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Soil acidity is a serious problem in agricultural lands as it directly affects the soil,

crop production, and human health. Soil acidification in agricultural lands occurs

due to the release of protons (H+) from the transforming reactions of various

carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has

emerged as an excellent tool to manage soil acidity owing to its alkaline nature

and its appreciable ability to improve the soil’s physical, chemical, and biological

properties. The application of BC to acidic soils improves soil pH, soil organic

matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity

and diversity, and enzyme activities which mitigate the adverse impacts of acidity

on plants. Further, BC application also reduce the concentration of H+ and Al3+

ions and other toxic metals which mitigate the soil acidity and supports plant

growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it

has a direct impact on global production and food security. Due to its

appreciable liming potential BC is also an important amendment to mitigate

the adverse impacts of SS. The addition of BC to saline soils improves nutrient

homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic

activity, and water uptake and reduces the accumulation of toxic ions sodium

(Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by

improving antioxidant activity, photosynthesis efficiency, stomata working, and

decrease oxidative damage in plants. Thus, in the present review, we discussed

the various mechanisms through which BC improves the soil properties and

microbial and enzymatic activities to counter acidity and salinity problems. The

present review will increase the existing knowledge about the role of BC to

mitigate soil acidity and salinity problems. This will also provide new suggestions

to readers on how this knowledge can be used to ameliorate acidic and

saline soils.
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Introduction

Soil acidification is a natural process that occurs at a very slow

rate during soil weathering, however, anthropogenic activities like

intensive agricultural practices can speed up this process (Bolan

et al., 2023). In agricultural soils, the continuous application of

nitrogen (N) and sulfur (S) increases the concentration of H+ ions

which negatively affect plant growth, soil properties, and microbial

activities (Fageria and Nascente, 2014). The increased H+

concentration increases the mobility and solubility of toxic metals

aluminum (Al) and manganese (Mn) that natively affect plant

growth and development and human health by entering the food

chain (Briffa et al., 2020). Besides this soil acidity also reduces the

availability of essential nutrients [(phosphorus (P), molybdenum

(Mo), calcium (Ca), and magnesium (Mg)] thus negatively affecting

the plant’s growth and development (Ritchie, 1989; Briffa et al.,

2020; Cui et al., 2020). Soil acidification is a very slow process that

occurs through weathering of minerals and rainfall that increased

the loss of basic cations. Yet, the application of high rates of

nitrogen (N) fertilizers, acid rains, and industrial climate

conditions are the main reasons of a substantial increase in soil

acidification around the globe (Guo et al., 2010).

Soil salinity is a dangerous stress that hinders plant growth by

altering plant morphological, physio-biochemical, and molecular

processes (Zörb et al., 2019; Hoque et al., 2022a; Imran et al., 2022;

Khan et al., 2023). Every year around the globe 1-2% of cultivated

soils are reduced due to salinity and about 23% of arable land (800

million hectares) is salt affected which is a serious threat to food

production (Alqahtani et al., 2019). Besides this, it has been

estimated that 50% of arable lands will be converted into salt-

affected soil by the end of 2050 owing to an increase in groundwater

levels with high concentrations of salts, inefficient irrigation, and

drainage systems, and overuse of chemical fertilizers (Shahid et al.,

2018; Raza et al., 2022). Salinity stress causes a substantial reduction

in yield and it has been documented that this stress can cause yield

losses of up-to 65% in many cultivated areas (Farahmand and

Sadeghi, 2020; Chattha et al., 2022; Nawaz et al., 2022). Plants

grown under saline conditions face a reduction in germination,

seedling growth, and yield and change in physiological and

molecular processes (Khan et al., 2021; Hassan et al., 2022).

Salinity also induced the production of reactive species (ROS)

that damage protein, deoxyribonucleic acid (DNA), and lipids

and increase the loss of important osmolytes (Jiang et al., 2020;

Kamran et al., 2020). Besides this salinity stress also affect plant

growth and development by inducing ionic and osmotic stress

(Liang et al., 2022). The salinity-induced ionic toxicity increases

the concentration of toxic ions and decreases the concentration of

essential nutrients like calcium (Ca) and potassium (K) (Akhtar

et al., 2015a). On the other hand under salinity-induced osmotic

stress soil water is rapidly decreased due to the considerable

reduction in water potential of soils owing to an increase in salt
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concentration (Zhang et al., 2023) which consequently reduced

plant growth by decreasing nutrient and water uptake and

photosynthetic rate (Hussain et al., 2019).

Globally, different liming materials including lime, dolomite, and

steel slag are being used to manage the soil acidity problem. Recently

biochar (BC) has also emerged as an excellent liming material to

manage soil acidity (Shi et al., 2019), soil salinity and heavy metals

polluted soils (Mehmood et al., 2021; Mehmood et al., 2022a;

Mehmood et al., 2022b; Mehmood et al., 2023). BC addition to acid

soils increases soil pH which improved plant growth and plant

responses (Rondon et al., 2007; Shi et al., 2019; Deus et al., 2020).

BC application also changes the soil properties (pH, porosity, and

redox state) and improves the mobilization of nutrients that favors

plant growth under acid soils (Major et al., 2010; Borchard et al.,

2012). BC could be an important alternative to lime to amend acidic

soils and results of previous studies showed that an increase in crop

productivity by BC under acidic soils is caused by the liming effect of

BC (Jeffery et al., 2011). Besides this increase in soil pH also decreases

the bio-availability of Al and fixation of P by iron (Fe) and Al cations

(Fe3+ and Al3+) (Cui et al., 2011). Biochar application also reduce the

ROS production, MDA accumulation (Pandit et al., 2018) and it

increased the uptake of nutrients, photosynthesis, plant water relations

which improve the plant growth in acidic soils (Yan et al., 2021). Thus,

BC application could be an important practice to improve the

availability of nutrients and decrease the availability of toxic metals

to improve plant growth under P in acidic soils (Zhang et al., 2022a).

To reduce the toxic effects of salinity scientists are using

different techniques such as gypsum, humic substances, sulfur,

organic amendments, green manures, and salt-tolerant crops

(Meena et al., 2020; Shilev, 2020). The use of organic

amendments has emerged as an excellent tool to cope with

salinity stress. Among organic amendments, recently BC got

considerable attention around the globe to solve the problem of

salinity stress (Shilev, 2020). BC reduces the toxic effects of salinity

by increasing antioxidant activities, photosynthetic efficiency, plant

water relations, accumulation of osmolytes, hormones, and

secondary metabolites, and decreasing ROS production in plants

(Parkash and Singh, 2020; Kerbab et al., 2021).

Therefore, in the present review, we discussed the liming

potential of BC to address the acidity and salinity problems. We

have focused on the effect of soil acidity and salinity on plants

followed by the role of biochar to mitigate the adverse effect of

acidity and salinity. We have discussed various mechanisms by

which BC reduces the toxic effects of acidity and salinity.

