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Abstract. Anthocyanins are responsible for fruit coloration and are beneficial to hu-
man health. The fruits of cultivated strawberry (Fragaria ×ananassa) varieties are
colorful, a trait that attracts consumers. The fruits of wild Fragaria species, close rel-
atives of the cultivated strawberry, vary in color. In this review, we describe the con-
tent and composition of anthocyanins in cultivated and wild strawberry varieties. We
also explore the biosynthetic pathway of anthocyanins, including their transcriptional
regulation mechanisms. Additionally, we discuss the effect of environmental factors
on anthocyanin accumulation. This review will inform further studies toward devel-
oping anthocyanin-rich strawberries via environmental control and exogenous appli-
cation of compounds.

Anthocyanins are one of the pigments
contributing to fruit color (Li et al. 2019a). In
plants, anthocyanins attract pollinators and
seed dispersers and enhance plant toler-
ance to biotic and abiotic stress (Kr€uger
et al. 2021; Treutter 2005). Moreover, an-
thocyanins are flavonoids with strong

antioxidant and free radical scavenging
properties (Garcia and Blesso 2021; Kong
et al. 2003). Fruit color is a crucial attri-
bute influencing consumer preferences (Li et al.
2018). Anthocyanins also possess beneficial
health effects against various disorders (Belwal
et al. 2017; Hartman et al. 2006; Henriques
et al. 2020; Jayaprakasam et al. 2005, 2006;
Seeram et al. 2006; Li et al. 2021a, 2021b;
Mattioli et al. 2020; Shishtar et al. 2020).
Therefore, anthocyanins have received significant
research focus in recent years (Li et al. 2019b).

Cultivated strawberries (Fragaria ×ananassa
Duch.), belonging to the genus Fragaria, are fa-
mous for their colorful appearance and delectable
flavor. Currently, strawberries are grown world-
wide, second only to grapes in global production
(Dzhanfezova et al. 2020; Pillet et al. 2015; Qin
et al. 2008; Sirijan et al. 2020; Zhao et al. 2021).
Anthocyanin accumulation is responsible for the
colorful appearance of strawberries (Sirijan et al.
2020; Zhao et al. 2021). Thus, various varieties of

strawberries differ in appearance ranging from
white to red, depending on the anthocyanin content
and composition in their receptacles and achenes
(Cheel et al. 2005; Lin et al. 2018; Wang et al.
2014). The wild Fragaria species, a close relative
of cultivated strawberry, exhibits diverse appearan-
ces attributed to variations in anthocyanin accumu-
lation in its fruits. For example, F. nilgerrensis
produces white fruits (Shen et al. 2020; Zhang
et al. 2020a), whereas F. pentaphylla exhibits
two morphs, red and white fruits (Duan et al.
2017, 2021). Therefore, there is a need for com-
prehensive exploration of the content, composi-
tion, and regulation of anthocyanin biosynthesis
in Fragaria species. This will facilitate the de-
velopment of anthocyanin-rich strawberries to
meet the increasing demand for health-promoting
compounds in the human diet (Xu et al. 2018).

Here, we describe the content and compo-
sition of anthocyanins in cultivated and wild
strawberry species. Furthermore, we discuss
the biosynthetic pathway of anthocyanins and
their transcriptional regulation mechanisms.
Finally, we highlight the effects of environ-
mental factors, including abiotic stresses, on
anthocyanin accumulation. This review sum-
marizes vital information needed to develop
anthocyanin-rich strawberries via environ-
mental manipulations.

Anthocyanin Biosynthesis

Anthocyanin is synthesized via the phenyl-
propane pathway, and phenylalanine is the initial
precursor in anthocyanin synthesis. Phenylala-
nine is catalyzed by phenylalanine ammonia-
lyase (PAL), cinnamic acid 4-hydroxylase (C4H),
and 4-coumarate-CoA ligase (4CL) (Ariza et al.
2016). Subsequently, it enters the anthocyanin
biosynthetic pathway, an extension of the general
flavonoid pathway. Anthocyanin biosynthesis
starts with the chalcone synthase (CHS)-
mediated synthesis of naringenin chalcone from
4-coumaroyl-CoA and malonyl-CoA. Chalcone
isomerase (CHI) then isomerizes naringenin
chalcone to naringenin. Flavanone 3-hydroxylase
(F3H) converts naringenin into dihydrokaemp-
ferol that is further hydroxylated by flavonoid
30-hydroxylase (F30H) or flavonoid 30,50-hy-
droxylase (F3050H) into two other dihydroflavo-
nols: dihydroquercetin and dihydromyricetin.
The three dihydroflavonols are then converted
by dihydroflavonol 4-reductase (DFR) into col-
orless leucoanthocyanidins, which are subse-
quently converted to colored anthocyanidins by
anthocyanidin synthase (ANS) (Liu et al. 2018).
Ultimately, colored anthocyanidins are gly-
cosyltransfered by various flavonoid 3-
O-glucosyltransferase (UFGT), whereas some
are further acylated with aromatic acyl groups
by acyltransferases (Liu et al. 2018).

