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Although tensor networks are powerful
tools for simulating low-dimensional quantum
physics, tensor network algorithms are very
computationally costly in higher spatial
dimensions. We introduce quantum gauge
networks: a different kind of tensor network
ansatz for which the computation cost of
simulations does not explicitly increase for
larger spatial dimensions. We take inspiration
from the gauge picture of quantum dynamics
[1], which consists of a local wavefunction
for each patch of space, with neighboring
patches related by unitary connections. A
quantum gauge network (QGN) has a similar
structure, except the Hilbert space dimensions
of the local wavefunctions and connections
are truncated. We describe how a QGN
can be obtained from a generic wavefunction
or matrix product state (MPS). All 2k-point
correlation functions of any wavefunction for
M many operators can be encoded exactly
by a QGN with bond dimension O(Mk). In
comparison, for just k = 1, an exponentially
larger bond dimension of 2M/6 is generically
required for an MPS of qubits. We provide
a simple QGN algorithm for approximate
simulations of quantum dynamics in any
spatial dimension. The approximate dynamics
can achieve exact energy conservation for
time-independent Hamiltonians, and spatial
symmetries can also be maintained exactly.
We benchmark the algorithm by simulating
the quantum quench of fermionic Hamiltonians
in up to three spatial dimensions.
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1 Introduction
Tensor network algorithms [2, 3, 4, 5, 6, 7] are very
useful for simulating strongly-correlated quantum
physics. In one spatial dimension, matrix product
state (MPS) algorithms [3, 4, 5] are often the best
available tool for this task. Although still useful,
tensor network algorithms in higher dimensions [3,
5, 8, 9, 10, 11, 12, 13, 14, 15, 16] typically suffer
from computational costs that scale as a high power
of the bond dimension. Therefore, we are motivated
to study a different kind of tensor network ansatz
that is more computationally efficient in many spatial
dimensions.
We take inspiration from the gauge picture of

quantum dynamics [1], which adds “gauge fields” to
Schrödinger’s picture in order to make spatial locality
explicit in the equations of motion. In the gauge
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picture, one first chooses a collection of possibly-
overlapping patches of space that cover space. For
example, one could choose the patches to be pairs of
nearest-neighbor sites on a lattice. We use capital
letters, I, J , or K, to denote a spatial patch.
Each patch is assigned a local wavefunction |ΨI⟩
(with the same Hilbert space dimension as the usual
wavefunction), and the Hilbert spaces of neighboring
patches are related by unitary connections ÛIJ (which
act on the entire Hilbert space), as depicted in Fig. 1.
In the simplest setting, the Hamiltonian is written as
a sum over terms ĤI that act within a single patch I:

Ĥ =
∑

I

ĤI (1)

The local wavefunctions and connections time-evolve
according to

∂t |ΨI⟩ = −iĤ⟨I⟩ |ΨI⟩
∂tÛIJ = −iĤ⟨I⟩ÛIJ + iÛIJĤ⟨J⟩

(2)

where

Ĥ⟨I⟩ =
J∩I ̸=∅∑

J

ÛIJ ĤJ ÛJI (3)

is the sum of local Hamiltonian terms supported on
patches that overlap with patch I. Typically, we
initialize ÛIJ(0) = 1̂ and |ΨI(0)⟩ = |Ψ(0)⟩ at time
t = 0, where 1̂ is the identity operator and |Ψ(t)⟩
is the usual wavefunction in the Schrödinger picture.
The expectation value ⟨Ψ|ÂI |Ψ⟩ of a local operator
ÂI that only acts within the patch I can be evaluated
in the gauge picture as ⟨ΨI |ÂI |ΨI⟩. To calculate
an expectation value ⟨Ψ|ÂIB̂J |Ψ⟩ for a product of
operators acting on different patches, a connection
ÛIJ must be inserted in the gauge picture, as in
⟨ΨI |ÂI ÛIJ B̂J |ΨJ⟩. Such correlation functions can
be used to calculate the density matrix from the
gauge picture local wavefunctions and connections.
For example, for a system of n qubits, the density
matrix is

ρ̂ = 2−n
∑

µ1···µn

σ̂µ1
1 · · · σ̂µn

n (4)

⟨Ψ1| σ̂µ1
1 Û1,2 σ̂

µ2
2 · · · Ûn−1,n σ̂

µn
n |Ψn⟩

where σ̂µ
i are Pauli operators, and here we take each

patch to consist of just a single qubit (for simplicity)
so that I = 1, . . . , n indexes the qubits/patches along
some path. The local wavefunction |ΨI⟩ is local in
the sense that its dynamics are local and connections
are required to extract information about operators
outside the patch I. Time evolution preserves the
following network of relations:

ÛIJ |ΨJ⟩ = |ΨI⟩
ÛIJ ÛJK = ÛIK

(5)

along with Û†
IJ = ÛJI and ÛII = 1̂.

VIJ

ψI  ψJ 

Figure 1: An example of a chain of qubits (black dots)
and spatial patches (colored ovals) consisting of pairs
of neighboring qubits. In the gauge picture, a local
wavefunction |ΨI⟩ is associated with each patch I, and the
Hilbert spaces of neighboring patches are related by unitary
connections ÛIJ . A quantum gauge network analogously
consists of local wavefunctions |ψI⟩ in truncated Hilbert
spaces that are related by non-unitary connections VIJ .

In this work, we truncate the Hilbert spaces of the
local wavefunctions and connections in the gauage
picture so that approximate quantum dynamics
simulations can be performed on a computer. The
utility of the gauge picture for approximating
quantum mechanics is that locality is explicit in both
the time dynamics and the structure of the local
wavefunctions and connections. Furthermore, the
connections allow us to utilize different truncated
Hilbert spaces for different patches of space. We call
the resulting network of truncated local wavefunctions
and connections a quantum gauge network (QGN).
An advantage of quantum gauge networks is that

unlike traditional tensor networks (e.g. PEPS [3]),
a QGN only involves matrices and vectors (rather
than tensors with many indices) regardless of the
spatial dimension. As such, it is natural for a
QGN algorithm to only require a computation time
(e.g. CPU time) that scales as O(χ3), regardless
of the number of spatial dimensions, where χ is the
dimension of the truncated Hilbert spaces. χ can be
viewed as the bond dimension of the QGN. Thus, the
natural O(χ3) computation time for a QGN algorithm
is the same as for MPS algorithms, which are very
efficient in one spatial dimension (1D). In three spatial
dimensions (3D), the most computationally efficient
tensor network in previous literature may be the
isometric tensor network [8, 9, 10], for which the
computation time of the TEBD3 algorithm is O(χ12)
[11].1 Thus, QGN algorithms can require significantly
less computation time for fixed bond dimension. This
is useful since larger bond dimensions allow more
correlations to be transported through the tensor
network.

The computation time per variational parameter
also scales favorable for QGN algorithms. For
a QGN, the number of parameters scales as χ2

(due to the matrix-valued connections). Therefore,
the computation time per parameter scales as

1More generally, the TEBD3 computation time is
O(D10χ2)+O(Dχ6) when the bond dimension χ of the central
bonds is different from the bond dimension D of the other
bonds. [11] In 2D, the TEBD2 computation time scales as
χ7. [8]
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χ3/χ2 = χ1.5 for a QGN. This is the same ratio
as MPS algorithms, which are very efficient in 1D.
For the isometric tensor network TEBD3 algorithm
in 3D, this ratio scales as χ12/χ6 = χ2 [11], which is
remarkably efficient but not as good as the ratio for
a QGN or MPS.
Although most tensor networks typically directly

encode a wavefunction or density matrix, quantum
gauge networks depart from this habit. However,
a density matrix can be computed from a QGN
similar to Eq. (4) for the gauge picture. Unlike a
generic PEPS [3] but similar to a matrix product state
(MPS) or isometric tensor network [8, 9, 10], local
expectation values can be efficiently computed from
a QGN. A disadvantage of quantum gauge networks
is that unphysical states can also be encoded. As
such, using a QGN to variationally optimize a ground
state is not as straight-forward as for tensor networks
that directly encode a wavefunction. We leave QGN
ground state optimization algorithms to future work.
In this work, we focus on QGN fundamentals and time
dynamics alorithms.
In Sec. 2, we discuss basic properties of quantum

gauge networks and how a QGN can be constructed.
We also show that for an arbitrary wavefunction
(including fermionic wavefunctions), all 2k-point
correlation functions of M many operators can be
encoded exactly by a QGN with bond dimension
O(Mk) [Eq. (32)], while an MPS of qubits can require
an exponentially larger bond dimension 2M/6 for
k = 1. In Sec. 3, we present a QGN algorithm
for approximately simulating quantum dynamics in
the gauge picture. We benchmark the algorithm
using simulations of fermionic Hamiltonians in spatial
dimensions up to three.

2 Quantum Gauge Networks
To define a quantum gauge network (QGN), we first
choose a collection of possibly-overlapping patches
of space that cover space. For example, one could
choose the patches to consist of just a single lattice
site. Another natural choice is to take the patches
to have the same support as the Hamiltonian terms.
That is, we might choose patches that are pairs of
nearest-neighbor sites if the Hamiltonian terms act
on nearest-neighbor sites. A QGN then consists of
(1) a local wavefunction |ψI⟩ for each spatial patch;

(2) non-unitary connections VIJ = V †
JI to relate the

Hilbert spaces of nearby patches, as depicted in Fig. 1;
and (3) a collection of truncated operators to act on
the truncated Hilbert space at each patch.
The local wavefunctions and connections are similar

to the those within the gauge picture [1], except the
Hilbert space is truncated. If the full Hilbert space
has dimension N , then |ΨI⟩ and ÛIJ in the gauge
picture have dimensions N and N × N , respectively.
Since N is exponentially large in system size, it is

useful to truncate the full Hilbert space dimension
for approximate simulations. Therefore, we consider
truncated local wavefunctions |ψI⟩ and connections
VIJ , which have truncated dimensions χI and χI ×χJ ,
respectively, where typically χI ≪ N . We use capital
and lower-case Greek letters (e.g. |ΨI⟩ vs |ψI⟩)
for wavefunctions in the full and truncated Hilbert
spaces, respectively. Similarly, we place hats on
operators that act within the full Hilbert space (e.g.
ÛIJ), while operators within the truncated Hilbert
space (e.g. VIJ) do not have hats.
In order to calculate expectation values of local

operators ÂI in the original Hilbert space, we
must also define truncated operators, i.e. χI × χI

matrices AI , that act on the truncated Hilbert space.
Throughout this work, ÂI always denotes an operator
that acts within a patch I, and similar for B̂J ,
etc. The truncated operators AI are notationally
distinguished from the original operators ÂI by the
lack of a hat. In Sec. 2.1, we present a concrete
mapping to obtain a QGN and truncated operators.
However, in many cases (e.g. AppendixC.1.1 and E)
the truncated operators can be taken to be a simple
Kronecker product, such as σµ

I = 1 ⊗ σµ, where 1 is
an identity matrix and σµ is a 2 × 2 Pauli matrix.

