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High-precision, short-term power forecasting for photovoltaic systems not only
reduces unnecessary energy consumption but also provides power grid security.
To this end, in this paper we propose a photovoltaic short-term power forecasting
model based on the division of data of the 24 traditional Chinese solar terms and
the Adaboost-GA-BPmodel. The 24 solar terms were condensed from the laws of
meteorology, phenology, and seasonal changes to adapt to agricultural times in
ancient China and have become intangible cultural heritage. This article first
analyzes the numerical characteristics of meteorological factors and
demonstrates their close correlation with the turning points of the 24 solar
terms. Second, using Standardized Euclidean Distance and Spearman’s
Correlation Coefficients to analyze data similarity between the Gregorian half-
months and the 24 solar terms divisions for comparative analysis purposes, it is
shown that the intragroup data under the division of the 24 solar terms have a
higher similarity, leading to an average decrease of 15.68%, 40.57%, 14.68%, and
14.64% in the MAE, MSE, RMSE, and WMAPE of the predicted results, respectively.
Finally, based on the data derived from the 24 solar terms, the combined algorithm
was compared with the Adaboost-GA-BP model and then was verified. The
genetic algorithm and Adaboost were used to optimize the BP neural network
algorithm in initial value assignment and neural network structure, resulting in a
23.42%, 18.12%, and 22.28% reduction in the mean values of the MAE, RMSE, and
WMAPE of the predicted results, respectively. Analysis of the results show that
using the Adaboost-GA-BP model based on the 24 solar terms for short-term
photovoltaic power forecasting can improve the accuracy of photovoltaic power
forecasting and significantly improve the predictive performance of the model.
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1 Introduction

1.1 Background

Increasing depletion of non-renewable energy sources has made development of
renewable energy sources a mainstream trend globally. Solar energy, being a renewable
energy source with inherent characteristics such as unlimited availability, flexibility, and
safety, has greatly fostered the photovoltaic (PV) industry development. In 2022, the global
demand for PVs was strong, with approximately 250 GW of new installed capacity globally,
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a year-to-year increase of 45%. It is expected that the newly installed
PV global capacity will reach 330–350 GW in 2023, which has
driven great possibilities for commercial development. However,
due to complex meteorological factors affecting PV power output, it
also exhibits characteristics such as volatility, intermittency, and
nonstationarity (Sun, 2019), which brings a series of problems for
safe power grid operation. Therefore, technology for forecasting PV
power output is of great significance for regulating the operational
peaks, reducing unnecessary energy consumption and ensuring
power system safety. High-precision prediction will also lay a
foundation for research in electricity-demand management and
transmission-distribution scheduling.

1.2 Literature review and motivation

Currently, research in the PV power forecasting field mainly
focuses on three aspects: prediction range, prediction methods, and
segmentation methods.

The prediction range is divided primarily into ultra-short-term
prediction (0~4 h), short-term prediction (0~72 h), and medium-
and long-term prediction (1 month~1 year). Medium- and long-
term predictions are generally used for power trading, siting of PV
plants and benefit assessments (Cheng et al., 2012). Now, research
focuses mainly on ultra-short- and short-term prediction. Ultra-
short-term prediction is primarily used for PV power generation
control, power quality assessment, etc. If the data sequence is
stationary, at this level of minute-level prediction, the time series
method has a high prediction accuracy (Reikard, 2009; Jiang et al.,
2019). As for strongly volatile data, Reference (Li et al., 2021) also
pointed out a hybrid deep learning model combining wavelet packet
decomposition (WPD) and long short-term memory (LSTM)
networks, which demonstrated superior performance in 1-h-
ahead PV power forecasting with 5-min intervals. Short-term
prediction is mainly used for power balance and day-ahead
scheduling of the power system. The current popular method is
to combine numerical weather prediction (NWP) data with power
data for prediction purposes (Bacher et al., 2009; Lorenz et al., 2011;
Lauret et al., 2014).

In terms of the available prediction methods, according to the
physical quantity being predicted, they can be classified into indirect
and direct methods (Raza et al., 2016; Das et al., 2018). The indirect
method first predicts the solar irradiance and then uses neural
networks or engineering formulas to predict the PV power
station output. The direct method utilizes power generation
historical data from the PV power station and the weather
forecast data to directly predict the PV power output. According
to various model categories, it can be classified into physical and
statistical methods. Physical methods predict PV power generation
by simulating the physical process of the electricity-generating PV
components (Lorenz et al., 2011; Mandal et al., 2012; Dolara et al.,
2015), which relies on studying the PV power generation equipment
characteristics and does not require a large amount of sampling data.
Statistical methods, on the other hand, investigates the change trend
derived a large amount of historical sample data. However, it has
also been noted that this physical and data-driven hybrid modeling
can be used by adding physically relevant attributes to the inputs of
the neural network, and that this physical and data-driven hybrid

modeling is the most accurate PV power prediction technique when
historical data is not available or for power prediction of new
installations (Schmelas et al., 2015).

Based on the single or multiple features from the historical
sample data, the data are divided into univariate and multivariate
prediction methods. Univariate prediction methods generally use
historical PV output power data for prediction purposes, such as
time series analysis, regression analysis, and gray forecasting
methods. The multivariate prediction method uses historical PV
output power data as the output variable and meteorological data
such as solar radiation, wind speed, and temperature as the model
input variables. Common methods include artificial neural network
(ANN), backpropagation (BP), deep convolutional neural network
(DCNN), long short-term memory (LSTM), radial basis function
(RBF), multivariate adaptive regression splines (MARS), etc., (Li
et al., 2016; Wang et al., 2017; Yang et al., 2020; Zhang and Zhang,
2022; Dong et al., 2023). Among them, the BP neural network is
widely used because of its strong nonlinear mapping ability (Chen
et al., 2017; Meng et al., 2018; Huang et al., 2022; Liu and Huang,
2022; Wang et al., 2023). Reference (Sobri et al., 2018; Dong et al.,
2023) also notes that the combined prediction model of the above
methods often has better applicability and is a research topic for
future power prediction. As for the problem of optimal initial value
solution, there are not only simulated annealing algorithms and
particle swarm optimization algorithms, but also new algorithms
such as TSA and ITSA (Liu et al., 2021).

