system, which includes

a 306-channel probe unit consisting of 102 magnetometers and 204

planar gradiometers.

The forward matrix was estimated using BrainStorm based on

an overlapping spheres head model. The reconstruction source

space samples the brain volume in an adaptive way, with a higher

density near the surface where we expect a higher spatial resolution

due to the proximity to the sensors. The density decreased gradually

toward the center of the brain, resulting in a total of 33,073

grid points. This grid is constructed using a specific adaptive

algorithm in Brainstorm: It begins with a brain envelope containing

10,000 vertices as the initial number. Then, each previous layer

is successively shrunk and downsampled by a factor of 3. This

operation is repeated for 17 layers or until no more vertices are

available.

The performance of the F-ratio method was evaluated using

the AP method for localizing dipoles in the freely-oriented case.

Before localization, the raw data underwent prewhitening in both

the temporal and spatial domains following the same procedure as

in the real phantom data.

3. Results

3.1. Optimal modeling of MEG data
requires the adjustment of F-ratio nominal
thresholds

To investigate the behavior of the F-ratio method under

different experimental conditions, we conducted a thorough

simulation analysis. Our objective was to assess the accuracy of

estimating the true number of sources by varying the threshold

values across various experimental scenarios. These scenarios

included different numbers of active sources, varying SNR levels,

inter-source correlation values, translational modeling errors, and

cortical anatomies.

We observed that the accuracy of estimating the true number

of sources using a specific F-ratio threshold was strongly influenced

by the actual number of sources Q. This relationship is depicted in

Figures 2A–C, where the estimation accuracy varied significantly

for different values of Q. Notably, as the number of true sources

increased, a lower F-ratio threshold was required to achieve higher

performance. Similarly, we discovered a strong correlation between

the accuracy of estimating the true number of sources and the SNR

level. Figures 2D–F demonstrates this dependency for various SNR

values. As the SNR level increased, a lower F-ratio threshold became

necessary to achieve higher accuracy in estimating the true number

of sources.

In contrast, we made the important observation that the

optimal F-ratio threshold remained independent of the inter-

source correlation level. This finding is illustrated in Figures 2G–

I, where we tested different inter-source correlation values (0.1,

0.5, and 0.9). The accuracy in estimating the number of sources

peaked at the same threshold value for all correlation levels.

This robustness indicates that the optimal F-ratio thresholds

were not influenced by the inter-source correlation values of the

active sources. Consequently, researchers may rely on a consistent

threshold value regardless of the degree of correlation among the

sources, enhancing the practical applicability and reliability of

the F-ratio method. We obtained similarly robust results when

testing the accuracy of estimating the true number of sources

across different model errors (Figures 2J–L) and cortical anatomies

(Figures 2M–O). In the case of model errors, we introduced

registration errors by translating the reconstruction source space

relative to the source simulation space. Specifically, we applied

translations of 1 mm posterior (X-axis), right (Y-axis), and upward

(Z-axis). Importantly, despite the presence of these registration

errors, the F-ratio method remained highly robust. Similarly, when

evaluating the F-ratio thresholds across the cortical anatomies

of four different adult humans, we observed consistent and

robust results.

In summary, our observations indicated that the performance

of F-ratio thresholds varied significantly depending on the true

number of sources and the SNR levels of the data. However, we

found that F-ratio thresholds remained robust across different

inter-source correlation values, translational model errors, and

cortical anatomies. These findings highlight the need to adapt and

optimize threshold procedures for the F-ratio test based on the

specific number of sources and SNR levels in the data. In the next

section, we determined these optimal thresholds.

3.2. Computation and evaluation of
adjusted F-ratio thresholds in simulated
data

In this section, we aimed to determine adjusted F-ratio

thresholds for accurately estimating the number of active sources in

MEG data. To accomplish this, we used a specific cortical anatomy

as a reference (referred to as Anatomy 1). Optimal threshold values

for Anatomy 1 were computed by identifying the F-ratio value that

yielded the highest average accuracy in estimating the number of

sources, considering the ρ ∈ {0.1, 0.5, 0.9} inter-source correlations

and 1mm translational modeling errors in x, y, z. It may be noted

that our study specifically examined the robustness of the method

against translational modeling errors as a representative example.

The resulting adjusted F-ratio thresholds were obtained for various

SNR levels and numbers of sources, as depicted in Figure 3. Our

findings indicate that higher threshold values are necessary in

scenarios characterized by a high SNR and a low number of sources.

To assess the effectiveness of the adjusted threshold values

obtained for the reference anatomy, we conducted tests on three

additional cortical anatomies (Figure 4). The performance of the

adjusted F-ratio thresholds in estimating the number of sources was

evaluated at 0 dB SNR and correlation levels ρ ∈ {0.1, 0.5, 0.9}.