Particularly, we have focused on how BC affects soil properties to

manage acidity and salinity problems. We believe that the present

review would fulfill the knowledge gaps on the liming capacity of

BC. The increased knowledge about the liming capacity of BC will

benefit BC and other agriculture industries to search out the

potential of BC and other carbon compounds to manage the

acidity and salinity problems.
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Effects of soil acidity plants and soil

Soil acidification is a serious threat to sustaining crop

production and acid soils cover 30-40% of arable lands globally

(Misra and Tyler, 1999; Kochian et al., 2004). Soil pH has a

significant impact on plants owing to the fact it affects every

aspect of nutrients taken by plants. However, in acidic soils,

plants face three major toxicity Al3+, Mn2+, and H+ which inhibit

root growth, cell division, and nutrient uptake and cause

modification of the cytoskeleton (Bojórquez-Quintal et al., 2017;

Kaur et al., 2019). In many cases there is no obvious effect of Al

toxicity, instead, these effects are manifest as P deficiency symptoms

with dark green leaves, stunted growth, late maturity, and purpling

of stems, leaves, and veins (Kaur et al., 2019). Mn is the second toxic

metal in acid soils, although Mn is an essential nutrient for plants,

however, it becomes toxic when plants take it in excess (Sumner

et al., 1991). The low soil pH is often linked with inhibited root

growth owing to H+ influx in roots (Yang et al., 2005). The higher

H+ influx causes membrane depolarization and also affects the

acidity of the cytoplasm (Babourina et al., 2001). Besides this high

H+ also adversely affects the root tissues which causes a substantial

reduction in growth and development (Msimbira and Smith, 2020).

Acidic soils also affect the uptake of phosphorus, root length, and

diameter of roots (Robles-Aguilar et al., 2019). Further, low soil pH

induced ROS production (Song et al., 2011) which oxidizes the

cellular ultrastructure and causes oxidative damage to cellular

organelles (Sharma et al., 2012). For example, Zhang et al. (2015)

also noted a substantial increase in lipid peroxidation and

concentration of hydrogen peroxide (H2O2) with an increase

increasing H+ co\ncentration in the growth medium, while Martins

et al. (2013) also found an increase in lipid peroxidation of Plantago

plants growing in pH 4 soil. Yang et al. (2011) found that low soil pH

increased the membrane permeability of Eucalyptus plant leaves. In

another study, Tóth et al. (2020) reported a significant increase in

MDA, proline, and antioxidant activities at a soil pH of 5. Further,

these authors also reported that soil pH and the growth stage of the

plant also affect the MDA accumulation and antioxidant activities of

plants (Tóth et al., 2020). Another study conducted on soybean

showed that soil pH below 5.2 does not favor plant growth and results

in a substantial reduction in plant growth (Bakari et al., 2020). Soil pH

<5 also limits the nodulation owing to Al and Fe toxicity that induces

poor formation and functioning of nodules (Nisa et al., 2012).

Soil acidification also increases the concentration of toxic metals

(Fe and Al) which enhanced the retention of P in the soil through

adsorption and precipitation which in turn reduces plant growth

(Ng et al., 2022). Soil acidity also increases the deficiency of base

cations (Ca2+ and Mg2+) by causing the leaching of exchangeable

Ca2+ and Mg2+ (Maathuis, 2009). Nonetheless, low soil pH may not

affect the zinc (Zn) for plant growth, however, a decrease in soil pH

also increases Mn concentration which adversely affects crops and

many crops are sensitive to high Mn concentration (Senbayram

et al., 2015; Alejandro et al., 2020). Generally, Fe has low solubility

in acidified soils (Zhu et al., 2021) therefore redox plays a crucial

role in solubilizing Fe to meet the plant needs (Jin et al., 2014).

Moreover, it has been reported that soil acidity also increases

availability which also affects plant growth (Desa and Ernani, 2016).
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Soil acidity adversely impacts synergistic interaction amid the

legume crops and their linked rhizobia. A soil pH lower than 6

reduces the nodulation which in turn reduces N fixation. The

available Ca and Mo are considered to be essential for N fixation,

however, in acidic soils both these nutrients become deficient which

reduces the N fixation and subsequent growth in plants (Ferguson

et al., 2013). On the other hand soil acidity also increase Al and Mn

which induced the malformation and malfunctioning of root

systems thus decreasing the nutrient and water uptake and

negatively affecting plant growth and development (Pavlů et al.,

2021). Moreover, soil acidification also affects the residence time

and leaching potential of trace metals and a decrease in soil pH can

increase the amount the trace elements in leachates (Taylor, 1975).

The decrease in soil pH also affects the release of cadmium (Cd), for

instance, decreased soil pH to 2.8 results in 85% release of Cd

through leaching while decreased pH often increases the adsorption

of As-V, and decrease adsorption of As-III which consequently

affects plant growth (Rahman et al., 2019).
Biochar an important player to manage
soil acidity

Lime is an important material used globally to manage acidic

soils; however, high cost and limited availability limit its use in

many areas (Tully et al., 2015; Frimpong-Manso et al., 2020). In this

context, BC produced from agricultural waste like rice husk and

corn cob can provide suitable liming material to tackle soil acidity

(Rondon et al., 2007). BC has appreciable potential to sequester soil

carbon owing to its stable nature and it also improves soil

physicochemical properties (Figure 1) which improved soil

fertility and productivity (Bolan et al., 2021). BC-induced induce

direct and indirect impacts on acidic soils and the former can be get

by improved physicochemical and biological properties while the

latter can be achieved by mobilization of essential nutrients and

immobilization of toxic metals.
Biochar improves physico-chemical
properties soils to counter soil acidity

Soil pH, cation exchange sites, and electrolyte concentrations

are important factors that affect the surface charge of soil particles.

Likewise, soil pH also affects the dispersion and sensitivity of soil

hydraulic parameters (Table 1), therefore, the composition and

quantity of organic matter (OM) play an important role in

determining the extent of pH influence (Ali et al., 2019; Wen

et al., 2020). The liming materials change the soil pH and Ca

concentration which affect the flocculation/dispersion in soils.

Though, the dispersion of clay minerals can be significantly

decreased by an increase in Ca percentage due to a decrease in

density charge (Junior et al., 2020). Additionally, liming substances

provide an adequate amount of Ca which plays an important role in

soil aggregate stability (Junior et al., 2020). The OH- ions produced

from the addition of BC can neutralize the H+ ions, thus they can

reduce the mobility as well as bioavailability of Al3+ and Mn2+.
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Moreover, the addition of BC to acidic soils also increases the

solubility of P and Mo and addresses the deficiency of Ca2+ and Mg2

+ which in turn increase the plant biomass under acidic soils

(Alburquerque et al., 2014; Zhang et al., 2022b).

