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Wound infections are a major problem worldwide, both for the healthcare system
and for patients affected. Currently available diagnostic methods to determine the
responsible germs are time-consuming and costly. Wound infections are mostly
caused by various bacteria, which in turn produce volatile organic compounds.
From clinical experience, we know that depending on the bacteria involved, a
specific odor impression can be expected. For this reason, we hypothesized that
electronic noses, i.e., non-invasive electronic sensors for the detection of volatile
organic compounds, are applicable for diagnostic purposes. By providing a
comprehensive overview of the state-of-research, we tested our hypothesis. In
particular, we addressed three overarching questions: 1) which sensor
technologies are suitable for the diagnosis of wound infections and why? 2)
howmust the (biological) sample be prepared and presented to themeasurement
system? 3) which machine learning methods and algorithms have already proven
successful for the classification of microorganisms? The corresponding articles
have critically been reviewed and are discussed particularly in the context of their
potential for clinical diagnostics. In summary, it can already be stated today that
the use of electronic noses for the detection of bacteria in wound infections is a
very interesting, fast and non-invasive method. However, reliable clinical studies
are still missing and further research is necessary.
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1 Introduction

Wounds, and chronic wounds in particular, represent a steadily increasing challenge for
patients and for healthcare systems worldwide. One of the main reasons is the increasing life
expectancy of the population. As the incidence of chronic wounds increases with age, body
weight, and comorbidities, the number of affected individuals is expected to continue to rise
(Weber and Deinsberger, 2022). It is estimated that 2%–3% of the adult population currently
suffers from a chronic wound (Sen, 2021). For example, in Germany it is assumed that
approximately 11.5% of people cared for by outpatient nursing services and approximately
7.8% of people cared for in nursing homes suffer from chronic wounds (Raeder et al., 2019).
The most common manifestations of chronic wounds are venous leg ulcers, diabetic foot
ulcers and pressure ulcers. It is estimated that the financial expenditure of the healthcare
system for these patients in Germany amounts to at least five billion euros per year (Horch
et al., 2008). In addition to the problems and costs caused by the wound itself, there may be
other complications associated with patients with wounds. Here, wound infections are a
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typical and also feared problem that can develop into sepsis and thus
a potentially life-threatening situation (Cecconi et al., 2018;
Dissemond, 2023). So it becomes clear that wound infections are
a multidisciplinary relevant problem that should be diagnosed and
adequately treated as soon as possible.

If wound healing is interrupted and the wound tissue is damaged
by the multiplication of microorganisms evoking a response from
the host, a wound can be considered as clinically infected
(International Wound Infection Institute, 2022). E. coli, P.
aeruginosa and S. aureus are three common bacteria species
associated with clinically infected wounds (Tian et al., 2009;
Bessa et al., 2015; Maddocks, 2017). To provide a bacteria-
specific medical treatment, culture-based and molecular-based
methods from swabs are commonly used for diagnosis. These
state-of-the-art techniques are, however, in terms of culture-
based methods not generally error-free and overall quite time-
consuming and costly (Ashrafi et al., 2017; Xu et al., 2020; Li
et al., 2021).

Current literature reveals that bacteria produce specific
volatile organic compounds (VOCs) (Bos et al., 2013; Wang
et al., 2016). This is why besides gas chromatography mass
spectrometers and ion mobility spectrometers, so called
electronic noses (e-noses) could become valuable instruments
for noninvasive bacteria detection (Daulton et al., 2020). E-nose
systems generally consist of an array of sensors, each sensitive to
multiple volatiles, a sample collection chamber for fresh air and
for the headspace of the specimen, a transducer and the software
unit for pattern recognition and further statistical analyses
(Wilson, 2016; Saggio, 2020). Such instruments have been
used to identify bacteria or to diagnose different diseases by,
for example, analyzing and discriminating between the different
VOC profiles of human breath (Bos et al., 2013; Wilson, 2016;
Dragonieri et al., 2017). Despite their theoretical applicability,
e-noses have not yet been widely implemented in clinical
practice. However, a suitable device being able to detect
bacteria in wound infections in an early stage could initiate an
optimal treatment (Benjamens et al., 2020). As a result,
worsening of the infection or favoring of antimicrobial
resistances could be avoided (Daulton et al., 2020).

Therefore, with our review we aim to address the challenges
and advancements in the use of e-noses to support wound
infection diagnosis. We consider it from the a)
microbiological, b) technical and c) software point of view.
For this purpose, we a) relate the sample characteristics and
sampling methods to their impact on the results, b) present and
discuss the available e-nose sensor types with regard their
suitability for the detection of bacteria in wounds, and c)
present algorithms and machine learning (ML) methods
already been used for improving the performance of the
e-nose system in context of infection detection. We will
continue to illustrate why there is not just one best technology
and multiple solutions to this problem can be purposeful. Based
on these aspects, existing challenges and missing steps will be
investigated.

Altogether, we aim to provide an overview of this topic including
the current progress, restrictions and giving an indication for
working with these e-nose systems for bacteria detection in
wound infections in clinical practice.

2 Literature search strategy

A literature search was performed via four different searching
engines and databases, respectively (i.e., Google Scholar, PubMed,
IEEE Xplore and Springer Link). At the beginning of the literature
search, various combinations of the words electronic nose, e-nose,
wound infection, wound, and chronic woundwere searched for in the
search engines and databases. It turned out that the perspective
could be divided into three areas. Based on this knowledge, the
search was thus split up and we searched for the areas algorithms,
sensor technologies and samples. To do this, the words electronic
nose, e-nose, algorithms, feature extraction, and machine learning
were combined to bring out the current status of data processing.
The search for sensor technologies was done by combining electronic
nose, e-nose, sensor technologies, and sensor types. Then, the sample
was regarded in more detail by searching for electronic nose, e-nose,
bacteria, wound, volatiles, and infection. Mostly new publications
were selected (newer than 2014) so that the current state-of-research
is considered. However, if publications were older but still
represented important foundations or findings, they have also
been included. In general, publications were pre-selected by the
title or abstract, followed by a verification, if the detection and
classification of wound infections or bacteria with an e-nose
(independent of the sensor type or bacteria species) was focused.
The articles describing specific projects were included, if an e-nose
was used to classify bacteria or wound infections, or if a review
provided an overview of volatiles from bacteria and wounds. If a
publication was mainly focused on improving the results of a
previous project of the same group (e.g., by changing the
algorithm), the recent publication was included. Additional
publications were then found by using specific search terms and
analyzing the literature listed in the references. It is possible that not
all previously published papers were considered. Nevertheless, from
our perspective, a comprehensive picture has emerged through this
search. The aim of the literature review was therefore to get an
overview of the current status of the development of a system for the
early detection of wound infections. Furthermore, publications are
to be presented that allow an entry point into this topic. Further, we
aimed to learn about critical issues related to the work with e-noses.
To achieve this, we paid special attention to the restrictions of the
respective projects. Additionally, example projects were analyzed
regarding the performance they reached and simplicity of the
sampling methods.