In terms of segmentation methods, dividing the dataset
based on certain features to establish predictive submodels
can improve the prediction accuracy. “Similar days” refers to
historical load days that are similar to the predicted day in terms
of weekday type, environment, weather, lunar calendar,
holidays, and other factors. The theory of similar days is now
widely used in the field of electricity, for purposes such as load
forecasting, wind power forecasting, PV power forecasting, and
so on. Reference (Li et al., 2008) notes that many similar day
sample data are needed for training to obtain the variation
pattern of PV power generation, so the selection of similar
days will directly affect the prediction accuracy. In the
selection of similar days, Reference (Shi and Li, 2016) directly
divides the dataset according to four seasons, Reference (Chen
et al., 2011) establishes submodels for sunny, cloudy, and rainy
(snowy) day prediction, Reference (Huang, 2021) uses cloud
transformation and the expectation curve method to calculate
the similar days selection, and Reference (Dai et al., 2011; Yang
et al., 2014) uses a self-organizing map (SOM) neural network
for weather type clustering identification. In conclusion, most of
the existing forecasting studies divide the dataset to build
multiple adaptive forecasting models to ensure forecasting
accuracy. Reference (Wang et al., 2020) proposed a day-ahead
PV power forecasting model assembled by fusing deep learning
modeling and time correlation principles under a partial daily
pattern prediction (PDPP) framework. PDPP framework is
proposed to provide accurate daily pattern prediction
information of particular days, which is used to guide the
modification parameters, which is a new idea for research.

For the above existing researches, there are still some issues that
need to be further studied. Innovative research on the above three
aspects has been ongoing, and we pondered whether we could
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introduce a new division, combined with high-precision prediction
algorithms, to finally obtain a model suitable for short-term
prediction.

1.3 Contributions

This paper is based on the PV power and meteorological
factor data from three sites in the PV Power Output Dataset
(PVOD), located in Hebei Province, China, which are
preprocessed and then analyzed by using the Spearman
correlation coefficient to correlate the meteorological factors
with the power and to filter out the meteorological indicators
that need further attention and analysis in this paper. Then, based
on the theory of twenty-four solar terms, we propose to apply the
solar calendar to the field of PV prediction. By analyzing the data,
we find that the numerical characteristics of meteorological
factors are closely related to changes in the twenty-four solar
terms and analyze the similarity of the data within the group
based on the data division of the Gregorian half month and
twenty-four solar terms by calculating the Euclidean distance.
Finally, through case study, we first compare and verify the data
division of twenty-four solar terms and the Gregorian calendar

and finally apply the combined Adaboost-GA-BP prediction
model for short-term PV power prediction. It is then
compared with several single prediction models to verify the
short-term PV power prediction effect of the twenty-four solar
terms division method and the Adaboost-GA-BP model.

Compared with the existing studies, in terms of the data set,
the data obtained are from three sites instead of one site, thus
avoiding some contingency; in terms of the division method, the
method proposed in this paper utilizes the twenty-four seasons, a
crystallization of the wisdom of the ancient Chinese people, a
doctrine reflecting the laws of climate characteristics, instead of
the previous research based on the data set for weather feature
clustering or division into four seasons. The weather feature
clustering method relies badly on the weather feature indicators,
and the sub-model established is generally only applicable to the
dataset under a set of weather feature indicators, while based on
the twenty-four solar terms as the division, the weather feature
clustering step is omitted, and the twenty-four sub-models can be
divided in a simple and clear way. When divided into four sub-
models according to the four seasons, compared with the division
of the twenty-four solar terms, which is obviously less accurate.
Then for the prediction algorithm, nowadays many pioneering
artificial intelligence algorithms become prediction tools, but

TABLE 1 Nomenclature.

Indices Acronyms

I Index of number SE Spring Equinox

T Index of number PB Pure Brightness

Sets GR Grain Rain

N The number of data BSU Beginning of Summer

T The number of weak predictors GB Grain Buds

Parameters GE Grain in Ear

p P-Value, Probability SS Summer Solstice

Variables MIH Minor Heat

rs Spearman’s rank correlation coefficient MAH Major Heat

d normalized Euclidean distance BA Beginning of Autumn

D1 initialized weight distribution EH End of Heat

at the coefficients of the weak predictor WD White Dew

εt the sum of errors of the t-th weak predictor AE Autumn Equinox

Dk adjusted weights of the new training data CD Cold Dew

Zt the normalization factor FD Frost’s Descent

h(x) ultimate strong predictor BW Beginning of Winter

wT the weights MIS Minor Snow

hT(x) Individual predictors MAS Major Snow

Acronyms WS Winter Solstice

BSP Beginning of Spring MIC Minor Cold

RW Rain Water MAC Major Cold

AI Awakening of Insects PV Photovoltaic
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ignored the integration of classical algorithms such as BP neural
networks, boost integration algorithms, in this paper, we find that
the fusion of classical algorithms can also obtain good prediction
accuracy in the example analysis.

1.4 Nomenclature

Table 1 explains some symbols that appear in the paper.

2 Overview of the data

The data used in this study come from the public PVOD dataset,
which includes local measurement data from ten PV sites located in
Hebei, China. The PVOD dataset comprises a metadata file and data
files from 10 PV sites, formatted as comma-separated values (CSV),
easily accessible for browsing in Microsoft Office Excel or Notepad
(Yao et al., 2021a).

This dataset is relatively comprehensive and multidimensional,
with good exploratory and research value. In this study, six weather
variables and PV output power from the dataset were selected. The
specific variable names and definitions are shown in Table 2 (Yao
et al., 2021b).

TABLE 2 Variable names and definitions of the data.

Variable name Definition Units

lmd_totalirrad Global irradiance of LMD W/m2

lmd_diffuseirrad Diffuse irradiance of LMD W/m2

lmd_temperature Temperature of LMD °C

lmd_pressure Atmospheric pressure of LMD hpa

lmd_winddirection Wind direction of LMD degree

lmd_windspeed Wind speed of LMD m/s

power PV output of the station MW

TABLE 3 24 solar terms and Gregorian calendar division error comparison.