Fruits contain six main anthocyanin pig-
ments; cyanidin, delphinidin, pelargonidin,
peonidin, petunidin, and malvidin (Chen et al.
2017). Cyanidin, pelargonidin, and delphini-
din are synthesized from phenylalanine by
various enzymes, and peonidin is synthesized
from enzyme-modified cyanidin. Malvidin is
synthesized from delphinidin (Fig. 1) (Shen
et al. 2020). Anthocyanins are biosynthesized
differently in various Fragaria species and
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varieties (Kim et al. 2015; Salvatierra et al.
2014; Shen et al. 2020; Simirgiotis et al.
2009). The most commonly occurring antho-
cyanins in strawberries are cyanidin and pelar-
gonidin derivatives (Salvatierra et al. 2014).
Cyanidin, pelargonidin, and delphinidin were
identified in the red fruits of F. pentaphylla,
whereas only cyanidin and delphinidin were de-
tected in the white fruits of F. nilgerrensis
(Shen et al. 2020). Additionally, rosinidin syn-
thesized from enzyme-modified cyanidin was
detected in F. pentaphylla and F. nilgerrensis,
whereas petunidin was not detected (Fig. 1)
(Shen et al. 2020).

Anthocyanin Content and Composition

Anthocyanin content and composition in
cultivated strawberries. The content of antho-
cyanins varies among different varieties of cul-
tivated strawberries (F. ×ananassa) (Buend�ıa
et al. 2010; Meyers et al. 2003; Skupie�n
andOszmia�nski 2004).More than 25 anthocyanins
have been detected in various strawberry cultivars

via a high-performance liquid chromatogra-
phy–diode array coupled to mass spectrometric
detection (Silva et al. 2007). Notably, pelargoni-
din-3-glucoside, pelargonidin 3-O-rutinoside,
and cyanidin-3-glucoside are the three main an-
thocyanins in strawberries (Dzhanfezova et al.
2020). Silva et al. (2007) studied the anthocya-
nin content of five strawberry cultivars (Camar-
osa, Carisma, Eris, Oso Grande, and Tudnew)
and found that pelargonidin-3-glucoside ac-
counted for 77% to 90% of the total anthocya-
nins, followed by pelargonidin-3-rutinoside
(6% to 11%), and cyanidin-3-glucoside (3% to
10%). Dzhanfezova et al. (2020) evaluated
anthocyanin levels in 12 noncommercial
strawberry cultivars and found that pelargoni-
din-3-glucoside was the most abundant, ac-
counting for 50% to 90% of the total
anthocyanin content, followed by cyanidin-3-
glucoside, which accounted for 1% to 47%, de-
pending on the cultivar. Cyanidin-3-glucoside
content has reduced significantly in modern cul-
tivars (Kelebek and Selli 2011; Lin et al. 2018;
Tonutare 2015). In addition, pelargonidin-3-

rutinoside and pelargonidin-3-malonylglucoside
accounted for 12.5% of the total anthocyanins,
while pelargonidin-3-rutinoside only accounted
for 3.1% in F. ×ananassa cv. Senga Sengana
(Kjersti et al. 2005). Despite several reports on
anthocyanin biosynthesis in strawberries, the
studies were limited to fewer than 20 accessions.
Transcriptome analysis of red and white straw-
berry cultivars revealed 70 differentially ex-
pressed genes involved in the anthocyanin
pathway, which could potentially explain the
white coloration of strawberry fruits (Zhao et al.
2021). Thus, additional studies are needed to
identify the key genes responsible for anthocya-
nin accumulation and color formation in straw-
berry fruits.

