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Abstract. Plant cold hardiness is a dynamic process, and seasonal changes occur through
cold acclimation and deacclimation to help prevent lethal injury from the cold. Cold
weather injury resulting from inadequate plant cold hardiness can result in significant eco-
nomic losses to growers of perennial crops in temperate climates. The objective of the cur-
rent study was to develop models that estimate the lethal temperature that causes 10%,
50%, and 90% mortality (LT10, LT50, LT90) to two cultivars of sweet cherry (Prunus
avium) flower buds from the early fall through to spring. We parameterized regression
models using lethal temperature data collected in the Okanagan Valley, British Columbia,
Canada, over six seasons (2013–17, 2019–20, 2021–22) for ‘Sweetheart’ sweet cherry and
three seasons (2013–15, 2016–17) for ‘Lapins’ sweet cherry. These models incorporate pa-
rameters that are based on equations that describe chill and heat accumulation that rely
on measures of hourly air temperature. Model evaluation and validation using several sea-
sons of lethal temperature data not included in model development were completed. Mod-
els for estimating the cold hardiness of sweet cherry showed good agreement between
model lethal temperature predictions and observed values for both sweet cherry cultivars.
In addition, an open-access, interactive, web-based application was developed to access the
outputs of these models in real time for use by growers, researchers, and extension work-
ers. These current models of sweet cherry cold hardiness have potential application for use
as a decision support tool for cold damage management as well as crop site suitability
modeling.

Sweet cherry (Prunus avium) trees are
adapted to temperate climates that experience
winters with sufficiently cold temperatures to
satisfy plant chilling requirements and suffi-
ciently warm summers to support fruit devel-
opment (Fad�on et al. 2020). As such, these
perennial plants must experience cool enough
winter temperatures to produce fruit in the fol-
lowing year (Wenden et al. 2017). To survive
these cold temperatures, sweet cherry trees un-
dergo seasonal changes in cold hardiness
through cold acclimation and deacclimation pro-
cesses that help protect vulnerable plant tissues
from irreversible cold damage (Wisniewski
et al. 2003). Although cold temperatures are
necessary during winter, cherry trees are still
susceptible to cold damage and become in-
creasingly susceptible in spring. Cold damage

resulting from inadequate plant cold hardiness
can greatly reduce fruit yield and quality in
temperate climates and result in agricultural
economic losses (Rugienius et al. 2016). Cold
damage is a common problem for commercial
cherry growers in the Pacific Northwest, includ-
ing growers in the Okanagan Valley of the south-
ern interior of British Columbia (BC), Canada, a
region that accounts for �84% of Canada’s
sweet cherry production (Agriculture and Agri-
Food Canada 2021; BC Ministry of Agriculture,
Food, and Fisheries 2020).

Processes related to cold acclimation and de-
acclimation are largely driven by temperature
and photoperiod (Kalberer et al. 2006). The reli-
ance of these processes on ambient temperatures
makes them susceptible to climate change. Rising
temperatures in temperate regions may advance

the onset of spring and alter the timing of pro-
cesses like budburst and flowering, promoting
cold hardiness deacclimation, and delay au-
tumn senescence and cold acclimation (Gill
et al. 2015; Richardson et al. 2013). Further-
more, increases in the frequency and magni-
tude of extreme temperature events, such as
late spring frosts or winter cold snaps (Semenov
2012), may also increase the risk of cold dam-
age of sweet cherry (Vitasse et al. 2014).

Because of potential impacts of cold dam-
age on crop yield and quality, it is important
that growers can anticipate the susceptibility
of cherry crops to freezing temperatures so
that informed decisions about costly cold dam-
age mitigation measures, such as the use of
wind machines (fans) or helicopters, can be
efficiently implemented (Blanke et al. 2017;
Kappel 2010). To this end, differential thermal
analysis (DTA) is a method commonly used
to measure the cold hardiness of dormant
flower buds in Prunus species that supercool,
including sweet cherry (Liu et al. 2019;
Quamme 1978; Salazar-Guti�errez et al. 2014).
This method involves placing flower buds on
thermoelectric modules (TEM) and exposing
the buds to freezing temperatures. DTA deter-
mines when freezing occurs within, and around,
the buds by determining the latent heat of fu-
sion (Kaya et al. 2020). DTA can distinguish
low temperature exotherms (LTE), which are
assumed to correspond to the temperature at
which the supercooled water in the bud crystal-
izes and the buds become critically injured
through freezing. These LTE measures can pro-
vide estimates of the temperatures that would
cause lethal cold damage in the field. Conduct-
ing cold hardiness measurements via DTA is
both time-consuming and costly. Furthermore,
cherry growers typically do not have access to
the equipment required to determine bud hardi-
ness, making DTA a nonviable tool in practice.

Although practical considerations limit the
viability of DTA, model simulations of cold
hardiness can be used to estimate plant cold
susceptibility for long-term analysis. However,
it is often difficult to obtain sufficiently fre-
quent, long-term, cold hardiness datasets to
develop such models (Kimura et al. 2021).
Cold hardiness monitoring is typically done
by those working in extension; however, there
are limitations to the frequency of measure-
ments and the geographic ranges that can be
sampled by these workers. Cold hardiness has
been modeled in several plants including
grapevine buds (Vitis vinifera and Vitis labrus-
cana) (Ferguson et al. 2011, 2014; Kovaleski
et al. 2023), tea buds (Camellia sinensis)
(Kimura et al. 2021), Scots pine (Pinus syl-
vestris) (Leinonen 1996), wheat (Triticum aes-
tivum), and rye (Secale cereale) (Bergjord
et al. 2008; Fowler et al. 1996), and a wide
range of cereal species and genotypes (Byrns
et al. 2020). Recently, simplified cold hardiness
models were developed for the sweet cherry
cultivars Bing, Chelan, and Sweetheart in
Washington, USA (Salazar-Guti�errez and
Chaves-Cordoba 2020). To the authors’
knowledge, no models or associated cold
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hardiness decision support tools for sweet
cherry have been published for Canada, to date.

The present study’s objective is to build
models that can be used to estimate the cold
hardiness of sweet cherry flower buds for
the cultivars Sweetheart and Lapins in cold
climate regions, focusing on the Okanagan
Valley located in the southern interior of
BC, Canada. Within the Okanagan Valley,
Sweetheart and Lapins are among the top
three cherry cultivars grown, in order of
acres covered, making them varieties of inter-
est for local growers (BC Ministry of Agri-
culture, Food, and Fisheries 2020). These
models will help cherry growers better under-
stand the susceptibility of their crops to cold
damage throughout the fall to spring season and
can be used to assist with cold damage manage-
ment decision-making. Furthermore, developing
these models may improve our ability to
model changes in regional suitability for crop
establishment under future scenarios of cli-
mate change (Neilsen et al. 2017).

Materials and Methods

Data acquisition
To develop and validate these models,

flower bud lethal temperature (LT) was mea-
sured over seven seasons for the cultivar
Sweetheart (2013–17, 2019–22) and four sea-
sons for the cultivar Lapins (2013–17) grown
at midelevation sites in Summerland, BC
(located in the Okanagan Valley). ‘Sweetheart’
LT was also measured for one season at a high
elevation site near Summerland, BC (2020–21)
and one season at a low elevation site in Summer-
land, BC (2021–22). In addition, the LT of the
cultivars Staccato, Sonata, and Skeena (2015–16)
grown at midelevation in Summerland, BC, was
measured for cultivar comparisons. Staccato is

the most grown cultivar in the Okanagan
Valley, and Skeena is the fifth most common
cultivar, by acre (BC Ministry of Agriculture,
Food, and Fisheries 2020). ‘Staccato’ and
‘Sonata’ have similar midseason bloom times
to ‘Sweetheart’, and ‘Skeena’ has similar early
season bloom times to ‘Lapins’ (Quero-Garc�ıa
et al. 2017).

Plant material. To collect plant material
for cold hardiness measurements, flower bud
spurs were randomly selected from trees at
Agriculture and Agri-Food Canada’s Sum-
merland Research and Development Center
(AAFC SuRDC, 49�340 N/119�390 W, 420 m
a.s.l.) in years ranging from 2013 to 2017 and
from commercial orchards (high elevation:
49�420 N/119�480 W, 755 m a.s.l., mideleva-
tion: 49�370 N/119�420 W, 510 m a.s.l., low
elevation: 49�380 N/119�400 W, 415 m a.s.l.)
in or near Summerland, BC from 2020 to 2022.
Buds were collected during the dormant season
until about budbreak in the spring of most years
and to bud bloom in 2015–17 and 2020–21.
Bud spurs were placed in a sealed plastic bag
with a moist paper towel and immediately
transported to AAFC SuRDC on ice in a cooler
to conduct cold hardiness measurements.