Solar Term 24 Solar Terms Gregorian Calendar

MAE MSE RMSE WMAPE MAE MSE RMSE WMAPE

MIH 0.475 1.017 1.008 0.140 0.221 0.224 0.474 0.116

MAH* 0.529 1.026 1.013 0.184 0.581 1.311 1.145 0.188

BA 0.596 1.840 1.356 0.241 0.426 0.713 0.844 0.135

EH 0.808 2.762 1.662 0.284 0.568 1.452 1.205 0.204

WD* 0.240 0.342 0.585 0.142 0.601 1.884 1.373 0.240

AE* 0.950 3.404 1.845 0.249 0.973 3.397 1.843 0.280

CD* 0.720 2.224 1.491 0.291 1.079 3.689 1.921 0.317

FD* 1.058 5.231 2.287 0.482 2.177 15.796 3.974 0.678

BW* 0.287 0.589 0.767 0.136 0.314 0.802 0.895 0.217

MIS* 0.375 0.864 0.929 0.213 0.512 1.028 1.014 0.183

MAS* 0.719 2.287 1.512 0.313 0.876 3.794 1.948 0.331

WS* 0.710 2.271 1.507 0.352 1.047 5.646 2.376 0.449

MIC* 0.971 5.058 2.249 0.412 1.888 21.173 4.601 0.941

MAC* 0.638 2.011 1.418 0.309 0.738 2.840 1.685 0.385

BS 0.769 3.654 1.912 0.477 0.402 1.319 1.149 0.373

RW* 0.521 1.289 1.135 0.214 0.750 2.130 1.460 0.320

AI* 0.711 1.853 1.361 0.175 0.759 1.780 1.334 0.185

SE 0.719 1.776 1.333 0.180 0.650 1.908 1.381 0.148

PB* 0.649 1.945 1.395 0.194 0.672 2.028 1.424 0.216

GR 0.796 2.524 1.589 0.208 0.484 1.383 1.176 0.182

BS* 0.404 0.548 0.741 0.098 0.440 0.790 0.889 0.117

GB* 0.361 0.517 0.719 0.095 0.453 0.691 0.831 0.108

Mean 0.637 2.047 1.355 0.245 0.755 3.444 1.588 0.287
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To enhance prediction accuracy, we selected three stations,
noted as: station 01 located east of the station group, station
04 located in the north, and station 08 located in the southwest.
Their locations are shown in Figure 1. Each station selected data
from 1 July 2018, to 13 June 2019, for a total of 347 days with a
time resolution of 15 min. The following is the detailed
information on data acquisition and testing for three stations
(Yao et al., 2021a):

Three solar energy systems, located at Station01, Station04,
and Station08, all boast an impressive Capacity of 20,000 kW
each. They utilize PV Technology: Poly-Si and feature
different panel size measurements: 1.6635 square meters for
Station01, 1.6368 square meters for Station04, and
1.6335 square meters for Station08. The solar modules used
in Station01 are of the LW6P60-270 type by Lightwaysolar,
with a Pmax of 270 W, Vmpp of 30.52 V, and Impp of 8.86 A
Station04 uses YL265P-29b modules from Yingli, offering a
Pmax of 265 W, Vmpp of 30.3 V, and Impp of 8.59 A. On the
other hand, Station08 employs YL265C-30b modules by
Yingli, providing a Pmax of 265 W, Vmpp of 31 V, and
Impp of 8.55 A.

The inverters also vary between the stations. Station01 utilizes
TC500KH inverters from tbeapowe, offering a Max. DC input of
618 kW, Max. DC voltage of 1,000 V, Max. DC current of 1,344 A,
and a Rated power output of 500 kW Station04 integrates
SG1000 inverters by sungrowpower, featuring a Max. DC input
of 560 kW,Max. DC voltage of 1,000 V,Max. DC current of 1,220 A,
and a Rated power output of 1,000 kW. In contrast,

Station08 employs SUN 2000-40KTL inverters from Huawei,
offering a Max. DC input of 40.8 kW, Max. DC voltage of
1,000 V, Max. DC current of 23 A, and a Rated power output of
36 kW.

The layout configuration also differs: Station01 has 22 modules
per string and 128 strings per inverter, Station04 has 22 modules per
string and 86 strings per inverter, while Station08 features
22 modules per string and 5 strings per inverter.

The total panel number for each station is as follows:
74,000 panels for Station01, 75,680 panels for Station04, and an
impressive 78,042 panels for Station08. All the arrays are tilted for
maximum solar capture, with Station01 and Station08 at an array tilt
of South 33° and Station04 at South 37°.

In addition, precise solar radiation measurements are taken at
all stations using pyranometers. The GHI measurement is
provided by TBQ-2 type pyranometers manufactured by
Jinzhou Sunshine Meteorological Technology Co., Ltd., with a
measurement accuracy of ±5% and a measurement range of
0–2000 W/m̂2. The calibration period for GHI and DHI
measurements is 2 years. The DHI measurements are obtained
using the TBD-1 type pyranometer from the same manufacturer,
featuring similar measurement accuracy, range, and calibration
period.

Partial output power data from three stations are shown in
Figure 2. After data preprocessing and application of outlier
identification and detection, missing and abnormal data were
fitted and interpolated, and a total of 99,936 tuples of valid data
were finally selected.

FIGURE 1
Map of the three station locations.
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3 Correlation analysis of
meteorological factors

The main meteorological factors associated with the study of PV
power output include irradiance, temperature, humidity, air
pressure, wind speed, wind direction, etc., The degree of
influence of various factors on PV power generation varies
significantly and by analyzing the correlation between PV power
and various meteorological factors, factors with significant influence
can be effectively extracted to further improve the rationality and
accuracy of PV power prediction research.

Spearman’s rank correlation analysis, also known as the “rank
difference method,” analyzes the correlation between variables based
on rank information and calculates the difference between the
number of ranks (Deng and Fang, 2019). Spearman’s correlation
coefficient does not need to meet the premise that the data obeys a
normal distribution and has a linear relationship between the data,
so the conditions of use and application are more extensive.
Spearman’s rank correlation coefficient between 2 random
variables and is defined as:

rs �
∑n

i�1 Ri − 1
n∑n

i�1Ri( ) Qi − 1
n∑n

i�1Qi( )[ ]�����������������∑n
i�1 Ri − 1

n∑n
i�1Ri( )2√ �����������������∑n

i�1 Qi − 1
n∑n

i�1Qi( )2√
Where Ri and Qi are the rank of the i-th X -value and Y -value,

respectively, and N is the sample size (Wang and Chu, 2014).
The first correlation analysis was performed between the

data collected at the PV site in Hebei, China. The
meteorological factors to be analyzed included six factors:
global irradiance, diffuse irradiance, temperature,
atmospheric pressure, wind direction and wind speed.
Through the large sample Kolmogorov‒Smirnov test, the
significance data p-value of each variable was 0.000 at the
significance level of 0.001, and the data of each variable did
not conform to a normal distribution, so this paper used
Spearman’s rank correlation coefficient for correlation

analysis. The calculated correlation coefficients were plotted
in a correlation coefficient heatmap for data visualization and
analysis, as shown in Figure 3.

As shown in Figure 3, there is a significant difference in the
correlation between different meteorological factors and PV power
generation. The correlation coefficient between PV output and
global irradiance is as high as 0.98, and there is an extremely
strong correlation between the two. In addition, diffuse
irradiance, wind speed, and temperature also have a large impact
on PV output power. Wind direction and atmospheric pressure have
less influence on PV output power. Therefore, this paper selects
global irradiance, diffuse irradiance, wind speed and temperature as
meteorological factor indicators to focus on the analysis and
utilization.