Ideally, we want the quantum gauge network to
accurately encode approximate expectation values.
For example, if the QGN is an approximation for a
wavefunction |Ψ⟩, then we would like the QGN to
accurately encode local expectation values; i.e. we
want ⟨ψI |AI |ψI⟩ ≈ ⟨Ψ|ÂI |Ψ⟩. Similarly, we typically
also want expectation values of string operators to
also approximately match, e.g.

⟨ψI |AIVIJBJVJKCK |ψK⟩ ≈ ⟨Ψ|ÂIB̂J ĈK |Ψ⟩ (6)

Note that in order to express a string operator that
acts on multiple spatial patches using a QGN, it is
essential to insert connections VIJ between operators
and wavefunctions associated with different spatial
patches.

Similar to the gauge picture of quantum dynamics,
a density matrix can be extracted from a QGN. Thus,
a QGN most generally encodes a mixed state rather
than a pure state. For example, analogous to Eq. (4)
for a system of n qubits, a density matrix can be
approximately extracted from a QGN via

ρ̂ ≈ 2−n
∑

µ1···µn

σ̂µ1
1 · · · σ̂µn

n (7)

⟨ψ1|σµ1
1 V1,2 σ

µ2
2 · · · Vn−1,n σ

µn
n |ψn⟩

where σ̂µ
i are Pauli operators. Here, we take each

patch to consist of just a single qubit (for simplicity),
and we use I = 1, . . . , n to index the qubits/patches
along a string of nearest-neighbors, e.g. as in Fig. 2.
However, due to the approximations induced by the
QGN, different paths (e.g. those in Fig. 2) can yield
different density matrices.
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(a) (b) (c)

Figure 2: Three different paths that cover all lattice sites.

Also similar to the gauge picture, quantum gauge
networks exhibit a local gauge symmetry:

|ψI⟩ → ΛI |ΨI⟩

VIJ → ΛIVIJΛ†
J

AI → ΛIAIΛ†
I

(8)

where ΛI is a unitary matrix. Expectation values
must be invariant under this symmetry.

Since local expectation values ⟨Ψ|ÂI |Ψ⟩ ≈
⟨ψI |AI |ψI⟩ are encoded in the local wavefunctions
|ψI⟩, we can think of the local wavefunction as a
purified reduced density matrix for a spatial patch.
The connections VIJ encode long-range correlations
between the spatial patches.

It is desirable for a QGN to at least approximately
obey the following consistency conditions

VIJ |ψJ⟩ ≈ |ψI⟩
VIJVJK ≈ VIK

(9)

Although it is easy to make the first relation exact,
the second will typically only hold approximately.
Typically, a QGN will only possess a VIJ for nearby
patches I and J (and not for far away patches).
Thus, the second relation only applies if all three
connections (VIJ , VJK , and VIK) are contained in
the QGN. The connections VIJ should have singular
values less than or equal to 1 (to ensure that
expectation values are never larger than the largest
eigenvalue of the measured operator).

When VIJ |ψJ⟩ = |ψI⟩ holds exactly, QGN
connected correlation functions obey the usual
identity (with a VIJ inserted):〈

ψI

∣∣(AI − ⟨AI⟩
)
VIJ

(
BJ − ⟨BJ⟩

)∣∣ψJ

〉
= ⟨ψI |AIVIJBJ |ψJ⟩ − ⟨AI⟩ ⟨BJ⟩

(10)

where we abbreviate ⟨AI⟩ = ⟨ψI |AI |ψI⟩ and
⟨BJ⟩ = ⟨ψJ |BJ |ψJ⟩. Therefore, if the QGN
connected correlation function [Eq. (10)] is small, we
are guaranteed that ⟨ψI |AIVIJBJ |ψJ⟩ ≈ ⟨AI⟩ ⟨BJ⟩,
as one should expect. The equations in this paragraph
also hold for longer chains of connections; e.g. they
also hold if we replace VIJ with VIKVKLVLI .

original
Hilbert space

I

QI

J K

QK

truncated Hilbert spaces

Figure 3: Each truncation map QI maps a subspace of
the original Hilbert space on to the truncated Hilbert space
associated with patch I.

2.1 QGN from Truncation Maps
In this subsection, we study a concrete construction
to obtain a quantum gauge network. The input for
this QGN construction is a wavefunction |Ψ⟩, along
with a truncation map QI for each patch of space. If
we want to construct a QGN from a density matrix
instead, then |Ψ⟩ should be chosen to be a purification
of the density matrix. The truncation maps are χI×N
matrices (where N is the dimension of the full Hilbert
space) that satisfy:

QIQ
†
I = 1̂

Q†
IQI |Ψ⟩ = |Ψ⟩

(11)

Therefore Q†
I is an isometry matrix whose image

includes the wavefunction. (A matrix M is isometric
if M†M = 1.) Intuitively, each QI maps a select
subspace of states into a truncated Hilbert space, as
depicted in Fig. 3. In the next subsection, we will
explain how one can obtain useful truncation maps.

With this data, we can construct the following
QGN:

|ψI⟩ = QI |Ψ⟩

VIJ = QIQ
†
J

(12)

Note that VII = 1 due to Eq. (11). Local operators ÂI

with support on a spatial patch I are also truncated:

AI = QIÂIQ
†
I (13)

Note that this equation can be used for both bosonic
and fermionic operators. In the limit that the bond
dimension χI → N approaches the full Hilbert space
dimension N , this truncation mapping will result in a
QGN that encodes correlation functions [e.g. Eq. (6)]
exactly.

The operator norm of VIJ is bounded by
||VIJ ||op ≤ ||QI ||op||Q†

J ||op = 1. Thus, the resulting
connections VIJ have singular values that are less than
or equal to 1. One can verify that

VIJ |ψJ⟩ = |ψI⟩ (14)

from Eq. (9) holds exactly.
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In practice, the truncation mapping can only be
directly applied for wavefunctions that are simple
enough such that the truncation can be efficiently
computed. However, the construction is also useful for
theoretically understanding how a QGN can encode a
wavefunction.

A trivial example of a QGN can be obtained from
a product state wavefunction |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗
· · · |ψn⟩. The truncation maps can be chosen to be
QI = |ψI⟩ ⟨Ψ|, with I = 1, . . . , n. This results in a
QGN with local wavefunctions |ψI⟩ and connections
VIJ = |ψI⟩ ⊗ ⟨ψJ |. The truncated operators simply
act within the on-site Hilbert space. Additional
examples of quantum gauge networks can be found
in AppendixC.
Note that not all quantum gauge networks can be

obtained from the truncation mapping. For example,
generating a QGN by sampling random numbers for
|ψI⟩ and VIJ will result in a very unphysical QGN
that is not consistent with any wavefunction. This
is in contrast to MPS or PEPS tensor networks, for
which a random number initialization still returns a
physical (although unnormalized) wavefunction.

In AppendixB, we show how to obtain truncation
maps from the canonical form of a matrix product
state (MPS) [3, 4, 5]. If the MPS has bond dimension
χ, then the QGN will have bond dimensions equal
to dχ2, where d is the Hilbert space dimension at
each site. (d = 2 for qubits.) The idea of the
mapping is that the canonical form of an MPS can
consist of a center tensor at I that is surrounded by
isometric tensors. The isometric tensors are then used
to construct a truncation map QI , while the center
tensor is a local wavefunction |ψI⟩.

2.2 Truncation Map Construction
The accuracy of the truncation critically depends on a
good choice of truncation maps QI . Suppose we want
to choose truncation maps such that the quantum
gauge network exactly encodes the expectation values
of a chosen collection of operator strings. For
example, the expectation value of ÂIB̂J ĈK is encoded
exactly if

⟨ψI |AIVIJBJVJKCK |ψK⟩ = ⟨Ψ|ÂIB̂J ĈK |Ψ⟩ (15)

Below, we show that this exact encoding can be
achieved by choosing truncation maps such that the
image of each Q†

I is the span of certain strings of
operators involved in the expectation values.
In general, we will find that the required bond

dimension χI for each patch I is bounded by
χI ≤ 1 + 2pI [Eq. (23)], where pI is the number of
chosen operator strings (which we want to encode)
that act on the patch I. We will also find that
bond dimension O(Mk) [Eq. (32)] is sufficient to
exactly encode all 2k-point correlation functions of
M different operators.

2.2.1 Warmup Example

Before presenting a generic algorithm for obtaining
the truncation maps, let us first discuss an instructive
example. Suppose we want to ensure that the QGN
encodes the expectation value in Eq. (15) exactly for
a particular choice of local operators (ÂI , B̂J , and
ĈK) and spatial patches I ̸= J ̸= K. Below, we show
that any choice of truncation maps with the following
images is sufficient:

im(Q†
I) = span

{
|Ψ⟩ , Â†

I |Ψ⟩
}

im(Q†
J) = span

{
|Ψ⟩ , Â†

I |Ψ⟩ , ĈK |Ψ⟩
}

im(Q†
K) = span

{
|Ψ⟩ , ĈK |Ψ⟩

} (16)

span
{

|Ψ1⟩ , . . . , |Ψm⟩
}

denotes the vector space
spanned by the vectors |Ψ1⟩ , . . . , |Ψm⟩. We set
the bond dimensions to be equal to the vector
space dimension of the images: χI = dim(im(Q†

I)).
Specifying these images determines the truncation
maps QI up to a unitary gauge transformation
QI → ΛIQI , where ΛI is a unitary matrix. The choice
of gauge does not affect QGN expectation values. For
examples of a quantum gauge networks obtained in
this way, see AppendixC.
On a computer, a Q†

I with the desired image
can be calculated from the compact singular value
decomposition MI = Q†

ISIRI . Here, MI is a matrix
of column vector, which each encode one of the
wavefunctions contained in the span of im(Q†

I). SI is
a χI ×χI diagonal matrix of nonzero singular values,
and R†

I is an isometry matrix.

Note that if |Φ⟩ ∈ im(Q†
I), then Q†

IQI |Φ⟩ = |Φ⟩,
which is a useful property. This follows because
|Φ⟩ ∈ im(Q†

I) implies that there exists |ϕ⟩ such

that Q†
I |ϕ⟩ = |Φ⟩, which then implies that

Q†
IQI |Φ⟩ = Q†

IQIQ
†
I |ϕ⟩ = Q†

I |ϕ⟩ = |Φ⟩ where the

middle equality follows from QIQ
†
I = 1̂ [Eq. (11)].