In another study, it was noted that the application of BC

prepared from peanut shells and cattle manure substantially

reduced the Al toxicity by increasing soil pH and availability of

nutrients (Lin et al., 2018). Moreover, these authors also noted that

an increase in soil pH following BC application resulted in a

significant decrease in exchangeable Al and H ions and an

increase in exchangeable K, Na, Ca, Mg, and cation exchange

capacity (CEC). Nonetheless, the increase in soil pH was much

great in cattle manure BC as compared to peanut shell BC (Lin et al.,

2018). The increase in soil pH following BC application also varied

with pyrolysis temperature and the effect of BC prepare at high

temperatures is greater than those of BC prepared at low

temperatures (Sani et al., 2020). As the pyrolysis temperature

increases, the degree of dehydration and decomposition of

organic acids in OM increases which increases the concentration

of basic groups (Sani et al., 2020). In another study, cow dung BC

improved the acidic soils as compared to BC made from peanut

shells (Geng et al., 2022). Further, the increase in pyrolysis

temperature also increased the concentration of K, Na, Ca, Mg,

and other mineral elements (Das et al., 2021) and it also increases

the acidification ability of BC. BC application further increased the

concentration of P, K, and Mg concentrations which in turn

improved the above-ground biomass in acidic soils. The

improved soil pH following BC application improved the
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availability of P, K, and Mg and decreased the Mn and copper

(Cu) concentrations which improve the overall above-ground

biomass and quality of plants under acidic soils (Yan et al., 2021).

To summarize, BC improves nutrient uptake, SOM, CEC and

reduce the uptake of toxic ions that helps to counter the effect of

soil acidity.
Biochar improves biological properties of
soil to counter acidity

Biochar has direct and indirect impacts on soil microbes, and it

has been reported that BC application improved the availability of K

by increasing the activity and number of Azotobacter and

Pseudomonas in acidic soils (Zhang et al., 2022b). Soil pH, OM,

and ECE are the most important factors that affect the fungal and

bacterial community and BC application has been reported to

increase the community of both fungal and bacterial communities

(Table 2). It has been reported that BC application substantially

increased the abundance of Pseudarthrobacter, AMF, and

endophytic bacteria which improved the growth (Zhang et al.,

2022b). In addition, BC application also increased the

mineralization of N, P, and S while BC also enhanced the fixation

of N in acidic soils. The application of liming increases the

mineralization of nutrients by increasing their occurrence in soil

solution for the uptake of plants (Bossolani et al., 2020). Besides

this, BC also provides base cation for rhizobia legumes which
FIGURE 1

The application of BC to acid soils improves soil pH, nutrient uptake, microbial and enzymatic activities and reduce the uptake of toxic metals that
improved the growth and yield by reducing MDA and H2O2 production and increasing antioxidant activities and photosynthetic efficiency.
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TABLE 1 Effect of biochar application on soil physiochemical and biological properties of acidic soils.

Biochar
application

Field/
lab

study

Soil
acidity
(pH)

Effects References

RSBC 40 t ha-1 Field 5.18 BC application increased soil pH, dissolved organic carbon, microbial biomass carbon, nitrogen and
abundance of nosZ and nirk genes

Aamer et al.,
2021

RSBC, MSBC,
WSBC, RHBC, BBC
22.5 t ha-1

Field 4.78 Biochar increased soil aggregates and water retention capacity.

Maize stalk biochar Pot 5.76 BC application enhanced soil pH, total N, Total P, NO−
3
--N, C/N ratio, BC also increased the soil

fungal ITS genes copy numbers.
Yao et al.,
2017

Senna siamea
biochar (BC)

Field 5.40 BC with less dose of NPK: improved the soil pH, CEC, available phosphorus, while BC with high rate
of NPK enhanced bacterial and fungal population, microbial biomass carbon and basal respiration
rates.

Phares et al.,
2022

Modified wheat
straw biochar

Lab 5.69 Higher dose of BC application enlarged soil pH, EC, SOC, NH+
4 −Nand NO−

3 -N. Khan et al.,
2022

RSBC 1500kg/ha Field 6.05 Low dose of Biochar application with reduced NPK fertilizer increased soil pH, available NP, SOC,
and it reduced soil bulk density

An et al.,
2022

Pine chip biochar
and
Poultry litter
biochar

Lab
study

5.64 BC amended enhanced soil pH, total SOC, and NO−
3 -N. while poultry litter biochar decreased MCB.

RSBC
67.2 t ha-1

Lab
study

5.21 BC application in red soil increased the soil pH, microbial biomass carbon, NO−
3 -N, genes abundance

(nosZ, nirK, AOA, and AOB), and urease (UR) enzymatic activities and reduced NH+
4 −Nand the

activity of nitrate reductases.

Peanut shell biochar
(PBC)

Pot 4.41 The application of PBC improved the pH, CEC, water-soluble SO2−
4 , and dissolved organic carbon

DOC in the paddy soil

Chao et al.,
2018

Pinus bark biochar Lab
study

4.76 BC application improved the soil pH, exchangeable cations, and decreased soil exchangeable acidity
and exchangeable aluminum

Zhao et al.,
2015

RSBC, rice straw biochar; MSBC, maize straw biochar; WSBC, wheat straw biochar; RHBC, rice husk biochar; BBC, bamboo biochar; CEC, cation exchange capacity.
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increases the nodulation as well as N fixation in acidic soils (Zhang

et al., 2021).

The liming ability of BC also results in the successful

colonization of earthworms in crops, and the higher density of

earthworm also affect the structure and aggregate stability of soils

(Hirth et al., 2009). Moreover, liming also improved soil enzymatic

activities and microbial biomass, and increased production of

polysaccharides from improved microbial activity improved the

soil aggregate stability (Fuentes et al., 2006). In another study, it was

noted that BC application to acidic soils substantially improved the

bacterial community structure and subsequent plant growth (Zhang

J. et al., 2019). Further, these authors reported that combined BC

and fertilizer application enhanced the relative abundance of some

beneficial bacteria in Oxalobacteraceae. Further, BC also improved

the abundance of Chitinophagaceae, Comamonadaceae, and

Geobacteraceae which improved the nutrient cycling and

degradation of plant residues and metal tolerance (Zhang J. et al.,

2019). Likewise, another group of authors also found that BC

application also increased the abundance of Blastocatellaceae and

Acidobacteria to counter the effects of soil acidity (Pascual et al.,

2015; Wang et al., 2016). Moreover, Geng et al. (2022) found that

BC application to black soil enhanced the relative abundance of
Frontiers in Plant Science 05
Acidobacteria and Olpidiomycota in acidic soils. Further, these

authors also noted the significant difference in the bacterial and

fungal community between the BC and without BC treatments

(Geng et al., 2022). In conclusion BCmediated increase in microbial

activities improves nutrient mineralization which induced positive

effects on plants.
Biochar improves soil enzymatic activities
to counter soil acidity

Biochar possesses an appreciable potential to improve the soil

enzymatic activity under acidic soils. The application of BC has

been reported to increase the activity of urease, alkaline

phosphatase, catalase, and phosphatase) with a maximum

increase (45-502%) seen in the activity of catalase (CAT: Yao

et al., 2021). However, Das et al. (2021) found that increasing BC

application decreased the activity of acid phosphatase and these

differences could be due to differences in soil characteristics, crop

species, and soil properties (Geng et al., 2022). Some other authors

also reported that BC application showed better results in increasing

the enzymatic activity owing to the conversion of acid soils into
frontiersin.org
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TABLE 2 Effect of biochar application on growth, yield, physiological and biochemical responses of different crops under acidic soils.