Flower bud LT: DTA. Flower bud cold
hardiness was measured using DTA in the
fall and winter months following modified
methods by Mills et al. (2006). The LT of 48
to 54 individual flower buds excised from the
bud spur was measured by placing them on
TEM plates in a Tenney Freezer Unit pro-
grammable freezer (Thermal Product Solu-
tions, New Columbia, PA, USA) held at an
initial temperature of 3 �C. Buds were sub-
jected to cooling temperatures at a rate of
�4 �C/h for 9 h until �36 �C was reached.
The peak identification software Bud Proces-
sor (v.1.8.0, Brock University, St. Catherines,
ON, CA) was then used to identify the tem-
perature at which the LTEs occurred, which
were assumed to be the buds’ LT.

Flower bud LT: Controlled freezing test. It
has been observed that DTA is unreliable
during flower bud deacclimation in the spring
(Andrews et al. 1983; Kaya et al. 2018, 2020;
Quamme et al. 1995). Therefore, controlled
freezing tests were used instead of DTA for
LT measurements in the spring following
modified methods from Salazar-Guti�errez
et al. (2014). Subsamples of 10 excised
flower buds in sealed plastic bags were placed
in a Tenney Unit programmable freezer ini-
tially cooled to 1 �C, and the temperature was
lowered by 1 �C every 15 min (�4 �C/h). To
provide an internal bud reference temperature,
a thermocouple was inserted into one refer-
ence bud and placed in the freezer. One bag of
10 buds was removed once the reference bud
had reached each target temperature. Target
temperatures were selected based on the most
recent LT measurement, with the aim of select-
ing a range of temperatures that would result in
buds experiencing 0% to 100% mortality.
Flower buds were refrigerated overnight and
then held at room temperature for at least 2 h
the following day before they were cut open to
visually assess cold damage, as indicated by
browning tissue.

In-field bud damage. To support model val-
idation, in-field flower bud damage was evalu-
ated for all sample locations measured from
2020 to 2022 following days when recorded
daily temperatures approached or fell below the
measured LT value for the cultivar Sweetheart.
To determine damage, a subsample of 40 to
120 flower buds was assessed by cutting
them open and recording the number of in-
dividual primordia that were damaged per
bud, as indicated by browning tissue. The
proportion of bud damage was determined
by dividing the number of browned primor-
dia by the total number of primordia in the
measured sample of buds.

Weather data. Weather data used in this
study for plant material collected from AAFC
SuRDC were obtained from the Government
of Canada’s online historical weather and cli-
mate database (Government of Canada 2023)
(https://climate.weather.gc.ca). Hourly records
of air temperature from the nearest weather
station to the collected flower buds, located
at AAFC SuRDC (Summerland CS, 49�330
45.200 N/119�380 55.300 W, 454 m a.s.l) were
used. For plant material collected from the high,
mid-, and low elevation commercial orchards
in Summerland, BC, an HOBOVR data logger
(OnsetV

R

, Bourne, MA, USA), installed in each or-
chard at a height of �1.3 m above the ground,
was used to record hourly air temperatures.

Statistical procedure
All statistical analyses were performed

using RStudio (v1.3.1093; R Core Team 2020)
and the following packages: nlme (v3.1–149;
Pinheiro et al. 2020), MuMIn (v1.43.17; Barto�n
2020), and hydroGOF (v0.4–0; Zambrano-
Bigiarini 2020).

When cold hardiness was measured using
DTA, the 90th percentile, median, and 10th
percentile of the identified LTEs were calcu-
lated and assumed to correspond to the LT
that damaged 10%, 50%, and 90% of the buds
(LT10, LT50, LT90), respectively. Sampling
dates that had fewer than 10 identified LTEs
were omitted. Usually, about one LTE per bud
was observed when conducting DTA. How-
ever, during periods when buds were acclimat-
ing in the fall, or as they started to deacclimate
in the spring, it was not uncommon for less
than one LTE per bud to be detected. When
LT was measured using controlled freezing
tests, logistic regression was completed; the
proportion of new bud damage was assumed
to be binomially distributed and was modeled
using a logit link (Eq. [1]; Zuur et al. 2009)
with a generalized linear model (GLM) as rec-
ommended in Zuur et al. (2009). The parame-
ter estimates from these models were used to
calculate the LT10, LT50, and LT90 values
for each sampling date (assumed to be at a
probability of 0.1, 0.5, and 0.9, respectively).

Bud Damage � Binomial 1, pið Þ

with pi 5
eb01b1�Temperature

11 eb01b1�Temperature
[1]

The correlation between the measured LT
values and daily mean temperature, up to
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1 week prior, was calculated to determine
which temperature lags were most strongly
correlated with the measured LT values. Daily
mean temperatures were used to help make
these models more robust to potential tempera-
ture measurement errors.

Chill and heat requirements must be met
to release buds from endodormancy and eco-
dormancy, respectively, and to initiate flow-
ering in the spring (Fad�on et al. 2020; Lang
et al. 1987). Endodormancy refers to a period
where the signal inducing the dormant state
comes from within the affected structure. In
contrast, ecodormancy refers to a period when
growth is limited by environmental conditions,
such as temperature or water deficits (Lang
1987). The developmental and physiological
changes that occur during the transition from
endodormancy, ecodormancy, and through to
growth resumption can help explain changes
in flower bud LT (Hillmann et al. 2021) and
as such, equations for chill and heat accumula-
tion were included as potential parameters for
these LT models. Chill unit (CU) and heat ac-
cumulation, here referred to as forcing unit
(FU), were calculated using the ‘Sweetheart’-
specific chilling and forcing equations devel-
oped by Neilsen et al. (2015) for the Okanagan
Valley, BC, Canada, from hourly air tempera-
tures (Eqs. [2] and [3]). CU accumulation be-
gan in the fall when the accumulated CU
reached a minimum value, indicating chill in-
ception. CU requirements were considered to
be met when they reached the value of 1119,
as determined for ‘Sweetheart’ by Neilsen
et al. (2015), and subsequent values of CU
were assigned to a value of 1119 for model fit-
ting. FU accumulation began after these CU
requirements were met. The coefficients for
budbreak presented in Neilsen et al. (2015)
were used to calculate FU (Eq. [3]) and FU
calculated at temperatures below 5 �C were
nullified. Furthermore, any FUs that were ac-
cumulated before CU accumulation reached a
value of 2000 were nullified (although all CU
values above 1119 were assigned a value of
1119 for model development). This was done
because weaknesses in the models’ ability to
predict LT were identified in preliminary
modeling; we found that LT predictions made
on seasons with periods of winter warm spells
that resulted in early FU accumulation tended
to deacclimate at a rate faster than measured
LTs. Nullifying FU accumulated below a
value of 2000 CU was chosen to improve
model predictions; in the LT data used to de-
velop the ‘Sweetheart’ and ‘Lapins’ models, it
was observed that rapid deacclimation typi-
cally occurred after 2000 CU had accumulated.

If�2$x<16 CU51�46:80eð�e
�x�9:83

2:14ð ÞÞ
42:81

[2]

If x<�2, CU50; if 16<x<18,

CU5�0:5; if x>18, CU5�1

FU5
1:5

11eð�
x�22:8
5:7 Þ [3]

Where x is the hourly air temperature (�C).

Because hourly ambient temperature data
were used to calculate CU and FU, the value
accumulated by 12:00 PM on each date was
assigned as the accumulated CU and FU, to
bring these calculations to a daily resolution.

Model selection and calibration
The observed LTs (LT10, LT50, LT90)

were consolidated from September 15 to April
30 of each season and were used to build a
model for each LT and cultivar. Six seasons of
LT data were used to develop separate LT10,
LT50, and LT90 models for ‘Sweetheart’
[four seasons of data collected from AAFC
SuRDC (2013–17) and two seasons collected
from the midelevation orchard in Summer-
land, BC (2019–20, 2021–22)]. Three sea-
sons of LT data were used to develop
separate LT10, LT50, and LT90 models for
‘Lapins’ [all data collected from AAFC
SuRDC (2013–15, 2016–17)].

Model development was separated into
two stages for each cultivar and LT (10%,
50%, 90%). Unique models were developed
to estimate cold hardiness when the accumu-
lated FUs were less than 30 (t1) or greater
than or equal to 30 (t2) for ‘Sweetheart’ and
when accumulated FUs were less than 25 (t1)
or greater than or equal to 25 (t2) for ‘Lapins’.
These values were chosen based on when
rapid deacclimation was generally observed
to begin in the LT datasets used for model de-
velopment. A lower value for FU accumula-
tion was used to split the models into t1 and
t2 for ‘Lapins’, as this cultivar was observed
to begin deacclimating earlier than ‘Sweet-
heart’, likely as a result of the fact ‘Lapins’
has an earlier bloom time than ‘Sweetheart’
(Quero-Garc�ıa et al. 2017).