Anthocyanin content and composition in
wild strawberries. Anthocyanin levels and
composition vary remarkably among wild
and cultivated strawberries. Cyanidin-3-glu-
copyranoside is the most abundant anthocya-
nin in F. chiloensis (Cheel et al. 2005).
Sondheimer and Karash (1956) and Tonutare
(2015) reported that the major anthocyanins in

Fig. 1. Schematic representation of the anthocyanin biosynthetic pathway in Fragaria species (Shen et al. 2020). PAL: phenylalanineammonialyase; C4H:
Cinnamate 4-hydroxylase; 4CL: 4-coumarate coenzyme A ligase; CHS: chalcone synthase; CHI: chalcone isomerase; F3H: flavanone 3-hydroxylase;
F30H: flavonoid 30-hydroxylase; F3050H: flavonoid 30,50-hydroxylase; DFR: dihydroflavonol 4-reductase; ANS: anthocyanidin synthase; UFGT: flavonoid
3-O-glucosyltransferase; FLS: flavonol synthase; Cy: cyanidin; Dp: delphinidin; Pg: pelargonidin; Mv: malvidin; Pn: peonidin; Rs: rosinidin; glc:
glucoside.
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F. vesca are glycosylated pelargonidin and cya-
nidin, produced at a ratio of around 1:1. Simir-
giotis et al. (2009) found that the content ratio
of pelargonidin 3-glucoside and cyanidin 3-glu-
coside was 1.88 in F. chiloensis ssp. chiloensis
f. patagonica, but 0.68 in F. chiloensis ssp. chi-
loensis f. chiloensis. Furthermore, Kim et al.
(2015) examined the contents of pelargonidin
3-glucoside, pelargonidin-3-rutinoside, and cya-
nidin 3-glucoside of 14 F. orientalis varieties
and concluded that the varieties had varying an-
thocyanin composition. Shen et al. (2020) de-
tected 26 anthocyanins in F. pentaphylla and
F. nilgerrensis fruits. In F. pentaphylla, cyani-
din and pelargonidin accounted for 83.13% and
14.81% of the total anthocyanins, respectively.
In F. nilgerrensis, cyanidin accounted for
97.66% of the total anthocyanin content, while
pelargonidin level was undetectable (Shen et al.
2020). Cyanidin 3-glucoside chloride, cyanidin
3-galactoside, and cyanidin 3-glucoside were
the most abundant anthocyanins in F. penta-
phylla and F. nilgerrensis fruits, accounting for
60.70% and 94.24% of the total anthocyanins
in F. pentaphylla and F. nilgerrensis, respec-
tively (Shen et al. 2020).

Anthocyanin content and composition in
strawberry achenes. Achenes of strawberries
also contain substantial amounts of anthocya-
nins. Notably, anthocyanin content and com-
position in strawberry achenes also vary
depending on the genotype. For instance,
Salvatierra et al. (2014) found that cyanidin
3-glucoside was 1.5 times higher in achenes
of F. chiloensis ssp. chiloensis than those of
F. chiloensis ssp. patagonica. The study also
found that cyaniding 3-glucoside content was
almost 25 times higher than pelargonidin 3-
glucoside content in F. chiloensis ssp. chi-
loensis (Salvatierra et al. 2014). Kjersti et al.
(2005) measured the anthocyanin content of
receptacles and achenes of cultivated straw-
berry varieties and found that pelargonidin-3-
glucoside was the most abundant anthocyanin
in the receptacles, while cyanidin was only
available in trace amounts. However, the lev-
els of cyanidin-3-glucoside and pelargonidin-
3-glucoside in achenes were almost the same,
accounting for 80% of total anthocyanins in
the fruits. These results revealed that anthocya-
nin composition varies between receptacles and
achenes (Kjersti et al. 2005). Although straw-
berry achenes constitute a small portion of the
fruit, they contribute more than 41% of the total
antioxidant content, accounting for 81% of total
anthocyanins (Ariza et al. 2016). Therefore,
consuming strawberry achenes contributes
more anthocyanins to the diet than other parts
of the fruit (Ariza et al. 2016).

Role of Structural Genes in Anthocyanin
Content and Composition

The structural genes related to anthocyanin
biosynthesis can be divided into two groups:
the early-regulated biosynthesis genes (EBGs)
(CHS, CHI, F3H, F30H, and F3050H) and
the late-regulated biosynthesis genes (LBGs)
(DFR, ANS, and UFGT) (Dubos et al. 2010).