Biochar application Crop/Field/lab
study

Soil
acidity
(pH)

Effects References

Eucalyptus BC 20 t ha-1 Rice (Pot) 5.96 BC application improved plant height, root and shoot growth and biomass
production

Shetty and
Prakash, 2020

RSBC, MSBC, WSBC,
RHBC, BBC 22.5 t ha-1

Rice,Brassica
napus and maize
(Field)

4.78 Five different types of biochar increased rice, rape and maize yield in consecutive
cropping season.

Senna siamea biochar
(BC)

Maize (Field) 5.40 BC combined with less dose of NPK: improved the maize yield in both years of
experiment.

Phares et al.,
2022

RSBC 1500kg/ha Rice (Field
experiment)

6.05 Biochar application with reduced NPK fertilizer increased grain yield, NP in grains
and straw, root biomass

An et al.,
2022

RSBC 40 t ha-1 Rice (Field
experiment)

5.18 BC application with nitrogenous fertilizer increased no. of tillers, plant height, paddy
yield and biomass yield

Aamer et al.,
2021

Bamboo biochar 5% Tea (pot study) 4.33 BC addition improved plant P, K and Mg concentrations, above ground biomass and
photosynthesis rate.

Yan et al.,
2021

Artemisia vulgaris
derived biochar 10 t/ha

Maize and black
gram (Lab study)

5.24 BC increased the seedling germination, root/shoot length, coleoptile length, weight
and shoot biomass in maize and black gram

Das et al.,
2020

Red gram stalk biochar 5
t/ha

Black gram (field
study)

5.7 BC application with phosphobacteria increased root length, root nodulation, plant
height, stomatal conductance, leaf area, seed production and dry biomass production.

Kannan et al.,
2021

Rice straw biochar 22.5
Mg ha-1

Wheat and millet
(pot study)

4.84 BC incorporation increased the grain and straw yield, above ground biomass and
nutrients uptake.

He et al., 2023

Eupatorium
adenophorum weed
biochar 2% (w/w)

Maize (pot study) 4.5 BC enhanced plant available phosphorus, stomatal conductance and above ground
biomass.

Pandit et al.,
2018

Huang et al. 10.3389/fpls.2023.1206820
alkaline soils following BC application (Zhang J. et al., 2019). Other

authors also found that BC application not only increases the soil

pH but also favors the microbial abundance and activity of soil

microbes (Yuan and Xu, 2011). Further, it has been reported that

BC application (30 Mg ha-1) also improved microbial quality and

activity of a-glucosidase, acid phosphatase, arylsulfatase, and urease
however, BC application greater than 30 Mg ha-1 reduced the

activity of aforementioned enzymes (Lopes et al., 2021).

In another study, BC application (6 t ha-1) to rice field increased

the carboxylate secretions, and carboxylate exudates were increased

in the order of citrate > malate > acetate > oxalate (Oladele, 2019).

Generally, BC application improved the enzymatic activities and it

was reported that BC application improved sucrase, phosphatase,

catalase, and urease activity by 63.3%, 23.2%, 50.3%, and 27.9% as

compared to control and application of swine manure BC (Oladele,

2019). Likewise, Jiang et al. (2021) noticed an increase in soil carbon

and nitrogen concentration by 35.4% and 34.3% respectively

following the application of swine manure-based BC. In another

study, it was found that BC application increased the activity of

dehydrogenase, urease, and nitrate-reductase activities except for

the acid phosphatase and peroxidase in cambisol and andosol.

Further BC application also increased cellulose activity by 40-45%

which in turn improved root growth and biomass under acidic soil

(Garbuz et al., 2022). Thus, BC improves soil enzymatic activities

which improve the root growth and plant functioning to counter

acidity effects.
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Biochar mitigates toxic elements under
acidic soils to counter acidity problem

Globally different liming amendments are used to reduce the

concentration of toxic metals from acidic soils. It has been reported

that BC effectively immobilizes the toxic elements including Cd,

mercury (Hg), and lead (Pb) therefore, reduce their bioavailability

in soils (Palansooriya et al., 2020; Xia et al., 2020). The efforts are

being used globally to test the potential organic compounds to

remediate the contaminated soils (Bolan et al., 2023). Since the

availability of toxic metals is high in acidic soil as compared to

alkaline soils, therefore, neutralizing agents are added to the soils to

counter these toxic metals. The primary incentive for liming

materials in acidic soils is to suppress the Al and Mn availability

and BC and liming materials application is increasing to mobilize

the potentially toxic metals from acidic soils. Though the effects of

BC in the immobilization of toxic metals depend on BC type, soil

properties, and species of potentially toxic metals (Shaheen and

Tsadilas, 2010; Igalavithana et al., 2017; Igalavithana et al., 2017).

Thus, BC must be carefully selected to remediate the metals

contaminated soils.

Lin et al. (2018) found that BC application increased the soil pH

by 0.42 units and reduced the exchangeable acid and H

concentration by 52.74% and 2.86% to the control. Further, BC

also reduced the active as well as exchangeable Al by 26.74% and

66.09%. These authors concluded that fresh BC could reduce Al
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toxicity by increasing soil pH and nutrient availability, however,

aged BC had a negative effect on the reduction of Al toxicity thus

inhibiting plant growth (Lin et al., 2018). The high charging density,

large surface area, porosity, and presence of both polar and non-

polar surface sites on BC play an important role adsorption of toxic

metals along with its liming impact (Laird et al., 2010). The

application of BC to can help to reduce the toxic Al toxicity

through an increase in exchangeable base cation and a decrease in

soil acidity (Gaskin et al., 2010; Qian et al., 2013). In another study

Shetty and co-authors reported that BC application (20 t ha-1)

reduced the soluble and exchangeable Al, therefore, reduced the

toxic effects of Al on rice plants (Shetty and Prakash, 2020). In

conclusion BC reduced the concentration of toxic ions by

improving SOM and CEC which ensures better plant growth.
Biochar supports the plant growth in
acidic soils

Soil acidity negatively affects plant growth due to increasing in

toxic metals and a reduction in the availability of nutrients.

However, BC has emerged as an excellent tool to improve plant

growth under acidic soils through reduced availability of toxic

metals and an increase in the availability of favorable nutrients.