4 Twenty-four solar terms

4.1 Introduction to the principles of the
twenty-four solar terms

The 24 solar terms are the crystallization of the wisdom of the
Chinese working people. They are the ingenious combination and
exploration of astronomy, agriculture, meteorology, customs, and
other factors by ancient people. Based on changes in celestial
phenomena, meteorological features, and agricultural stages, the
24 solar terms divide a year into 24 parts, including “Beginning of
Spring,” “Rain Water,” “Awakening of Insects,” “Spring Equinox,”
“Pure Brightness,” “Grain Rain,” “Beginning of Summer,” “Grain
Buds,” “Grain in Ear,” “Summer Solstice,” “Minor Heat,” “Major
Heat,” “Beginning of Autumn,” “End of Heat,” “White Dew,”
“Autumn Equinox,” “Cold Dew,” “Frost’s Descent,” “Beginning
of Winter,” “Minor Snow,” “Major Snow,” “Winter
SolsticeWinter Equinox,” “Minor Cold,” and “Major Cold”. It is a
treasure that has been precipitated throughout the long history and
is a unique way for Chinese people to interpret time and understand

FIGURE 2
Display of partial data from Station 01 and Station 04.Y refers to the photovoltaic power output. (A) shows data from Station 01, and (B) shows data
from station 04.
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the world. In November 2016, 24 solar terms were included in the
Representative List of the Intangible Cultural Heritage of Humanity
by UNESCO. As a unique system of temporal knowledge, the culture
of solar terms is recognized and cherished by the world.

The 24 solar terms originated in the middle and lower reaches of
the Yellow River. Later, due to their significance in agricultural
production, they were adopted as a unified agricultural time system
and implemented nationwide. They primarily reflect the climate

FIGURE 3
Correlation analysis of each variable.

FIGURE 4
View of the Sun’s path in the orbit for the 24 Solar Terms.
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characteristics of the Yellow River’s middle and lower reaches.The
current commonly prescribed “24 solar terms” are determined based
on the position of the sun’s return to the ecliptic. In the annual
movement of the sun, starting from 0 degrees of celestial longitude
when the sun is directly overhead at the equator, each 15-degree
movement constitutes a solar term. Therefore, the entire trajectory is
divided into 24 equal parts, as shown in Figure 4. The famous
astronomer Zixin Zhang of the Northern Wei and Northern Qi
dynasties in China discovered the unevenness of the sun’s apparent
motion in approximately 570 AD. Specifically, this was expressed as
“the sun moves slower after the Spring Equinox and faster after the
Autumn Equinox”, which is now recognized in modern astronomy
as a manifestation of the variation in the sun’s orbital speed. Using
similar methods to divide the prediction training sets of power, one
can effectively demonstrate the laws of the sun’s speed changes over
the year and better reflect the characteristics of each solar term.

In ancient China, people invented the “gnomon” to measure
changes in the length of shadows during the Sun’s periodic
movements. They discovered two extremes, being the Winter
Solstice when shadows are longest and the Summer Solstice when
shadows are shortest, providing two important scales for the ancient
Chinese time system. Following the observation of changes in the sun,
ancient people further identified two special days that divide day and
night in a year: the Spring Equinox and the Autumn Equinox (Liu,
2017). In the middle of the spring and autumn period, with the
improvement of gnomon sun-measuring technology and the
development of astronomy, the four solar terms of the Beginning of
Spring, Summer, Autumn and Winter were determined. During the
Qin and Han dynasties, the 24 solar terms were fully established, and
the names and order of the 24 solar terms described in An Liu’s book
Huainan Zi remain used to this day (Sui and Zhang, 2020). During the
process from the initial creation to the completion of the twenty-four
solar terms, we can clearly see the important role played by the sun
movement and irradiation. As recorded in the book Shang Shu ·
Yaodian, “When the day is not too long or too short, the middle
star is Alphard, which is the day of the Spring Equinox; the longest
daytime period, when the central star is Antares, is the Summer Solstice;
when the night is not too long or too short, themiddle star is Emptiness,
which is the Autumn Equinox; when the day is shortest, the middle star
is Hairy Head, which is the Winter Solstice,” the division of solar terms
depends on the position of the sun, the time of sunrise, and other
factors, and must be closely related to the irradiation size and length. In
China, there are alsowidely circulated folk sayings such as “Rainy on the
day of “Li Chun” (Beginning of Spring), wet and damp until “Qing
Ming” (Pure Brightness),” “Rainfall at “Li Xia” (Beginning of Summer)
and “XiaoMan” (Grain Buds), competing with each other,” “Hot as fire
during “Mang Zhong” (Grain in Ear), raining heavily at “Xia Zhi”
(Summer Solstice),” which reflect the relationship between the 24 solar
terms and weather conditions, further demonstrating the consistency
between the solar terms and factors such as radiation and temperature.
From the analysis performed above, it can be seen that the 24 solar
terms can effectively divide a year according to factors such as weather,
seasons, and temperature, especially with obvious correlation features
with solar radiation and temperature.

The 24 solar terms are not only an excellent traditional culture
but also a tool full of wisdom. From ancient times to the present, the
24 solar terms have been widely used in agricultural activities to
guide farmers in various agricultural production labor. As the

cultural influence of the 24 solar terms gradually spreads
worldwide, its scope of application is also becoming increasingly
broader. Currently, scholars have already applied the 24 solar terms
to multiple fields, such as stock prediction (Zhou et al., 2021), load
prediction (Xie and Hong, 2018), and wind power generation
prediction (Han et al., 2020).

Introducing meteorological features into PV power prediction
can significantly improve its scientific and predictive accuracy. The
main factors that affect PV power, such as irradiance and
temperature, are closely related to the 24 solar terms. Therefore,
this article innovatively applies the 24 solar terms to the field of PV
power prediction, exploring the close relationship between the
24 solar terms and multiple factors such as temperature and
irradiance. By utilizing the scientific and practicality of dividing
data into 24 solar terms, a highly innovative method for predicting
PV power is provided.

4.2 Analysis of numerical characteristics of
meteorological factors

The 24 solar terms are closely related to changes in temperature
and precipitation, so it is necessary to analyze the numerical
characteristics and meteorological factor variations in the 24 solar
terms. We observe the numerical characteristics of global irradiance,
diffuse irradiance, temperature, and wind speed under the division
of the 24 solar terms by plotting. For global irradiance, diffuse
irradiance, and temperature meteorological factors, we can select the
maximum value within an interval. However, since wind speed is
subject to rapid changes over time, selecting the maximum value
within an interval is not meaningful. Therefore, we analyze it by
selecting the mean value within an interval. Figures 5A, B show the
maximum global irradiance and diffuse irradiance values for the
22 solar terms at site 1 in the dataset, respectively. Both global and
diffuse irradiance reach their peaks around the Beginning of
Autumn, followed by a sharp decline, reaching their minimum
near the Beginning of Winter. From the beginning of Spring,
both irradiance types enter a period of rapid growth, and then
they enter a slower growth phase starting from the Beginning of
Summer. Figure 5C shows the variation in temperature with solar
terms, which is roughly consistent with the variation pattern of
irradiance. Figure 5D shows the variation in wind speed with solar
terms. By selecting the mean values, it can be observed that the wind
speed decreases after the Beginning of Autumn, reaches its
minimum near the beginning of winter, fluctuates greatly after
the Beginning of Spring, and sharply increases to its highest
point after a sudden drop.