3 Discussion

3.1 Microbial VOCs as biomarkers for a
wound infection

There are three main sources for the production of VOCs
associated with a wound: 1) infections, 2) dead tissue and 3)
exudate (Samala and Davis, 2015). Thus, VOCs additionally
reflect the host response to infections (Saviauk et al., 2018).
Volatiles emitted from the skin are, however, diverse and affected
by external factors, such as diet or use of fragranced products (e.g.,
sanitary and cosmetic products) (Ashrafi et al., 2017). Additionally,
risk reducing measures like peri- and post-operative antimicrobial
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administration and surgical skin preparation alter the wound
microbiome and thus the VOC profile (Ashrafi et al., 2017).
Depending on the part of the body, as the location of infected
tissues, the body can cause changes in bacterial metabolism and
further, different species are found on the skin (Maddocks, 2017;
Ratiu et al., 2020). It has further been shown that samples from
different areas and sites of lesions present different VOCmetabolites
(Daneshkhah et al., 2020). There are differences between volatiles at
the wound periphery and volatiles found in the center of the wound
(colonized-but-healing and clinically infected areas) (Reeves et al.,
2022). Also compressed and non-compressed skin have been shown
to emit different volatility profiles (Daulton et al., 2020). Further,
acetone and isoprene—VOCs known to be produced by bacteria but
also dependend on the fluctuation of plasma glucose levels—are not
applicable as wound infection biomarkers in patients with diabetes
(Daneshkhah et al., 2020). Furthermore, necrotic tissue itself was
shown to be another source of sore-related volatiles (Samala and
Davis, 2015).

These facts in combination highlight that real wound conditions
should be considered to assess the applicability of e-noses as wound
infection diagnosis support. Specific volatiles produced by
characteristic bacteria need to be identified to allow for
monitoring the wound healing process and the step from
colonization to an infection. Thus, to get sound results with
e-nose systems, knowledge about characteristics of the
(biological) sample, its preparation and presentation to a
measurement system is essential.

3.1.1 Target bacteria, VOCs and biofilms
Three bacteria species commonly present in infected wounds

are E. coli, P. aeruginosa and S. aureus (Tian et al., 2009; Bessa
et al., 2015; Maddocks, 2017). For example, Bessa et al. (Bessa
et al., 2015) quantified wounds infected by S. aureus with 37%, by
P. aeruginosa with 17% and by E. coli with 6%. Other mentioned
bacteria species are S. epidermis, S. pyogenes, E. faecalis and A.
baumannii (Tian et al., 2009; Ashrafi et al., 2017). Those and
other bacteria species are associated with a variety of VOCs
(Daulton et al., 2020), rather than with specific ones. Typically
related VOCs, comprising shared and unique volatile
metabolites of aforementioned common wound bacteria, can
be found in (Ashrafi et al., 2017; Palma et al., 2018). Knowledge
about the volatile smellprint of pathogen bacteria (Palma et al.,
2018; Daulton et al., 2020) could thus be useful for their
identification.

It was shown in (Palma et al., 2018) that it is possible to achieve
an accuracy of 77% in identifying eleven different bacterial species
using 18 VOCs. At the same time, for each bacterium there exists a
set of VOCs suitable to predict the presence of the bacterium with a
high accuracy of more than 90% (Palma et al., 2018).

Once multiple bacterial species are present, identifying
microorganisms based on the corresponding VOCs becomes
complex. However, it is nowadays known that especially chronic
wounds harbor diverse bacterial populations (Dowd et al., 2008).
Related to this fact, Bessa et al. found infections caused by two or
more species, so called poly-microbial infections, in about 27% of the
studied wounds (Bessa et al., 2015). Nevertheless, a decrease in
microbial diversity has been associated with a worsening prognosis
(Maddocks, 2017). The most common pathogen combination

identified in such poly-microbial infections was based on S.
aureus and P. aeruginosa—which together can cause biofilms
(Serra et al., 2015). Those complex colonies of bacterial
populations embedded in a protective extracellular polymeric
substance (Gajula et al., 2020) can in turn lead to delayed wound
healing. Further, presence of biofilms commonly results in failure of
conventional pathogen identification methods (Ashrafi et al., 2017;
Gajula et al., 2020; Xu et al., 2020), also for the most commonly
applied method, the swab culture. As it has been reported that such
biofilms are present in up to 80% of all chronic wounds, and in about
65% of all microbial infections (Perry et al., 2010; Ashrafi et al., 2017;
He et al., 2017; Jamal et al., 2018; Mendoza et al., 2019), their impact
on a correct pathogen diagnosis is high. It is thus promising that
biofilms could be distinguished by e-noses (Thaler et al., 2008).
However, in vivo biofilms show significant differences from biofilm
formations in in vitro pure-culture systems (Xu et al., 2020). While
the presence of different species and biofilms alter the VOC-
fingerprints, volatile patterns of different strains of a single
species are comparable (Kunze et al., 2013). This allows to
transferring identified VOC-fingerprints to learn for other strains
of the species (Kunze et al., 2013). It was further found that also the
composition of the produced volatiles stays constant during the
exponential growth of the microorganisms although the emission of
volatiles increases with the number of colony-forming units (CFU)
(Reidt et al., 2020). It should critically be noted here that not all
studies distinguished precisely between colonization and wound
infection.

3.1.2 Labelling of wound specimens
The mere presence of microorganisms is not mandatorily

accompanied with an infection as also non-infected wounds
contain microorganisms. But although some bacteria are known
to increase the risk of getting an infection and some species can
induce diseases at lower concentrations than other types
(International Wound Infection Institute, 2022) concrete
biomarkers for early wound infection detection are hardly
available. Therefore, the diagnoses of healthcare professionals are
usually based on the clinical assessment and on the basis on their
experience (Thet et al., 2020).