For each patch, the image must contain |Ψ⟩ so that
Eq. (11) is satisfied. Next, we show that Eq. (16) is
sufficient to exactly encode the expectation value in
Eq. (15):

⟨ψI |AIVIJBJVJKCK |ψK⟩

= ⟨Ψ|Q†
I (QIÂIQ

†
I)VIJBJVJK (QKĈKQ

†
K)QK |Ψ⟩

= ⟨Ψ|ÂIQ
†
IVIJBJVJKQKĈK |Ψ⟩

= ⟨Ψ|ÂIQ
†
I (QIQ

†
J)BJ (QJQ

†
K)QKĈK |Ψ⟩

= ⟨Ψ|ÂIQ
†
JBJQJ ĈK |Ψ⟩

= ⟨Ψ|ÂIQ
†
J(QJ B̂JQ

†
J)QJ ĈK |Ψ⟩ (17)

= ⟨Ψ|ÂIB̂J ĈK |Ψ⟩

We used the identities |ψI⟩ = QI |Ψ⟩ and

VIJ = QIQ
†
J [Eq. (12)], AI = QIÂIQ

†
I [Eq. (13)], and

Q†
IQI |Φ⟩ = |Φ⟩ whenever |Φ⟩ ∈ im(Q†

I) in Eq. (16).
Note that even if all the local operators commute,

the path of the string matters. For example, Eq. (16)
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does not guarantee that ⟨ψJ |BJVJIAIVIKCK |ψK⟩ =
⟨Ψ|B̂J ÂIĈK |Ψ⟩ even if [ÂI , B̂J ] = 0.
If we want the QGN to encode expectation values

for multiple operator strings, then we must calculate
the images for each operator string, and then take
the union. For example, if two operator strings

respectively require im(Q†
I) ⊇ S

(1)
I and im(Q†

I) ⊇
S

(2)
I , then we need im(Q†

I) ⊇ span(S(1)
I , S

(2)
I ).

Equation (16) is not the unique choice for the
images. For instance, the images could be larger.
That is, it is sufficient to replace the equalities “=” in
Eq. (16) with superset relations “⊇”. Alternatively,

we could replace im(Q†
J) with

im(Q†
J) = span

{
|Ψ⟩ , B̂J ĈK |Ψ⟩ , ĈK |Ψ⟩

}
(18)

And with this im(Q†
J), we could then replace im(Q†

I)
with

im(Q†
I) = span

{
|Ψ⟩ , B̂J ĈK |Ψ⟩

}
(19)

The proof is similar to Eq. (17). By comparing these
choices, we see that we have some freedom in choosing
a midpoint in the string of operator products, which
we make explicit in the generic case below.

2.2.2 Generic Case

More generally, suppose we want to ensure that
a QGN exactly encodes the expectation value of

Â
(1)
I1
Â

(2)
I2

· · · Â(M)
IM

, which is a product of M local
operators. This expectation value is exactly encoded
in the QGN if〈

ψI1

∣∣A(1)
I1
VI1,I2A

(2)
I2
VI2,I3 · · ·A(M)

IM

∣∣ψIM

〉
=

〈
Ψ

∣∣Â(1)
I1
Â

(2)
I2

· · · Â(M)
IM

∣∣Ψ〉 (20)

where I1, . . . , Im is a string of neighboring patches
with Im ̸= Im+1. The exact encoding [Eq. (20)] is
guaranteed by any choice of truncation maps with
images that contain:

im(Q†
Im

) ⊇


span

{
|Ψ⟩ , |ΨL

m−1⟩ , |ΨL
m⟩

}
m < m0

span
{

|Ψ⟩ , |ΨL
m−1⟩ , |ΨR

m+1⟩
}

m = m0

span
{

|Ψ⟩ , |ΨR
m⟩ , |ΨR

m+1⟩
}

m > m0
(21)

where we recursively define∣∣ΨL
0
〉

=
∣∣ΨR

M+1
〉

=
∣∣Ψ〉∣∣ΨL

m

〉
= Â

(m)†
Im

∣∣ΨL
m−1

〉∣∣ΨR
m

〉
= Â

(m)
Im

∣∣ΨR
m+1

〉 (22)

In Eq. (21), we are free to choose any half-integer
m0 = 1, 3

2 , . . . ,M between 1 and M .
As noted previously, if we want the QGN to encode

expectation values for M different operator strings,
then for each image we obtain a list of conditions

im(Q†
I) ⊇ S

(m)
I from Eq. (21) with m = 1, 2, . . . ,M .

We can then take the images to be the span of these

vector spaces: im(Q†
I) = span(S(1)

I , S
(2)
I , . . . S

(M)
I ).

We can easily bound the necessary bond dimensions
χI needed to exactly encode the expectation values
for many operator strings. Let pI be the number
of operator strings that involve the spatial patch I.
Each application of Eq. (21) increases the dimension

of im(Q†
I) by at most 2 [starting from χI = 1 since

we always have |Ψ⟩ ∈ im(Q†
Im

)]. Therefore, this
procedure results in bond dimensions of at most

χI ≤ 1 + 2pI (23)

To prove that Eq. (21) implies Eq. (20), we first

recall that Q†
IQI |Φ⟩ = |Φ⟩ whenever |Φ⟩ ∈ im(Q†

I).
We thus obtain〈

ψI1

∣∣A(1)
I1
VI1,I2 · · ·A(⌈m0⌉−1)

I⌈m0⌉−1
Q⌈m0⌉−1

=
〈
ΨI1

∣∣Â(1)
I1

· · · Â(⌈m0⌉−1)
I⌈m0⌉−1

(24)

and

Q†
⌊m0⌋+1A

(⌊m0⌋+1)
I⌊m0⌋+1

· · ·VIM−1,IM
A

(M)
IM

∣∣ψIM

〉
=Â(⌊m0⌋+1)

I⌊m0⌋+1
· · · Â(M)

IM

∣∣Ψ〉 (25)

by again using the identities |ψI⟩ = QI |Ψ⟩,
VIJ = QIQ

†
J , and AI = QIÂIQ

†
I . If m0 is

an integer, then inserting Vm0−1,m0Am0Vm0,m0+1 =
Qm0−1Q

†
m0
Am0Qm0Q

†
m0+1 and Eqs. (24) and (25)

into the first line of Eq. (20) yields〈
ψI1

∣∣A(1)
I1
VI1,I2 · · ·A(M)

IM

∣∣ψIM

〉
=

〈
Ψ

∣∣Â(1)
I1

· · · Â(m0−1)
Im0−1

(
Q†

m0
Qm0Âm0Q

†
m0
Qm0

)
Â

(m0+1)
Im0+1

· · · Â(M)
IM

∣∣Ψ〉
=

〈
Ψ

∣∣Â(1)
I1

· · · Â(M)
IM

∣∣Ψ〉
(26)

If m0 is a half-integer, then Eq. (20) follows

immediately from V⌊m0⌋,⌈m0⌉ = Q†
⌊m0⌋Q⌈m0⌉ and

Eqs. (24) and (25). This completes the proof.

2.2.3 Long-Range Correlation Functions

We can now show that quantum gauge networks can
efficiently encode long-range correlation functions.
Suppose we want a QGN to exactly encode all
two-point correlation functions for some arbitrary
collection of operators τ̂µ

i (indexed by µ and position
i). That is, suppose we want a QGN to satisfy〈

ψI

∣∣τµ†
i∈IV

string
IJ τν

j∈J

∣∣ψJ

〉
=

〈
Ψ

∣∣τ̂µ†
i τ̂ν

j

∣∣Ψ〉
(27)

Patches I and J can be any patches that respectively
contain sites i and j. τµ

i∈I = QI τ̂
µ
i Q

†
I denotes a

truncated operator on patch I. Since patches I and
J could be far apart, we insert a string of connections

V string
IJ = VIK1VK1K2 · · ·VKlJ (28)
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to connect patches I and J , where
(I,K1,K2, . . . ,Kl, J) is an arbitrary string of
neighboring patches. To exactly encode the above
correlation functions, Eq. (21) implies that it is

sufficient for the images im(Q†
I) to include the span

of the actions of each operator on the wavefunction:

im(Q†
I) ⊇ span

{
|Ψ⟩ , τ̂µ

j |Ψ⟩ for each τ̂µ
j

}
(29)

If there are M many operators τ̂µ
i , then the above

image requires a QGN with bond dimension of at most
χI = 1 +M .
More generally, suppose we want to exactly encode

all 2k-point correlation functions:〈
Ψ

∣∣τ̂µ1†
i1

· · · τ̂µk†
ik

τ̂ν1
j1

· · · τ̂νk
jk

∣∣Ψ〉
=

〈
ψI1

∣∣τµ1†
i1∈I1

V string
I1,I2

· · · τµk†
ik∈Ik

V string
Ik,J1

τν1
j1∈J1

V string
J1,J2

· · · τνk

jk∈Jk

∣∣ψJk

〉 (30)

The left-hand-side is the expectation value of a
product of 2k operators. The right-hand-side can be
any corresponding expectation value within a QGN
for any valid strings of connections. To exactly encode
these correlation functions, Eq. (21) implies that it is
sufficient for the images to include the span of the
actions of all products of up to k operators:

im(Q†
I) ⊇ span

{
all

∏R
r=1 τ̂

µr

jr
|Ψ⟩ for R = 0, 1, . . . , k

}
(31)

If there are M many operators τ̂µ
i , then there are

χ = 1 +M +M2 + · · · +Mk (32)
different operator products included in the span.
Therefore, a QGN with bond dimension of at most χ is
sufficient to encode all 2k-point correlation functions
of M many operators.
Although the bond dimension increases exponen-

tially with k, typically only few-body operators can
be measured in experiments. Therefore, encoding k-
point correlation functions with large k may not be
necessary. On the other hand, for large systems, the
number of operators M is large, and it is advanta-
geous that χ only increases as a polynomial for large
M and fixed k.
For a matrix product state (MPS), encoding all

2-point correlation functions generically requires an
exponentially large bond dimension χMPS = 2M/6

for M many operators on a chain of qubits. For
example, this exponential scaling is required when
the wavefunction is a rainbow state. However, a
matrix product operator (MPO) with bond dimension
O(M) is sufficient to encode all 2-point correlation
functions. See AppendixC.5 for details. Thus, QGN
bond dimension scaling can be similar to that of an
MPO.
See appendices C.3 and C.4 for analytical

expressions of quantum gauge networks that exactly
encode normal-ordered correlation functions of
coherent boson wavefunctions and fermionic Slater
determinant wavefunctions.

