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Purpose: Accurate prediction of urinary tract infection (UTI) following

intracerebral hemorrhage (ICH) can significantly facilitate both timely medical

interventions and therapeutic decisions in neurocritical care. Our study aimed

to propose a machine learning method to predict an upcoming UTI by using

multi-time-point statistics.

Methods: A total of 110 patients were identified from a neuro-intensive care unit

in this research. Laboratory test results at two time points were chosen: Lab 1

collected at the time of admission and Lab 2 collected at the time of 48h after

admission. Univariate analysis was performed to investigate if there were statistical

di�erences between the UTI group and the non-UTI group. Machine learning

models were built with various combinations of selected features and evaluated

with accuracy (ACC), sensitivity, specificity, and area under the curve (AUC) values.

Results: Corticosteroid usage (p < 0.001) and daily urinary volume (p < 0.001)

were statistically significant risk factors for UTI. Moreover, there were statistical

di�erences in laboratory test results between the UTI group and the non-UTI

group at the two time points, as suggested by the univariate analysis. Among the

machine learning models, the one incorporating clinical information and the rate

of change in laboratory parameters outperformed the others. This model achieved

ACC = 0.773, sensitivity = 0.785, specificity = 0.762, and AUC = 0.868 during

training and 0.682, 0.685, 0.673, and 0.751 in the model test, respectively.

Conclusion: The combination of clinical information and multi-time-point

laboratory data can e�ectively predict upcoming UTIs after ICH in

neurocritical care.
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1. Introduction

Manifesting as bacteremia, sepsis, and acute renal failure, urinary tract infection (UTI)

is a significant complication linked to unfavorable prognostic outcomes in intracerebral

hemorrhage (ICH) patients (1–3). It can result in readmission with poor clinical outcomes,

with amortality rate of 29%within 1 year of onset. The occurrence rate of UTI following ICH

is from 15.1% to 26.1%, as reported (4, 5). Therefore, predicting UTI after ICH is essential to

facilitate timely medical interventions and precise therapeutic decisions.
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Previous studies have attempted to predict UTI after stroke

with various methods. A significant number of published

studies have demonstrated the prognostic value of patient

clinical information in predicting UTI during hospitalization (6–

9). Meanwhile, as major advances in immunodepression after

stroke have been made (10–12), research has also shown an

increased interest in identifying significant infectious-related

laboratory results associated with upcoming UTIs to promote more

precise clinical interventions (13–18). Furthermore, predictive

models for patients with high incidence rates were established

using multivariable analysis and achieved moderate performance

(14, 19–21).

Machine learning is a branch of artificial intelligence that

enables computers to learn from data and make predictions

or decisions without being explicitly programmed. By analyzing

large and complex datasets of health records, imaging, genetics,

environmental factors, and other variables, they can provide

personalized and preventive recommendations for patients and

clinicians, such as optimal treatment plans, lifestyle interventions,

and follow-up actions (22–24). Recent developments in machine

learning methods have introduced renewed interest in the

prediction, management, and prognosis of stroke patients (25–

28). As for the complications, a multi-center study suggested

that predicting post-stroke UTI risk in immobile patients with

an ensembled machine learning model was promising with the

highest area under the curve (AUC) of 0.808 and accuracy (ACC) of

0.703 (29), whereas, despite their contributions, a major limitation

that persists in these studies is their exclusive dependence on

clinical and/or laboratory parameters obtained only at the time of

patient admission. In real clinical settings, patients receive active

and systematic treatment, which may influence the progression

of the disease. As such, the importance of monitoring variation

in laboratory findings has been highlighted as these alterations

may serve as indicators of disease progression and the possible

emergence of UTI (30). Therefore, a predictive model that

incorporates data from multiple time points would offer greater

clinical relevance in identifying patients who are at a higher risk

for complications.

Thus, this study aims to (1) propose a machine learning model

to identify patients who are at an increased risk of developing UTI

after ICH at an early stage and (2) investigate if the predictive

performance of the model will be improved if multi-time-point

information is used.

2. Methods

2.1. Study population

In this single-center retrospective study, patients were selected

from the intensive care unit of West China Hospital between

January 2019 and December 2022. Traumatic or other types of

intracranial hemorrhage were excluded in this research. The cohort

was initially identified by reviewing the Hospital Information

System (HIS) using the following criteria: 1. patients with a

diagnosis of ICH (International Classification of Diseases, Tenth

Revision codes, 161.x); 2. admission to the hospital within 12 h

following the onset of ICH; 3. availability of complete medical

records and laboratory test results; and 4. age >18 years. Among

all the selected 395 ICH patients, 75 cases were diagnosed with

UTI based on the European Association of Urology Urologic

Infections Guidelines, cited as follows: (1) presence of any one

one of the following clinical manifestations may suggest a possible

UTI: new onset or worsening of fever, chills, altered mental status,

malaise, lethargy with no other identifiable cause, flank pain,

costovertebral angle tenderness, or acute hematuria. (2) for cases

without symptoms, laboratory test results are required: A. positive

results in routine urinalysis; B. bacterial growth of >105 colony-

forming units (CFU)/mL in a midstream voided urine specimen;

and C. ≥103 CFU/mL of ≥1 bacterial species in a single urine

specimen for catheterized patients (30, 31). Some patients were

excluded from the study for the following reasons: 1. onset of UTI

<48 h after admission, suggesting they should not be classified as

hospital-acquired infection (N = 7) (32); 2. history of antibiotic

and immunosuppressive treatment within the past 6 months (N

= 3); 3. history of malignant tumor or immunodeficiency disease

(N = 3); 4. history of treatment at other institutions (N = 6).