To implement such experience in approaches combining
instrumental data and supervised learning methods samples
requires proper labelling (Karakaya et al., 2020). Then it can
be decided, whether the results actually influence the treatment
or the clinical setting. For example, patients with multidrug-
resistant pathogens, such as methicillin-resistant S. aureus
(MRSA) must be treated in isolation, even if no relevant
infection is present. In particular, it has to be defined, whether
an infection should be detected in general or if the bacteria
species should be identified. For both cases, the given label
depends on the results of the reference method, which can be
of microbiological nature or a diagnosis of a clinician. But
particularly results obtained from swab cultures were in this
regard found to be misleading (Daulton et al., 2020). This can be
due to the fact that those culture-based methods are susceptible
to overestimating skin commensals, which could cause incorrect
causative pathogen identification (Ashrafi et al., 2017). Incorrect
labelling can also be due to biofilms. Those cannot be detected
without errors by culturing methods.
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For this case, other reference methods as those mentioned before
might be beneficial to get the best estimation of the infection status.
In literature, bright-field microscopy and scanning electron
microscopy have for instance been used to detect biofilms on
wounds (Li et al., 2021). Besides, a wound infection detection
system combining Field Asymmetric Ion Mobility Spectrometry
with a particular algorithm outperformed conventional methods by
detecting E. coli wound infections with a recognition rate of >96%
(Sun et al., 2019).

3.1.3 The sample carrier and preparation
Researchers typically analyze volatiles produced by bacteria

grown in culture media (in vitro). This procedure allows
targeting isolated bacterial VOCs, but neglects volatiles produced
by e.g., changes in tissue. Further, in vitro VOCs will differ from
those of bacteria in vivo due to different environmental factors and
related to a more complex and varied growing regime (Daneshkhah
et al., 2020; Ratiu et al., 2020). However, the choice of the growing
regime in vitro also has an influence on the bacteria to be detected.
For example, anaerobic bacteria are usually not detected in the
cultures (Kramer et al., 2018).

If still a prediction model is trained with in vitro data, its
performance drops when used for in vivo analysis. This could be
due to the use of unsuitable sample carriers (Liang et al., 2018). So
media or broths are no ideal models for a wound in clinical

practice (Ashrafi et al., 2017), as standard growth media are
highly dissimilar to the human body environment (Ratiu et al.,
2020). Applying samples from real wounds should thus be more
appropriate. Such an approach was presented by (Thuleau et al.,
2018), who investigated biological wound samples and
corresponding wound dressings obtained from patients with
breast cancer. Headspace solid-phase micro extraction was
used to collect VOCs from the headspace of the dressings
(Thuleau et al., 2018), to provide sample carrier identical to
prevailing conditions in clinical practice. In this study, five
volatile compounds were identified in both, bacterial cultures
and the headspace of 40% of the wound dressings (Thuleau et al.,
2018). The VOCs were analyzed using gas chromatography
separation coupled with a mass spectrometer. It can be noted
that few publications currently study real infected human wound
as a sample. One example of a pioneering study that analyzed
data from real wounds in 80 patients to identify actual wound
infections (Haalboom et al., 2019). Two swabs were thereby taken
from one wound, whereof one was evaluated by conventional
microbiology culture essay and one swab was evaluated by an
e-nose analysis (Haalboom et al., 2019). The three sample
preparation methods mentioned above are shown in Figure 1.
Furthermore, Table 1 lists which microorganisms and sample
carriers were included in which projects considered in this review
article.

FIGURE 1
By different ways of sampling (A–C), the volatile substances of the bacteria species within the wound can be picked up with the electronic nose. The
wound can be measured directly (A), a swab can be taken from the wound (B) or the bacteria from the wound can be cultured (C).
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TABLE 1 Summary of published projects dealing with electronic noses in the field of wound infection detection and bacteria classification.

E-nose technology Bacteria species/
microorganisms

Sample
carrier

Algorithms Results References

30 MOS sensors (Lab made) P. aeruginosa, S. aureus and E. coli Bacterial
culture

SVM Accuracy after optimization
using Wilks’ Λ-statistic or
LDA: 96.15% Reduction to

20 sensors

Sun et al.
(2017)

20 MOS sensors P. aeruginosa, E. coli and S. aureus Rat wounds RBF classifier. Optimization
based on QPSO

Accuracy after optimization:
97.50% (6 sensors)

(Yan et al.,
2016)*

MOS sensors (Lab made) Beef quality monitoring Beef Noise filtering framework
integrated in: KNN, SVM,

QDA, ANN, Adaptive Neuro
Fuzzy Inference System

(ANFIS)

Improved performance in
classification and regression

tasks

Wijaya et al.
(2019)

14 MOS sensors (Lab made) P. aeruginosa, E. coli, S. aureus Rat wounds KNN and SVM for
classification. Improved pre-
processing technique (SLPP)
Data pre-processed with

SLPP, PCA, Fisher
discriminant analysis

SVM in combination with
SLPP outperformed other

methods Accuracy of 98.75%
Dimensionality reduced to 7

(Jia et al.,
2016)*

MOS sensors (Aetholab) – Swabs from
human
wounds

ANN Classification - infected/non-
infected -Results were
dependent on reference
method (microbiological

culture or clinician). Sensitivity
of up to 91% and specificity of

up to 71%

Haalboom et al.
(2019)

10 MOS sensors B. subtilis and S. warneri, and two
fungi

Bacterial
culture

PCA for data visualization
PLSDA for classification

Bacteria strains formed two
autonomous clusters in PCA

plot

Reidt et al.
(2020)

14 MOS sensors (Lab made) P. aeruginosa, E. coli, S. aureus Rat wounds Self-taught learning algorithm
PLSDA, RBF and RBM as
classifier were improved

Improved performance of
classifier by different methods

(e.g., QPSO)

(He et al.,
2017)*

MOS and Electrochemical
30 sensors (Lab made)

E. coli, S. aureus, P. aeruginosa Bacterial
culture

SVM for classification. New
method “CIRIS” for

interference suppression

Improved performance due to
suppressed interferences

(Liang et al.,
2017)*

MOS and electrochemical
31 sensors (Lab made)