3 Time Evolution Algorithm
Since the quantum gauge network is closely related to
the gauge picture [1] of quantum dynamics, we can
straight-forwardly modify the gauge picture to obtain
an approximate algorithm for simulating quantum
dynamics using a QGN. To do this, we simply replace
|ΨI⟩ → |ψI⟩, ÛIJ → VIJ , and Ĥ⟨I⟩ → H ′

I (defined
below) in the gauge picture equations of motion
[Eq. (2)] to obtain:

∂t |ψI⟩ = −iH ′
I |ψI⟩

∂tVIJ = −iH ′
IVIJ + iVIJH

′
J

(33)

If the Hamiltonian Ĥ =
∑

I ĤI [Eq. (1)] is a sum

of local terms ĤI each supported on a spatial patch
I, then we define

H ′
I =

J∩I ̸=∅∑
J

VIJ HJ VJI (34)

∑J∩I ̸=∅
J sums over all patches J that have nontrivial

overlap with the spatial patch I. H ′
I is analogous

to Ĥ⟨I⟩ in the gauge picture [Eq. (3)]. Recall that
HI is a χI × χI matrix in the truncated Hilbert
space, while ĤI is N × N and acts on the full N -
dimensional Hilbert space. HI can be obtained using
the truncation mapping (13), which also holds when
ĤI is time-dependent.
For time-independent Hamiltonians, the QGN

approximation

EQGN(t) =
∑

I

⟨ψI(t)|HI |ψI(t)⟩ (35)

of the energy expectation value ⟨Ψ(t)|Ĥ|Ψ(t)⟩ is
conserved up to numerical integration errors for the
time evolution in Eq. (33). See AppendixD for a
proof.
For a QGN with bond dimension χ, the

computation time of this algorithm is dominated
by multiplication of χ × χ matrices. Therefore,
the computation time for each time step scales as
O(nVχ3), where nV is the number of connections
VIJ used by the QGN. The memory cost scales as
O(nVχ2) for storing the connections.2 For local
Hamiltonians, nV should be proportional to the
number of lattice sites.

2Let χ̃IJ be the number of non-zero singular values of VIJ .
If χ̃IJ ≪ min(χI , χJ ), then it is more efficient to decompose
VIJ = V

(J)
I V

(I)†
J where V

(J)
I is a χI × χ̃J isometric matrix. If

all χI = χ and χ̃IJ = χ̃ are equal, and if the HI can be encoded
as sparse matrices with O(χ) nonzero entries (which is typical),
then the simulation and memory cost can respectively scale as
O(nVχχ̃2) and O(nVχχ̃). This is asymptotically less costly
when χ̃ ≪ χ. However for the simulations in this work, this
decomposition is not useful since we chose connections for which
χ̃/χ only ranges from about 0.75 (in one spatial dimension) to
0.5 (in three spatial dimensions).
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It is also possible to handle Hamiltonian terms that
are not supported on a single spatial patch. Consider
the Hamiltonian

Ĥ =
∑

J···K

∑
µ···ν

hµ···ν
J···K τ̂µ

J · · · τ̂ν
K (36)

which consists of a sum
∑

J···K over spatial patches
J · · ·K. hµ···ν

J···K are (generically time-dependent) real
coefficients, and τ̂µ

J denotes an operator indexed
by µ with support on patch J . For example, we
could take the patches to consist of a single qubit,
and the τ̂µ

J could be Pauli operators. For local
Hamiltonians, hµ···ν

J···K will only be nonzero if J · · ·K
are close together. Equation (34) could be generalized
to

H ′
I =

(J∪···K)∩I ̸=∅∑
J···K

∑
µ···ν

(37)

1
2h

µ···ν
J···K (VIJτ

µ
J VJI) · · · (VIKτ

ν
KVKI) + h.c.

where
∑(J∪···K)∩I ̸=∅

J···K sums over spatial patches
J · · ·K such that the union J ∪ · · ·K has nontrivial
overlap with patch I. “h.c.” denotes the Hermitian
conjugate of the preceding terms and ensures that
H ′

I is Hermitian. When J · · ·K involves more than
two patches, we must decide on an ordering of the
J · · ·K for each I. Eq. (37) follows from a similar
generalized expression for Ĥ⟨I⟩ in the gauge picture [1]
after projecting onto the Hermitian part (via the h.c.)
and replacing ÛIJ → VIJ and τ̂µ

J → τµ
J . However,

unlike for Eq. (34), the energy will not be conserved
exactly for this choice of H ′

I .

3.1 Fermion Quench
To benchmark this QGN algorithm, we simulate the
dynamics of a quantum quench and compare to exact
methods. First, we study the quench dynamics
for a model of spinless fermions in one, two, and
three spatial dimensions. In AppendixE, we also
study the quench to a near-critical transverse field
Ising model on a square lattice. In all cases, we
find that increasing the bond dimension increases
the simulation accuracy. This is as expected, since
exact simulations of the gauge picture are reproduced
once the bond dimension reaches the full Hilbert
space dimension (or less when there are conserved
quantities).
We initialize the system with a checkerboard

pattern of spinless fermions, for which ⟨n̂i(0)⟩ = 1 −
⟨n̂j(0)⟩ at time t = 0 for nearest-neighbor sites i
and j; as shown in Figs. 5a and 5d. We then time-
evolve the system using the following Hamiltonian
with nearest-neighbor hoppings and nearest-neighbor
repulsive interactions:

ĤFermi =
∑
⟨ij⟩

ĤFermi
⟨ij⟩

ĤFermi
I=⟨ij⟩ = −ĉ†

i ĉj − ĉ†
j ĉi + V n̂in̂j

(38)

patch

position

st
at

es

χ = 16

χ = 10

χ = 8

χ = 4
χ = 2

Figure 4: States included in the truncated Hilbert space for
a particular patch (labelled in red) of the 1D lattice. These
are the states generated from five iterations of the algorithm
described in the paragraph below Eq. (38). The initial state is
shown in the top row, where white and black squares denote
empty and filled fermions along the 1D chain (where we only
show a subset of the chain near the patch). Below the initial
state are additional states generated by the algorithm, where
a red dot denotes a site with a different fermion number
than the initial state. Each iteration ends on step (3), where
we check if the number of states is sufficiently large. Each
iteration is separated by a green line in the figure.

Each patch I is composed of a pair of nearest-neighbor
sites, which are summed over by

∑
⟨ij⟩ in the first line.

ĉi is a fermion annihilation operator, and n̂i = ĉ†
i ĉi is

the fermion number operator.

We initialize the QGN using truncation maps, as
described in Sec. 2.1. Choosing the truncation maps
QI requires choosing a subspace of states to keep for
each patch (i.e. a choice for the image of Q†

I , as
in Sec. 2.2). We use the following method to select
subspaces of states that we expect will acquire the
highest weight after a short time evolution: (1) We

begin with images of Q†
I that only contain the initial

state. (2) For each patch I of nearest-neighbor sites,

we add states to the image of Q†
I that can be obtained

from the current image by swapping the two sites
within the patch. (3) Stop if the bond dimension is
sufficiently large. (4) For each patch I, we add states
that are included in patches J that overlap with patch
I. (5) Go back to the second step. See Fig. 4 for states
that get included for the 1D lattice.

With this initialization algorithm, we do not choose
the bond dimension χ precisely. For example, Fig. 4
shows that only χ = 2, 4, 8, 10, 16, . . . are allowed for
the 1D chain. This restriction has the advantage that
χ is chosen such that the QGN remains symmetric
under lattice symmetries. Each image consists of a
span of certain eigenstates of the number operators
n̂i. Note that since the initial state has a definite
fermion number, this procedure only adds states
with the same fermion number, which is desirable
since the Hamiltonian also conserves the fermion
number. If we were to continue the procedure until
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1 2 3 4
t

0.1
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0.5
0.6
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〈n i0〉

exact

χ = 8
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χ = 122
(0.04 hr)

χ = 2040
(45 hr)

(b)

1 2 3 4
t

-0.06
-0.04
-0.02

0.02
0.04
0.06

〈ni0〉GQN-〈n

i0〉

(c)

(d) 4 × 4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.1
0.2
0.3
0.4
0.5
0.6
0.7
〈n i0〉

exact

χ = 8
(0.0005 hr)

χ = 110
(0.03 hr)

χ = 2038
(42 hr)

(e)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

-0.06
-0.04
-0.02

0.02
0.04
0.06

〈ni0〉GQN-〈n

i0〉

(f)

Figure 5: Simulation data for the time dynamics of the fermionic Hamiltonian (38) with V = 1 following a quench from a
checkerboard initial state in 1D and 2D periodic lattices. (a) An initial state of 11 spinless fermions (black disks) on a periodic
chain of 22 sites (black and white disks). (b) Starting from this initial state, we show the fermion number expectation value
⟨n̂i0 (t)⟩ vs time t at a site i0 with zero fermions at time t = 0. Simulation results are shown for the exact value (black line) and
the quantum gauge network (QGN) with different bond dimensions χ (colored lines). The legend also shows the number of
CPU core hours used for each simulation. (c) The error of the QGN approximation ⟨ni0 ⟩QGN [Eq. (39)] to the exact expression
⟨n̂i0 ⟩. Panels (d-f) are similar, but for a periodic 4 × 4 square lattice. In both dimensions, we see that increasing the bond
dimension increases the accuracy of the QGN simulations (for sufficiently small times).
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-0.04
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0.04
0.06

〈ni0〉GQN-〈n
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(d) 4 × 4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.1
0.2
0.3
0.4
0.5
0.6

〈n i0〉
exact

χ = 8
(0.0005 hr)

χ = 110
(0.03 hr)
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(41 hr)
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(g) 4 × 4 × 4

0.2 0.4 0.6 0.8
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0.2
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Figure 6: Panels (a-f) are the same as Fig. 5, except we simulate non-interacting fermions with V = 0. By comparing to
Fig. 5, we see that the QGN simulates V = 0 with roughly the same accuracy as V = 1. Panels (g-i) are similar, but for a
periodic 4 × 4 × 4 cubic lattice.
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no additional states could be added, then we would
add all states with the initial fermion number and the
QGN simulation would be exact.
We compare the quantum gauge network results to

the exact values.3 Figure 5 shows one-dimensional
(1D) and two-dimensional (2D) simulation data with
interaction strength V = 1. In both spatial
dimensions, we find that the QGN can accurately
simulate the dynamics for a short time, and the
time over which the simulations are accurate increases
with increasing bond dimension. The most time-
consuming simulation consumed 90 CPU hours, which
took less than half a day on an 8-core laptop.
We calculate the number expectation value ⟨n̂i0(t)⟩

for sites i0 that initially have zero fermions. In the
QGN, these are estimated as follows:

⟨ni⟩QGN =
mean∑
I∋i

⟨ψI |ni∈I |ψI⟩ (39)

∑mean
I∋i averages over all patches I that contain the

site i, and ni∈I = QI n̂iQ
†
I is the truncated [Eq. (13)]

number operator at site i for patch I. In this example,
⟨ψI |ni∈I |ψI⟩ is equal for all patches I that contain site
i due to spatial symmetries. However in other models
with less symmetry, simulation errors can make these
expectation values differ for different patches.
If we were to integrate the equations of motion

exactly, then the energy expectation value [Eq. (35)]
would be conserved exactly. Since exact integration
is not practical, we use a modified RK4 Runge-
Kutta method for numerical integration with time
step δt = 0.05. Due to this approximation, the energy
per site changed by at most 10−3 for all data shown.
See AppendixF for more details.
In order to compare to exact methods in three

dimensions (3D) with many sites, we repeat the
comparison in Fig. 6 with no interactions (V = 0).
Free (i.e. non-interacting V = 0) fermion systems
are efficient to simulate exactly [17] and are typically
about as challenging for tensor network methods as
interacting fermionic systems. By comparing the 1D
and 2D data in Figs. 5 and 6, we indeed see that
V = 1 and V = 0 appear to be roughly equally
challenging for the QGN. Therefore, we expect that
the comparison we make for free fermions in 3D
is representative of the interacting V = 1 model
(for which we could not perform exact simulations).
For short time evolutions, we find that the QGN
simulation errors decrease as the bond dimension χ
is increased.
For the free fermion simulations, the energy

expectation value and total fermion number within
the QGN appears to be conserved exactly (up to
floating point precision). We have not yet investigated

3Exact expressions for small system sizes can be obtained by
calculating the full wavefunction |Ψ(t)⟩ = e−iĤt |Ψ(0)⟩ using a
sparse matrix representation for the Hamiltonian.

why this conservation occurs in the free fermion
system. When interactions (V ̸= 0) are included, the
QGN conserves the energy expectation value up to
numerical integration errors, and the QGN fails to
conserve the total charge expectation value.

4 Outlook
Quantum gauge networks offer several advantages
for simulating quantum dynamics, especially in
comparison to many tensor network methods. (1) The
computation time for simulating time dynamics
scales as χ3, where χ is the bond dimension.
Notably, this computation time does not increase
with the spatial dimension, which makes quantum
gauge networks a promising tool in two or more
dimensions. Furthermore, the computational time per
variational parameter is χ3/χ2 = χ1.5, which is the
same remarkably efficient ratio as MPS algorithms.
(2) Fermionic models are simple to handle. (Unlike
MERA or PEPS, fermionic swap gate [18, 19] are
not needed.) (3) The code is simple since the only
tensors involved are vectors ψI and matrices VIJ ,
and the code does not get more complicated in
larger spatial dimensions. (4) The energy expectation
value can be conserved (up to integration error).
(5) Lattice symmetries can be maintained exactly.
(6) Time discretization errors are small in practice
since the dynamics can be integrated using very
accurate Runge-Kutta methods. (Trotter-Suzuki
expansions [20, 21] are not needed.) (7) Long-
range interactions are easy to implement by simply
including connections between distant patches.
There are numerous important future directions

for the study of quantum gauge networks: (1) In
comparison to other tensor networks, understanding
quantum gauge networks is conceptually more
demanding since the wavefunction is not directly
encoded. The truncation mapping (12) is an
example for which we can understand how the
QGN relates to a wavefunction. But we do not
know how to tell if a given QGN is consistent
with any choice of wavefunction and truncation
maps.4 We also do not know to what extent the
truncation mapping can produce all quantum gauge
networks that are useful approximations for quantum
wavefunctions. (2) Can we optimize a QGN to find
approximate ground states or excited eigenstates?
This is relatively challenging for quantum gauge
networks because a QGN can encode unphysical
states, which means that some sort of (possibly
approximate) constraint must be imposed on the
QGN during energy minimization. (3) Imaginary
time evolution in the gauge picture does not yield
ground state physics, as it does in Schrödinger’s

4This problem may be related to the QMA complete [22]
quantum marginal problem [23, 24, 25].
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picture. [The same is true for Heisenberg’s picture

where ÂH(t = −iτ) = e+Ĥτ Â(0)e−Ĥτ , which
isn’t even Hermitian.] Thus, imaginary time
evolution may not appear to be a useful tool
for obtaining approximate ground states using a
QGN. However, the imaginary time evolution of a
Hamiltonian H can equivalently be expressed as the
real time evolution of the non-local Hamiltonian
Ĥim(t) = −i[Ĥ, |Ψ(t)⟩ ⟨Ψ(t)|]. Although the non-
locality is non-ideal, this kind of time evolution
could be implemented in a QGN with all-to-all
connectivity of the connections to yield a QGN ground
state algorithm. (4) How well can a QGN encode
topological states [26, 27, 28, 29, 30]?

There are also many opportunities to significantly
improve our QGN time evolution algorithm: (5) For
the TEBD algorithm [31], it is straightforward to
increase or optimally truncate the bond dimension
during the simulation. In this work, we initialized
the quantum gauge network using a simple basis of
states in the number basis. We expect that this
simple initialization is far from optimal, and that
dynamically adding and removing more optimally
chosen states throughout the time evolution could
greatly improve simulation accuracy. (6) Can
we obtain exact energy conservation when the
Hamiltonian terms act on multiple spatial patches [as
in Eq. (36)]? (7) Can we obtain charge conservation
for charge-conserving Hamiltonians? (8) The TEBD
algorithm allows one to upper-bound the simulation
error in terms of the truncation error. Can we
also estimate the error of a QGN time evolution
without comparing to other algorithms? (9) Could we
simulate infinite system sizes when the Hamiltonian
is translation-invariant. (10) Finally, after improving
QGN algorithms, benchmarking QGN methods
against other methods [32, 31, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48] will be useful.

We find it intriguing that the consistency conditions
(VIJ |ψJ⟩ ≈ |ψI⟩ and VIJVJK ≈ VIK) in Eq. (9)
are precisely the equations for a classical lattice
gauge theory [49, 50] to be in its ground state
when coupled to a Higgs field, where VIJ plays the
role of the gauge connection and |ψI⟩ is the Higgs
field. (See AppendixA for more details.) The
primary difference is that in lattice gauge theory,
the gauge connections are typically chosen to be
unitary matrices. But VIJ is not a unitary matrix;
its singular values are only constrained to be less
than or equal to 1. With unitary gauge connections,
no information is encoded locally in the classical
ground state. (Information is only encoded in non-
contractible Wilson loops.) It is remarkable that
by simply relaxing the unitary constraint on the
gauge connections (as in a QGN), grounds states of
classical lattice gauge theory coupled to a Higgs field
are capable of locally encoding approximate quantum
wavefunctions. Gauge theory plays a foundational

role within the standard model of particle physics.
As such, it may be interesting to study the emergent
physics of quantum gauge networks, viewed not as
a computational tool, but instead as a new kind of
classical lattice gauge theory that exhibits aspects of
emergent quantum mechanics [51, 52, 53, 54, 55, 56,
57].
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Vidal. “Explicit tensor network representation
for the ground states of string-net models”. Phys.
Rev. B79, 085119 (2009). arXiv:0809.2393.

[29] Dominic J. Williamson, Nick Bultinck, and
Frank Verstraete. “Symmetry-enriched topo-
logical order in tensor networks: Defects,
gauging and anyon condensation” (2017).
arXiv:1711.07982.

[30] Tomohiro Soejima, Karthik Siva, Nick Bultinck,
Shubhayu Chatterjee, Frank Pollmann, and
Michael P. Zaletel. “Isometric tensor network
representation of string-net liquids”. Phys. Rev.
B101, 085117 (2020). arXiv:1908.07545.

Accepted in Quantum 2023-09-04, click title to verify. Published under CC-BY 4.0. 13

https://dx.doi.org/10.1103/PhysRevLett.124.037201
http://arxiv.org/abs/1902.05100
http://arxiv.org/abs/1908.08833
https://dx.doi.org/10.1103/PhysRevB.100.054404
http://arxiv.org/abs/1903.03843
https://dx.doi.org/10.1103/PhysRevResearch.3.023236
http://arxiv.org/abs/2005.13592
https://dx.doi.org/10.1103/PhysRevLett.101.110501
https://dx.doi.org/10.1103/PhysRevLett.101.110501
http://arxiv.org/abs/quant-ph/0610099
http://arxiv.org/abs/quant-ph/0610099
https://dx.doi.org/10.1103/PhysRevLett.112.240502
https://dx.doi.org/10.1103/PhysRevLett.112.240502
http://arxiv.org/abs/1210.1895
https://dx.doi.org/10.1103/PhysRevB.79.144108
https://dx.doi.org/10.1103/PhysRevB.79.144108
http://arxiv.org/abs/0707.1454
http://arxiv.org/abs/2209.14358
https://dx.doi.org/10.1103/PhysRevB.105.214201
http://arxiv.org/abs/2111.12398
https://dx.doi.org/10.1140/epjb/e2014-50502-9
https://dx.doi.org/10.1140/epjb/e2014-50502-9
http://arxiv.org/abs/1407.6552
https://dx.doi.org/10.1103/PhysRevB.80.165129
http://arxiv.org/abs/0907.3184
https://dx.doi.org/10.1103/PhysRevX.11.011020
https://dx.doi.org/10.1103/PhysRevX.11.011020
http://arxiv.org/abs/1912.08854
http://arxiv.org/abs/1912.10512
http://arxiv.org/abs/quant-ph/0604166
https://dx.doi.org/10.1088/1742-6596/36/1/014
https://dx.doi.org/10.1088/1742-6596/36/1/014
https://dx.doi.org/10.1088/1742-6596/36/1/014
http://arxiv.org/abs/quant-ph/0511102
https://dx.doi.org/10.1103/PhysRevA.93.032105
https://dx.doi.org/10.1103/PhysRevA.93.032105
http://arxiv.org/abs/1509.06591
https://dx.doi.org/10.1103/PhysRevLett.108.263002
http://arxiv.org/abs/1112.5866
https://dx.doi.org/10.1103/RevModPhys.89.041004
https://dx.doi.org/10.1103/RevModPhys.89.041004
http://arxiv.org/abs/1610.03911
https://dx.doi.org/10.1103/PhysRevB.79.085118
https://dx.doi.org/10.1103/PhysRevB.79.085118
http://arxiv.org/abs/0809.2821
https://dx.doi.org/10.1103/PhysRevB.79.085119
https://dx.doi.org/10.1103/PhysRevB.79.085119
http://arxiv.org/abs/0809.2393
http://arxiv.org/abs/1711.07982
https://dx.doi.org/10.1103/PhysRevB.101.085117
https://dx.doi.org/10.1103/PhysRevB.101.085117
http://arxiv.org/abs/1908.07545
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A Higgsed Lattice Gauge Theory
In this appendix, we review more details regarding
the connection between Higgsed lattice gauge theory
and quangum gauge networks. Consider a lattice of
vertices connected by edges, e.g. a triangular lattice.
Each vertex of the lattice hosts a Higgs field ψi ∈ CN

with |ψi| = 1, i.e. a normalized complex vector with
N components. Each edge of the lattice hosts a U(N)
gauge connection Uij , i.e. an N ×N unitary matrix.
The energy of a classical U(N) lattice gauge theory
coupled to a Higgs field (on a lattice with triangular
plaquettes) is

E = −
plaquettes∑

ijk

trUijUjkUki −
∑
⟨ij⟩

Re(ψ∗
i · Uij · ψj)

(40)
where Uji = U†

ij and
∑plaquettes

ijk sums over all
plaquettes of the lattice (in two or more dimensions).
UijUjkUki is a product of gauge fields around the
edges of a plaquette (which we assumed to be
a triangle only for notational simplicity).