Analysis of the global irradiance, diffuse irradiance,
temperature, and wind speed meteorological factors at Site
4 indicates that the seasonal changes in global irradiance
(Figure 6A), diffuse irradiance (Figure 6B), and temperature
(Figure 6C) are broadly consistent with the trends observed at
other sites. However, wind speed (Figure 6D) shows significant
variability with no clear pattern. Nevertheless, based on the above
analysis, to some extent, certain turning points of the 24 solar terms
can reflect the seasonal changes and numerical characteristics of
global irradiance, diffuse irradiance, temperature, and wind speed
meteorological factors.
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4.3 Sample similarity between solar calendar
and gregorian calendar

To better illustrate the rationality of using the 24 solar terms to
divide the dataset, the similarity of the dataset in two cases, grouped by
calendar date and grouped by solar terms, is examined separately in this
paper. The similarity measure is an important way to measure the
degree of similarity between two samples. Among them, the Euclidean
distance is the most easily understood and commonly used similarity
metric, which is defined in Euclidean space, while the standardized
Euclidean distance (SED) makes for a more consistent measure of
distance by normalization and eliminates the effect of dimensionality.
The normalized Euclidean distance between two n-dimensional vectors
α (x1, x2, . . ., xn), β (y1, y2, . . ., yn)is calculated as follows:

d �
������������∑n

i�1
xi − yi( )2

si

√
In this paper, the datasets of the two sites were divided into groups

according to the 24 solar terms, and only 22 groups were retained from
theMinor Heat to the Grain Buds due to data limitations. The SED and
Spearman’s correlation coefficients of each variable were calculated for
each of the two sites at the same time, and the mean values were found.

Similarly, the datasets of the two stations were divided into groups of
15 days according to the calendar date, and the corresponding
22 groups were divided. The SED and Spearman’s correlation
coefficients of each variable for each of the two stations in the same
period were calculated separately, and the mean values were found. A
visual plot of the correlation and SED for each of the two indicators
grouped under the 24 solar terms and grouped under the Gregorian
dates is shown in Figure 7A, B.

The following analysis can be performed from the power data
correlation and the SED line graph. The closer the average correlation
value is to 1, the stronger the correlation of the power data between the
three sites and the higher the similarity within the dataset. As seen from
the figure, the correlations of the datasets grouped by the 24 solar terms
(treatment 1) corresponding to the four solar terms 1, 3, 7, and 19
(i.e., Minor Summer, Beginning of Autumn, Cold Dew, and Pure
Brightness) are significantly lower than those grouped by calendar
dates (treatment 2), while the correlations of treatment 1 in the
remaining solar terms show significantly better results than, or are
generally consistent with, those of treatment 2. The average distance
metric is a look-ahead metric, and the smaller the value of the distance
metric, the closer the distance of the power data between the three sites
and the higher the similarity within the dataset. As seen from the figure,

FIGURE 5
Four types of data for Station 01. (A)Global irradiancemaximums, (B)Diffuse irradiancemaximums, (C) Temperaturemaximums, (D)Averagewind speed.
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the distance values corresponding to treatment 1 were significantly
lower than those of treatment 2 at the 2nd, 6th, 8th, 11th, 17th, and 18th
(i.e., Major Heat, Autumn Equinox, Frost’s Descent, Major Snow,
Awakening of Insects, and Spring Equinox) and reached the
minimum value at Frost’s Descent. Although the distance index
showed fluctuating changes on both treatments, on the whole,
treatment 1 was able to achieve the effect of reducing the distance,
which means increasing the similarity, on most of the solar terms.

For the global irradiance data, is shown in Figures 7C, D, 8 the
correlations for treatment 1 were significantly better than or
generally consistent with treatment 2 for all solar terms, except
for the significant inflection points for 2nd, 7th, and 19th solar terms
(i.e., Major Summer, Cold Dew, and Pure Brightness). It can also be
seen from the mean distance plots that the distances of treatment
1 were significantly better than, or basically the same as, treatment
2 in all the other solar terms, except for the 1st, 3rd, 7th and 19th
(i.e., Minor Summer, Beginning of Autumn, Cold Dew, and Pure
Brightness) solar terms, which were significantly higher than
treatment 2 and reached the minimum value at the Frost’s Descent.

This shows that the global irradiance and power data are more
similar according to the 24 solar terms, which can ensure a better

training effect when substituting into the model prediction and help
to improve the prediction accuracy of PV power. Therefore, the
24 solar term data classification method provided in this paper has
good applicability and innovation in PV power prediction, and
combined with the Adaboost-GA-BP model with an excellent
prediction effect constructed in this paper, it can yield more
accurate PV power prediction results.

5 Models and methods

After dividing photovoltaic power output data into 24 solar
terms, a method is needed for short-term power prediction. This
paper chooses the Adaboost-GA-BPmodel to predict the short-term
power of the PV system. Based on the powerful linear mapping
ability of the BP neural network, this model optimizes its initial
weights using a genetic algorithm and optimizes its network
structure using the Adaboost algorithm, thereby improving the
prediction accuracy and the generalization ability of the BP
neural network and overcoming its tendency to fall into local
optimal solutions.

FIGURE 6
Four types of data for Station 04.(A) Global irradiance maximums, (B) Diffuse irradiance maximums, (C) Temperature maximums, (D) Average wind
speed.

Frontiers in Energy Research frontiersin.org10

Liu et al. 10.3389/fenrg.2023.1229695

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1229695


5.1 Backpropagation neural network

ANNs are widely used in various fields for prediction purposes. As
PV output power is mostly affected by meteorological factors which
have strong randomness and uncertainty, increasing the difficultness to
fully clarify the impact of each meteorological factor on the power.
However, ANNs can complete input‒output mapping even when the

understanding of variables is insufficient, and they have strongmapping
ability. In practical applications of neural networks, 80% to 90% of them
use a BP neural network and its optimization algorithm (Huang, 2008).
The BP neural network stores information in a distributed manner, has
strong environmental adaptability and self-learning ability, can
accurately approximate nonlinear mappings, and therefore has good
robustness and fault tolerance.

FIGURE 7
Comparison of Spearman correlation coefficient and SED power and global irradiance data. (A) Spearman correlation coefficient of power data, (B)
SED of power data (C) Spearman correlation coefficient of global irradiance data, (D) SED of global irradiance data.

FIGURE 8
Topological structure diagram of the BP neural network.
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The BP neural network simulates the information transmission
between biological neurons and consists of an input layer, a hidden
layer, and an output layer. Its basic structure is shown in Figure 9.

The BP neural network is a multilayer feedforward artificial
neural network based on the gradient’s steepest descent method that
uses the BP algorithm to effectively improve the prediction accuracy.
However, it still faces issues such as easily falling into local minima
and having difficulty determining network generalization
capabilities, which can be resolved by optimizing weight initial
values and network structure. According to the Kolmogorov
theorem, a three-layer BP neural network with one hidden layer
can approximate any nonlinear continuous function on a closed set
with arbitrary precision (Huang, 2008). The number of hidden layer

nodes, maximum iteration times and learning rate of the BP neural
network used in this paper are 19,1000 and 0.1, respectively.