A. baumannii, E. coli, S. aureus P.
aeruginosa, E. cloaca

Bacterial
culture Rat
wounds

New method “SIAS” for
interference suppression
ELM, SVM and other
improved methods for

classification

Greatly improved results
Interference caused by transfer

to a different carrier was
suppressed

(Liang et al.,
2019)*

14 MOS sensors and one
electrochemical sensor
(Lab made)

P. aeruginosa, E. coli, S. aureus Rat wounds SVM as classifier
Optimization based on QPSO

Improved feature extraction
method. Highest
accuracy: 97.5%

(Guo et al.,
2015)*

MOS and electrochemical
(Lab made)

P. aeruginosa, E. coli, S. aureus Rat wounds RBM QPSO QPSO-RBM outperformed
other classifiers

(Luo et al.,
2018)*

10 MOS and 12 MOSFET
(Lab made)

E. coli, P. aeruginosa, S. aureus, K.
oxytoca, P. mirabilis, E. faecalis, S.

lugdunensis, P. multocida, S.
pyogenes, H.6 influenzae

Bacterial
culture

SVM as classifier. LDA for
dimensionality reduction

Accurate discrimination of
bacteria

Trincavelli
et al. (2010)

IMS, MOS and SC
(ChemPro 100i)

S. aureus (MSSA and MRSA), S.
pyogenes E. coli and C. perfingen P.

aeruginosa

Bacterial
culture

LDA Accuracy of 78% (if different
species were compared). It was

possible to differentiate
betweenMSSA andMRSA with

accuracy of 91.0%

Saviauk et al.
(2018)

MOS Electrochemical Solid
electrolyte 34 sensors
(Lab made)

E. coli, S. aureus, P. aeruginosa Bacterial
culture

SVM for classification. Sensor
Array Optimization (HSIC

with Gaussian Kernel
Function) Hilbert-Schmidt
Independence Criterion

(HSIC)

Sensor array optimization has
great influence on performance

Without optimization:
accuracy of 80.8%. With
optimization: 92.0%

Qian et al.
(2022)

(Continued on following page)
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3.1.4 Personal view of the sample characteristics
Many studies have been conducted to explore the basics and study

bacteria in cultures with e-noses. Some projects have already
investigated wounds in animals, which reflect the complexity of
real wounds better than in vitro models. Research on these models
allowed identifying solutions for the challenges described in this
review. The next steps should be to transfer the gained knowledge
into practice and study real infected wounds. In our opinion, the
complexity of real wounds will not be taken into account, if this step is
missed. Otherwise, there is a risk that the potential will not be
evaluated correctly. We further believe that establishing
standardized sampling methods, which are applicable in practice, is
of major importance.

Lastly, the infection status of a wound is by no means
unambiguous and the labels may therefore differ depending on
the reference method. This should be considered and the
performance of the algorithms should be related to the specific
reference method.

3.2 Appropriate e-nose sensor technology
for wound infection detection

Choosing an appropriate e-nose sensor technology and
operating conditions have a major impact on a proper
assessment of the smellprint of microorganisms (Reidt et al.,

TABLE 1 (Continued) Summary of published projects dealing with electronic noses in the field of wound infection detection and bacteria classification.

E-nose technology Bacteria species/
microorganisms

Sample
carrier

Algorithms Results References

Hybrid e-nose system
Organic-inorganic sensors
Nanocomposite sensors MOS
sensors

E. cloacae subsp. cloacae, S. aureus
subsp. aureus, E. coli, P. aeruginosa,
S. enterica subsp. enterica serovar

Typhi or S. Typhi

Bacterial
culture

PCA and CA to discriminate
bacteria species

Stability of sensors was good
Separation of classes was
influenced by duration of

incubation. Best differentiation
after 6 h of incubation

Seesaard et al.
(2020)

Nanocomposite and MOS
(PEN3 and Cyranose320)

E. coli, S. aureus and P. aeruginosa Bacterial
culture

LDA, KNN, PNN, SVM, RBF
for classification. LDA was
also used as a preprocessing

step

After 6 h of incubation:
classification rate of up to 100%

Yusuf et al.
(2014)

Nanocomposite sensors
(Cyranose320)

E. coli, S. aureus, P. aeruginosa Bacterial
culture

(Different agar
types)

PCA for feature extraction
Classification with LDA,
PNN, KNN and SVM

After 24 h incubation: best
accuracy with LDA as pre-
processing step. Successful

classification

Yusuf et al.
(2015)

Nanocomposite sensors
(Cyranose320)

Biofilm-producing and
non–biofilm-producing mutant
strains of P. aeruginosa and S.

aureus

Bacterial
culture

Logistic regression Classification of biofilm-
producing and non-biofilm-
producing with accuracies

ranging from 72.2.% to 100%

Thaler et al.
(2008)

Electroconductive polymer
semi-microchemoresistors
(Bloodhound BH-114)

Isolated form patients suffering
from septicaemia, respiratory

diseases wound and urinary tract
infection

Bacterial
culture

Wavelet Neural Network Incubated for about 12 h
Identification of bacteria

species with high accuracy (up
to 95.83%)

Kodogiannis
(2014)

E. coli, Klebsiella spp., Proteus spp.,
S. aureus, Pseudomonas spp., P.

aeruginosa, C. septicum,
Enterococcus spp.

Optoelectronic nose P. aeruginosa, MSSA, MRSA and
E. coli

Drinking
water and

human urine

– Successful differentiation
between infected and non-
infected urine samples
Successful differentiation
between MRSA and MSSA
Good stability, satisfying
reproducibility and low

detection limit of 100 CFU/mL

Bordbar et al.
(2020)

Optoelectronic nose E. coli, K. pneumoniae, P.
aeruginosa, S. aureus

Bacterial
culture

Image analysis Growth was detected earlier
than colonies were detected by
visual inspection. Bacterial
species were identified with
sensitivity of 91.0% and
specificity of 99.4%

Lim et al.
(2016)

Legends: MOS, metal oxide semiconductor, SVM, support vector machine, LDA, linear discriminant analysis, RBF, radial basis function, QPSO, Quantum-behaved Particle Swarm

Optimization, KNN, K-Nearest Neighbor, QDA, quadratic discriminant analysis, ANN, artificial neural network, PCA, principal component analysis, PLSDA, partial least squares discriminant

analysis, RBM, restricted boltzmann machine, ELM, extreme learning machine, *These projects were published by partially overlapping authors.
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2020). In the following, those technologies are introduced that
have already been applied for this task or might be promising
candidates.