The LBGs regulate anthocyanin accumu-
lation in Fragaria species (Duan et al. 2017;

Giampieri et al. 2018; Hossain et al. 2018;
Salvatierra et al. 2014; Shen et al. 2020).
ANS overexpression has been shown to in-
crease anthocyanin content in F. ×ananassa
(Giampieri et al. 2018). Shen et al. (2020)
also found that the upregulation of LBGs
(DFR, ANS, and UFGT) enhances the synthe-
sis of cyanidin derivatives and delphinidin in
F. pentaphylla. Conversely, the inhibition of
UGT75C1 and UGT79B1 genes was found to
impede the synthesis of cyanidin O-hexoside-
O-hexoside-O-hexoside in the red fruits of
F. pentaphylla (Shen et al. 2020). Lin et al.
(2013) found that FaDFR silencing signifi-
cantly reduced glycoside pelargonidin and
cyanidin levels in F. ×ananassa by 93.3%
and 97.2%, respectively. Additionally, Duan
et al. (2017) identified 27 single nucleotide
polymorphisms within the FpDFR gDNA se-
quences between red and white fruits of
F. pentaphylla, contributing to anthocyanin
accumulation. The substrate specificity of
DFR is linked to the variations in anthocya-
nin composition in different Fragaria species
(Miosic et al. 2014). Two DFR genes (DFR1
and DFR2) were identified in F. ×ananassa
and F. vesca. Notably, DFR1 cannot catalyze
dihydrokaemferol (the substrate for pelargo-
nidin synthesis), whereas DFR2 exhibits a
high affinity for dihydrokaemferol. Variations
in the ratios of the two DFRs lead to different
cyanidin to pelargonidin ratios between F.
×ananassa and F. vesca (Miosic et al. 2014).
For example, the upregulation of DFR1 and
silencing of F30H results in the accumulation
of pelargonidin-based pigments in F. ×ananassa,
whereas the enhanced expression of DFR2 and
F30H promotes the synthesis of cyanidin-based
pigments in F. vesca (Miosic et al. 2014).

EBGs appear to regulate anthocyanin
biosynthesis in strawberries indirectly. Spe-
cifically, the silencing of CHS or F3H genes
has been shown to decrease the anthocyanin
content of strawberry fruits significantly
(Hoffmann et al. 2006; Jiang et al. 2013).
F30H and F3050H catalyze the synthesis of
cyanidin-based and delphinidin-based antho-
cyanins, respectively (Seitz et al. 2007).
These enzymes facilitate the hydroxylation
of the anthocyanin B-ring, synthesized from
4-coumaroyl-CoA produced from phenylala-
nine via the shikimate pathway (Nabavi
et al. 2020). Increasing hydroxylation of the
B-ring affects the hue of the pigment and
causes a shift from the red end of the visible
spectrum to the blue (Schwinn et al. 2014;
Tanaka 2006). F30H expression varies sig-
nificantly between different Fragaria spe-
cies/genotypes during fruit development,
impacting the composition of the two major
anthocyanins (cyanidin and pelargonidin de-
rivatives) (Thill et al. 2013).

Glutathione S-transferase (GST) is an en-
zyme involved in cellular detoxification pro-
cesses and has been implicated in plant stress
responses (Allocati et al. 2018). Lin et al.
(2020) found that FaGST1, FaGST37, FaGST39,
FaGST73, and FaGST97 may indirectly promote
vacuolar anthocyanin accumulation in cultivated
strawberries. Moreover, the expressions of these
five FaGST genes were significantly correlated

with the expressions of other anthocyanin biosyn-
thetic structural genes (e.g., FaCHI, FaCHS, and
FaANS), indicating their involvement in anthocy-
anin accumulation in strawberries.