5.2 GA-BP

Genetic algorithms originate from research on natural and
artificial adaptive systems (Sampson, 1976). It is an adaptive
global optimization probabilistic search algorithm formed by
simulating the genetic and evolutionary process of organisms in
the natural environment (Fu and Zhao, 2010). Based on Darwin’s
theory of evolution, the survival ability of organisms in a new
environment depends on their adaptability. By integrating the

FIGURE 9
Flow chart of the Adaboost-GA-BP algorithm.
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selection, crossover, and mutation mechanisms in genetic and
evolutionary processes, the genetic algorithm retrieves the
optimal solution from a population of multiple individuals, with
the fitness function value directly derived from the change in the
objective function as the standard for seeking the optimal solution.
Therefore, the genetic algorithm is an applicable method to global
optimization, but its randomness leads to a poor local convergence
ability.

The BP neural network is an effective method for updating the
neural network weights based on the gradient of the loss function
with respect to the network parameters. Its backpropagation is more
suitable for training nonlinear relationship data, making it suitable
for training complex meteorological data related to photovoltaics.
However, it has the issues of easily getting stuck in local optima and
overfitting. On the other hand, genetic algorithms can perform
global, complex, and multimodal optimization, complementing
the shortcomings of the BP neural network. Therefore, the GA-
BP algorithm is chosen for further research.

Genetic algorithms are mainly used to optimize the initial weights
and thresholds of BP neural networks. The genetic algorithm and the
BP neural network complement each other well in the process of
searching for the optimal solution, with the genetic algorithm
optimizing situations where the BP neural network is prone to
becoming stuck in local optimal solutions. The best parameters for
this model were obtained through multiple experiments, where the
evolutionary generation, population size, crossover probability, and
mutation probability were 19,1000,0.8, and 0.1, respectively.

5.3 Adaboost-GA-BP

It is difficult in practice to avoid the phenomenon of overfitting
by using a single model. The Adaboost algorithm uses the idea of
combining models to improve the prediction accuracy and
generalization ability of the model by using multiple GA-BP
neural networks as weak classifiers and continuously upgrading
them to strong learners. (Kar and Melody, 1992; Tian and Mao,
2009; Yang et al., 2023). The steps for building the Adaboost-GA-BP
model are as follows:

1. Construction of the neural network: Determination of the basic
structure of the neural network and partitioning of the dataset;

2. Determine the initial network value: Training the neural network
with GA to output the initial weights and thresholds of the BP
neural network that meet the accuracy requirements by
initializing the populations and performing genetic operations
such as crossover and mutation;

3. Initialize the distribution weights of the data: Initialize the weight
distribution of the training data as:

D1 � 1
N
,
1
N
,/,

1
N

( )
4. Train the weak predictors: For the t-th weak predictor, train the

GA-BP neural network with the training set, calculate the output
value ht, and calculate the sum of errors εt based on the actual
values;

5. Calculate the coefficients of the weak predictor: Calculate the
weight corresponding to each weak predictor based on the sum of
its errors ε as:

at � 1
2
ln
1 − εt
εt

6. Adjust the weight distribution of the data: the weights of the new
training data are adjusted according to the updated weights a:

Dk+1 i( ) � Dk i( )e−atyiht xi( )

Zt

where Zt is the normalization factor that makes ∑N

i�1Dk+1(i) � 1;

7. Combine into strong predictors: Keep repeating the above steps
until the iteration coefficients reach T times to stop and
determine the weights wt. The weak predictor obtained from
the training combines the strong predictor:

h x( ) � w1h1 x( ) + w2h2 x( ) +/wThT x( )
Due to the limitations of BP neural network, this paper adds

genetic algorithm and ADABOOST method to optimize the
original model in terms of initial value assignment and neural
network structure respectively, thus increasing the complexity
of the model. In the empirical analysis, the best parameter
model obtained through repeated testing reflects the strong
fitting and forecasting ability of the model, and its parameter
values also reflect the complexity of the model. However, the
complexity of the model is suitable for practical problems and
data, which ensures the stability of the model and makes the
model have the best prediction effect. Based on the complexity
of the model, the size of the data, the selection of computing
software and other factors, the training time of the model in
this paper is about 20 min, which is consistent with the large
data set and the network structure of the model adopted in this
paper.

5.4 Model evaluation index

To test the accuracy of the model prediction results, and
considering that the value of some of the data applied in this
paper is zero, four indicators, mean absolute error (MAE), mean
square error (MSE), root mean square error (RMSE), and
weighted mean absolute percentage error (WMAPE), are
selected for evaluation in this paper. The specific calculation is
as follows:

MAE � 1
n
∑n
i�1

ypi − yi
∣∣∣∣∣ ∣∣∣∣∣

MSE � 1
n
∑n
i�1

ypi − yi( )2
RMSE �

������������∑n
i�1 ypi − yi( )2

n

√

WMAPE � ∑n
i�1 ypi − yi
∣∣∣∣∣ ∣∣∣∣∣∑n
i�1yi
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where ypi is the predicted power value of the i-th sample, yi is the
actual power value of the i-th sample, and n is the total number of
samples.

6 Results

6.1 Processing of the twenty-four solar term
divisions of data

To verify the rationality of dividing the data according to the
twenty-four solar terms, we divided the data from 1 July 2018, to
13 June 2019, for a total of 347 days, according to both the Gregorian
calendar and the twenty-four solar terms. To ensure the
completeness of the data within each solar term, the total data
were divided into 22 groups, from Minor Heat to Grain Buds of the
following year. The full name and abbreviation of each group are
Minor Heat (MIN), Major Heat (MAH), Beginning of Autumn
(BA), End of Heat (EH), White Dew (WD), Autumn Equinox (AE),
Cold Dew (CD), Frost’s Descent (FD), Beginning of Winter (BW),
Minor Snow (MIS), Major Snow (MAS), Winter Equinox (WE),
Minor Cold (MIC), Major Cold (MAC), Beginning of Spring (BSP),
Rain Water (RW), Awakening of Insects (AI), Spring Equinox (SE),
Pure Brightness (PB), Grain Rain (GR), Beginning of Summer
(BSU), and Grain Buds (GB).

The ratio of the training set to the test set is 8:2. Among them, for
the two division methods of the twenty-four solar terms and the
Gregorian calendar, the first 80% is selected as the training set
according to the time sequence, and the last 20% is selected as the
test set. Then, the overlapping solar term day of the two sets is chosen as
the detection day for further analysis. It should be noted that due to the
24 solar terms not being evenly distributed and some data being
missing, the data quantity varies for each group, with an average of
approximately 4,351 entries. Four input features, including global
irradiance, diffuse irradiance, wind speed, and temperature, are used
as the model inputs; the predicted PV power output at each future time
point is the output feature. To highlight the prediction performance,
both groups use the day of the solar term as the validation day and
present the results in a visualized manner.