3.2.1 Metal oxide semiconductor (MOS) sensors
The majority of reviewed literature dealing with e-noses and

wound infection detection applies MOS sensors (Sun et al., 2017).
These sensors are inexpensive, show a long shelf life, response fast,
and provide a broad detection range (5–500 ppm) (Wilson, 2016).
For the detection of bacteria, even a commercially available e-nose
from ‘AlphaMOS’ has been applied (Daneshkhah et al., 2020).
However, MOS sensors are known to have weak precision, are
susceptible to poisoning and sensitive to humidity (Karakaya et al.,
2020). While the influence of humidity on the sensor performance
can be decreased by integration of an independent humidity sensor
(Reidt et al., 2020), well-known drift issues and lacking long-term
stability still decrease sensor´s ability to provide stable signals over a
sufficiently long period (Chai et al., 2022). Such a long-term stability
is, however, crucial for long-term data collection to monitor
wounds. In this regard it is beneficial that the application of
different algorithms can reduce the drift by up to 64% (Romain
and Nicolas, 2010; Abidin et al., 2018; Chai et al., 2022), resulting in
increased sensor response stability.

3.2.2 Conducting polymer sensors
Due to their fast response and inexpensiveness, also conducting

polymer sensors have already widely been used in different
applications (Nikolic et al., 2020; Wang et al., 2020). With a
detection range of 0.1–100 ppm, these sensors can detect lower
concentrations than MOS sensors. However, these sensors are also
sensitive to humidity and temperature, have a limited sensor life and
are affected from drift (Karakaya et al., 2020). Presumably, as for the
MOS sensors, it could be possible to compensate for sensitivity to
moisture with an independent sensor. Sensors based on polymer
nanocomposites combine polymers with inorganic nanomaterials,
graphene, or carbon nanotubes (John, 2020). The ‘Cyranose’, a
handheld e-nose, is for example, based such nanocomposite
sensors and was applied to identify bacteria species from diabetic
wound infections in blood agar medium (Yusuf et al., 2015). The
same working group compared the performance of ‘Cyranose’ with
that of anMOS based e-nose called ‘PEN3’. Both devices were able to
differentiate the evaluated bacteria species. Compared to MOS
sensors, conducting polymer sensors show a resistance to
poisoning. This resistance is beneficial, as a poisoned sensor
results from an irreversible reaction and leads to an unstable
sensor signal (Chai et al., 2022). Especially in clinical practice,
however, unnoticed damaged sensors have consequential impacts.

3.2.3 Acoustic wave sensors
Acoustic wave sensors, especially bulk acoustic wave and surface

acoustic wave sensors, are advantageous due to their small size, low
cost, robustness, good sensitivity, and fast response time. Their
disadvantages cover that they are difficult to implement, have a poor
signal-to-noise ratio, are sensitive to temperature (Karakaya et al.,
2020) and are to date highly experimental (Mandal and Banerjee,
2022). Whether this technology is advantageous over MOS sensors
for detecting wound bacteria has not yet been focused on, but might
be a promising approach. Particularly as a portable device, these

sensors were able to detect and discriminate between benzene,
toluene, and xylene even at concentrations of 10 ppm (Matatagui
et al., 2019).

3.2.4 Optoelectronic nose
Optoelectronic noses comprise instruments that detect changes

in color (colorimetric sensors) of the sensor array and those that
detect changes in light emissions released by the sample
(fluorescence sensors). The underlying technology of
optoelectronic noses overcomes several disadvantages of other
sensor technologies, such as poor chemical specificity, drift, or
sensitivity to humidity. They are further characterized by low
cost, a light weight and high compactness, as well as by
immunity to electromagnetic interferences, rapid sensor
responses, and a very high sensitivity down to ppb with exquisite
fingerprints of extremely similar mixtures (Li and Suslick, 2016;
2021; Karakaya et al., 2020). It is even possible to produce the sensor
array by inkjet onto porous polymer membranes or paper (Li and
Suslick, 2021). However, disadvantages cited are that they are harder
to implement, less portable in some cases, and affected by light
interference.

Literature provides information that pathogen detection was
performed with colorimetric assays (Bordbar et al., 2020). In the
exemplarily chosen study researchers detected bacterial volatiles in
drinking water and human urine. Unique colorimetric patterns were
achieved for each bacteria strain and it was further possible to
accurately differentiate between infected and non-infected urine
sample of patients. With a colorimetric sensor array it was also
possible to identify bacterial cultures on blood agar plates within 3 h
of detection, resulting in a sensitivity of 91% and a specificity of
99.4% (Lim et al., 2016). The detection time decreased as the number
of CFUs increased. Another group (Li and Suslick, 2016) built a
portable optoelectronic nose based on a colorimetric sensor array to
monitor the freshness of meat. Such a sensor array would be
beneficial for wound infection detection, because 1) the sensing
device was assembled inside a hand-held analyzer which would
allow for measurements close to the patient, 2) the limits of detection
were low, 3) the device showed ‘excellent’ reproducibility over
several printings of the arrays, the differences in the printings
were lower than the differences among different meat samples.
Such a system could provide improved long-term data stability as
the sensor array as such is only used once. Further, no replacement
of individual defective sensors is required as the whole sensor array
is disposable.

Overall, optoelectronic noses may represent another suitable
technology for detecting bacteria in wounds and classifying wound
infections, even though, to our knowledge, this has not been directly
addressed to date.

3.2.5 Quartz crystal microbalance sensors
Electronic noses based on quartz crystal microbalance (QCM)

sensors are sensitive towards mass changes down to 1 ng while
responding fast. However, they are sensitive towards changes in
temperature and humidity and suffer from a poor signal-to-noise
ratio. Besides, these sensors are hard to implement. But still, they are
stable, and it is possible to build portable devices (Karakaya et al.,
2020). Particularly the high sensitivity and low detection limits
would be beneficial for wound infection detection, as this allows
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for detecting less colony forming units and therefore a detection at
early stage. Effects caused by changes in humidity are unfavorable,
especially in clinical practice, but could possibly be compensated
here as well. So one working group used a reference element to
compensate for humidity drift in their QCM sensors for ammonia
(Ushimi et al., 2015). Further, mathematical models in the data
processing systemwere able to compensate humidity effects (Ushimi
et al., 2015) allowing to predict a toluene gas concentration
independently from humidity (Mumyakmaz et al., 2010).
Additionally, a low-cost and portable e-nose based on QCM
sensors was able to discriminate accurately seven volatile analytes
(Julian et al., 2020). These included butanol, propanol, and
methanol, which also play a role in differentiating bacteria by
their metabolic volatiles (Bos et al., 2013; Julian et al., 2020).
Further, due to the fast response of QCM-based sensors, 120 s
for the measurement of the sample air was enough.