The predictor variables used for the LTs
during t1 included daily mean air temperature
from 1 (lag1), 2 (lag2), and 3 (lag3) days prior,
accumulated CU and log transformed accumu-
lated FU. The inclusion of photoperiod as a

model parameter was explored, as it is a factor
that can influence cold tolerance (Maibam
et al. 2013). However, we aimed to develop
models independent of parameters tied to dates
and therefore decided to omit photoperiod as a
potential model parameter.

The predictor variables for t2 LTs in-
cluded accumulated FU and bud stage, as de-
scribed by the BBCH scale (Fad�on et al.
2015). Bud stages were assigned as follows:
side green (BBCH 52), green tip (BBCH 53),
tight cluster (BBCH 55), open cluster (BBCH
56), first white (BBCH 57), first bloom
(BBCH 60), and full bloom (BBCH 65).
For the t2 period for ‘Sweetheart’ and ‘Lapins’,
only 14 and 8 measurements of cold hardiness
were taken, respectively, across years on bud
that ranged in stages from side green to first
white.

The initial full models including all pre-
dictor variables were fitted using generalized
least squares technique and maximum likeli-
hood. The information theoretic approach
(Burnham et al. 2011), using Akaike’s infor-
mation criterion corrected for small sample
sizes (AICc), was then used to identify the
parameters that improved model fit and best
explained the observed LT values. Model pa-
rameters for the top models were then esti-
mated using restricted maximum likelihood.

Model evaluation
The best fit models for t1 and t2 for each

LT and cultivar were evaluated by the root
mean square error (RMSE) (Janssen and
Heuberger 1995) and the index of agreement
(d) (Willmott 1981; Yang et al. 2014) using
the ‘d’ function in the hydroGOF package
(Zambrano-Bigiarini 2020). In addition, one-
to-one regressions of the models’ predicted
values and the observed values were com-
pleted on the combined t1 and t2 predictions
and the predicted and observed values were
compared for each season of data used in

Table 1. R2 values of linear regression between the measured lethal temperature (LT) values and daily
mean ambient air temperature up to 1 week prior for ‘Sweetheart’ and ‘Lapins’ during the t1 and
t2 period. LT10, LT50, LT90 5 lethal temperature that causes 10%, 50%, and 90% mortality.

Variable

‘Sweetheart’ R2 ‘Lapins’ R2

LT10 LT50 LT90 LT10 LT50 LT90
t1 Mean ambient air temperature

No lag 0.58 0.61 0.61 0.65 0.72 0.71
Lag 1 0.65 0.68 0.69 0.68 0.76 0.77
Lag 2 0.61 0.66 0.65 0.68 0.77 0.76
Lag 3 0.65 0.69 0.68 0.58 0.66 0.68
Lag 4 0.61 0.64 0.64 0.55 0.62 0.63
Lag 5 0.56 0.58 0.61 0.51 0.57 0.58
Lag 6 0.57 0.57 0.58 0.54 0.56 0.56
Lag 7 0.49 0.50 0.51 0.51 0.54 0.54

t2 Mean ambient air temperature
No lag 0.00 0.02 0.03 0.07 0.01 0.08
Lag 1 0.02 0.00 0.02 0.02 0.04 0.13
Lag 2 0.04 0.14 0.13 0.29 0.04 0.00
Lag 3 0.01 0.12 0.14 0.07 0.01 0.00
Lag 4 0.00 0.01 0.02 0.20 0.02 0.01
Lag 5 0.07 0.00 0.01 0.01 0.02 0.07
Lag 6 0.01 0.01 0.02 0.08i 0.03i 0.00i

Lag 7 0.23 0.08 0.01 0.07 0.16 0.17

Note: All regression P values for t1 were <0.001 and t2 were <0.05 with the exception of values de-
noted with i indicating P values were above 0.05.
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model development. These further evaluation
methods were required as AICc does not pro-
vide information on model validity but rather
a relative ranking for a pool of candidate
models (Burnham and Anderson 2004).

Model validation
To validate the final models, LT predic-

tions were made and compared with mea-
sured LT from additional data not included in
model development. The RMSE and d were
calculated. In addition, one-to-one regression
of the models’ predicted values against the ob-
served values was conducted and the predicted

and observed values were compared for each
season of validation data. Validation data in-
cluded ‘Sweetheart’ LT data collected from a
low elevation site (2021–22), midelevation
site (2020–21), and high elevation site (2020–21)
and ‘Lapins’ LT data collected from an orchard
at AAFC SuRDC (2014–15). The ‘Sweet-
heart’ models were also validated by compar-
ing estimated damage (assumed to occur when
the minimum daily temperature fell below LT
estimates) to in-field measures of bud damage.
In addition, model predictions were compared
with LT data collected for the cultivars
Staccato (2015–16), Sonata (2015–16), and
Skeena (2015–16).

Results

Model description. A significant, strong
correlation between LT10, LT50, and LT90
and mean daily ambient temperatures from
1 to 7 d prior was observed during the t1 pe-
riod (Table 1). The highest R2 values were
observed 1 to 3 d prior (lag 1, lag 2, and lag 3)
during the t1 period. Because of this strong
correlation, parameters for the mean daily air
temperature with lag 1, lag 2, and lag 3 were
included in the initial full models for t1
model selection. The correlation between
LT10, LT50, and LT90 and mean daily ambi-
ent temperature was weak during the t2 period

Table 2. Akaike’s information criterion corrected for small sample sizes (AICc)-based model selection of generalized least squares models fitted using
maximum likelihood for ‘Sweetheart’ and ‘Lapins’ lethal temperature that causes 10%, 50%, and 90% mortality (LT10, LT50, and LT90) during t1
and t2. The top two models or all models within DAICc of two are shown. The initial, full models for t1 were fitted with the fixed effects of daily
mean air temperature from 1 (Temp.lag1), 2 (Temp.lag2), and 3 d prior (Temp.lag3), accumulated chill units (CU) and log transformed accumulated
forcing units (logFU). The initial, full models for t2 were fitted with the spring flower bud developmental stage (Bud stage) and accumulated forcing units (FU).

Response Top models’ fixed effects AICc DAICc
‘Sweetheart’ t1

LT10 1. Intercept 1 Temp.lag1 1 Temp.lag3 1 CU 1 logFU 471.9 0.00
2. Intercept 1 Temp.lag1 1 Temp.lag2 1 Temp.lag3 1 CU 1 logFU 472.6 0.68

LT50 1. Intercept 1 Temp.lag1 1 Temp.lag3 1 CU 1 logFU 430.5 0.00
2. Intercept 1 Temp.lag1 1 Temp.lag2 1 Temp.lag3 1 CU 1 logFU 432.7 2.24

LT90 1. Intercept 1 Temp.lag1 1 Temp.lag3 1 CU 1 logFU 438.9 0.00
2. Intercept 1 Temp.lag1 1 Temp.lag2 1 Temp.lag3 1 CU 1 logFU 440.4 1.47

‘Sweetheart’ t2
LT10 1. Intercept 41.28 0.00

2. Intercept 1 Bud stage 44.37 3.09
LT50 1. Intercept 42.20 0.00

2. Intercept 1 FU 44.46 2.26
LT90 1. Intercept 54.51 0.00

2. Intercept 1 FU 56.27 1.76
‘Lapins’ t1

LT10 1. Intercept 1 Temp.lag1 1 CU 1 logFU 308.6 0.00
2. Intercept 1 Temp.lag1 1 Temp.lag2 1 CU 1 logFU 310.6 2.01

LT50 1. Intercept 1 Temp.lag1 1 CU 1 logFU 287.8 0.00
2. Intercept 1 Temp.lag1 1 Temp.lag2 1 CU 1 logFU 288.2 0.36
3. Intercept 1 Temp.lag1 1 Temp.lag2 1 Temp.lag3 1 CU 1 logFU 289.6 1.71

LT90 1. Intercept 1 Temp.lag1 1 CU 1 logFU 294.9 0.00
2. Intercept 1 Temp.lag1 1 Temp.lag2 1 CU 1 logFU 296.1 1.26
3. Intercept 1 Temp.lag1 1 Temp.lag3 1 CU 1 logFU 296.7 1.87

‘Lapins’ t2
LT10 1. Intercept 25.4 0.00

2. Intercept 1 FU 30.6 5.28
LT50 1. Intercept 26.9 0.00

2. Intercept 1 Bud stage 32.1 5.17
LT90 1. Intercept 32.4 0.00

2. Intercept 1 FU 36.6 4.25

Table 3. Estimated parameters coefficients, 95% confidence limits in brackets, and P values for final, top ‘Sweetheart’ and ‘Lapins’ lethal temperature that
causes 10%, 50%, and 90% mortality (LT10, LT50, and LT90) models fitted using restricted maximum likelihood for t1 and t2.