6.2 Prediction results of the division point
between 24 solar terms and the gregorian
calendar

After dividing the dataset in the above way, this paper first
applies the Adaboost-GA-BP model to the grouping of 24 solar
terms and the Gregorian calendar for comparison experiments,
and the prediction errors MAE, MSE, RMSE and WMAPE
obtained from the two divisions are shown in Table 3.

From the data in the table, it can be seen that 16 solar terms
grouped by 24 solar terms have better prediction errors than those
grouped by the Gregorian calendar (*). By analyzing themean values
of the data, the division according to the 24 solar terms led to a
decrease in the MAE, MSE, RMSE andWMAPE by 15.68%, 40.57%,
14.68% and 14.64%, respectively, and the overall prediction effect of
the 24 solar term division was better than that of the Gregorian
calendar division, which was due to the 24 solar term division data

ability to better extract the similarity between the data, it and also
had a better fitting effect.

From the MAE index analysis, the error in the case of grouping by
24 solar terms can be reduced by 60.1%, 51.4%, 48.6%, 33.3% and 32.2%
for White Dew, Frost’s Descent, Minor Cold, Cold Dew and Winter
Solstice, respectively, compared with the grouping by Gregorian
calendar. In terms of the MSE index, grouping by 24 solar terms
can reduce the errors of White Dew, Minor Cold, Frost’s Descent,
Winter Solstice and Major Snow by 81.8%, 76.1%, 66.9%, 59.8%, and
39.7%, respectively, compared to grouping by the Gregorian calendar.
From the RMSE index analysis, the errors of White Dew, Minor Cold,
Frost’s Descent, Winter Solstice and Cold Dew can be reduced by
57.4%, 51.1%, 42.5%, 36.6% and 22.4%, respectively, in the case of
grouping by 24 solar terms compared to grouping by the Gregorian
calendar. From the WMAPE index analysis, the errors of Minor Cold,
White Dew, Beginning of Winter, Rain Water and Frost’s Descent
decreased by 56.2%, 40.8%, 37.3%, 33.1% and 28.9%, respectively. From
the error data, it can be seen inmost cases that the 24 solar term division
method can significantly reduce the prediction error of PV output
power.

As seen in Figure 10A of the White Dew real data and the
predicted results for the two divisions, the predicted results are
closer to the actual power values in the case of grouping by 24 solar
terms than in the case of grouping by the Gregorian calendar. In
particular, the predicted power values under the 11:00–16:00 part
grouped by the Gregorian calendar showed several significant
deviations from the true values, while the predicted power values
under the 24 solar terms were consistent with the true power values,
with small differences.

Similarly, a comparison of the predicted results for Frost’s
Descent is plotted in Figure 10B, from which it can be seen that
the results under the grouping by the Gregorian calendar deviate
more from the true values, especially between 10:00 and 13:00 h.
Although there are some differences between the prediction results
and the real power under the grouping of 24 solar terms, the
prediction error is smaller than that of the other grouping
method, which has a better prediction effect.

From the plotting and analysis of the prediction results according to
the specific solar terms listed above, it can be seen that the prediction
results under the grouping of 24 solar terms are mostly better than the
prediction results under the grouping of the Gregorian calendar, which
can better match the actual value trends and the value magnitudes.
However, there are cases where the grouping of solar terms does not
optimize the prediction results, which may be related to the lack of
internal similarity of the data corresponding to the solar term. For
example, both the correlation and distance data corresponding to the
Beginning of Autumn indicate that the similarity between the data
under the grouping of this solar term by the Gregorian calendar is
significantly higher, and its corresponding prediction effect also
indicates that the prediction effect under the grouping of the
Gregorian calendar is better. The similarity between the two
treatments for White Dew and Frost’s Descent is smaller, or the
similarity is significantly higher when grouped by 24 solar terms
than when grouped by the Gregorian calendar, and their
corresponding prediction values also show that grouping by 24 solar
terms can optimize the prediction effect.

Therefore, based on the feature that the internal similarity of
data significantly affects the training and the prediction effects of the
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model, the data division method of 24 solar terms proposed in this
paper, in most cases, can make the internal similarity of each group
of data higher, and the error results also show that this data division
method can optimize 66.67% of the solar terms, which has better
data division and prediction accuracy than the traditional grouping
by Gregorian calendar in practical applications. It has a significant
advantage in optimizing the prediction effect and has a wide scope
for promotion and research.

6.3 Predictive results and comparative
validation of the adaboost-ga-bp model

To further validate the algorithmic performance of the
Adaboost-GA-BP model under the division of the 24 solar
terms, four sets of comparative experiments were conducted
with the above parameters by setting the Adaboost-GA-BP
model along with the BP, Adaboost-BP, and GA-BP models.

FIGURE 10
The prediction results of the photovoltaic output power of the White Dew (A) and Frost’s Descent (B) based on the division of the 24 solar terms
( ) and the Gregorian calendar ( ) were compared with the original data ( ).
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The predictive results were compared, and the MAE, RMSE, and
WMAPE error values of the models were obtained, shown in
Table 4. Compared to the BP neural network, the average
predictive errors of the Adaboost-GA-BP model on the

22 data points were reduced by 23.42%, 18.12%, and 22.28%
for MAE, RMSE, and WMAPE, respectively.

The combination of BP neural networks shows good
optimization results, particularly the Adaboost-GA-BP model,

TABLE 4 MAE, RMSE, and WMAPE error results of the four models.