Transcriptional Regulation of
Anthocyanin Biosynthesis in Fragaria

Species

The role of R2R3-MYB transcription factors
in anthocyanin biosynthesis. R2R3 MYB tran-
scription factors are essential in regulating
the structural genes related to anthocyanin
biosynthesis in Fragaria species (Espley
et al. 2007; Hichri et al. 2011). Specifically,
MYB10 transcripts levels have been shown
to increase during the development of straw-
berry fruits, indicating thatMYB10 may partici-
pate in anthocyanin synthesis in strawberries
(Aharoni et al. 2001; Castillejo et al. 2020; Roy
et al. 2018). Studies have shown that allelic var-
iation of MYB10 is the major factor controlling
the natural variation of the skin and flesh color
in strawberry fruits (Castillejo et al. 2020). In
red-fleshed accessions, the insertion of the
CACTA-like transposon (FaEnSpm-2) in the
MYB10-2 promoter enhancedMYB10-2 expres-
sion and anthocyanin biosynthesis. However, in
white flesh fruit, the gypsy-transposon and two
additional loss-of-function mutations inMYB10
truncated the protein and knocked out anthocy-
anin biosynthesis (Castillejo et al. 2020). Si-
lencing the FaMYB10 gene in F. ×ananassa
downregulated all anthocyanin structural genes
except ANS (Medina-Puche et al. 2014). How-
ever, FaMYB10 overexpression significantly
enhanced the expression of anthocyanin struc-
tural genes, including ANS (Lin et al. 2018).
Knockout of FvMYB10 in F. vesca inhib-
ited anthocyanin synthesis, while FvMYB10
overexpressing lines exhibited significantly
higher anthocyanin levels than the control.
Similar results were also observed in F. ×ananassa
(Wang et al. 2014). In F. nilgerrensis, a mutation
in the upstream regulatory region of FnMYB10
downregulated the FnMYB10 gene, resulting in
the white fruit phenotype (Zhang et al. 2020a).
Notably, MYB10 is expressed throughout the
fruit flesh and skin of F. ×ananassa, whereas in
F. vesca, it is only expressed in the outer cell
layers of the mature fruit (Lin-Wang et al.
2010). A correlation between FaMYB10 overex-
pression and cyanidin 3-glucoside accumulation
has also been found in F. ×ananassa cv. Fengguang
(Xu et al. 2018).

The repressors of anthocyanin synthesis
have also been identified, including FaMYB1
(Aharoni et al. 2001). Flowers of transgenic
tobacco lines overexpressing FaMYB1 showed
a severe pigmentation (cyanidin 3-rutino-
side) reduction, accompanied by reduced ex-
pression of LBGs and suppressed enzyme
activities (Aharoni et al. 2001). Overexpres-
sion of FaMYB1 has also been shown to in-
hibit the expression of ANS and UFGT,
resulting in decreased anthocyanin content,
whereas silencing of FaMYB1 results in the
upregulation of white anthocyanin reductase
(LAR) in F. ×ananassa (Kadomura-Ishi-
kawa et al. 2015b). Silencing the FcMYB1
gene in F. chiloensis results in the upregulation
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of ANS and downregulation of ANR and LAR,
leading to increased anthocyanin content (Sal-
vatierra et al. 2014). However, FvMYB1 did not
repress anthocyanin synthesis in F. vesca (Roy
et al. 2018) as it does in F. ×ananassa (Aharoni
et al. 2001; Hu et al. 2018) and F. chiloensis
(Salvatierra et al. 2014). Researchers have re-
vealed that the regulatory mechanism of
MYB1 on anthocyanin biosynthesis varies
between F. ×ananassa and F. chiloensis.
However, silencing of the MYB1 gene sup-
presses the expression of LAR, an enzyme
that catalyzes proanthocyanidin synthesis, in
both Fragaria species (Salvatierra et al.
2014). These results indicate thatMYB1 neg-
atively controls anthocyanin biosynthesis in
strawberry fruits by regulating the expres-
sion of anthocyanin/proanthocyanidin bio-
synthetic structural genes. This further
affects the synthesis direction of the inter-
mediate metabolites (Salvatierra et al. 2014).

Moreover, genome-wide analysis of the
MYB gene family in the octoploid strawberry
revealed that FaMYB28, FaMYB54, and Fa-
MYB576 potentially regulate anthocyanin bio-
synthesis (Liu et al. 2021). Meanwhile,
FaMYB5, FaMYB11, and FaMYB9 were dem-
onstrated to repress anthocyanin biosynthesis
in the octoploid strawberry (Hossain et al.
2018; Schaart et al. 2013).

The role of basic helix-loop-helix tran-
scription factors in anthocyanin biosynthesis.
The basic helix-loop-helix (bHLH) transcription
factor family is the second-largest transcription
factor family in plants. It is characterized by the
conserved bHLH domain and plays a central
regulatory role in many plant biological pro-
cesses (Zhao et al. 2018). Four bHLHs
(FabHLH25, FabHLH29, FabHLH80, and
FabHLH98) have been predicted to regulate
anthocyanin biosynthesis in strawberries
(Zhao et al. 2018). Furthermore, Li et al.
(2020) found that FvbHLH9 is a positive reg-
ulator of anthocyanin biosynthesis in F.
vesca. However, FvbHLH9 can only promote
the transcription of FvMYB10 to activate
FvDFR expression in the presence of WD40
(Li et al. 2020). This is consistent with the
previous reports that the genes coding for the
key enzymes in the anthocyanin biosynthesis
are mainly regulated at the transcriptional
level by the MYB-bHLH-WD40 (MBW)
complex (An et al. 2012; Espley et al. 2007;
Yao et al. 2017; Zhou et al. 2019).