Coefficient LT10 Estimate P value LT50 Estimate P value LT90 Estimate P value
‘Sweetheart’ t1

b̂S0 �18.2 [�20.6, �15.8] <0.0001 �17.7 [�19.7, �15.6] <0.0001 �18.1 [�20.2, �16.0] <0.0001
b̂S1 0.18 [0.083, 0.27] 0.0003 0.15 [0.077, 0.24] 0.0002 0.16 [0.078, 0.25] 0.0002
b̂S2 0.11 [0.025, 0.20] 0.0127 0.11 [0.035, 0.18] 0.0047 0.099 [0.023, 0.18] 0.0121
b̂S3 �0.006 [�0.007, �0.005] <0.0001 �0.006 [�0.007, �0.005] <0.0001 �0.006 [�0.007, �0.005] <0.0001
b̂S4 4.5 [3.5, 5.5] <0.0001 3.3 [2.5, 4.2] <0.0001 2.5 [1.6, 3.4] <0.0001

‘Sweetheart’ t2
b̂S0:2 �4.3 [�4.8, �3.8] <0.0001 �5.8 [�6.3, �5.3] <0.0001 �7.4 [�8.1, �6.6] <0.0001

‘Lapins’ t1
b̂L0 �15.9 [�20.7, �11.1] <0.0001 �19.9 [�24.0, �15.7] <0.0001 �21.2 [�25.5, �16.8] <0.0001
b̂L1 0.28 [0.15, 0.42] <0.0001 0.34 [0.23, 0.45] <0.0001 0.38 [0.26, 0.50] <0.0001
b̂L2 �0.006 [�0.008, �0.004] <0.0001 �0.006 [�0.008, �0.005] <0.0001 �0.006 [�0.008, �0.004] <0.0001
b̂L3 3.3 [1.1, 5.5] 0.0045 3.9 [2.0, 5.8] 0.0001 3.2 [1.2, 5.2] 0.0028

‘Lapins’ t2
b̂L0:2 �4.1 [�4.7, �3.5] <0.0001 �5.2 [�5.8, �4.5] <0.0001 �6.3 [�7.2, �5.4] <0.0001
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(Table 1) and as such, mean temperature was
omitted from the initial full models for t2.

Final model parameters were selected by
ranking the initial full models using AICc to
identify parameters that improved model fit.
All final models were the top models as
ranked by AICc values (Table 2). The equa-
tion for the final best fit models for ‘Sweet-
heart’ and ‘Lapins’ t1 and t2 LT10, LT50, and
LT90 were expressed as follows (Eqs. [4] to [7]):

LTSweetheart:t1 5 b̂S0 1 b̂S1Tlag1 1 b̂S2Tlag3

1 b̂S3CU1 b̂S4logFU1 eS
[4]

LTSweetheart:t2 5 b̂S0:2 1 eS:2 [5]

LTLapins:t1 5 b̂L0 1 b̂L1Tlag1 1 b̂L2CU

1 b̂L3logFU1 eL [6]

LTLapins:t2 5 b̂L0:2 1 eL:2 [7]

where LTSweetheart:t1 and LTLapins:t1 represent
the lethal temperature of maximum injury at
LT10, LT50, and LT90 for ‘Sweetheart’ and
‘Lapins’ at t1, respectively, and LTSweetheart:t2

and LTLapins:t2 represent the lethal temperature
of maximum injury at LT10, LT50, and LT90
for ‘Sweetheart’ and ‘Lapins’ at t2, respec-
tively. Subscripts “S” and “L” denote coeffi-
cients for ‘Sweetheart’ and ‘Lapins’ models,
respectively. b̂S0 and b̂L0 are the intercepts.
b̂S1 and b̂L1 are the coefficients for the first
order lag mean daily air temperature (Tlag1).
b̂S2 is the coefficient for the third order lag
mean daily air temperature (Tlag3). b̂S3 and
b̂L2 are the coefficients for the accumulated
CUs. b̂S4 and b̂L3 are the coefficients for the
log transformed accumulated FUs (logFU).

eS and eL are the error terms. b̂S0:2 and b̂L0:2
represent the model intercepts at t2 and eS:2
and eL:2 represent the error terms at t2.

Model calibration. Unique models for
‘Sweetheart’ and ‘Lapins’ were developed
for each period (t1 and t2) for every LT
(LT10, LT50, LT90). Final ‘Sweetheart’models
for t1 had negative intercepts (b̂S0), positive co-
efficients of the mean daily air temperature 1 d
prior (b̂S1) and 3 d prior (b̂S2), negative coeffi-
cients for the accumulated CUs (b̂S3), and
positive coefficients for the log transformed
accumulated FUs (b̂S4) (Table 3). The inter-
cepts and coefficients were all significant. Final
‘Lapins’ models for t1 had negative intercepts
(b̂L0), positive coefficients for the mean daily
air temperature of 1 d prior (b̂L1), negative co-
efficients for the accumulated CUs (b̂L2), and
positive coefficients for the log transformed

Table 4. Root mean square error (RMSE) and index of agreement (d) for final t1 and combined results from t1 and t2 models for ‘Sweetheart’ and ‘Lap-
ins’ lethal temperature that causes 10%, 50%, and 90% mortality (LT10, LT50, and LT90) predictions. Data used for ‘Sweetheart’ model prediction
evaluations were i) six seasons of LT data used for model development and ii) three seasons of LT data collected from a high elevation, midelevation,
and low elevation orchard in Summerland, BC, used for model validation. Data used for ‘Lapins’ model prediction evaluations were i) three seasons of
LT data used for model development and ii) one season of LT data used for model validation. RMSE and d were not calculated for t2 independently,
as these models were intercept-only models.

Cultivar Data used for model evaluation Parameter

t1 t1 & t2

LT10 LT50 LT90 LT10 LT50 LT90
Sweetheart Model development RMSE 1.48 1.25 1.30 1.43 1.22 1.31

d 0.96 0.97 0.97 0.97 0.98 0.98
Model validation RMSE 1.47 1.78 2.19 1.42 1.63 1.99

d 0.93 0.89 0.84 0.97 0.97 0.96
Lapins Model development RMSE 1.97 1.70 1.79 1.88 1.64 1.74

d 0.93 0.96 0.96 0.95 0.97 0.97
Model validation RMSE 1.35 1.44 1.61 1.29 1.51 1.95

d 0.96 0.97 0.96 0.98 0.97 0.96

Fig. 1. One-to-one regression of all seasons predicted and observed lethal temperature that causes 10%, 50%, and 90% mortality (LT10, LT50, LT90) for
‘Sweetheart’ and ‘Lapins’ data used in model development.
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accumulated FUs (b̂L3) (Table 3). The inter-
cepts and coefficients were all significant. The
positive coefficient values for mean tempera-
tures indicated acclimation occurred with nega-
tive temperatures and deacclimation occurred
with positive temperatures. The negative coeffi-
cient for CU indicated that CU contributed to
acclimation. CU accumulation ranged from 0
to 1119 to represent how many CUs were re-
quired to satisfy chill requirements (Neilsen
et al. 2015) and CU in the days following satis-
fying these requirements were assigned a value
of 1119. This means that once CUs were satis-
fied, the CU contributions to this model re-
mained constant and the other parameters
drove the changes in the models’ LT pre-
dictions. Furthermore, positive coefficients
for the log transformed FUs indicated their
accumulation contributed to an increase in
deacclimation. The top final ‘Sweetheart’
and ‘Lapins’ models for t2 included only
significant negative intercepts (b̂S0:2 and
b̂L0:2), which represented the average LT
for these periods.

Model evaluation. For the ‘Sweetheart’
and ‘Lapins’ t1 LT10, LT50, and LT90 mod-
els, the RMSE ranged from 1.25 to 1.48 and
1.70 to 1.97, respectively, and d ranged from
0.96 to 0.97 and 0.93 to 0.96, respectively,
when calculated on data included in model
development. Similarly, for the combined
t1 and t2 LT10, LT50, and LT90 models
for ‘Sweetheart’ and ‘Lapins’, the RMSE
ranged from 1.22 to 1.43 and 1.64 to 1.88,

respectively, and d ranged from 0.97 to 0.98
and 0.95 to 0.97, respectively (Table 4). The
average difference between the t2 intercept
and the observed LT10, LT50, and LT90 val-
ues across all seasons of data used in model
development were �0.0007 �C, 0.0021 �C,
and 0.0029 �C for ‘Sweetheart’ and 0.0038 �C,
0.0013 �C, and 0.0000 �C for ‘Lapins’. One-
to-one regression of the combined predicted
LT and the observed LT for all seasons of data
used to develop these cultivar-specific models
revealed very good agreement, as indicated by
the high R2 values, ranging from 0.84 to 0.93,
and low RMSE values, ranging from 1.18 to
1.72 (Fig. 1). These combined statistics indicate
a strong agreement between the predicted and
observed values for all ‘Sweetheart’ and
‘Lapins’ LTs. This agreement is evident when
the observed LT values were plotted against the
predicted LT values, as displayed for LT50
(Fig. 2). The estimates for LT10 and LT90
showed similarly good results when plotted
against the observed values (Supplemental
Figs. 1 and 2).