∑
⟨ij⟩

sums over vertices i and j connected by an edge.
Re(ψ∗

i · Uij · ψj) denotes the real part of ψ∗
i · Uij · ψj .

The energy of this classical lattice gauge theory is
minimized when UijUjk = Uik and Uij ·ψj = ψi, which
is analogous to the consistency conditions in Eqs. (5)
and (9). However, there is an important difference
in each case: (1) In the gauge picture, ÛIJ is an
N×N unitary matrix whereN is the full Hilbert space
dimension, which increases exponentially with system

size. However in lattice gauge theory, N is typically
taken to be a fixed integer. (2) In a quantum gauge
network, VIJ is not a unitary matrix; its singular
values are only constrained to be less than or equal to
1.

B Matrix Product State Mapping
In this appendix, we show that any matrix product
state (MPS) with bond dimension χ can be mapped to
a quantum gauge network with bond dimension dχ2,
where d is the Hilbert space dimension at each site.
(d = 2 for qubits). Before explaining the mapping,
we first briefly review MPS canonical forms.

B.1 MPS Review
A matrix product state is an efficient representation
of a wavefunction, where the wavefunction amplitudes
are given by matrix products. [3, 4, 5] A MPS is

specified by a χMPS
i ×χMPS

i+1 rectangular matrix M
(si)
i

for each site i and local state |si⟩. Equivalently,
if si = 1, 2, . . . , di can take on di different states,
then each Mi can be viewed as a χMPS

i × di × χMPS
i+1

tensor. We restrict χMPS
1 = χMPS

n+1 = 1. The MPS
wavefunction for a chain of n sites is∣∣ΨMPS

〉
=

∑
s1s2···sn

tr
(
M

(s1)
1 M

(s2)
2 · · ·M (sn)

n

)∣∣s1s2 · · · sn

〉
=

(n=5)

M1 M2 M3 M4 M5

(41)

The second line shows a tensor network diagram for
n = 5 sites. The blue circles represent the tensors
Mi; lines between tensors denote contracted indices;
dangling lines denote uncontracted indices (the states
|si⟩ in this case); and we suppress the bond dimension
χMPS

1 = χMPS
n+1 = 1 lines that are traced out.

There is a gauge redundancyM
(si)
i → ΛiM

(si)
i Λ†

i+1
(with unitary Λi) between neighboring matrices that
does not affect the encoded wavefunction. This
redundancy is often used to compute a transformed
MPS in a canonical form [58, 3] centered at a specific
site i:∣∣ΨMPS

〉
=

∑
s1···sn

tr
(
L

(s1)
1 · · ·L(si−1)

i−1 C
(si)
i (42)

R
(si+1)
i+1 · · ·R(sn)

n

)∣∣s1 · · · sn

〉
(i=3)
=

(n=5)

L1 L2
C3 R4 R5

Li, Ci, and Ri are obtained from Mi using gauge
transformations such that the following identities are
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obeyed:

Li
*

Li

=
∑
si

L
(si)†
i L

(si)
i = 1

Ci

Ci
*

=
∑
si

tr
(
C

(si)†
i C

(si)
i

)
= 1

Ri
*

Ri

=
∑
si

R
(si)
i R

(si)†
i = 1

(43)

Thus, the Li and Ri tensors are isometries, which
pick out an orthonormal basis of states for the
orthogonality center Ci, which is normalized like a
wavefunction (but in a truncated Hilbert space). One
utility of the canonical form is that local expectation
values are easy to compute:

⟨ΨMPS|Âi|ΨMPS⟩ =
∑
sis′

i

tr
(
C

(si)†
i C

(s′
i)

i

)
⟨si|Âi|s′

i⟩

(44)
Âi is an operator that only acts on site i.

It is also possible to obtain multiple simultaneous
canonical forms, one for each i = 1, 2, . . . , n, while
sharing the same isometries (Li and Ri). These
shared isometries obey

L
(si)
i C

(si+1)
i+1 = C

(si)
i R

(si+1)
i+1

Li
Ci+1

=
Ci Ri+1

(45)
This simultaneous canonical form can be obtained by
sweeping across the MPS multiple times using SVD
decompositions or from the Vidal gauge [59]. The
resulting bond dimensions of the χMPS

i × di × χMPS
i+1

tensors obey χMPS
i ≤ diχ

MPS
i+1 and χMPS

i di ≥ χMPS
i+1 .

B.2 Quantum Gauge Network from MPS

We construct a quantum gauge network from an MPS
using the truncation maps Qi defined in Sec. 2.2,
which specify the truncated Hilbert space used by
the QGN for each patch. We choose Q†

i to map
the truncated Hilbert space of the MPS orthogonality

center Ci to the full Hilbert space:

Q†
i =

∑
s1···sn

∑
α,β

(
L

(s1)
1 · · ·L(si−1)

i−1

)
1,α

(46)

(
R

(si+1)
i+1 · · ·R(sn)

n

)
β,1

|s1 · · · sn⟩ ⟨αsiβ|

(i=3)
=

(n=5)
L1 L2 R4 R5

Thus, Q†
i is just the canonical MPS centered at i, but

with the orthogonality center Ci removed. Here, we
choose the spatial patches to consists of just a single
site, and we make no notational distinction between
capital (I, J,K) and lower case (i, j, k) spatial indices
letters.

Using Eq. (12) and the MPS canonical form identi-
ties [Eq. (43)], we find that the local wavefunctions are
equal to MPS orthogonality centers, while the connec-
tions are equal to tensor products of two MPS isome-
tries:

|ψi⟩ =
∑

α,si,β

(
C

(si)
i

)
α,β

|αsiβ⟩

= Ci

Vi,i+1 =
∑

α,si,α′

∑
β,si+1,β′

(
L

(si)
i

)
αα′

(
R

(si+1)
i+1

)∗
ββ′

|αsiβ⟩ ⟨α′si+1β
′| (47)

=
Li

Ri+1
*

We use the simultaneous canonical forms, which obey
Eq. (45) and guarantee that VIJ |ψJ⟩ = |ψI⟩ [Eq. (14)]
is satisfied.

The bond dimensions of the quantum gauge
network are therefore χi = χMPS

i diχ
MPS
i+1 . The

singular values of the χi × χi+1 matrix Vi,i+1 consist
of (χMPS

i+1 )2 ones, while the rest are zero. Thus,
these Vi,i+1 are partial isometry matrices [60], which
are matrices that obey V V †V = V (or equivalently
matrices whose singular values are either zero or one).

C QGN Examples
In this appendix, we discuss several examples of
quantum gauge networks.

C.1 Mixed State Example
As a simple example of a quantum gauge network,
below we construct a QGN for the following mixed
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state of n qubits:

ρ̂mix = 1
2 |↑1↑2 · · · ↑n⟩ ⟨↑1↑2 · · · ↑n|

+ 1
2 |↓1↓2 · · · ↓n⟩ ⟨↓1↓2 · · · ↓n|

(48)

In order to apply the truncation mapping [Eq. (12)],
we first find a purification of the density matrix:

|Ψmix⟩ = 1√
2 |↑0↑1↑2 · · · ↑n⟩

+ 1√
2 |↓0↓1↓2 · · · ↓n⟩

(49)

The wavefunction |Ψmix⟩ hosts an additional auxiliary
qubit with index I = 0. In this example, we
take the spatial patches to consist of a single qubit.
|Ψmix⟩ is a purification of ρ̂mix because tracing
out the I = 0 qubit yields the density matrix:
ρ̂mix = tr0 |Ψmix⟩ ⟨Ψmix|.
We follow Sec. 2.2 to derive truncation maps QI by

choosing the images im(Q†
I) to be carefully chosen

subspaces of states. To this end, we first note
that any operator is a linear combination of Pauli
strings, and the only Pauli strings with a nonzero
expectation value for the state ρ̂mix are products
of σ̂z

I σ̂
z
J operators. We will therefore ensure that

expectation values of products of σ̂z
I σ̂

z
J operators are

retained by the truncation. It turns out that this is
sufficient to exactly encode all correlation functions
for this example. Equation (29) thus implies that we
only need to include the action of a single σ̂z

I in the

image of Q†
I :

im(Q†
I) = span

{
|Ψmix⟩ , σ̂z

I |Ψmix⟩
}

= span
{

|↑0↑1 · · · ↑n⟩ , |↓0↓1 · · · ↓n⟩
} (50)

This image has dimension χI = 2. A natural gauge
choice for QI consistent with the above is:

QI = |↑⟩ ⟨↑0↑1↑2 · · · ↑n|
+ |↓⟩ ⟨↓0↓1↓2 · · · ↓n|

(51)

Equation (12) then yields the following QGN:

|ψI⟩ = 1√
2 |↑⟩ + 1√

2 |↓⟩

VIJ = |↑⟩ ⟨↑| + |↓⟩ ⟨↓|
(52)

with truncated operators [Eq. (13)]

σx
I = σy

I = 0
σz

I = |↑⟩ ⟨↑| − |↓⟩ ⟨↓|
(53)

This quantum gauge network exactly encodes all
expectation values of the original reduced density
matrix. For example,

⟨ψI |σµ
I |ψI⟩ = tr ρ̂mix σ̂µ

I = 0 (54)