Solar term MAE RMSE WMAPE

bp ada-bp ga-bp ada-ga-bp bp ada-bp ga-bp ada-ga-bp bp ada-bp ga-bp ada-ga-bp

MIH 0.517 0.479 0.714 0.475 1.006 0.985 1.528 1.008 0.153 0.142 0.211 0.140

MAH 0.631 0.530 0.566 0.529 1.089 1.014 1.082 1.013 0.219 0.184 0.196 0.184

BA 0.622 0.618 0.631 0.596 1.414 1.460 1.433 1.356 0.251 0.250 0.255 0.241

EH 0.852 0.844 0.889 0.808 1.716 1.812 1.777 1.662 0.299 0.296 0.312 0.284

WD 0.324 0.253 0.312 0.240 0.761 0.566 0.698 0.585 0.192 0.150 0.185 0.142

AE 1.069 0.975 1.017 0.950 1.996 1.843 1.883 1.845 0.281 0.256 0.267 0.249

CD 0.873 0.750 0.833 0.720 1.722 1.543 1.578 1.491 0.352 0.303 0.336 0.291

FD 1.100 1.089 1.104 1.058 2.322 2.442 2.276 2.287 0.501 0.496 0.503 0.482

BW 0.555 0.389 0.492 0.287 1.330 0.988 1.188 0.767 0.264 0.185 0.234 0.136

MIS 0.395 0.381 0.409 0.375 0.855 0.975 1.019 0.929 0.224 0.216 0.232 0.213

MAS 1.349 0.751 0.728 0.719 2.246 1.453 1.501 1.512 0.586 0.326 0.316 0.313

WS 1.512 0.956 1.134 0.710 2.655 1.899 2.422 1.507 0.624 0.395 0.468 0.352

MIC 1.175 1.075 1.017 0.971 2.525 2.397 2.261 2.249 0.499 0.456 0.432 0.412

MAC 0.886 0.651 0.756 0.638 2.215 1.388 1.769 1.418 0.430 0.315 0.367 0.309

BS 0.830 0.779 0.977 0.769 2.007 1.930 2.031 1.912 0.514 0.483 0.605 0.477

RW 0.678 0.529 0.535 0.521 1.296 1.152 1.014 1.135 0.279 0.218 0.220 0.214

AI 1.076 0.726 0.852 0.711 2.029 1.407 1.571 1.361 0.266 0.179 0.210 0.175

SE 1.043 0.728 0.834 0.719 1.563 1.421 1.633 1.333 0.261 0.182 0.208 0.180

PB 1.283 0.733 0.721 0.649 2.842 1.637 1.444 1.395 0.383 0.219 0.216 0.194

GR 0.916 0.802 0.854 0.796 1.824 1.667 1.770 1.589 0.239 0.210 0.223 0.208

BS 0.506 0.420 0.489 0.404 0.948 0.778 0.954 0.741 0.122 0.102 0.118 0.098

GB 0.384 0.381 0.385 0.361 0.714 0.750 0.747 0.719 0.101 0.101 0.102 0.095

Mean 0.844 0.675 0.739 0.637 1.685 1.432 1.526 1.355 0.320 0.257 0.283 0.245

FIGURE 11
Comparison of MAE (A), RMSE (B) and WMAPE (C) results among BP ( ), Adaboost-BP ( ), GA-BP ( ), Adaboost-GA-BP ( ) models.
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which has the best overall optimization effect, especially during
the summer and autumn seasons. This is because the Adaboost-
GA-BP model effectively improves the defect of the steepest
descent method easily falling into local optimal solutions,
optimizes the network structure of the BP neural network, and
it also has the characteristic of multiset optimization. In addition,
the model has stronger nonlinear mapping ability and higher
prediction accuracy.

The MAE error situation of the Adaboost-GA-BP model
optimization is shown in Figure 11A with the circle
representing the MAE error, which is located at the innermost
part of the radial chart, indicating the best predictive
performance. Among them, the MAE error optimization for
15 solar terms reached more than 10%, and the errors reduced
by Winter Solstice, Pure Brightness, Beginning of Winter, Major
Snow, and Awakening of Insects were 53.03%, 49.43%, 48.30%,
46.69%, and 33.93%, respectively, which ranked among the top
five optimized outcomes.

The RMSE error optimization of the Adaboost-GA-BP model
is shown in Figure 11B, with its circle located at the innermost
part of the radar chart, indicating the best predictive
performance. Thirteen solar terms achieved MAE error
optimization of over 10%; among them, the errors reduced by
Pure Brightness, Winter Equinox, Beginning of Winter, Major
Cold and Awakening of Insects were 50.91%, 43.25%, 42.32%,
35.99% and 32.94%, respectively, ranking among the top five in
terms of optimization effect.

TheWMAPE error of the Adaboost-GA-BPmodel optimization
is shown in the above Figure 11 with the circle representing the
WMAPE error, which is located at the innermost part of the radial
chart, indicating the best predictive performance. Among them, the
WMAPE error optimization for 15 solar terms achieved a reduction
of more than 10%, and the errors reduced by Pure Brightness,
Beginning of Winter, Major Snow, Winter Solstice, and Awakening
of Insects were 49.41%, 48.44%, 46.58%, 43.59%, and 34.12%,
respectively, ranking among the top five in terms of optimization
effectiveness.

In summary, the Adaboost-GA-BP model can effectively reduce
errors and significantly improve the neural networks performance in
processing data. By combining the 24 solar terms to partition the
data, using the Adaboost-GA-BP model to predict PV power
generation can result in more accurate predictions and promote
the safety and stability of the power grid.

7 Discussion

By analyzing the photovoltaic power and meteorological data of
three stations in Hebei Province, China, this article proposes an
Adaboost-GA-BP model for short-term forecasting of photovoltaic
power based on the characteristics of the 24 traditional solar terms in
China. The conclusions are as follows:

• Introducing the 24 solar terms as a basis for data division in
the modeling process can effectively extract meteorological
data features o and improve training set similarity. Compared
with dividing the data by half a month according to the
Gregorian calendar, the division based on the 24 solar

terms can reduce the average MAE, MSE, RMSE, and
WMAPE by 15.68%, 40.57%, 14.68%, and 14.64%,
respectively;

• Using the Ada-GA-BP model for short-term forecasting of
photovoltaic power can effectively improve prediction
accuracy. The BP neural network itself has strong
nonlinear mapping capability, while Ada and GA
optimize the network structure and initial weight
threshold assignment on the BP neural network,
respectively. Compared with BP, GA-BP and Adaboost-
GA-BP, MAE, RMSE and WMAPE decreased by 23.42%,
18.12% and 22.28%, respectively. Adaboost-GA-BP has a
strong advantage in processing multidimensional time
series data with higher prediction accuracy.

• In the example model analysis in this paper, the prediction
accuracy of short-term photovoltaic power is the highest when
data are divided according to 24 solar terms and the Adaboost-
GA-BPmodel is applied, indicating that the prediction scheme
has a better fitting and prediction effect for the photovoltaic
power data of Hebei Province, China.

• Through the empirical analysis of this paper, we draw the
conclusion that using the 24 solar terms as the basis of data
division can improve the internal similarity of data and help to
improve the prediction effect of the model; And the
ADABOOST-GA-BP model has the best prediction effect
in short-term PV power prediction. It is of great
significance to further regulate the operation of the power
system and ensure its efficient and safe operation. Moreover,
the research results of this paper also point out that improving
the prediction accuracy can not only start from changing and
optimizing the model, but also expand the analysis of the data,
focusing on optimizing the way of data partitioning.

The limitations of this study include that the proposed data
division method is based on data from Hebei, China, and its
generalizability requires further exploration. The model is
suitable for short-term photovoltaic power generation forecasting,
but its efficiency for medium to long-term forecasting needs further
optimization.

The data division and prediction models proposed in this paper
can also be applied to load, wind power prediction and other fields.
Due to the vast territory of China and its diverse and complex
geographical and climatic features, if one wishes to utilize this
dataset and model for analyzing data in southern China, it is
essential to conduct localized analyses based on the specific
locations of photovoltaic power stations. This is necessary to
ensure the accuracy of the results for each data group. In future
studies, it can be extended to other regions in the northern mid-
latitudes, and the factors of the power-generated machine itself can
be considered to further optimize the performance of the neural
network and the model prediction accuracy.
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