For instance, it has been reported that BC application to acidic soils

improved plant height, biomass production, and root growth by

increasing soil pH and decreasing Al concentration (Lin et al., 2018)

and improved soil bulk density, water holding capacity and

fertilization potential (Glaser et al., 2015). Under acidic

conditions excessive ROS are produced which negatively affect

plant growth and development, however, plants have developed

excellent antioxidant defense system to detoxify the ROS (Han et al.,

2019) . The appl icat ion of BC substant ia l ly reduced

malondialdehyde (MDA) contents (2.94-25.21%) by increasing

the activity of superoxide dismutase (SOD: 1.24-23.57%) and

POD (3.42-48.06%) in acidic conditions (Pandit et al., 2018).

Besides this BC application under acidic conditions also increased

the concentration of favorable nutrients (P, K, and M) which

effectively improved the photosynthesis, leaf area, and above-

ground biomass production. Further, BC application also

decreases the concentration of Mn and Cu and other toxic metals

which induces a positive effect on plant growth (Yan et al., 2021).

BC application also increases the available P and nitrogen use

efficiency (NUE) and it also decreased the concentration of

exchangeable Al which positively affect plant growth and

development under acidic soils (Qiao-Hong et al., 2014). In

another study, it was found that BC application to acidic soil

improved the root and shoot biomass by 44.5% and 89.6% and

nitrogen utilization rate by 11.08% and it also positively influence

the NUE and reduced the Al concentration which led to a

substantial increase in plant growth and NUE (Xia et al., 2020).

In another study, it was found that BC application with phospho-

bacteria significantly enhanced plant physiological parameters

including leaf area, stomata conductance, and chlorophyll

contents by reducing the leaf temperature. Further, BC

application (5 t ha-1) with phosphobacteria 2 kg ha-1 noticed
Frontiers in Plant Science 07
maximum organic carbon, soil available P, and P uptake by 27,

28, and 45% and the same treatment also recorded the highest yield

(262 kg ha-1) which indicate that application of BC with phospho-

bacteria is an effective practice to enhance growth and production

under acidic soils (Kannan et al., 2021). Similarly, in another study

conducted on acidic soil, it was found that BC application

significantly improved the total soluble solids and induced

positive effects on fruit quality parameters by improved soil

microbial activities, soil pH, nutrient uptake and activities of

urease, invertase, and catalase (Wu et al., 2020). To summarize,

BC mediated improvement in plant growth in acidic soils is linked

with improved SOM, nutrient uptake, CEC, microbial and

enzymatic activities.
Soil salinity effects on plants and soils

The low rainfall, high surface evaporation, increased climate

change, and global temperature, movements of saline groundwater

and deposition of salts from oceans are prominent reasons for soil

salinity across the globe (Shrivastava and Kumar, 2015; Tavakoli

and Bailey, 2017). However, the extent of these causes is increased

in recent times owing to rapid industrial and economic

development. Similarly intensive agricultural practices including

the use of improper irrigation, fertilizers, and pesticide application

are also leading to an increase in soil salinity across the globe (Bello,

2021). Of all these anthropogenic activities the excessive use of salts

with poor drainage systems is the foremost factor that increases the

water table and results in the deposition of salts on the soil surface

(Tavakoli and Bailey, 2017).

Salinity stress can significantly reduce the growth and yield of

crops by inducing, ionic, oxidative, and osmotic stresses (Taha et al.,

2020). The higher concentration of Na in the growth medium

causes K+ deficiency by increasing the exclusion of K from cells (Ma

et al., 2016). Salinity also damages cellular homeostasis and

denatures the proteins, lipids, and DNA and increased ROS

production (Seleiman et al., 2020). Salinity-induced ROS

negatively affect photosynthetic, carbon dioxide (CO2) uptake,

relative water contents (RWC), pollen sterility, seedling and

reproductive stages, therefore, negatively affect the while crop

yield and quality (Alkharabsheh et al., 2021). Salinity negatively

affects plant growth, however, plants’ responses to salinity stress can

vary according to plant species, stage of growth, and extent of

salinity stress (Al-Shareef and Tester, 2019; Alnusairi et al., 2021).

Soil salinity is a global problem and in recent times the extent of

salt-affected soils is continuously increasing owing to anthropogenic

activities. Aside from imposing negative effects on plant growth and

also pose serious threats to soil health. For instance, salinity stress

negatively affects nutrient availability, organic matter stability, and

soil redox potential (Rengasamy, 2010). It has been reported that

soil salinity reduces the SOM, water holding capacity, and water

infiltration and disrupts the soil aggregate stability (Nan et al., 2016;

Gonçalo-Filho et al., 2019).

The high concentration of Na in soil solution increases the loss

of inherent soil fertility (Yu et al., 2010; Almeida et al., 2017) and it

also creates osmotic potential which eventually causes cell death
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owing to reduced water uptake (Ahanger et al., 2018). Besides this

excessive Na also causes plant wilting (Assaha et al., 2017) and it

also negatively affects the soil microbial activities, microbial

population, soil enzymatic activities, and biomass production

(Zhang et al., 2019b). Further, soil salinity also reduced the

fixation of carbon, nutrient cycling, and porosity and reduce plant

growth and vigor (Cheeseman, 2015; Almeida et al., 2017).

Moreover, excessive uptake of toxic ions also negatively affects

plant growth by reducing the uptake and availability of water and

essential nutrients including, N, P, K, Ca, Mg, Fe, and Zn (Khan

et al., 2019; Safdar et al., 2019).
Biochar an important player to alleviate
soil salinity

The use of biochar is a well-recognized practice to mitigate the

effects of salinity stress on plants (Hoque et al., 2022b). The

application of BC to saline soils improves the growth and yield by

improving the uptake of essential nutrients (Figure 2) (Ca, Mg, Fe,

Zn, Mn, and K), soil porosity, aggregate stability, OM, and

decreasing the concentration of toxic ions (Hussain et al., 2019;

Ran et al., 2020). Further, the effect of BC on soil properties and

plants under saline soils is presented below.
Biochar improves soil physico-chemical
properties to counter salinity stress

Biochar being a soil amendment has got significant attention

across the globe. The application of BC to mitigate the salinity stress

by improving soil physical properties, water holding capacity, bulk
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density, CEC, microbial biomass carbon, and enzymatic activities

(Table 3) (Lehmann and Joseph, 2009; Sohi et al., 2010). Further,

BC also adsorbs the toxic ions (Na and Cl) owing to its high surface

area and CEC which reduce the toxic effects of salinity (Thomas

et al., 2013). Furthermore, BC application also improved the

growth, yield, and quality of crops by reducing Na uptake and

increasing uptake of Ca, Fe, K, Mn, and P (Abd-El-Mageed et al.,

2020). In another study, it was found that BC in combination with

tea compost ameliorates the toxic effects of salinity on wheat by

decreasing soil electrical conducitiity (EC), exchangeable sodium

percentage (ESP), and sodium absorption ratio (SAR: Bayoumy

et al., 2019; Bello, 2021). BC-mediated increase in nutrient uptake

under saline soils is linked with a concomitant increase in CEC, soil

porosity, and aggregate stability (Zheng et al., 2018).