3.2.6 Hybrid sensor arrays
Another promising way to obtain best possible results is the use

of hybrid sensor arrays, including different technologies as
presented by (Broza et al., 2018). Interestingly, these hybrid
arrays explicitly include the measurement of interfering VOCs to
allow for clearer observation. Such combinations can lead to a power
of data analysis. It can, however, be crucial to choose a proper subset
of the hybrid array so that the test-set error can be further reduced.
For example, the entire hybrid array may not perform better than an
array with only one technology, but a subset of the sensors from the
hybrid array does (Broza et al., 2018). Such approaches are to date
only scarcely used for VOC detection. As one example, the work of
(Seesaard et al., 2020) can be cited, who used a hybrid e-nose system
to differentiate bacteria species. The sensor array consisted of three
organic-inorganic nanocomposite gas sensors and three MOS gas
sensors to analyze five different infection-causing bacteria species
(E. coli, E. cloacae, P. aeruginosa, S. typhi and S. aureus). Using
principal component analysis (PCA) and hierarchical cluster
analysis, it was possible to differentiate the bacteria species.

3.2.7 The most appropriate sensor technology
MOS sensors have most commonly been applied in the reviewed

studies. This might be due to their biggest advantages, as they are not
expensive and can be assembled into a lab-made e-nose. For example, in
(Jia et al., 2016; Liang et al., 2019; Astantri et al., 2020) an e-nose was built
in the laboratory, whereas in (Haalboom et al., 2019) a commercially
available e-nose was used. However, also other technologies provided
promiseable results (Table 1). In summary, we identified several sensor
technologies being capable of detecting bacteria based on their volatile
components. As each of these sensor technologies has their advantages
but also disadvantages for wound infection detection, we do not
recommend one best technology for this use case. We rather suggest
tomake optimal use of the existing sensor technologies by adapting them
to the respective project, taking the sample properties into account and
improving the evaluation algorithms.

3.3 Algorithms to improve sensing results

As previously mentioned, gas sensors can suffer from drift
issues, or be sensitive towards environmental changes in

temperature, humidity and background odors. This is why a
sound usage of e-noses requires a considerate handling of the
data—which in turn improves the sensing result.

The initial steps aim at reducing noise, normalizing data or
manipulating the baseline (Bonah et al., 2020). Subsequent, the
definition and extraction of suitable features is important to obtain
robust information with less redundancy prior applying machine
learning methods (Yan et al., 2016). Such pre-processed data is
typically beneficial to train supervised machine learning models for
identifying patterns (classifier). According supervised learning
requires labeling (see section 3.1.2) of the training data. Inputs,
such as sensing features, are mapped to known outputs (labels), for
example, ‘infected’ or ‘non-infected’. Thereby these methods can be
used for classification (Scott et al., 2019; Karakaya et al., 2020).
However, the learning models achieve different results depending on
the quality of the pre-processing (Yusuf et al., 2014). All previously
mentioned steps are of fundamental importance for the proper
application of e-noses. The general problem is not to achieve
sufficient accuracy for a given dataset, but more to obtain stable
results on new data over time with varying conditions. For these
reasons, efforts are made to develop appropriate methods for
suppressing interferences and minimizing the impact of changes
in external factors.

3.3.1 Limited sample data
Wound infection samples are neither easy nor fast to obtain,

which leads to limited but often costly data sets. However, to train
the classifier many samples are needed (He et al., 2017). One
solution could be applying transfer learning, whereof models are
generally characterized by the ability to transfer knowledge from one
field to another. For improving the accuracy to classify wounds, they
allow for implementing cheaper but unlabeled pollutant gas samples
from other fields (He et al., 2017). If size and dimension of the
dataset of unlabeled data combined with a suitable classifier is
chosen correctly, a significant improvement can be achieved. For
example, the accuracy obtained with the radial basis function
classifier was further improved by 10% with transfer learning (He
et al., 2017).

3.3.2 Interference suppression
In clinical setting, minimizing exogenous volatiles is often

challenging (Daulton et al., 2020). Interferences can, however,
impact the detection of microbial VOCs by e-noses possibly
leading to a deteriorated classification performance (Liang et al.,
2017; Liang et al., 2018). This is why the prediction accuracy
typically drops when models trained on laboratory data are
directly used in clinical setting (Liang et al., 2019).

In general, there are two types of interferences a) non-target
odor interference caused by interfering odors that influence the
detection of the target odor and b) the interference from
environmental factors, such as temperature and humidity (Liang
et al., 2017). The latter can be compensated by using the responses of
corresponding sensors as input to the classifier (Liang et al., 2017).
The non-target odor interference appears as background
interference or as suddenly appearing interference (Liang et al.,
2017). To address the problems caused by background interferences,
information in the sampling stage correlated with baseline samples
were for example, removed by the suppression technique ‘CIRIS’
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(Liang et al., 2017). Thereby it was possible to avoid deterioration in
pathogen classification performance—even in the presence of
ethanol in the air, which appears likely in clinical practice due to
disinfection (Liang et al., 2017). A detailed overview of commonly
used suppression methods for different types of interferences is
given in (Liang et al., 2018), where it is also stated that further
research is still needed.

Further, background interference can be due to the sample
carrier (see section 3.1.3). Though, by applying a transfer
learning technique, it was possible to compensate the noise odors
of the carrier material and thus increasing the prediction accuracy
from 29.18% to 82.55%. This allowed the use of only one predictive
model for both sample carriers: animal wound and culture medium
(Liang et al., 2019). Authors further mentioned that the method
might be suitable for other common problems, such as transfer
among multiple systems or sensor drift issues.