⟨ψI |σµ
I VIJ σ

ν
J |ψJ⟩ = tr ρ̂mix σ̂µ

I σ̂
ν
J =

{
1 µ = ν = z

0 otherwise

C.1.1 Kronecker Product Operators

If we want to preserve the algebra of more of the
truncated operators, then we should include their
action in the images. For example, if we want to
preserve the on-site algebra of the truncated Pauli
operators, then we should instead choose:

im(Q†
I) = span

{
|Ψmix⟩ , σ̂x

I |Ψmix⟩ , σ̂y
I |Ψmix⟩ , σ̂z

I |Ψmix⟩
}

= span
{

|↑0↑1 · · · ↑n⟩ , σ̂x
I |↑0↑1 · · · ↑n⟩ ,

|↓0↓1 · · · ↓n⟩ , σ̂x
I |↓0↓1 · · · ↓n⟩

}
(55)

We can then pick the following truncation map:

QI = |↑0↑I⟩ ⟨↑0↑1↑2 · · · ↑n|
+ |↑0↓I⟩ ⟨↑0↑1↑2 · · · ↑n| σ̂x

I

+ |↓0↑I⟩ ⟨↓0↓1↓2 · · · ↓n| σ̂x
I

+ |↓0↓I⟩ ⟨↓0↓1↓2 · · · ↓n|

(56)

The resulting QGN follows from Eq. (12):

|ψI⟩ = 1√
2 |↑0↑I⟩ + 1√

2 |↓0↓I⟩

VIJ = |↑0↑I⟩ ⟨↑0↑J | + |↓0↓I⟩ ⟨↓0↓J |
(57)

Now the truncated Pauli operators are their natural
Kronecker products:

σx
I = 10 ⊗

(
|↑I⟩ ⟨↓I | + |↑I⟩ ⟨↓I |

)
σy

I = 10 ⊗
(

− i |↑I⟩ ⟨↓I | + i |↑I⟩ ⟨↓I |
)

σz
I = 10 ⊗

(
|↑I⟩ ⟨↑I | + |↓I⟩ ⟨↓I |

) (58)

where 10 = |↑0⟩ ⟨↑0| + |↓0⟩ ⟨↓0|. These truncated
operators obey their usual on-site algebra, e.g.
σx

Iσ
y
I = iσz

I .

C.2 Cat State Example
Encoding expectation values that act on many qubits
in more than one spatial dimension can be less
straight-forward. For example, consider the following
cat state

|Ψcat⟩ = 1√
2 |↑1↑2 · · · ↑n⟩

+ 1√
2 |↓1↓2 · · · ↓n⟩

(59)

The only Pauli string expectation value that can
distinguish |Ψcat⟩ from the mixed state ρ̂mix in
Eq. (48) is the highly-nonlocal product of Pauli σ̂x

operators on every qubit:

tr ρ̂mix
n∏

I=1
σ̂x

I = 0

〈
Ψcat

∣∣∣∣ n∏
I=1

σ̂x
I

∣∣∣∣Ψcat

〉
= 1

(60)

Any Pauli string that does not act on all qubits will
have an equal expectation value for ρ̂mix and |Ψcat⟩.

Now suppose that |Ψcat⟩ is a wavefunction for
a square lattice of qubits. A quantum gauge
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network for |Ψcat⟩ should reproduce the same nonlocal
expectation value:

⟨ψ1|σx
1V12σ

x
2 · · ·Vn−1,nσ

x
n|ψn⟩ = 1 (61)

where the sites 1, 2, . . . , n snake across the square
lattice, as depicted in Fig. 2a. However, one may want
other choices of paths [e.g. Fig. 2b or 2c] for this string
operator to also lead to the same expectation value.
This can be achieved by adding these additional
string operators to the procedure in Sec. 2.2 at the
cost of increasing the bond dimension. But if these
additional string operators are not included in the
QGN construction, then the expectation value of
these excluded strings will not be encoded correctly.
This example demonstrates the issue that a quantum
gauge network can seem to encode different values for
the same nonlocal expectation value depending on the
path chosen.

C.3 Bosonic Coherent States
The normal ordered expectation values of bosonic
coherent states can be encoded within a quantum
gauge network in a rather trivial way. A bosonic
coherent state is specified by complex numbers Θi and
takes the following form:

|Θ⟩ = exp
(∑

i

Θib̂
†
i

)
|0⟩ (62)

b̂i is a boson annihilation operator, which satisfies the
commutation relations [b̂i, b̂j ] = 0 and [b̂i, b̂

†
j ] = δij ,

and |0⟩ is the vacuum state with no bosons: b̂i |0⟩ = 0.
The coherent state is an eigenstate of the

annihilation operators: b̂i |Θ⟩ = Θi |Θ⟩. Therefore,
if we only want the QGN to encode normal ordered
expectation values, then Eq. (31) implies that the

images of Q†
I only need to contain one state: |Θ⟩.

We thus obtain a QGN with trivial bond dimensions
χI = 1 via the truncation map QI = |0̃⟩ ⟨Θ|. Here, |0̃⟩
labels a state in a Hilbert space of dimension 1. With
this truncation mapping, the local wavefunctions are
|ψI⟩ = |0̃⟩, and the connections are VIJ = |0̃⟩ ⟨0̃| = 1.
The truncated [Eq. (13)] annihilation operator at a
site i in patch I is simply

bi∈I = QI b̂iQ
†
I = Θi (63)

This QGN encodes all normal ordered expectation
values exactly, e.g.〈

Θ
∣∣b̂†

i b̂j

∣∣Θ〉
=

〈
ψI

∣∣b†
i∈IVIJbj∈J

∣∣ψJ

〉
(64)

= Θ∗
i Θj〈

Θ
∣∣b̂†

i b̂
†
j b̂k b̂l

∣∣Θ〉
=

〈
ψI

∣∣b†
i∈IVIJb

†
j∈JVJKbk∈KVKLbl∈L

∣∣ψL

〉
= Θ∗

i Θ∗
j ΘkΘl

However, expectation values of operators that are
not normal ordered are not encoded correctly by this

QGN. For example, ⟨ψI |bi∈IVIJb
†
j∈J |ψJ⟩ = Θ∗

i Θj

while ⟨Θ|b̂ib̂
†
j |Θ⟩ = δij + Θ∗

i Θj . These additional
expectation values could be encoded exactly by
adding additional states to the images im(Q†

I), as
outlined in Sec. 2.2.3.

C.4 Fermion Slater Determinants
We can analytically construct a quantum gauge
network that exactly encodes all normal-ordered two-
fermion correlation functions ⟨ĉ†

i ĉj⟩ for a fermionic
Slater wavefunction. If there are nf filled states,
we can construct a QGN with bond dimension
χI = 1 + nf. This is more efficient than the 1 + M
upper bound in Eq. (32), where M = n is the number
of operators whose correlation functions we wish to
encode; here we consider all fermion annihilation
operators ĉi with i = 1, . . . , n.
A Slater determinant wavefunction can be ex-

pressed as

|Φ⟩ =
nf∏

α=1

n∑
i=1

Φαi ĉ
†
i |0⟩ (65)

using second-quantized Fock states. i = 1, . . . , n
indexes the n different single-particle states. ĉi

is a fermion annihilation operator, which satisfies
the anticommutation relations {ĉi, ĉj} = 0 and

{ĉi, ĉ
†
j} = δij . We fill K many fermion orbitals, which

are index by α and encoded by the matrix elements
Φαi. The orbitals are assumed to be orthonormalized:
Φ · Φ† = 1. The inner product of two Slater
determinant wavefunctions is ⟨Φ|Φ′⟩ = det(Φ′ · Φ†).
The action of an annihilation operator on a Slater

determinant wavefunctions is

ĉi |Φ⟩ =
K∑

α=1
(−1)α−1Φαi |Φ−

α ⟩ (66)

We define

|Φ−
α ⟩ =

∏
α′ ̸=α

∑
i

Φα′iĉ
†
i |0⟩ (67)

to be the Slater determinant wavefunction where we
do not fill orbital α, but the other nf − 1 orbitals are
still filled.
Equation (29) implies that the images of Q†

I only
need to contain the states |Φ⟩ and |Φ−

α ⟩. Let |ϕ⟩ and
|ϕ−

α ⟩ label a basis of 1 + nf states for the local QGN
Hilbert spaces. Then we can choose truncation maps

QI = |ϕ⟩ ⟨Φ| +
nf∑

α=1
|ϕ−

α ⟩ ⟨Φ−
α | (68)

With this choice, the local wavefunctions are
|ψI⟩ = QI |Φ⟩ = |ϕ⟩, and the connections are

VIJ = QIQ
†
J = 1. The truncated fermion operators

follow from Eq. (66):

ci∈I = QI ĉiQ
†
I =

K∑
α=1

(−1)α−1Φαi |ϕ−
α ⟩ ⟨ϕ| (69)
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This QGN exactly encodes all normal-ordered two-
fermion correlation functions:

⟨Φ|ĉ†
i ĉj |Φ⟩ = ⟨ψI |c†

i∈IVIK1VK1K2 · · ·VKlJcj∈J |ψJ⟩
= (Φ† · Φ)ij

(70)
where VIK1VK1K2 · · ·VKlJ is any string of connections
that connect patches I and J .

Above, we only worked out analytical expressions
for a QGN that exactly encodes two-fermion
correlation functions. But higher-point correlation
functions are not encoded correctly. For example,
⟨Φ|ĉ†

i ĉ
†
j ĉk ĉl|Φ⟩ is not reproduced by the QNG because

⟨ψI |c†
i∈IVIJc

†
j∈JVJKck∈KVKLcl∈L|ψL⟩ = 0 since

states with two fermions annihilated from |Ψ⟩ are
not included in the truncation. However, analytical
expressions for a QNG that encodes many-fermion
correlation functions should also be possible.

The above QGN is rather trivial in the sense that
the connections VIJ are all identity matrices. This is
because we did not take advantage of spatial locality.
If many of the fermion orbitals are spatially local, we
expect that an approximate QGN encoding can be
achieved with significantly smaller bond dimensions
and non-identity VIJ .