Biochar also improves the NUE in crops owing to its pours

structure, aeration, and large surface area which is conducive to the

adsorption of NH4+, and a reduction in the inhibition of microbial

de-nitrification (Liu et al., 2019). Further, BC application also

influences the volatilization of N losses from the salt-affected

soils. Research reported that BC with high pH (9.6–10.8)

increased the NH3 volatilization from salt-affected soils while in

sandy soils BC with pH (3.9) reduced the NH3 volatilization

(Esfandbod et al., 2017). Therefore, BC with low pH can reduce

the losses of NH3 from saline soils. The addition of BC to saline

reduces the bulk density and increases the permeability, soil

porosity, soil structure, and hydraulic properties (Chaganti et al.,

2015; Jin et al., 2019) and decreases the SAR which mitigates

deleterious impacts of salinity (Choudhary et al., 2011).

Meanwhile, many authors also found a substantial increase in

nutrient uptake (NPK), soil carbon contents, and microbial

activities which favored plant growth (Haider et al., 2017; Naeem

et al., 2017). However, these effects largely depend on BC
FIGURE 2

BC application to saline soils improved nutrient and water uptake, soil physiochemical and biological properties, SOM which improved the growth
and yield by improving antioxidants activity, hormones and osmolyte accumulation, chlorophyll synthesis and reducing ionic and osmotic stresses.
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TABLE 3 Effect of biochar application on soil physiochemical and biological properties of saline soils.

Biochar appli-
cation

Field/
lab

study

Soil salinity Effects References

Grass BC 2 t/ha Field EC (mS/cm)
(2400)

BC improved soil organic carbon, organic matter, soil bulk density, soil pH, soil porosity and
soil NPK.

Zonayet et al.,
2023

Wood chip
biochar 75 t ha-1

Lab study EC 23.1 dS m-1 BC reduced soil pH, soil EC and SAR. Chaganti
et al., 2015

grape pruning
residues

Lab study 9 (dS.m-1) BC increased the soil pH, organic carbon, concentration of total nitrogen, phosphorous, solution
potassium, sodium, iron, zinc, copper, basal respiration, and nitrifying bacteria frequency.

Moradi et al.,
2019

Palmetto biochar Field
study

BC application boosted the soil porosity, soil evaporation, saturated soil water contents, field
capacity and decreased soil bulk density.

Liang et al.,
2021

alterniflora shoot
biochar

Pot study Soil salt
content 0.6 %

BC addition to soil enhanced the SOC, Total Nitrogen, phosphorus, potassium and also

increased the MBC, NH+
4 , NO

−
3 , soil sucrose, urease and alkaline phosphatase activity.

Cui et al.,
2021

Eucalyptus
polybractea wood
biochar

Lab study 187 (mS cm-1) BC reduced the NH+
4 −N, NO−

3 -N, DOC and TDN concentrations.

Sugarcane bagasse
biochar 30 t/ha

Lab study 10 (dS.m-1) BC increased the SOC, SOM, CEC, DOC, and enzymatic activities Azadi et al.,
2021

Wood biochar
45t/ha

pPot
study

249 µS/cm BC mitigated soil EC, soluble Na+ and Cl- concentration and increased CEC, SOM, humic acid,
TN, TP, regulate the bacterial abundance and community structure.

Huang et al.,
2022

Peanut shell
biochar 10%w/w

Lab study 6 (dS.m-1) BC improved the SOC, TOC, MBC, urease and fluorescein diacetate hydrolyzing enzyme
activity.

Bhaduri et al.,
2016

Salix fragilis
biochar 4 g/kg

Lab study 1.63 (dS.m-1) BC reduced Na+ concentration, bulk density, NO−
3 -N, SAR, and increased NH+

4 − Nand
saturated hydraulic conductivity of soil.

Xia et al.,
2020

DOC, dissolved organic carbon; TDN, total dissolved nitrogen; SOC, soil organic carbon; SOM, soil organic matter.

Huang et al. 10.3389/fpls.2023.1206820
application rate, type of feedstock and soil properties and it has been

noted high rate of BC could induce N immobilization owing to an

increased C/N ratio (Nguyen et al., 2018). In the study, it was found

that total mineral N content increased with BC rate from 10 to 30 t

ha-1 probably due to liming of BC on N availability.

BC improves saline soil structure through its impact on soil

aggregation and through improved above and below-ground

biomass which consequently affects microbial activities and root

zone processes (Fletcher et al., 2014; Kolton et al., 2016). Ca

increases aggregate stability and facilitates the N leaching through

soil profile and an increase in Ca content through BC application

can help to reduce the Na availability and improve the soil’s

physical properties (Clark et al., 2007). For instance, Chaganti

et al. (2015) conducted a series of lab and column leaching

studies and found that BC application aggregate stability and

hydraulic conductivity of saline soils by increasing the Ca

concentration. Likewise, other authors also found a significant

increase in Ca concentration in saline soils following BC

application corresponding increase in aggregate stability,

hydraulic conductivity, and water retention Amini et al., 2016;

Kim et al., 2016). Given that the concentration of Ca depends on

feedstock and pyrolysis in temperature and all types of BC are not

effectively improved soil properties. Biochar application also

improves the soil organic carbon in salt-affected soils (Bhaduri

et al., 2016). In a study, Kim et al. (2016) found a substantial

increase in the percentage of water stable aggregated following BC

application owing to an increase in soil carbon and a decline in ESP.
Frontiers in Plant Science 09
Although farmyard, and poultry manures and compost soil carbon

decrease the ESP, nonetheless, organic substances present in BC are

slow to degrade which makes him an important amendment for

saline soils (Chaganti and Crohn, 2015; Kim et al., 2016). In another

study, Chaganti et al. (2015) found a decrease of EC of saline soil by

84, 83, and 82% following the application of BC, bio-solid compost,

and green waste as compared to control owing to the leaching of

salts. In conclusion BC improves SOM, soil carbon and reduce the

ESP and Na uptake, depending on application rate, type of feedstock

and soil properties.
Biochar improves soil biological properties
to counter salinity stress

Soil salinity negatively affects microbial growth and enzymatic

activities (Egamberdieva et al., 2010). Biochar is an important soil

amendment that can significantly improve the soil microbial

activity and soil organic carbon in saline soils (Abo-Elyousr et al.,

2022). The application of BC to saline soils improves dehydrogenase

activity, enhanced soil microbial biomass carbon (MBC), and OM

which improves nutrient absorption in saline soils (Abo-Elyousr

et al., 2022). MBC is an important indicator of changes in soil

organic carbon concentration and decomposition. Thus, any

material that alters the soil’s organic carbon affects the activity,

microbial community, and diversity. Biochar application to salt

affects soils and improves the soil microbial activity by increasing
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aggregate stability, water retention, and nutrients release for

microbes, stimulating the root exudation of dissolved organic

carbon and N that are involved in microbial metabolism,

decreasing salinity stress, and increasing the provision of carbon

for soil microbes (Brewer and Brown, 2012; Jaafar et al., 2014; Gul

et al., 2015; Bhaduri et al., 2016; Zheng et al., 2017). However, some

authors also found a non-significant impact of BC on MBC

(Castaldi et al., 2011; Zavalloni et al., 2011) and even a decrease

in soil MBC following BC application in saline soils (Dempster

et al., 2012; Chaganti et al., 2015). These controversial results could

be ascribed due to the type and properties of feedstock, and the

pyrolytic conditions of BC production. For instance, BC produced

at high temperatures may contain recalcitrant C which is unlikely to

be an energy source for microbes (Lehmann et al., 2011; Song et al.,

2014). Hence, feedstock quality, and production procedures could

lead to different BC properties that affect the soil ecology and

biochemistry however, further studies are direly needed to evaluate

the effect of BC on soil health and soil microbes.
Biochar improves soil enzymatic activities
to counter salinity stress