Model validation. Model LT estimates
were compared with three seasons of LT data
not used in model development. For the t1
and t1 and t2 periods combined for the LT10,
LT50, and LT90 models, the ‘Sweetheart’
and ‘Lapins’ calculated RMSE values ranged
from 1.42 to 2.19 and 1.29 to 1.95, respec-
tively; the ‘Sweetheart’ and ‘Lapins’ calcu-
lated d values ranged from 0.84 to 0.97 and
0.96 to 0.98, respectively (Table 4). One-to-one

regression of the combined predicted LT and
the observed LT data for the data not used in
model development revealed high R2 values,
ranging from 0.88 to 0.90, and low RMSE val-
ues, ranging from 1.31 to 1.68 (Fig. 3). The
‘Sweetheart’ models showed good agreement
between the predicted and observed LT values
in the t1 and t2 periods (Fig. 4A–I). On 26
and 27 Dec 2021, at the low elevation site
(2021–22), minimum daily temperatures fell
below the estimated LT10 (�16 and �18 �C)
by 1 to 3 �C for 9 h and 1 to 3 �C for 19 h, re-
spectively. Temperatures also dropped below
the LT50 (�18 �C) by 1 �C for 1 h on 26 Dec
2021 and the LT50 (�20 �C) by 1 �C for 4 h
on 27 Dec 2021 (Fig. 4A and B). These esti-
mates suggest that 10% to 50% in-field cold
damage would be expected after this event;
however, 0% damage was measured on 4 and
17 Jan 2022. On 23 Feb 2022, temperatures
also fell below the LT10 (�10 �C) by 1 to 2 �C
for 6 h, with 0% in-field cold damage measured
on 1 Mar 2022 after this event (Fig. 4A).

At the midelevation site (2020–21) on 9
Feb 2021, minimum daily air temperatures
fell below the estimated LT10 (�13 �C) by
1 to 3 �C for 5 h (Fig. 4D). On 11 Feb 2021,
air temperatures dropped below the estimated
LT50 (�17 �C) by 1 to 2 �C for 4 h (Fig. 4E).
This suggests 10% to 50% in-field damage
would occur; however, 0% damage was re-
corded on 10 and 22 Feb, and on 9 Mar 2021.

At the high elevation site (2020–21), a
cold event occurred on 25 Oct 2020, with

Fig. 2. Predicted lethal temperature that causes 50% mortality (LT50) values plotted against the observed LT50 values for all seasons of data used to develop
the ‘Sweetheart’ (six seasons) and ‘Lapins’ (three seasons) models.
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minimum daily air temperatures dropping be-
low the estimated LT10 (�11 �C) by 1 to 3 �C
for 4 h and the estimated LT50 (�13 �C) by
1 �C for 3 h (Fig. 4G and H). No in-field
flower bud damage was observed when mea-
sured 2 d after this event. In addition, on 9 and
10 Feb 2021, temperatures dropped below the
estimated LT10 (�16 and �17 �C) by 1 to
2 �C for 7 h and 1 to 3 �C for 4 h, respectively
(Fig. 4G); on 11 Feb 2021, recorded tempera-
tures fell below the estimated LT90 (�23 �C)
by 1 �C for 3 h (Fig. 4I). After this February
cold event, 6% damage was observed on
22 Feb 2022 and 18% damage was ob-
served on 9 Mar 2022 at this site.

Overall, a reasonable agreement between
estimated damage based on model predictions
of cold hardiness when compared with daily
minimum ambient temperature and measures
of in-field bud damage was observed. In gen-
eral, model predictions were conservative,
predicting higher levels of damage than was
observed on some dates.

One-to-one regression of the combined pre-
dicted LT and the observed LT data for ‘Lapins’
models with data not used in model develop-
ment resulted in high R2 values, ranging from
0.90 to 0.93, and low RMSE values, ranging
from 1.23 to 1.75 (Fig. 3). The ‘Lapins’ LT esti-
mates also showed excellent fit to observed LT
values not used in model development in
the t1 period. However, model estimates in
the t2 period were not as good in the higher
percentage LT50 and LT90 estimates (Fig. 5).
Flower bud damage in the field was not

measured for the seasons in which ‘Lapins’
LT was measured.

These models were also validated against
three different sweet cherry cultivars including
Staccato, Sonata, and Skeena (Fig. 6) to deter-
mine their applicability to other cultivars. The
LTs of these additional cultivars were only
measured during the t1 period. Both ‘Lapins’
and ‘Sweetheart’ LT estimates did a reason-
ably good job at estimating the LT of these ad-
ditional cultivars during the t1 period.

Discussion

Interactive web application. Using the
package shiny (v1.6.0; Chang et al. 2021) in
RStudio (v1.3.1093; R Core Team 2020), an
interactive web application was developed to
allow for simplified and open access to the
outputs of these models, with the option for
model application in real time. It was impor-
tant that this interface was developed to ac-
cess these models, as it is likely that much of
the target audience that would benefit most
from these models does not have the coding
skills, nor the time required to fit these mod-
els and run analyses independently. Without
this interface, these models would likely be
less useful, in practice, to growers, extension
workers, and even researchers.

The interactive web application developed
to access these models provides users with
the background information required to un-
derstand and apply the developed ‘Sweet-
heart’ and ‘Lapins’ LT models (“Background”

tab), a detailed description of the models
and their performance (“About the Mod-
els” tab), instructions on how to use the
models (“How to Use” tab) as well as access to
model outputs (“Estimates” tab). Both graphi-
cal (Fig. 7) and downloadable numeric outputs
from the models’ LT10, LT50, and LT90 pre-
dictions are available on this web application.
This web application allows users to either
input their own hourly temperature data or
access the Government of Canada’s Historic
Climate database (Government of Canada
2023) to automatically input weather data for
select locations in the Okanagan Valley, BC.
By including an option to use weather data
from the Government of Canada’s Historical
Climate database, this allows users to access
hourly air temperature data from as recent as
1 d before the current date to make real-time
predictions if they do not have access to their
own, more site-specific, weather data. If the
option to access weather data from the Gov-
ernment of Canada’s Historical Climate da-
tabase is selected, it will also provide 3 d of
future LT estimates based on weather fore-
casts accessed from OpenWeather (Open-
Weather 2022) (https://openweathermap.org).
This online web application is free to use and
does not require users to sign up. The code
for this interactive web application can be
found at https://github.com/ElizabethHoughton/
cherrycoldhardiness, and the openly accessible,
online version of this application can be
found at https://sweetcherry.shinyapps.io/
cherrycoldhardiness/.

Fig. 3. One-to-one regression of all seasons predicted and observed lethal temperature that causes 10%, 50%, and 90% mortality (LT10, LT50, LT90) for
‘Sweetheart’ and ‘Lapins’ data not used in model development.

HORTSCIENCE VOL. 58(9) SEPTEMBER 2023 969

https://openweathermap.org
https://github.com/ElizabethHoughton/cherrycoldhardiness
https://github.com/ElizabethHoughton/cherrycoldhardiness
https://sweetcherry.shinyapps.io/cherrycoldhardiness/
https://sweetcherry.shinyapps.io/cherrycoldhardiness/


Models for estimating the cold hardiness
of sweet cherry. In this work we developed,
evaluated, and validated models that suc-
cessfully estimated the LT (LT10, LT50,
LT90) of the sweet cherry cultivars Sweet-
heart and Lapins in a cold climate region
(Okanagan Valley, BC, Canada) and devel-
oped an online interactive web application
for easy access and use of these models.
These models focused on incorporating pa-
rameters that accounted for the tempera-
ture-driven processes of cold acclimation
and deacclimation, including their relation-
ship to accumulated chilling and forcing tem-
peratures and the mean daily air temperatures

experienced 1 to 3 d prior. Predictor variables
associated with dates (e.g., photoperiod, accu-
mulative Julian date) were omitted from this
modeling approach; this approach separates
our models from the sweet cherry cold hardi-
ness models developed by Salazar-Guti�errez
and Chaves-Cordoba (2020), developed out of
Washington, USA, which included a model
parameter of the accumulative day for the
study period and which may not be applicable
to growers in BC.