3.3.3 Improving stability over time
Several reasons can cause unintended sensor drift (e.g., aging,

poisoning, or environmental changes) (Karakaya et al., 2020; Liu
et al., 2020). Especially for MOS sensors, sensor drift causes
changing patterns for the same VOC profiles (Karakaya et al.,
2020; Liu et al., 2020). In addition to appropriate sensor material
selection, algorithms can help to suppress drift and achieve more
stable results over time. An often-used method for improving sensor
stability is baseline manipulation (Karakaya et al., 2020). To
overcome the disadvantages of baseline correction or component
correction, however, transfer learning-based methods are applied
(Liang et al., 2018; Liu et al., 2020). They further require less labeled
data in the target domain, which is especially important for samples
from wounds. To a certain extent, it is also possible to compensate
for drift by means of suitable features (Tian et al., 2009). Moreover, a
recently published drift compensation for an e-nose does not require
calibration samples and increases reliability of the e-nose over time
by compensating drift (Maho et al., 2022).

3.3.4 Optimization of sensor array, classification
model parameters and selected features

A complete e-nose sensor array may pick noisy information
caused by environmental factors. Further, collected sensor data can
be redundant, incomplete, and inconsistent (Qian et al., 2022).
Selecting a subset of sensors can result in higher performance,
(Yan et al., 2016; Sun et al., 2017). In the project of (Sun et al.,
2017), the original array consisted of 34 sensors. Culture dishes
containing bacteria were measured using an e-nose and then
classified using support vector machine (SVM). Without any
optimization, the recognition rate was 86.54%. Using linear
discriminant analysis (LDA), the rate was increased to 96.15%
while the number of sensors was reduced to 20. Even with
10 sensors, selected by LDA or Wilks’ Λ-statistic, the detection
rate was still 95.19% (Sun et al., 2017). Another working group
utilized the Hilbert-Schmidt Independence Criterion to optimize the
sensor array (Qian et al., 2022). The test accuracy without
optimization was 80.83% while using all 34 sensors. After
optimization, an accuracy of 92% was obtained, with the number
of sensors reduced to 18. One working group (Wijaya et al., 2016)
optimized the sensor array using filter-based selection (using FCBF)
to overcome the problem of redundancy and find the best-suited

features. The related e-nose initially consisted of 11 MOS gas
sensors. In the end, the number of sensors was reduced to seven
and the general resolution factor was increased by 16%, also
indicating a possible higher accuracy. As the classifier parameters
also have a great influence, Yan et al. (Yan et al., 2016) used
synchronous optimization (based on QPSO) to optimize the
parameters of the classifier (RBF neural network). As a result, the
number of sensors was reduced to six (there were 20 at the
beginning), while the performance was increased. In sum, the
best combination of feature extraction and pattern recognition
algorithm with optimized parameters should be found, and not
only excellent algorithms explored—which has already been stated
by (Luo et al., 2018). Table 1 summarizes the projects that address
the topic of wound infection detection or bacterial classification
using e-noses. The technologies used, the sample carrier and the
algorithms are listed.

This overview illustrates that numerous algorithms have been
developed to solve challenges and classification tasks in order to
achieve the best possible performance. It can been seen that different
algorithms lead to similarly good results.

3.3.5 Personal view on algorithms for the best
performance

Numerous algorithms are already available to compensate for
the disadvantages of certain sensor technologies and improve the
performance over time. However, the final performance also
depends on the combination of algorithms, extracted features
and technology. For a sustainable implementation, we see an
urgend need to apply the algorithms particularly outside the
laboratory. Only thereby, the suitability of the algorithms can
properly be evaluated. Accordingly, clinical studies are required
to investigate the algorithms performance over time under real
conditions. This should also address the question of how to
monitor the performance of these algorithms in real applications
over time.

Such clinical studies should take into account that the sample
(3.1), the sensor technology (3.2) and the algorithms (3.3) should
not be considered separately (Figure 2), particularly as they influence
each other. Further, to prove the reliability of the obtained
information, clinical results are required to merge them with
those obtained by of e-noses.

3.4 Information fusion towards better
diagnosis

A structured approach to the diagnosis of patients with wounds
is always advisable. The ABCDE rule represents a supportive
method for this (Dissemond, 2017). Under “B”, the further
examinations with regard to bacteria are designated. The current
gold standard for wound diagnostics in this regard is the
microbiological swab or tissue examination of a biopsy. These
methods have advantages and disadvantages. However, a major
disadvantage are always the longer time periods until a result is
available. Exactly here lies a substantial advantage of the bacteria
identification by means of e-nose. A diagnosis could be made that
provides directly relevant information about the bacterial spectrum.
In order to be able to evaluate the clinical relevance of this
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information in a differentiated manner, a clinical assessment of the
patient must always be carried out. The term infection continuum is
often used for this purpose to specify the various progressive stages
from harmless bacterial contamination or colonization to a
potentially dangerous systemic infection. Here, several successive
clinical states are described (Dissemond, 2023). Until now, there
were no uniformly accepted criteria for diagnosis of wound
infections. The newly developed and validated TILI score, as a
supplement to vital signs and serological values, now enables
rapid objectification of local wound infections (Dissemond et al.,
2020). The W.A.R. score can be used in addition to identify patients
at increased risk of infection (Dissemond et al., 2011). With these
easy-to-use tools, the indication for antiseptic wound therapy can be
assessed individually, quickly, and without problems.

In general, the potential for harmful effects of microorganisms
in a wound is influenced by several risk factors. The patient’s
immune system and the type and number of bacteria determine
the risk of overcoming the host resistance (International Wound
Infection Institute, 2022). Common risk factors are overweight,
smoking or poorly controlled diabetes (International Wound
Infection Institute, 2022). Further, diabetic wounds, poor
perfusion, fluctuations in plasma glucose levels, changes in
metabolic pathways, or anti-inflammatory agents affect wound

healing and thus the odor emitted from the wound (Ousey et al.,
2017; Daneshkhah et al., 2020). Changes in pH have also been
associated with wound infection status (section 3.1.1), so this
information could also be fused. As discussed earlier, there is
merit in making more robust and reliable diagnostic decisions by
fusing different technologies (Wilson, 2016). Overall, fusing
information from different scores and rules with information
obtained by e-noses could significantly improve wound
diagnostics (Figure 3). This can reduce the risk of the infection
developing further into a systemic infection or even sepsis.