Biochar is an important organic amendment that improved the

activity of different enzymes docosahexaenoic acid (DHA), alkaline

phosphatase (ALP), and catalase (CAT) therefore reducing

deleterious impacts of salinity and improve the yield and

chemical and biological properties of soils (Taheri et al., 2022). In

another study, it was found that BC application to saline soils

increased the MBC, and activity of invertase, urease, and

phosphatase (Bahadori-Ghasroaldashti and Sepaskhah, 2022).

Similarly, Song et al. (2022) found that BC increased the proline

(Pro), CAT, and sucrose (Sur) activity by 13.9%, 8.4%, 21.7%,

81.3%, and 150.5%, as compared to control conditions (Song

et al., 2022). The various types and concentrations BC were found

to improve the activity of urea, invertase and dehydrogenase under

saline soil (Jia et al., 2017; Abou-Jaoude et al., 2020). Similarly, Yao

et al. (2021) found that BC supplementation to saline soil increased

the CAT, alkaline phosphatase activity, and urea and sucrose

activity with a corresponding increase in rice biomass and grain

yield. Further BC application also reduced the Na+/K+

concentration and increased the rice growth and yield in saline-

sodic soil (Yao et al., 2021). Moreover, Premalatha et al. (2022)

found a reduction in growth and enzymatic activities at high salt

stress, however, BC addition mitigated these adverse impacts and

improved the growth and enzymatic activities (Premalatha et al.,

2022). In another study, BC applied at a rate of 3% promoted the

nutrient uptake, soil fertility, and activity of urease and alkaline

phosphatase which mitigated adverse impacts of salinity and

improved the soil quality and plant growth (Cui et al., 2021).

These are the limited studies conducted in the literature to

determine the impacts of BC on soil enzymatic activities under

saline soils. Therefore, more studies are direly needed to determine
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the impact of BC on soil enzymatic activities considering the

feedstock type and pyrolysis conditions.
Biochar mitigates toxic ions uptake to
counter salinity stress

In saline soils, the concentration of Na+ is significantly increased

which impaired the uptake of K and other essential nutrients.

However, BC averts this condition and improves the uptake of K

under saline soils. For instance, Lin et al. (2015) noted that BC

application (16 Mg ha-1) in saline soil increased the exchangeable K

by 44%. The pH of salt-affected soils is > which decreases P availability,

however, BC application can increase the availability of P in salt-

affected soils because of its inherent capacity to increase P. Also, BC

increases the availability of P by increasing the growth of soil bacteria

(Flavobacterium, Pseudomonas and Thiobacillus) which solubilize the

unavailable P present in soil (Yao et al., 2017; Ding et al., 2020). The

application of BC to saline soil reduced Na uptake owing its

appreciable adsorption capacity and decreasing osmotic stress, soil

moisture, and nutrient concentration (Akhtar et al., 2015a).

Furthermore, in salt-affected soils, BC traps excessive Na in soil

and releases the essential nutrients, and decreases the osmotic stress

(Ibrahim et al., 2021). BC also reduced the N concentration and Na/

K ratio however, it depends on feedstock type and pyrolysis

conditions (Lin et al., 2015; Ali et al., 2017). In a research study,

BC application directly reduced the SAR by increasing Ca2+ and

Mg2+ in soil. Further BC application also decreased the Na

concentration in soil by increasing CEC and BC-induced increase

in Ca2+ in soil solution promotes the displacement of Na from

exchangeable sites which reduced the Na concentration in saline

soils (Dahlawi et al., 2018).

Biochar has many beneficial impacts and it reduced the SAR

and ESP which can improve plant growth under saline soils (Luo

et al., 2017; Sun et al., 2017). BC reduced the ESP through different

mechanisms, likewise, BC reduced ESP by increasing the Ca that

replaces Na in soil solution and BC also increases the surface charge

density which increases Ca concentration and reduces the Na

availability (Chaganti et al., 2015; Zheng et al., 2017). Moreover,

BC also improves the soil porosity that facilitates the Na leaching,

therefore, reduce ESP and SAR while BC also increases the partial

pressure of CO2 in the rhizosphere that mobilizes the Ca from the

calcareous soils which reduce replace the Na from the soil colloids

(Jalali and Ranjbar, 2009; Di-Lonardo et al., 2017). As SAR value

depends on the relative proportions of Na and Ca in soil solution

and the content of Na and Ca vary in BC owing to feedstock and

pyrolysis conditions which affect the SAR in saline soils (Kim et al.,

2016). The high rates of BC application containing elevated Na can

increase ESP and SAR therefore, BC must be pre-test for Na

concentration before applying to agricultural soils (Sun et al.,

2017; Zheng et al., 2017). To summarize, BC substantially

improved the uptake nutrients and reduce the Na and Cl uptake

which mitigated the deleterious impacts of salinity stress.
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TABLE 4 Effect of biochar application on growth, yield, physiological and biochemical responses of different crops under saline soils.

Biochar application Crop/Field/
lab study

Soil
salinity

Effects References

Wood BC 5% Tomato (pot) 0.2 mol/L BC improved plant water relations, photosynthetic rate, stomata conductance,
root length, biomass, water use efficiency, antioxidant activities and reduced
ABA synthesis.

Zhang et al.,
2023

Peanut shell biochar PSBC Suaeda salsa (pot
study)

239 (mS/
cm)

BC improved the total biomass, shoot biomass and root biomass. Sun et al., 2016

Maple residues biochar common bean
(Phaseolus
vulgaris L.)

1.35 dSm-

1
BC enhanced shoot, root dry weight, leaf area, shoot and root length, relative
water contents and chlorophyll contents.

Farhangi-Abriz
and Torabian,
2018a

Maize straw biochar Eggplant (pot
study)

300 mM BC application increased plant height, biomass, no. of fruits, Abscisic acid
concentration, leaf water potential.

Hannachi et al.,
2023

Rice straw biochar Rice (pot study) 191.3 mS
cm-1

BC application boosted the anatomical structure of rice seedlings, root length,
seedling emergence rate root and shoot biomass and plant height.