Overall, model performance was very
good during the t1 period, as indicated by
the RMSE, d, one-to-one regression of the
predicted and observed LT values, and by

model validation through comparisons of
estimated LT to observed LT data that were
not included in model development. In addi-
tion, measures of in-field bud damage for
‘Sweetheart’ showed a reasonable agreement
between potential predicted damage, indi-
cated by minimum daily air temperatures
that fell below the predicted LTs, which
helped validate model estimates. In general,
when the models were incorrect, their esti-
mates were conservative meaning greater es-
timates of damage were predicted than what
was observed. Factors such as HOBOVR data
logger placement within the orchard, flower
bud cold damage measurements, and the ac-
curacy of the model estimates all may have
contributed to the discrepancies between the
expected cold damage based on LT estimates
and the observed cold damage. In addition,
these differences in estimated flower bud dam-
age determined from LT predictions and the
observed in-field bud damage may be attrib-
uted to factors such as cold spell duration, rate
of cooling, and how extreme these events
were, given that temperatures only ever fell 1
to 3 �C below the estimated LT. The short du-
ration of many of these cold events may have
resulted in lags between the ambient air temper-
atures and the internal flower bud temperatures.

Fig. 4. Predicted lethal temperature that causes 10%, 50%, and 90% mortality (LT10, LT50, and LT90) values plotted against the observed LT values for
three seasons of ‘Sweetheart’ data that were not used in model development at three different elevation orchards in Summerland, BC (low elevation
2021–22: A, B, and C; midelevation 2020–21: D, E, and F; high elevation 2020–21: G, H, and I). Daily minimum temperature (red lines) and measures
of in-field percent bud damage collected throughout the season (vertical dashed gray lines and numeric values at the bottom of each plot) are also dis-
played. Measures of bud damage throughout the season help validate models by comparing percent damage estimated by models (10%, 50%, and 90%
damage are assumed to occur when the daily minimum temperatures fall below the LT10, LT50, and LT90 estimates, respectively) with damage mea-
sured in-field.

Fig. 5. Predicted lethal temperature that causes 10%, 50%, and 90% mortality (LT10, LT50, and LT90)
values plotted against the observed LT values for one season of ‘Lapins’ data (2014–15) that were
not used in model development.
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This may have resulted in measures of ambient
air temperatures that were below the predicted
LT temperatures, but internal bud temperatures

that had yet to surpass the predicted LT temper-
ature, helping explain the lack of damage later
observed.

Overall, the authors acknowledge that the
ability of these models to predict changes in
cold hardiness after 30 and 25 accumulated

Fig. 6. Predicted ‘Sweetheart’ and ‘Lapins’ lethal temperature that causes 50% mortality (LT50) values in the t1 period plotted against observed Staccato,
Sonata, and Skeena cultivar LT50 values.

Fig. 7. “Estimations” page of interactive web application designed for simplified and open-access to cold hardiness model estimations made from either user
uploaded weather data or the current season’s data accessed from the Government of Canada’s Historic Climate database (https://climate.weather.gc.ca)
and 3 d of weather forecasts from OpenWeather (https://openweathermap.org).
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FU (t2) in both ‘Sweetheart’ and ‘Lapins’
is relatively poor because the top selected
models were intercept-only models, likely as
a result of the limited data available during
this period. Additional LT data collected in
the late winter and early spring would be re-
quired to produce more capable models for es-
timating cold hardiness during these periods.
This is an important period to understand plant
susceptibility to frost because as growth re-
sumes in the spring, sweet cherry trees begin
to rapidly deacclimate and their ability to
tolerate cold temperatures is greatly reduced,
making them vulnerable to frost events (Long-
stroth and Perry 1996; Rodrigo 2000).

Notably, the models during t1 that we have
developed here show potential applications to
cultivars other than Sweetheart and Lapins.
However, we were unable to evaluate t2 model
performance of the ‘Sweetheart’ and ‘Lapins’
LT models to additional cultivars (Staccato, So-
nata, and Skeena) because of data limitations. It
is likely that varietal differences in timing of
deacclimation would result in asynchronous es-
timations of bud deacclimation made by these
models and therefore caution should be taken
when expanding application to sweet cherry
cultivars other than Sweetheart and Lapins.
Nonetheless, given the current absence of any
models for these other cultivars, our models
can provide growers with reasonably accurate
predictions that could help inform their cold
damage mitigation efforts.

The presented models were developed
using temperature and LT data from one
(‘Lapins’) or two (‘Sweetheart’) locations
in Summerland, BC. The climate in this re-
gion often allows for the sweet cherry chill-
ing requirements to be met early in the dormant
season (Guak and Neilsen 2013) resulting in the
potential for early forcing accumulation under
warmer winter temperatures when using forcing
equations defined by Neilsen et al. (2015). In
these models, early forcing accumulation was
nullified to help account for this and improve
model fit under scenarios of winter warm spells.
Consequently, it is not recommended that the
models described here be applied in regions that
experience warmer winters, where chilling re-
quirements may not be met until later in the sea-
son, without further validation, because these
models may overestimate LT values (more neg-
ative) when early warm, forcing temperatures
are experienced.

Conclusion

The purpose of the current study was to
develop and validate models to estimate the
LT that could cause 10%, 50%, and 90%
damage (LT10, LT50, LT90) to the sweet
cherry cultivars Sweetheart and Lapins. The
development of these models contributes to
our understanding of sweet cherry cold hardi-
ness throughout the fall and winter months.
The limitations of this study are that an im-
proved understanding of spring cold hardiness
progression is still needed in this system. Fu-
ture improvements to these models through
modeling with a higher resolution of LT data
collected during the spring months would be

beneficial. Furthermore, validation of these mod-
els using data collected in regions extending be-
yond the southern Okanagan Valley, BC, Canada
is still needed to determine their applicability to a
wider range of geographic locations.

These models were made openly accessible
through a free, online, interactive web applica-
tion available for use by growers, researchers,
and extension workers. They can be used as a
decision support tool in western Canada to aid in
decisions regarding the application of strategies
to help mitigate cold damage. Through the use
of this decision support tool, growers will be
able to maximize the opportunity for winter
cherry flower bud survival and reduce eco-
nomic loss to crop cold damage when possible.
Furthermore, these models may contribute to
improved resource optimization by helping
growers avoid implementing frost damage miti-
gation strategies, such as the use of wind ma-
chines or helicopters, when they may not be
needed. These models may also help estimate
production risk before the establishment of new
orchards based on historic records of tempera-
ture or to improve our understanding and
modeling of changing sweet cherry crop site
suitability under present and future predictions
of climate change.

References Cited

Agriculture and Agri-Food Canada. 2021. Statisti-
cal overview of the Canadian fruit industry
2020. https://agriculture.canada.ca/sites/default/
files/documents/2021-08/fruit_report_2020-eng.
pdf. [accessed 21 Jan 2022].

Andrews PK, Proebsting EL, Campbell GS. 1983.
An exotherm sensor for measuring the cold har-
diness of deep-supercooled flower buds by differ-
ential thermal analysis. HortScience. 18:77–78.
https://doi.org/10.21273/HORTSCI.18.1.77.

Barto�n K. 2020. MuMIn: Multi-model inference.
https://CRAN.R-project.org/package=MuMIn.
[accessed 1 Sep 2022].

BC Ministry of Agriculture, Food, and Fisheries.
2020. 2020 B.C. cherry and apple acreage report.
https://www2.gov.bc.ca/assets/gov/farming-natural-
resources-and-industry/agriculture-and-seafood/
animal-and-crops/crop-production/2020_bc_
cherry_apple_acreage_report.pdf. [accessed 18
Jul 2022].

Bergjord AK, Bonesmo H, Skjelvåg AO. 2008.
Modelling the course of frost tolerance in win-
ter wheat: I. Model development. Eur J Agron.
28(3):321–330. https://doi.org/10.1016/j.eja.2007.
10.002.

Blanke MM, Lang G, Meland M. 2017. Orchard mi-
croclimate modification, p 244–268. In: Quero-
Garc�ıa J, Iezzoni A, Pulawska J, Lang G (eds).
Cherries: Botany, production and uses. CABI,
Boston, MA.

Burnham KP, Anderson DR. 2004. Multimodel in-
ference: Understanding AIC and BIC in model
selection. Sociol Methods Res. 33(2):261–304.
https://doi.org/10.1177/0049124104268644.

Burnham KP, Anderson DR, Huyvaert KP. 2011.
AIC model selection and multimodel inference
in behavioral ecology: Some background, obser-
vations, and comparisons. Behav Ecol Sociobiol.
65(1):23–35. https://doi.org/10.1007/s00265-010-
1029-6.

Byrns BM, Greer KJ, Fowler DB. 2020. Modeling
winter survival in cereals: An interactive tool.
Crop Sci. 60(5):2408–2419. https://doi.org/10.1002/
csc2.20246.