Remarkably, the results showed that the performance of the

adjusted thresholds was comparable to that of the reference cortical

anatomy (Anatomy 1). These findings demonstrate the reliability

and robustness of the calculated optimal F-ratio thresholds across

a wide range of simulation scenarios, including variations in the

number of sources, SNR levels, inter-source correlation values,

translational modeling errors, and cortical anatomies.
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FIGURE 2

Accuracy (%) of the F-ratio method for estimating the number of active MEG sources (on vertical axis) under di�erent threshold values (on horizontal

axis). Performance evaluation was conducted across various experimental conditions: (A–C) varying number of true sources Q, (D–F) SNR levels

from -8 to 8 dB, (G–I) inter-source correlation values ρ from 0.1 to 0.9, (J–L) di�erent model errors, and (M–O) di�erent cortical anatomies. Each

experimental condition was tested using 100 Monte-Carlo repetitions to ensure statistical robustness. To account for head registration errors, we

incorporated inaccuracies into the lead field matrix by applying a translation of 1mm posterior (X-axis), rightward (Y-axis), and upward (Z-axis).

We proceeded by conducting a comparative analysis between

the proposed F-ratio method with adjusted thresholds and two

commonly used methods, namely the information criterion AIC

and MDL method, for estimating the number of sources. These

methods rely on likelihood functions derived from information

theory to assess and choose the optimal model. The comparison

results of the F-ratio, AIC, and MDL methods across different

SNR conditions and correlation levels are depicted in Figure 5. The
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FIGURE 3

Optimal F-ratio threshold values, adjusted for the signal-to-noise

ratio (SNR) level and the number of active sources in the MEG data.

results correspond to cortical anatomy 4 with 1 mm translational

modeling error in X. Remarkably, the proposed F-ratio method

with adjusted thresholds outperformed both the AIC and MDL

methods in terms of accuracy and reliability.

3.3. Performance of the F-ratio method in
estimating the number of active dipoles in
phantom data

We assessed the performance of the F-ratio method in

estimating the number of active dipoles in phantom data

(Figure 6A). The locations of the 32 artificial dipoles of the MEGIN

phantom are shown in Figure 6B. To simulate the activation of

multiple MEG sources simultaneously, we combined the data

obtained from individually activated dipoles. To avoid perfect

coherence, a random delay ranging from 0 to 50 ms was introduced

between the dipole time courses. Figure 6C illustrates an example of

MEG sensor data from two active dipoles with a randomly selected

temporal delay of 29 ms. The time courses are displayed following

temporal and spatial prewhitening, and had an estimated SNR of

5.5 dB.

We conducted 100 Monte Carlo repetitions of phantom data

simulations for each scenario involving 0 to 5 active sources.

For each repetition, we applied the optimal F-ratio thresholds

(presented in Figure 3) based on the estimated SNR of the

phantom data and the corresponding number of tested sources.

The rationale behind using the same optimal F-ratio value from

simulations to both the phantom and experimental data lies in

the observation that, while the performance of F-ratio thresholds

varied significantly based on the number of sources and SNR

levels, these thresholds remained largely invariant to variations in

inter-source correlations, translational modeling inaccuracies, and

different cortical anatomies.

The performance of the F-ratiomethod in accurately estimating

the true number of active dipoles is shown in Figure 6D. The

method successfully identified the correct number of sources up

to 2, surpassing both the AIC and MDL methods. In contrast, the

latter methods failed entirely, with no correct estimations among

the 100 simulated scenarios (results not depicted). The AICmethod

yielded mean estimates of 41 for no true sources and 42 for 1 to

5 true number of sources, respectively, across 100 Monte Carlo

repetitions. Similarly, the MDL method estimated the number of

sources as 41 in all cases of 0 to 5 true numbers of sources across

the same 100 Monte Carlo repetitions. It was found that AIC and

MDL consistently overestimated the number of sources.

It is important to note that although the performance of the

F-ratio method in experimental data was not as remarkable as

in the simulated data, we attribute this to two factors. First, the

specific configuration of the phantom dipoles played a critical

role. The 32 phantom dipoles were closely spaced and shared

similar orientations. In the 100 Monte Carlo repetitions, sources

were randomly chosen with no constraints in their simultaneous

activation. Consequently, there was a substantial probability of

selecting adjacent sources, and this likelihood increased as the

number of sources grew (3, 4, and 5). Additionally, the time courses

of the phantom dipoles had random delays ranging from 0 to 50

ms, resulting in instances of minimal delay and strong correlation.

The combined effect of proximate source selection and small time

course delay exacerbated the challenge of accurately estimating the

number of sources, particularly when dealing with a larger number

of sources.