Zhang MY et al.,
2019

Spartina alterniflora shoot
biochar

Sesbania
cannabina (pot
study)

Soil salt
content
0.6 %

BC amendment enhanced germination, root biomass, shoot biomass, leaf
biomass, stem diameter, plant height and nutrients concentration in root, shoot
and leaves.

Cui et al., 2021

Modified Peanut shells
biochar 4.5 Mg ha-1

Rice (Field study) - BC application increased root, shoot biomass, rice yield and P absorption rate. Wu et al., 2019

Mix biochar 175t/ha (cotton
straw +peanut shells, +
sawdust)

Maize (field
study)

1955 µS
cm-1

BC addition at high rate enhanced dry matter, and plant N, P, and K
concentrations.

Yue et al., 2023

Rice husk biochar 30% (w/
w)

Rice (pot study) 5.09 dS/m BC enhanced survival % of seedlings, shoot height, shoot dry matter, active
tillers, no. of panicles, length of panicles and grain weight.

Sudratt et al.,
2023

Wood biochar 45t/ha Rice (pot study) 249 µS/cm BC increased the above ground biomass, spike dry weight and yield. Huang et al.,
2022

dummy

Huang et al. 10.3389/fpls.2023.1206820
Biochar mitigates support the plant growth
under saline soils

BC is rich in carbon material and many studies have found that

BC application in saline soils improves, plant physiological and

biochemical functions, enzymes (Table 4), and hormones activity

that decrease the harmful effects of salinity on plants (Farhangi-

Abriz and Torabian, 2018b; Huang et al., 2019; Yang et al., 2020).

BC incorporation also improves seedling emergence, root and shoot

growth, leaf area, and dry matter production under salty conditions

(Ibrahim et al., 2020; Ibrahim et al., 2021). Many authors noted that

BC application under saline soils significantly improved

photosynthetic rate, stomata conductance, and transpiration in

wheat, sorghum, eggplant, and quinoa (Huang et al., 2019;

Ibrahim et al., 2020; Parkash and Singh, 2020; Yang et al., 2020).

Moreover, BC also application also improves the osmotic balance by

increasing CO2 assimilation, water holding capacity, stomata

conductance, and photosynthetic rate that favors plant growth

under saline soils (Yang et al., 2020; Ibrahim et al., 2021).

It has been reported that BC application improved chlorophyll

synthesis, and maintain leaf water contents while reducing proline,

H2O2, and MDA accumulation (Ekinci et al., 2022; Huang et al.,

2022). Moreover, BC also reduced the toxic effects of salinity by

lowering the levels of abscisic acid (ABA), and jasmonic acid (JA)

hormones and increasing the levels of indole acetic acid (IAA:

Farhangi-Abriz and Torabian, 2018c). Further, under saline
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conditions, BC application also improved the nitrogen content,

and nodulation activity of ribulose bisphosphate carboxylase

(RuBisCO) and glutamine synthetase (GS), nitrate reductase (NR)

and glutamine oxoglutarate aminotransferase (GOGAT) which

improve salt tolerance (Farhangi-Abriz and Torabian, 2018a). BC

addition also increased the concentration of unsaturated fatty acids

which improves membrane (Ndiate et al., 2021), further BC also

improved activities of ascorbate peroxidase (APX), CAT, POD,

SOD, and glutathione reductase (GR) which protect the plants from

salinity-induced oxidative damage (Kim et al., 2016; Akhtar et al.,

2015b; Shabbir et al., 2021).

It has been also reported that BC improves stomata

conductance and maintains better leaf gas exchange

characteristics that improve photosynthesis and subsequent plant

growth under saline soils (Akhtar et al., 2015a). BC application also

significantly improves antioxidant activities (CAT, POD and SOD)

and improved the functioning of ascorbate glutathione (AsA-GSH)

cycle that prevents oxidative damage by maintaining the redox

balance (Alam et al., 2020; Abbas et al., 2021). Moreover, BC

application also improves gene expression and increases the

concentration of Ca2+ that induce salt tolerance by modifying

signaling pathways (Qin et al., 2021). The application of BC also

improves the expression of genes (NHX1, HKT1, and SOS1) which

leads to a significant increase in salt tolerance (Li et al., 2022;

Soliman et al., 2022). Furthermore, BC also improves osmolytes

accumulation and maintains hormonal balance which is an
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important mechanism of BC-mediated increase in salt tolerance

(Ghassemi-Golezani et al., 2020). Additionally, BC-mediated

improvement in plant growth and development under saline

conditions is linked with improved nutrient uptake, microbial

activities, CEC, and reduced Na uptake (Mansoor et al., 2021;

Soliman et al., 2022). In conclusion improves plant growth in

saline soils by improving soil physiological and biochemical

properties, plant functioning, antioxidant activities and reducing

the uptake of toxic ions.
Conclusion and future outlook

Soil acidity hinders the uptake of essential nutrients with a

corresponding increase in toxic metals which negatively affect soil

microbial and enzymatic activities and soil physio-chemical and

biological properties. Biochar with appreciable liming material can

be used to ameliorate the acidic soils, however, the effects of BC

could be varied according to feedstock composition and pyrolysis

conditions. The use of BC in acidic soils increased soil pH, nutrient

uptake, SOM, and microbial and enzymatic activities which

ameliorate soil acidity and supports plant growth.

Though, limited studies are conducted to fully explore the

potential of BC to alleviate soil acidification, therefore, more

studies are needed to understand the liming and consequent

impacts of BC. In literature most of the studies are conducted

under lab conditions, therefore, more pilot plot studies are direly

needed in acidic soils to further explore the role of BC. Similarly,

there is also a paucity of information regarding the comparison of

short and long-term BC application to acidic soils as liming

materials. The liming effects of BC could also be varied according

to soil and climatic conditions, thus more studies are direly needed

on a wide range of soil and climatic for the promising future of BC

as an important amendment to manage acidic soils.

Soil salinity is also a serious challenge across the globe to crop

productivity and global food security. Saline conditions increase the

uptake of toxic ions (Na and Cl), reduces the uptake of essential

nutrients (Ca, Fe, Mg, N, P, K, and Zn) and it also negatively affect

soil pH, soil microbial and enzymatic activities which induce

negative impacts on plant growth. In recent times BC has

emerged as an excellent organic amendment to alleviate the

deleterious impacts of salinity stress. The application of BC

improves soil pH, soil microbial and enzymatic activities, nutrient

uptake, and SOM and minimizes the accumulation of toxic ions (Na

and Cl), soil ESP, SAR and EC which favors plant growth under

saline soils. In most of the studies are conducted at the lab scale, and

long-term field studies are needed to explore the potential of BC to

mitigate saline conditions. Likewise, there is no recommendation

about the rate of BC application for saline soils, therefore, field

studies must be conducted to determine the rate of BC application
Frontiers in Plant Science 12
in saline soils considering the BC and soil properties. The role of BC

in combination with another amendment like gypsum is not studied

therefore, it is mandatory to explore the combined effect of BC and

gypsum on saline soils.
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