Chang W, Cheng J, Allaire JJ, Sievert C, Schloerke
B, Xie Y, Allen J, McPherson J, Dipert A, Bor-
ges B. 2021. shiny: Web application framework
for R. https://CRAN.R-project.org/package=
shiny. [accessed 1 Aug 2021].

Fad�on E, Herrera S, Guerrero B, Guerra M, Ro-
drigo J. 2020. Chilling and heat requirements of
temperate stone fruit trees (Prunus sp.). Agron-
omy (Basel). 10:1–32. https://doi.org/10.3390/
agronomy10030409.

Fad�on E, Herrero M, Rodrigo J. 2015. Flower de-
velopment in sweet cherry framed in the BBCH
scale. Scientia Hortic. 192:141–147. https://doi.
org/10.1016/j.scienta.2015.05.027.

Ferguson JC, Moyer MM, Mills LJ, Hoogenboom
G, Keller M. 2014. Modeling dormant bud cold
hardiness and budbreak in twenty-three Vitis
genotypes reveals variation by region of origin.
Am J Enol Viticult. 65(1):59–71. https://doi.
org/10.5344/ajev.2013.13098.

Ferguson JC, Tarara JM, Mills LJ, Grove GG,
Keller M. 2011. Dynamic thermal time model
of cold hardiness for dormant grapevine buds.
Ann Bot (Lond). 107(3):389–396. https://doi.
org/10.1093/aob/mcq263.

Fowler DB, Limin AE, Wang S-Y, Ward RW.
1996. Relationship between low-temperature
tolerance and vernalization response in wheat
and rye. Can J Plant Sci. 76(1):37–42. https://
doi.org/10.4141/cjps96-007.

Gill AL, Gallinat AS, Sanders-DeMott R, Rigden
AJ, Short Gianotti DJ, Mantooth JA, Templer
PH. 2015. Changes in autumn senescence in
northern hemisphere deciduous trees: A meta-
analysis of autumn phenology studies. Ann Bot
(Lond). 116(6):875–888. https://doi.org/10.1093/
aob/mcv055.

Government of Canada. 2023. Historical data. https://
climate.weather.gc.ca/historical_data/search_
historic_data_e.html. [accessed 1 Apr 2023].

Guak S, Neilsen D. 2013. Chill unit models for
predicting dormancy completion of floral
buds in apple and sweet cherry. Hortic Envi-
ron Biotechnol. 54(1):29–36. https://doi.org/
10.1007/s13580-013-0140-9.

Hillmann L, Elsysy M, Goeckeritz C, Hollender C,
Rothwell N, Blanke M, Einhorn T. 2021. Pre-
anthesis changes in freeze resistance, relative
water content, and ovary growth preempt bud
phenology and signify dormancy release of sour
cherry floral buds. Planta. 254(4):74. https://doi.
org/10.1007/s00425-021-03722-0.

Janssen PHM, Heuberger PSC. 1995. Calibra-
tion of process-oriented models. Ecol Modell.
83:55–66. https://doi.org/10.1016/0304-3800(95)
00084-9.

Kalberer SR, Wisniewski M, Arora R. 2006. Deac-
climation and reacclimation of cold-hardy plants:
Current understanding and emerging concepts.
Plant Sci. 171(1):3–16. https://doi.org/10.1016/j.
plantsci.2006.02.013.

Kappel F. 2010. Sweet cherry cultivars vary in their
susceptibility to spring frosts. HortScience. 45(1):
176–177. https://doi.org/10.21273/HORTSCI.45.
1.176.

Kaya O, Kose C, Donderalp V, Gecim T, Taskõn S.
2020. Last updates on cell death point, bud death
time and exothermic characteristics of flower
buds for deciduous fruit species by using differ-
ential thermal analysis. Scientia Hortic. 270:1–12.
https://doi.org/10.1016/j.scienta.2020.109403.

Kaya O, Kose C, Gecim T. 2018. An exothermic
process involved in the late spring frost injury to
flower buds of some apricot cultivars (Prunus
armenica L.). Scientia Hortic. 241:322–328.
https://doi.org/10.1016/j.scienta.2018.07.019.

Kimura K, Yasutake D, Oki T, Yoshida K, Kitano
M. 2021. Dynamic modelling of cold-hardiness

972 HORTSCIENCE VOL. 58(9) SEPTEMBER 2023

https://agriculture.canada.ca/sites/default/files/documents/2021-08/fruit_report_2020-eng.pdf
https://agriculture.canada.ca/sites/default/files/documents/2021-08/fruit_report_2020-eng.pdf
https://agriculture.canada.ca/sites/default/files/documents/2021-08/fruit_report_2020-eng.pdf
https://doi.org/10.21273/HORTSCI.18.1.77
https://CRAN.R-project.org/package=MuMIn
https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/animal-and-crops/crop-production/2020_bc_cherry_apple_acreage_report.pdf
https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/animal-and-crops/crop-production/2020_bc_cherry_apple_acreage_report.pdf
https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/animal-and-crops/crop-production/2020_bc_cherry_apple_acreage_report.pdf
https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/animal-and-crops/crop-production/2020_bc_cherry_apple_acreage_report.pdf
https://doi.org/10.1016/j.eja.2007.10.002
https://doi.org/10.1016/j.eja.2007.10.002
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1007/s00265-010-1029-6
https://doi.org/10.1007/s00265-010-1029-6
https://doi.org/10.1002/csc2.20246
https://doi.org/10.1002/csc2.20246
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://doi.org/10.3390/agronomy10030409
https://doi.org/10.3390/agronomy10030409
https://doi.org/10.1016/j.scienta.2015.05.027
https://doi.org/10.1016/j.scienta.2015.05.027
https://doi.org/10.5344/ajev.2013.13098
https://doi.org/10.5344/ajev.2013.13098
https://doi.org/10.1093/aob/mcq263
https://doi.org/10.1093/aob/mcq263
https://doi.org/10.4141/cjps96-007
https://doi.org/10.4141/cjps96-007
https://doi.org/10.1093/aob/mcv055
https://doi.org/10.1093/aob/mcv055
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://doi.org/10.1007/s13580-013-0140-9
https://doi.org/10.1007/s13580-013-0140-9
https://doi.org/10.1007/s00425-021-03722-0
https://doi.org/10.1007/s00425-021-03722-0
https://doi.org/10.1016/0304-3800(95)00084-9
https://doi.org/10.1016/0304-3800(95)00084-9
https://doi.org/10.1016/j.plantsci.2006.02.013
https://doi.org/10.1016/j.plantsci.2006.02.013
https://doi.org/10.21273/HORTSCI.45.1.176
https://doi.org/10.21273/HORTSCI.45.1.176
https://doi.org/10.1016/j.scienta.2020.109403
https://doi.org/10.1016/j.scienta.2018.07.019


in tea buds by imitating past temperature mem-
ory. Ann Bot (Lond). 127(3):317–326. https://
doi.org/10.1093/aob/mcaa197.

Kovaleski AP, North MG, Martinson TE, Londo
JP. 2023. Development of a new cold hardiness
prediction model for grapevine using phased
integration of acclimation and deacclimation
responses. Agric Meteorol. 331:109324. https://
doi.org/10.1016/j.agrformet.2023.109324.

Lang GA. 1987. Dormancy: A new universal ter-
minology. HortScience. 22(5):817–820. https://
doi.org/10.21273/HORTSCI.22.5.817.

Lang GA, Early JD, Martin GC, Darnell RL. 1987.
Endo-, para-, and ecodormancy: Physiological
terminology and classification for dormancy re-
search. HortScience. 22(3):371–377. https://doi.
org/10.21273/HORTSCI.22.5.701b.

Leinonen I. 1996. A simulation model for the annual
frost hardiness and freeze damage of Scots pine.
Ann Bot (Lond). 78(6):687–693. https://doi.org/
10.1006/anbo.1996.0178.

Liu J, Lindstrom OM, Chavez DJ. 2019. Differential
thermal analysis of ‘Elberta’ and ‘Flavorich’
peach flower buds to predict cold hardiness in
Georgia. HortScience. 54(4):676–683. https://doi.
org/10.21273/HORTSCI13518-18.

Longstroth M, Perry RL. 1996. Selecting the or-
chard site, orchard planning and establishment,
p 203–221. In: Webster AD, Looney NE (eds).
Cherries: Crop physiology, production and uses.
CAB International, Wallingford, UK.

Maibam P, Nawkar G, Park J, Sahi V, Lee S, Kang
C. 2013. The influence of light quality, circadian
rhythm, and photoperiod on the CBF-mediated
freezing tolerance. IJMS. 14(6):11527–11543.
https://doi.org/10.3390/ijms140611527.