3.4. Performance of the F-ratio method in
estimating the number of sources in human
auditory data

To evaluate the effectiveness of the F-ratio method in human

data, we utilized it to analyze brain responses captured during an

auditory task. We employed the AP source localization method to

fit dipoles within the time interval of 100–130 ms relative to the

onset of the auditory stimuli, which approximately corresponded

to the peak MEG response. The SNR within this interval was

determined to be 5.78 dB.

Figure 7A illustrates the adjusted F-ratio thresholds at 5.78

dB SNR, along with the corresponding values estimated from the

human data. By employing the F-ratio sequential procedure, we

observed the rejection of the reduced models with zero or one

source, while finding no evidence to reject (and thus accepting) a

model with two distinct sources. To further validate these findings,

we plotted the sum of squares of residuals for the competing

models, as shown in Figure 7B. This plot reinforces our conclusion

of the presence of two sources, as there was no significant reduction

in the sum of squares of residuals beyond the model order of

2. Additionally, we visualized the dipoles detected using the AP

localization method for the cases of 1, 2, and 3 sources (Figures 7C–

E). In the case of the two-source model, the dipoles were localized

bilaterally and coincided with the well-established regions in the

primary auditory cortices.

It is worthmentioning that alternative methods such as the AIC

and MDL yielded different estimates for the number of sources.

Specifically, the AIC method suggested 33 sources, while the MDL

method indicated only 31 sources. These estimates far exceed the
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FIGURE 4

Performance of adjusted F-ratio thresholds in simulated data. The thresholds were optimized for Anatomy 1 and applied to three di�erent anatomies

(Anatomies 2, 3, and 4). The F-ratio method was employed to estimate the number of sources under varying levels of source correlation (A) ρ = 0.1,

(B) ρ = 0.5, and (C) ρ = 0.9, while maintaining a signal-to-noise ratio of 0 dB.

expected number of active sources in human auditory responses

and are not in line with the existing knowledge in the field.

Lastly, we conducted a further analysis on the human data

with a reduced SNR of approximately 0 dB, achieved by averaging

a reduced number of 44 trials (originally 166). As depicted in

Supplementary Figure 1, this analysis highlights the robustness of

the F-ratio test in accurately detecting 2 sources, consistent with

the findings from the higher SNR case. It was found that AIC and

MDL consistently overestimated the number of sources even in the

presence of lower SNR. This suggests that the overestimation nature

of AIC andMDL (in phantom and real data) might be related to the

complex nature of human experimental data.

4. Discussion

We have proposed and validated an F-ratio-based method to

detect the number of active sources in MEG data. We initially

aimed to tune the method with a universal F-ratio threshold value

that, once selected, could be applied across diverse simulation

scenarios. However, we found that the performance of the F-

ratio method was inherently dependent on the SNR and number

of sources. Thus, we have concluded that it is not feasible

to determine a single threshold value that guarantees optimal

performance across all cases. Instead, we proposed a methodology

that adjusts F-ratio threshold values based on the estimated SNR

and the corresponding number of tested sources. Our results

demonstrated the reliability and robustness of the calculated

optimal F-ratio thresholds across a wide range of simulation

scenarios, including variations in the number of sources, SNR

levels, inter-source correlation values, modeling errors, and cortical

anatomies.

However, it is crucial to acknowledge that the adjusted

threshold values obtained in this study are specific to the MEG

system analyzed and may need to be adjusted for other devices

or modalities, such as EEG. When applying the F-ratio method in

different devices, it would be necessary to determine appropriate

threshold values that are specific to each case. Similarly, the

effectiveness of the proposed method is inherently linked to the

choice of the source localization technique. In this study, we

employed the AP method to compute and validate the F-ratio

thresholds. However, different source localization methods may

yield varying results and require different threshold adjustments.

Therefore, it is crucial to determine the optimal threshold values

for a particular set of experimental settings and source localization

method to ensure accurate estimation of the true number of

active brain sources. Despite these considerations, our proposed

method provides researchers with a precise tool to estimate the

true number of active brain sources and effectively model brain

function. By calculating threshold values that are tailored to the

specific modality and source localization method, researchers can

enhance the accuracy and reliability of their source estimation

process.

A study by Supek and Aine (1993) aimed to evaluate the efficacy

of three statistical measures, namely percent of variance, reduced

chi-square, and F-ratio, in determining the correct number of

sources (model order). The authors advocated for the reduced chi-

square method as a reliable measure of goodness-of-fit, whereas

they were less favorable to the percent of variance and F-ratio

because they ignored noise contributions. Although we agree

that the percent of variance has limited utility, we contend

that the efficacy of the F-ratio method was underestimated.

Indeed, the simulation results presented in Supek and Aine (1993)

demonstrated that the F-ratio remained stable across different

noise levels and successfully identified the true number of sources.