C.5 Rainbow State

In Sec. 2.2.3, we showed that all 2k-point correlation
functions of M many operators can be encoded
exactly by a QGN with bond dimension O(Mk). This
is significantly more efficient than a matrix product
state (MPS), which can require bond dimension
χMPS = 2n/2 to encode all two-point correlation
functions of certain states with n qubits, e.g. the
rainbow state. In the n-qubit rainbow state, pairs of
qubits i and n + 1 − i are maximally entangled in
a Bell state. The two-point correlation functions of
the rainbow state are ⟨σ̂µ

i σ̂
ν
j ⟩ = −δµνδn+1−i,j . δµν

denotes the Kronecker delta function. The rainbow
state is the unique state with these correlation
functions. Therefore, in order for an MPS to encode
these 2-point correlation functions, the MPS must
encode the rainbow state. Encoding the rainbow state
requires MPS bond dimension χMPS = 2n/2 = 2M/6,
where M = 3n is the number of Pauli operators σ̂µ

i

for n qubits.

However, a matrix product operator (MPO) with
bond dimension χMPO = 1 + M/2 is sufficient
to encode the 2-point correlation functions of the
rainbow state by encoding the (unphysical) density

matrix ρ̂ = 2−n
[
1̂ −

∑n/2
i=1

∑
µ=x,y,z σ̂

µ
i σ̂

µ
n+1−i

]
. This

density matrix is unphysical because it has negative
eigenvalues. (A QGN bond dimension of χ = 1+M/2
would also be sufficient for this example if we
restrict the allowed operator strings to never change
direction.)

D Energy Conservation
Below, we prove that the QGN equations of motion
[Eq. (33)] preserve the energy expectation value
[Eq. (35)] exactly when the local Hamiltonian terms
ĤI are time-independent and each supported on a
single spatial patch [as in Eqs. (1) and (34)].

∂t

∑
I

⟨ψI |HI |ψI⟩

=
∑

I

i ⟨ψI |[H ′
I , HI ]|ψI⟩

=
I∩J ̸=∅∑

IJ

i ⟨ψI |[VIJHJVJI , HI ]|ψI⟩ (71)

=
I∩J ̸=∅∑

IJ

i

2 ⟨ψI |[VIJHJVJI , HI ]|ψI⟩

+ i

2 ⟨ψJ |[VJIHIVIJ , HJ ]|ψJ⟩

=
I∩J ̸=∅∑

IJ

i

2 ⟨ψI |[VIJHJVJI , HI ] + [HI , VIJHJVJI ]|ψI⟩

= 0

The first three equalities respectively follow from
Eq. (33) for ∂t |ψI⟩; Eq. (34) forH ′

I ; and symmetrizing

the sum over I ↔ J .
∑I∩J ̸=∅

IJ denotes the sum over
all patches I and J that have nonzero overlap. The
final equality follows from the antisymmetry of the
commutator. The second to last equality follows from:

⟨ψJ |[VJIHIVIJ , HJ ]|ψJ⟩
= ⟨ψJ |VJIHIVIJHJ −HJVJIHIVIJ |ψJ⟩
= ⟨ψI |HIVIJHJVJI − VIJHJVJIHI |ψI⟩
= ⟨ψI |[HI , VIJHJVJI ]|ψI⟩

(72)

which follows from VIJ |ψJ⟩ = |ψI⟩ [Eq. (14)].

E Ising Model Quench
In this appendix, we benchmark the quantum gauge
network by studying the dynamics following a quench
to a near-critical Ising model. We start form the
initial state |Ψ(0)⟩ = ⊗i |→i⟩ where all ⟨σx

i ⟩ = 1, and
then we time evolve with a near-critical transverse
field Ising Hamiltonian

ĤIsing = −
∑
⟨ij⟩

σ̂z
i σ̂

z
j − h

∑
i

σ̂x
i (73)

with h = 3 on a two-dimensional 4 × 4 square
lattice with periodic boundary conditions. (The
critical point is at hc ≈ 3.045 [61].) This
system size is chosen so that we can compare to
exact methods that calculate the full wavefunction
|Ψ(t)⟩ = e−iĤIsingt |Ψ(0)⟩.
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In order to make use of Eqs. (1) and (34), we define
the Hamiltonian ĤI on each spatial patch to be

ĤIsing
I=⟨ij⟩ = −σ̂z

i σ̂
z
j − 1

4h (σ̂x
i + σ̂x

j ) (74)

We take each spatial patch I to be a pair of nearest-
neighbor sites ⟨ij⟩. Note that in the sum Ĥ =

∑
I ĤI

from Eq. (1), each site is summed over four times on
a square lattice; thus we require the above 1

4 factor in
front of h.

We initialize the QGN using truncation maps
(as described in Sec. 2.1), which are chosen using
a method similar to the one described in Sec. 3.1.
However in this spin model, we do not have a
conserved charge. Therefore, we modify step 2 of the
method in Sec. 2.1 [paragraph below Eq. (38)] to the
following: (2) For each patch I, we add states to the

image of Q†
I that can be obtained from the current

image of Q†
I by acting with Pauli operators within

the patch I.
The truncation at each patch I only retains states

consisting of a span of eigenstates of the σ̂x
i operators.

With a natural gauge choice for the truncation maps,
the truncated Pauli operators take the form of a
Kronecker product:

σµ
i∈I = QI σ̂

µ
i Q

†
I = 1 ⊗ σµ (75)

σµ
i∈I is the truncated [Eq. (13)] Pauli operator at site
i for patch I, and σµ is a 2 × 2 Pauli matrix.

In Fig. 7, we show QGN simulation data for Pauli
expectation values ⟨σ̂µ

i (t)⟩ and compare to the exact
values. We see that the simulation errors expectation
value decrease as we increase the bond dimension.
In the QGN, the expectation values are estimated

as

⟨σ̂µ
i ⟩QGN =

mean∑
I∋i

⟨ψI |σµ
i∈I |ψI⟩ (76)

where
∑mean

I∋i averages over all patches I that
contain the site i. In this example, ⟨ψI |σµ

i∈I |ψI⟩
is equal for all patches I that contain site i due
to spatial symmetries. However in other models
with less symmetry, simulation errors can make these
expectation values differ for different patches.
If we were to integrate the equations of motion

exactly, then the energy expectation value [Eq. (35)]
would be conserved exactly. Since exact integration
is not practical, we use a modified RK4 Runge-Kutta
method for integration with time step δt = 0.02. Due
to this approximation, the energy per site changed
by 5 × 10−4 and 1 × 10−4 for the χ = 88 and 2028
simulations, respectively. See AppendixF for more
details.

F Modified Runge-Kutta
We use a modified RK4 Runge-Kutta method to
integrate the differential equations. RK4 is a forth-
order Runge-Kutta method that results in an O(δ4

t )

0.2 0.4 0.6 0.8 1.0
t

0.7

0.8

0.9

1.0
〈σ

i
x
〉 exact

χ = 88 (0.08 hr)

χ = 212 (0.4 hr)

χ = 476 (3 hr)

χ = 1008 (19 hr)

χ = 2028 (139 hr)

(a)

0.1 0.2 0.3 0.4 0.5
t

-0.004
-0.003
-0.002
-0.001
0.000
0.001
0.002
〈σi

x〉QGN-〈σ

i
x
〉

(b)

Figure 7: Simulation data for the time dynamics of the
near-critical transverse field Ising Hamiltonian (73) on a
periodic 4×4 square lattice following a quench from the state
|Ψ(0)⟩ = ⊗i |→i⟩. (a) The quantum gauge network (QGN)
approximation for ⟨σx

i ⟩ vs time t for different bond dimensions
χ (colored lines) vs the exact value (black line). The legend
also shows the number of CPU core hours used for each
simulation. Due to symmetry, the ⟨σy

i ⟩ and ⟨σz
i⟩ expectation

values (not shown) are exactly zero for all time for both the
QGN and the exact value. (b) The error ⟨σx

i ⟩QGN − ⟨σx
i ⟩exact

of the QGN approximation to ⟨σx
i ⟩. The error stays small for

longer times as we increase the bond dimension χ.
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error at time t ∼ 1, where δt is the time step size.
However, the straight-forward application of Runge-
Kutta will not preserve VIJ |ψJ⟩ = |ψI⟩ [Eq. (14)]
exactly; it will only be preserved up to O(δ4

t ) error.
In this work, we chose to modify the Runge-Kutta
method slightly such that VIJ |ψJ⟩ = |ψI⟩ is preserved
exactly (i.e. up to floating point precision). We
end up making an additional approximation that
increases the simulation error to O(δ3

t ) (which we were
satisfied with). It would be useful to improve the
approximation such that O(δ4

t ) and smaller errors can
be achieved while maintaining VIJ |ψJ⟩ = |ψI⟩.

Instead of integrating ∂t |ψI⟩ and ∂tVIJ directly
at each time step, we use a modified Runge-Kutta
method to obtain estimates for the unitary evolution

URK
I (t+ δt, t) = e−iδtGRK

I (t) (77)

We then update the QGN from time t to t + δt as
follows:

|ψI(t+ δt)⟩ = URK
I (t+ δt, t) |ψI(t)⟩

VIJ(t+ δt) = URK
I (t+ δt, t)VIJ(t)URK

J (t+ δt, t)†

(78)
We obtain

GRK
I (t) =

s∑
k=1

bkG̃
(k)
I (t) (79)

using the Runge-Kutta coefficients bk, where s is the
number of Runge-Kutta stages. s = 4 for RK4.

In order to calculate G̃
(k)
I (t), we first recursively

define G
(k)
I (tk) (without the tilde) as5

G
(k)
I (tk) =

J∩I ̸=∅∑
J

V
(k)

IJ (tk)HJ(tk)V (k)
JI (tk) (80)

where tk = t+ ckδt and

V
(k)

IJ (tk) = Ũ
(k)
I (tk, t)VIJ(t)Ũ (k)

J (tk, t)† (81)

Ũ
(k)
I (tk, t) = e−i

∑k−1
l=1

aklδtG̃
(l)
I

(t) (82)

akl and ck are additional Runge-Kutta coefficients.

For k = 1, c1 = 0 so that t1 = t, and V
(1)

IJ (t1) = VIJ(t)
and G̃

(1)
I = G

(1)
I = H ′

I from Eq. (34) at time t. We

find that choosing G̃
(l)
I (t) = G

(l)
I (tl) results in O(δ2

t )
simulation errors after time t ∼ 1 using the RK4
coefficients. We instead use

G̃
(l)
I (t) = 1

2 Ũ
(l)
I (tl, t)†G

(l)
I (tl)Ũ (l)

I (tl, t)

+ 1
2G

(l)
I (tl) (83)

for which we observe an O(δ3
t ) simulation error after

5Equivalently, the right-hand-side of Eq. (80) is H′
I from

Eq. (34) at time tk evaluated using the QGN that is updated
from time t to tk by Ũ

(k)
I (tk, t).

time t ∼ 1. For RK4, the tableau of coefficients is

c1
c2 a21
c3 a31 a32
c4 a41 a42 a43

b1 b2 b3 b4

=

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
(84)
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