Mills LJ, Ferguson JC, Keller M. 2006. Cold-hardi-
ness evaluation of grapevine buds and cane tis-
sues. Am J Enol Viticult. 57:194–200. https://
doi.org/10.5344/ajev.2006.57.2.194.

Neilsen D, Losso I, Neilsen G, Guak S. 2015. Devel-
opment of chilling and forcing relationships for
modeling spring phenology of apple and sweet
cherry. Acta Hortic. 1068:125–132. https://doi.
org/10.17660/ActaHortic.2015.1068.15.

Neilsen D, Smith S, Bourgeois G, Qian B, Cannon
A, Neilsen G, Losso I. 2017. Modelling changing

suitability for tree fruits in complex terrain. Acta
Hortic. 1160:207–214. https://doi.org/10.17660/
ActaHortic.2017.1160.30.

OpenWeather. 2022. OpenWeather. https://open
weathermap.org. [accessed 30 Oct 2022].

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core
Team. 2020. nlme: Linear and nonlinear mixed ef-
fects models. https://CRAN.R-project.org/package=
nlme. [accessed 1 Aug 2021].

Quamme HA. 1978. Mechanism of supercooling
in overwintering peach flower buds. J Am Soc
Hortic Sci. 103(1):57–61. https://doi.org/10.21273/
JASHS.103.1.57.

Quamme HA, Su WA, Veto LJ. 1995. Anatomical
features facilitating supercooling of the flower
within the dormant peach flower bud. J Am
Soc Hortic Sci. 120(5):814–822. https://doi.org/
10.21273/JASHS.120.5.814.

Quero-Garc�ıa J, Schuster M, L�opez-Ortega G, Char-
lot G. 2017. Sweet cherry varieties and improve-
ment, p 60–94. In: Quero-Garc�ıa J, Iezzoni A,
Pulawska J, Lang G (eds). Cherries: Botany, pro-
duction and uses. CABI, Boston, MA.

R Core Team. 2020. R: A language and envi-
ronment for statistical computing. Vienna,
Austria: R Foundation for Statistical Com-
puting. https://www.R-project.org/. [accessed 1
Sep 2020].

Richardson AD, Keenan TF, Migliavacca M, Ryu Y,
Sonnentag O, Toomey M. 2013. Climate change,
phenology, and phenological control of vegetation
feedbacks to the climate system. Agric Meteorol.
169:156–173. https://doi.org/10.1016/j.agrformet.
2012.09.012.

Rodrigo J. 2000. Spring frosts in deciduous fruit
trees—Morphological damage and flower hardi-
ness. Scientia Hortic. 85(3):155–173. https://doi.
org/10.1016/S0304-4238(99)00150-8.

Rugienius R, �Snipaitiene L, Stanien_e G, �Sik�snianien_e
JB, Haimi P, Baniulis D, Frercks B, Pranckietis
V, Luko�sevi�ci�ut_e V, Stanys V. 2016. Cold accli-
mation efficiency of different Prunus and Fraga-
ria species and cultivars in vitro. Zemdirbyste.
103(2):207–214. https://doi.org/10.13080/z-a.2016.
103.027.

Salazar-Guti�errez MR, Chaves B, Anothai J,
Whiting M, Hoogenboom G. 2014. Variation

in cold hardiness of sweet cherry flower
buds through different phenological stages.
Scientia Hortic. 172:161–167. https://doi.org/
10.1016/j.scienta.2014.04.002.

Salazar-Guti�errez MR, Chaves-Cordoba B. 2020.
Modeling approach for cold hardiness estima-
tion on cherries. Agric Meteorol. 287:107946.
https://doi.org/10.1016/j.agrformet.2020.107946.

Semenov VA. 2012. Arctic warming favours ex-
tremes. Nat Clim Chang. 2(5):315–316. https://
doi.org/10.1038/nclimate1502.

Vitasse Y, Lenz A, K€orner C. 2014. The interac-
tion between freezing tolerance and phenology
in temperate deciduous trees. Front Plant Sci.
5(541). https://doi.org/10.3389/fpls.2014.00541.

Wenden B, Campoy JA, Jensen M, L�opez-Ortega
G. 2017. Climatic limiting factors: Tempera-
ture, p 166–188. In: Quero-Garc�ıa J, Iezzoni A,
Pulawska J, Lang G (eds). Cherries: Botany,
production and uses. CABI. Boston, MA.

Willmott CJ. 1981. On the validation of models.
Phys Geogr. 2:184–194. https://doi.org/10.1080/
02723646.1981.10642213.

Wisniewski M, Bassett C, Gusta LV. 2003. An
overview of cold hardiness in woody plants:
Seeing the forest through the trees. HortScience.
38:952–959. https://doi.org/10.21273/HORTSCI.
38.5.952.

Yang JM, Yang JY, Liu S, Hoogenboom G. 2014.
An evaluation of the statistical methods for
testing the performance of crop models with
observed data. Agric Syst. 127:81–89. https://
doi.org/10.1016/j.agsy.2014.01.008.

Zambrano-Bigiarini M. 2020. hydroGOF: Good-
ness-of-fit functions for comparison of simu-
lated and observed hydrological time series.
https://doi.org/10.5281/zenodo.839854. https://
github.com/hzambran/hydroGOF. [accessed
1 Aug 2021].

Zuur AF, Ieno EN, Walker N, Saveliev AA,
Smith GM. 2009. Mixed effects models and
extensions in ecology with R. New York,
NY: Springer New York (Statistics for Bi-
ology and Health). http://link.springer.com/
10.1007/978-0-387-87458-6. [accessed 28
Feb 2021].

HORTSCIENCE VOL. 58(9) SEPTEMBER 2023 973

https://doi.org/10.1093/aob/mcaa197
https://doi.org/10.1093/aob/mcaa197
https://doi.org/10.1016/j.agrformet.2023.109324
https://doi.org/10.1016/j.agrformet.2023.109324
https://doi.org/10.21273/HORTSCI.22.5.817
https://doi.org/10.21273/HORTSCI.22.5.817
https://doi.org/10.21273/HORTSCI.22.5.701b
https://doi.org/10.21273/HORTSCI.22.5.701b
https://doi.org/10.1006/anbo.1996.0178
https://doi.org/10.1006/anbo.1996.0178
https://doi.org/10.21273/HORTSCI13518-18
https://doi.org/10.21273/HORTSCI13518-18
https://doi.org/10.3390/ijms140611527
https://doi.org/10.5344/ajev.2006.57.2.194
https://doi.org/10.5344/ajev.2006.57.2.194
https://doi.org/10.17660/ActaHortic.2015.1068.15
https://doi.org/10.17660/ActaHortic.2015.1068.15
https://doi.org/10.17660/ActaHortic.2017.1160.30
https://doi.org/10.17660/ActaHortic.2017.1160.30
https://openweathermap.org
https://openweathermap.org
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://doi.org/10.21273/JASHS.103.1.57
https://doi.org/10.21273/JASHS.103.1.57
https://doi.org/10.21273/JASHS.120.5.814
https://doi.org/10.21273/JASHS.120.5.814
https://www.R-project.org/
https://doi.org/10.1016/j.agrformet.2012.09.012
https://doi.org/10.1016/j.agrformet.2012.09.012
https://doi.org/10.1016/S0304-4238(99)00150-8
https://doi.org/10.1016/S0304-4238(99)00150-8
https://doi.org/10.13080/z-a.2016.103.027
https://doi.org/10.13080/z-a.2016.103.027
https://doi.org/10.1016/j.scienta.2014.04.002
https://doi.org/10.1016/j.scienta.2014.04.002
https://doi.org/10.1016/j.agrformet.2020.107946
https://doi.org/10.1038/nclimate1502
https://doi.org/10.1038/nclimate1502
https://doi.org/10.3389/fpls.2014.00541
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.21273/HORTSCI.38.5.952
https://doi.org/10.21273/HORTSCI.38.5.952
https://doi.org/10.1016/j.agsy.2014.01.008
https://doi.org/10.1016/j.agsy.2014.01.008
https://doi.org/10.5281/zenodo.839854
https://github.com/hzambran/hydroGOF
https://github.com/hzambran/hydroGOF
http://link.springer.com/10.1007/978-0-387-87458-6
http://link.springer.com/10.1007/978-0-387-87458-6


Supplemental Fig. 1. Predicted lethal temperature that causes 10% mortality (LT10) values plotted against the observed LT10 values for all seasons of data
used to develop the ‘Sweetheart’ (six seasons) and ‘Lapins’ (three seasons) models.

1 HORTSCIENCE VOL. 58(9) SEPTEMBER 2023



Supplemental Fig. 2. Predicted lethal temperature that causes 90% mortality (LT90) values plotted against the observed LT90 values for all seasons of data
used to develop the ‘Sweetheart’ (six seasons) and ‘Lapins’ (three seasons) models.
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