HY5 belongs to the basic leucine zipper
(bZIP) transcription factor and is light-inducible
(Li et al. 2020). Under light conditions, HY5
and MYB aggregate and directly bind the pro-
moters of anthocyanin biosynthesis genes to
promote anthocyanin synthesis (Takos et al.
2006; Stracke et al. 2010). Li et al. (2020) fur-
ther confirmed that FvHY5 and FvbHLH9
specifically bind the promoter region of some
key enzyme genes, including FvDFR, to acti-
vate their expression. For example, FvDFR
expression is activated through the heterodimer
formed between FvHY5 and FvbHLH9. Wang
et al. (2014) also found that FvbHLH33, a
potential partner of FvMYB10, can regulate
anthocyanin structural genes, resulting in
anthocyanin accumulation. Besides, FabHLH3

and FabHLH3-delta are potential positive reg-
ulators, whereas FabHLH33 is a potential neg-
ative regulator of anthocyanin biosynthesis in
the high-anthocyanin strawberry cultivars
(Hossain et al. 2018).

The role of other transcription factors in
anthocyanin synthesis. More recently, many
other families of transcription factors have
been demonstrated to modulate anthocyanin
(An et al. 2017; Duan et al. 2017). The RAV
group (related to ABI3/VP1) of transcription
factors (TFs) plays multifaceted roles in plant
growth, development, and responses to envi-
ronmental stresses. Zhang et al. (2020b)
found that FaRAV1 had the highest transcrip-
tional activation effect on the promoter of
FaMYB10, a key activator of anthocyanin
biosynthesis. The study also reported that
silencing FaRAV1 through transient RNA in-
terference decreased FaMYB10 expression
and anthocyanin content in F. ×ananassa
fruits. Additionally, transcriptome analysis of
FaRAV1-overexpressing strawberry fruit re-
vealed that transcripts of phenylpropanoid
and flavonoid biosynthetic pathway genes
were upregulated. FaRAV1 stimulates antho-
cyanin accumulation in strawberries by either
directly activating anthocyanin pathway gene
promoters or upregulating FaMYB10 (Zhang
et al. 2020b).

The plant-specific transcription factor
Teosinte branched1/Cycloidea/Proliferat-
ing cell factors (TCP) is crucial in plant
growth and development. FvTCP9 partici-
pates in the biosynthesis of abscisic acid
(ABA) and anthocyanins to regulate fruit
ripening. Transcription analysis showed that
FvTCP9 could affect the expression of ABA
signaling-related genes (FaNCED1, FaPYR1,
FaSnRK2, and FaABI5). A yeast two-hybrid
assay revealed that FvTCP9 interacts physi-
cally with FaMYC1 to modulate anthocyanin
biosynthesis, indicating that FvTCP9 pro-
motes fruit ripening by regulating the biosyn-
thesis of ABA and anthocyanins (Xie et al.
2020). Notably, FaWD44–1 is a potential
negative regulator of anthocyanin biosynthe-
sis in high-anthocyanin strawberry cultivars
(Hossain et al. 2018).

The role of long noncoding RNAs in an-
thocyanin synthesis. Long noncoding RNAs
(lncRNAs) are a class of functional RNAs
stretching longer than 200 nucleotides and
lack protein-coding capacity. Substantial evi-
dence indicates that lncRNAs play critical
regulatory roles in diverse biological pro-
cesses in plants, including stress response
(Wang et al. 2017), flower and fruit develop-
ment (Zhu et al. 2015), and ripening (Kang
and Liu 2015). Lin et al. (2018) found that
the competitive intensity of microRNAs
(miRNAs) and lncRNA for the same mRNA
targets was lower in white-fleshed strawber-
ries than in red-fleshed strawberries, indicating
that downregulating lncRNAs might modulate
anthocyanin biosynthesis by acting as targets
for miRNAs.