3.5 E-noses in clinical practice—promising
. . . but it is ML

E-noses, as machine learning (ML)-based methods, face
common Artificial-Intelligence-related challenges, especially if
they are to be applied in healthcare projects. In general applying
promisingML tools to realistic clinical practice settings is difficult, as
it is muchmore complex to extend amodel to this environment than
to develop it only in a reductionist research context (Mateen et al.,
2020). In fact, research projects tend to stop after achieving accurate
results in the lab—and the difficult transfer into clinical practice,

FIGURE 2
The three sub-areas of the application of electronic noses related to the support of the diagnosis of wound infections. These areas influence each
other and should be seen as a whole. Here, the different bubble sizes reflect the frequency of occurrence in the publications considered.

Frontiers in Sensors frontiersin.org10

Wörner et al. 10.3389/fsens.2023.1250756

https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2023.1250756


often associated with failure, is left to other interested experts
(Mateen et al., 2020). This rather typical gap between
development and eventual use is referred to as ‘artificial
intelligence chasm’ in literature (Antoniou and Mamdani, 2021).

To close this gap, clinicians should be involved in the
development process (Scott et al., 2019). Proper reporting is
thereby essential to evaluate the weaknesses and strengths of the
system in terms of its clinical suitability (Mateen et al., 2020).
However, a clear pathway for translation of ML tools into clinical
practice to assess the point at which the tool is ready and safe for use
in real health contexts is lacking (Mateen et al., 2020). As described
in literature, checklists and guidelines are a way to safely integrate
ML-based tools into clinical practice and can provide a roadmap of
expectations (Mateen et al., 2020). Further, assessment standards for
safety and utility are needed, and replication studies must be
conducted, as it is the case with general ML applications (Scott
et al., 2019). Especially for wound infection detection, the replication
studies are needed to test reproducibility and validity. This is a
promising way for using e-noses safely in clinical practice for the
detection of wound infections.

However, no clear definition on the part of regulatory bodies for
classifying is given, whether a technology is based on artificial
intelligence/ML or not (Benjamens et al., 2020). From authors
point of view, a wound infection detection device is not a mere
sensor array but a medical device based on machine learning as the
performance largely depends on the features previously extracted,
the algorithms chosen, and the data on which the model was trained.
Such ML-based medical devices lack, however, transparency—but
explainable and interpretable ML models are crucial to establish
trust on the part of clinicians (Tonekaboni et al., 2019). In a survey it
was noted that clinical staff did not mainly rank ML models by their

accuracy to be used routinely. Conversely, models with lower
accuracy would be accepted, if the reason for underperformance
is known (Tonekaboni et al., 2019). So in the context of clinical
diagnoses, it is important for clinicians to get a sense of when
technology works and when it does not (Tonekaboni et al., 2019).

ML models require periodic reassessment. Over time, several
influences may cause the model to no longer provide accurate
results. In addition, the ongoing evaluation of the system is
important as processes and clinical practice evolve over time and
data set shifts may result in data sets that differ from those initially
used, resulting in deviation of the performance (Antoniou and
Mamdani, 2021). There is a need to discuss how to deal with
sensor drift over the entire lifecycle.

Regulatory requirements pose important challenges to
companies developing medical algorithms (Benjamens et al.,
2020). As medical devices are associated with a high level of
risk, strict requirements apply to the approval of those
technologies by the regulatory process of the U.S. Food and
Drug Administration (FDA) (Benjamens et al., 2020). The
FDA plays a leading role in the adoption of ML-based medical
technologies, having already approved several ML-based medical
technologies. Nevertheless, the European Medicines Agency has
also provided statements and guidelines about artificial
intelligence (Benjamens et al., 2020). Further, it becomes
challenging to evaluate compensation algorithms in their
performance to be able to ensure safety. Overall, changes due
to drift or sensor poisoning in addition to changes of the ML
model may be challenging to consider, as they influence each
other. However, in particular these questions cannot be answered
yet, if only the laboratory context is considered. For this reason,
practice-oriented studies are needed.

FIGURE 3
Different information from different sources should be fused with electronic nose measurements to improve the diagnosis of wound infections and
compensate for the uncertainties of the measurements.
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3.6 Clinical studies are needed

To assess the performance of e-nose set-ups under real
conditions, clinical studies are needed. This includes evaluating
several combinations of features, algorithms and sensor
technologies, linking the individual knowledge. This would allow
for reversely engineer the results to the sub-areas and answer the
initial questions, such as whether the sensor technology is still
suitable in use or whether the algorithms need to be adapted, again.

To further develop and validate the technology, studies could be
conducted using real wound swabs or the headspace of human
wounds as a sample. These data would be applicable to test the
algorithms and formulate further challenges. Overall, the previously
mentioned explainability is another essential aspect. Attempts
should be made to work towards the use case and thus enhance
both sustainability and acceptance. In this context, we primarily
view sustainability as ensuring and monitoring algorithms for
sustained performance and meeting initial requirements over
time. The algorithms should sustainably meet the requirements
specified at the beginning of the development.

4 Conclusion

Research is being done using e-noses for wound infection
detection to get fast results close to the patient. Consequently,
the performance of e-nose systems in the field of wound
infection detection improves and bacteria can be identified by
their VOCs profile.

Numerous influencing factors occurring in complex clinic
settings can be minimized in their effects by various algorithms.
Therefore, it seems that the detection of wound infections is
possible and feasible. However, the deployment of the technology
is associated with various hurdles, which is why good results in
the laboratory are not yet a guarantee for use. Therefore, close
contact should be maintained with clinicians during the
development phase to successfully manage the difficult step of
transfer and to develop a trustworthy device that fits into existing
workflows. Attention should be paid to the biological sample and
its preparation, the characteristics of the sensor technology and
measurement device, and the choice of the algorithms. All these
points must be coordinated to obtain the best possible result.
However, it is important that wounds and wound infections are
complex, and the mere presence of bacteria cannot be considered
a sufficient criterion for the presence of an infection. For this
reason, further work should be done towards information fusion
to answer the question of whether the results can be improved by
adding additional sources of information, thereby enabling
results that are more robust. In summary, 1) the wound

including the crucial VOCs for the diagnosis at different
stages, 2) the standardization of sampling techniques, and 3)
the improvement of the performance robustness under different
influences in the clinical practice should be further investigated.
This requires studies that address the practical use and include
conditions found outside the laboratory.
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