However, it is important to note that the study was confined to

simulations on a simple spherical head model, lacked assessments

using real data, and did not provide clear threshold decision criteria

for determining the correct number of sources. In this work, we

proposed a methodology to estimate the number of sources by

employing F-ratio threshold values based on the estimated SNR and

the corresponding number of tested sources.

The Bayesian multi-dipole estimation method, Sequential

Semi-Analytic Monte-Carlo Estimation (SESAME) (Sommariva

and Sorrentino, 2014; Sorrentino et al., 2014; Luria et al., 2020)

is an iterative Monte Carlo algorithm that approximates the

posterior distribution for an a-priori unknown number of dipoles.

The output of SESAME is a posterior distribution for a variable

number of dipoles and their parameters. From this distribution, a

cortical probability map is computed, quantifying for each voxel the

posterior probability of containing a dipolar source. Additionally,

the method provides a point estimate of the dipole location,
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FIGURE 5

Comparison of the F-ratio, AIC, and MDL methods in simulated data for estimating the true number of dipoles at various SNR levels: (A) SNR = -8 dB,

(B) SNR = -4 dB, and (C) SNR = 4 dB, and di�erent levels of source correlation: (D) ρ = 0.1, (E) ρ = 0.5, and (F) ρ = 0.9.

FIGURE 6

Performance of F-ratio method in phantom data. (A) Real phantom provided by the MEG vendor MEGIN (Taylor et al., 2016). (B) Location of the 32

artificial dipoles of the MEGIN phantom. (C) Example sensor measurements from two active dipoles with a temporal delay of 29 ms, following

temporal and spatial prewhitening, corresponding to SNR 5.5 dB. (D) Performance of F-ratio method in estimating the number of active dipoles.
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FIGURE 7

Performance of the F-ratio method in estimating the number of sources in human auditory data. (A) Comparison of obtained F-ratio values in human

data with optimal F-ratio thresholds, supporting a model with two active sources. (B) Plot of the sum of squares of residuals for models with di�erent

numbers of active sources. (C) Localization of a single source. (D) Localization of two sources. (E) Localization of three sources.

determined as the peak of the cortical probability map. In future

research, it would be valuable to compare the performance of

SESAME against our proposed method.

It is essential to acknowledge the fact that the performance

of the F-ratio method in phantom data was not as remarkable

as in the simulated data, we attribute this to two factors. First,

the specific configuration of the phantom dipoles played a critical

role. The 32 phantom dipoles were closely spaced and shared

similar orientations. Additionally, the time courses of the phantom

dipoles had random delays ranging from 0 to 50 ms, resulting in

instances of minimal delay and strong correlation. The combined

effect of proximate source selection and small time course delay

exacerbated the challenge of accurately estimating the number of

sources, particularly when dealing with a larger number of sources.

In the literature, it is well known that the localization errors

tend to increase when dealing with sources that have small

spatial separation. This phenomenon has also observed in the AP

method, as we reported in our previous work (Adler et al., 2019).

Second, estimating the number of sources beyond two is generally

an exceptionally challenging problem in MEG. Consequently, a

significant body of work has focused on solving the problem

of localizing up to two or three sources within simulation or

controlled environments (Mosher et al., 1992; Mosher and Leahy,

1999; Mäkelä et al., 2018; Adler et al., 2019; Ilmoniemi and Sarvas,

2019; Giri et al., 2020).

Finally, it is important to mention that the MEG human

experiment revealed the presence of two active sources. Notably,

the F-ratio method consistently exhibited excellent performance in

simulations and phantom experiments with this specific number

of sources. However, it is crucial to acknowledge that as the

number of sources increases, the suitability of the F-Ratio method

might diminish, necessitating further investigation in future

studies.

5. Conclusion

We have validated our F-ratio-based method on simulated,

real phantom, and human MEG data. In comparison to other

state-of-the-art statistical approaches like AIC and MDL, which

rely on certain assumptions that often do not hold in real-world

situations, our method demonstrated superior performance in

terms of accuracy and reliability. One crucial aspect we emphasized

is the selection of appropriate thresholds for the F-ratio values,

which significantly impacts the overall performance of the method.

We identified optimal thresholds and showed that these thresholds

needed to be adjusted for the number of sources and SNR levels.

Notably, these thresholds exhibited remarkable consistency across

different inter-source correlations, head translation modeling

errors, and cortical anatomies. Overall, by fine-tuning the selection

of thresholds, our F-ratio-based method provides researchers with

a precise and robust tool for accurately estimating the true number

of active sources in MEG data. Further research is needed to

explore and validate the proposed method in different modalities

and with various source localization techniques. By refining the

threshold determination process and investigating its applicability

across different experimental conditions, we can extend the utility

of this method to a wider range of neuroimaging studies and

enhance our understanding of the underlying mechanisms of

brain function.
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