Factors Affecting Anthocyanin
Biosynthesis in Fragaria Species

Light. Light intensity and quality, including
shading (Anttonnen et al. 2006), ultraviolet-
B radiation (Josuttis et al. 2010; Ordidge
et al. 2010; Tsormpatsidis et al. 2011), and
blue and red LED light (Zhang et al. 2018a,
2018b, 2018c), significantly affect anthocy-
anin biosynthesis (Cominelli et al. 2008;
He and Giusti 2010). Anthocyanins protect
plants from ultraviolet damage (Zoratti
et al. 2014). Light treatment (blue, green,
and red light), especially blue light, can in-
crease anthocyanin synthesis in the post-
harvest strawberry fruits during storage by
inducing the activities of CHS, F3H, DFR,
ANS, and UFGT (Kadomura-Ishikawa et al.
2013). Blue light-irradiated (40 mmol·m�2·s�1

blue light irradiation) fruits of F. ×ananassa
cv. Fengguang had higher anthocyanin con-
tent accompanied by increased activities of
TAL, PAL, C4H, and 4CL (Xu et al. 2018).
Light treatment also increased the expression
of MYB10 in F. ×ananassa and F. vesca,
thereby increasing the expression of anthocya-
nin structural genes and anthocyanin biosyn-
thesis (Kadomura-Ishikawa et al. 2015a;
Xu et al. 2018). Recent studies have shown
that photoreceptors, such as Phototropin 2
(PHOT2), are crucial in mediating antho-
cyanin accumulation in response to light
(Sharma et al. 2021; Zhang et al. 2016).
Overexpression of PHOT2 increases an-
thocyanin content in its leaves and fruits in
F. ×ananassa (Sharma et al. 2021).

Temperature. The synthesis of anthocyanin
is also affected by temperature. When exposed
to cold temperatures, plants increase anthocya-
nin biosynthesis to improve their survival under
cold stress (Catala et al. 2011). Conversely,
suppressing anthocyanin biosynthesis might en-
hance survival under high-temperature stress
(Kim et al. 2017). In addition, Kim et al. (2017)
discovered that high temperature induces the
degradation of HY5 protein through COP1, en-
hancing the expression of the negative regulator
and reducing the expression of anthocyanin
biosynthetic genes.

Studies have shown that temperature af-
fects anthocyanin accumulation in strawberry
fruits. A positive correlation between antho-
cyanin contents and the temperature has been
observed in strawberries grown in controlled
environments (Balasooriya et al. 2020; Josut-
tis et al. 2011; Wang and Zheng 2011) and
under natural conditions (Cervantes et al.
2020; Josuttis et al. 2012). Wang and Zheng
(2011) found that increasing the night tem-
perature from 12 to 22 �C, with the day tem-
perature kept constant at 25 �C, significantly
increased anthocyanin content in F. ×ananassa.
Balasooriya et al. (2020) also found that a day
temperature of 30 �C could significantly increase
anthocyanin content in strawberry fruits than
25 �C. Low-temperature stress (4 �C) increased
the expression of anthocyanin structural genes
and anthocyanin accumulation in F. ×ananassa
fruits by regulating the expression of FaMYB10
and FaMYB1 (Zhang et al. 2018c). Furthermore,
low temperature induced anthocyanin production
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in strawberries, alleviating oxidative damage
(Zhang et al. 2018c). The increase in anthocya-
nin content at low temperatures can be attributed
to the modulation of ANS and UFGT structural
genes by the regulatory genes (MYB10 and
MYB1) (Zhang et al. 2018c).

Temperature also affects anthocyanin com-
position. For example, fruits grown at higher
temperatures exhibited increased levels of total
anthocyanin and pelargonidin-3-glucoside, the
most abundant anthocyanin in strawberries
(Balasooriya et al. 2020).

CO2. Different studies have reported in-
consistent findings regarding the effect of
CO2 on anthocyanin biosynthesis in strawber-
ries. Some studies have shown that elevated
CO2 concentration can increase anthocyanin
accumulation in F. ×ananassa (Balasooriya
et al. 2020; Choi and Kang 2018; Wang et al.
2003). Shin et al. observed higher levels of
anthocyanins in air-stored strawberries than
in CO2-stored strawberries (Shin et al. 2008).
A high concentration of CO2 can increase the
carbon supply in the growth environment,
leading to higher carbon availability in plants.
High carbon availability is associated with
more carbohydrate accumulation and en-
hanced synthesis of carbon-based secondary
products, especially soluble phenols, and con-
densed tannins (Balasooriya et al. 2020).

However, some studies have reported that
high CO2 levels can negatively affect antho-
cyanin accumulation. Li et al. (2019a) found
that elevated CO2 (20% CO2 treatment) low-
ers anthocyanin content and the activity of
PAL, C4H, 4CL, and CHS. The elevated CO2

levels also suppressed the expression of 13
genes involved in the phenylpropanoid and
flavonoid biosynthetic pathways, suggesting
that high CO2 concentration may suppress
anthocyanin biosynthesis by regulating the
flavonoid pathway. In contrast, Blanch et al.
(2012) found that anthocyanin accumulation
was not reduced in strawberries treated with
20% CO2; however, flavonoid production
was redirected toward catechin and procyani-
din B3 accumulation in 40% CO2-treated
fruits, with a sharp decrease in anthocyanin
levels. The study also showed that catechin
induction by high CO2-treated could protect
strawberries from fungal decay.

In addition, the effect of CO2 on anthocya-
nin biosynthesis has been shown to vary
among different tissues. For instance, Gil et al.
(1997) reported that CO2 had a minimal effect
on the anthocyanin contents of the external tis-
sues but induced a remarkable decrease in an-
thocyanin accumulation in the internal tissues.

Water and salt. Plants growing in the field
experience multiple stresses during their
development, compounded by the dramatic
changes in global climate. A recent study re-
vealed that water stress could increase antho-
cyanin content in F. ×ananassa fruits (Adak
et al. 2017). Similar results were observed in
strawberry plants subjected to drought stress
(Terry et al. 2007) or salt stress (Keutgen and
Pawelzik 2008). Mild drought and salt
stresses have also been shown to increase the
content of phenolics, anthocyanins, and L-
ascorbic acid. Drought and salt stresses are

also associated with increased anthocyanin
content and antioxidant activity through an
ABA-dependent mechanism in F. ×ananassa
fruits (Perin et al. 2019). Perin et al. (2019)
found that drought or salt stress-induced an-
thocyanin accumulation and increased levels
of ABA and its derivatives (phaseic and
dehydrophasic acids), associated with the
phenylpropanoid and flavonoid pathways, ac-
tivate the expression of several anthocyanin
synthesis genes.

Exogenous compounds. Exogenous com-
pounds, such as sucrose (Li et al. 2019b) and
ABA (Ji et al. 2012; Jia et al. 2011), were
found to induce anthocyanin synthesis. Li
et al. (2019b) found that exogenous sucrose
application on strawberry fruits during stor-
age can increase the accumulation of four pe-
largonidin derivatives, including pelargonidin
3-glucoside, pelargonidin 3-rutinoside, pelar-
gonidin 3-malonylglucoside, and pelargoni-
din 3-methylmalonyglucoside. Moreover, the
accumulation of pelargonidin derivatives was
involved in activating the pentose phosphate,
shikimate, phenylpropanoid, and flavonoid
pathways (Li et al. 2019b).

Furthermore, Cao et al. (2010) found that ap-
plying 0.2 g/L of benzo-thiadiazole-7-carbothioic
acid S-methyl ester (BTH) on strawberry fruits
for 10 days at 1 �C increases anthocyanin con-
tent. This can be attributed to the activation
of BTH-related enzymes, including G6PDH,
SKDH, TAL, PAL, C4H, and DFR (Cao et al.
2010).

Conclusion

Anthocyanin content and composition
vary among cultivated and wild strawberry
varieties. The three major anthocyanins in
strawberries are pelargonidin-3-glucoside,
pelargonidin 3-O-rutinoside, and cyanidin-3-
glucoside. However, the biosynthetic path-
ways of anthocyanins in strawberries need
further exploration. Anthocyanin biosynthesis
in strawberries is regulated by structural
genes, including EBGs and LBGs. Transcrip-
tion factors, specifically those belonging to
the R2R3-MYB, bHLH, and WD40 families,
are crucial in anthocyanin biosynthesis reg-
ulation. However, more novel transcription
factors involved in anthocyanin biosynthe-
sis need to be identified and characterized
(Lin et al. 2018). Genetic engineering and
hybrid screening are increasingly being used to
enhance anthocyanin content in strawberries
for improved fruit quality (Qin et al. 2008; Siri-
jan et al. 2020). Therefore, more studies on the
molecular regulation mechanisms involved in
anthocyanin biosynthesis will help optimize
the genetic breeding programs. Anthocyanin
accumulation is also affected by environmental
factors (abiotic stresses and exogenous com-
pounds), indicating that manipulating environ-
mental factors can improve the anthocyanin
contents of fruits. However, further studies
should be conducted to validate these findings.
Furthermore, CRISPR/Cas9 (Hu et al. 2019)
has been widely used as a highly valuable tool
for both basic and applied studies on various
organisms and may be useful for researching

the functional genes related to anthocyanin
synthesis of Fragaria in the future (Gao et al.
2020; Tang et al. 2018).
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