Based on these criteria, a total of 56 cases diagnosed with UTI

after ICH were included in the study. Considering that skewed

class proportions might negatively affect model performance, 54

non-UTI cases were randomly selected as a non-UTI cohort. The

workflow of the patient selection is illustrated in Figure 1.

Clinical information was also collected, including demographic

information (gender, height, weight, BMI, age, smoking, drinking,

and time before admission), history (heart disease, pulmonary

disease, diabetes, and hypertension), and details of treatment

(surgery, intubation, corticosteroid usage, coma severity, urinary

volume, and pneumonia). Coma severity was assessed using the

Glasgow Coma Scale (GCS) score and classified into categorical

variables, including severe brain injury (GCS score ≤8) and

moderate brain injury (8 < GCS score ≤12). Urinary volume was

categorized as oliguria or anuria (≤400 ml/day), normal urinary

volume (400–2,500 ml/day), and polyuria (>2,500 ml/day).

2.2. Covariates

All the patients were managed with the placement of a urine

drainage catheter after admission and received standard daily

protocol meatal care. In our hospital, venous blood was sampled

for a routine blood test and metabolic panel at admission and every

24 h in the first 3 days. Laboratory test results were chosen at two

time points: Lab 1 collected at the time of admission, representing

patients’ condition before treatment, and Lab 2 collected at the

time of 48 h after admission, representing patients’ relatively

stable condition after standardized therapeutic management. The

following formulation was adopted when calculating the rate of

change of each laboratory test results:

Delta Lab (1 Lab) = (
Lab 2nd

Lab 1st
− 1)

All the collected variables are listed in

Supplementary material 1.
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FIGURE 1

Flowchart of the study cohort selection.

2.3. Statistical analysis and feature selection

Categorical variables were described as numbers and

percentages and analyzed by Pearson’s chi-squared test.

Continuous variables were described as value ± standard

deviations or value± quarterback range based on the results of the

Shapiro–Wilk test. Two-tailed student’s t-test or Mann–Whitney

U-test was used for univariate analysis, as appropriate.

The clinical parameters would be selected for modeling if

their p-values were <0.10 in the univariate analysis. Given

the rather large number of laboratory covariates, the following

strategies were used: first, the covariates were standardized

to fit Gaussian distribution, and second, we adopted the

least absolute shrinkage and selection operator (LASSO) to

select the optimal parameters by using 5-fold cross-validation.

Specifically, feature selection was performed on the training

set in each fold, and the parameters would be determined

as optimal only if they were chosen at least three times in

the cross-validation.

2.4. Modeling strategy

To investigate which dataset should be used, four machine

learning models were established by using linear discriminant

analysis (LDA) algorithms with various combinations of

parameters as following strategy: Model 1: a combination of

clinical features and Lab 1; Model 2: a collection of clinical features,

Lab 1, and Lab 2; Model 3: a combination of clinical features

and 1Lab; and Model 4: a collection of clinical features, Lab 1,

and 1Lab.

Then, logistic regression, decision tree, random forest, support

vector machines, and eXtreme Gradient Boosting were enrolled

to further investigate if the predictive performances could be

further improved using different machine learning algorithms. The

machine learning models were implemented using the scikit-learn

package (https://github.com/scikit-learn/scikit-learn) in Python

programming language (version 3.9). Hyperparameters are set

based on the recommendation of the package. Figure 2 illustrates

the workflow of our model establishment and evaluation.
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FIGURE 2

Workflow for the development and validation of machine learning models to predict the potential UTI in ICH patients. Lab 1: Laboratory results

tested after patients’ admission; Lab 2: Laboratory results tested during 48h after admission; 1Lab: The rate of change of laboratory results.

2.5. Model training and performance
evaluation

The same 5-fold cross-validation as a selecting feature was

used for model training and testing. Specifically, the training

cohort was used to develop, optimize, and internally evaluate

the performance of predictive models, while the testing cohort,

which remained unseen during model training, was employed to

assess testing performance. Categorical variables were converted

into binary integer codes using OneHotEncoder, and continuous

variables were standardized using StandardScaler (https://scikit-

learn.org/stable/modules/preprocessing.html). The performance of

each model was assessed using metrics such as accuracy (ACC),

sensitivity, specificity, and area under the curve (AUC) values.

Calibration curves were also generated to compare the predicted

outcomes of the model against the observed outcomes.

3. Results

3.1. Patient clinical information

A total of 110 patients were enrolled in the study. The majority

of patients in the UTI group were women (53.6%), while the non-

UTI group was predominantly men (63.0%). The mean ages for

the UTI and non-UTI groups were 56.4 ± 17.4 years and 51.1 ±

14.5 years, respectively. The average time before admission for the

UTI group was 7.7 ± 4.6 h, compared to 6.1 ± 4.3 h for the non-

UTI group. Over 70% of patients in both groups received tracheal

intubation and surgery. Traditional univariate analysis revealed

that corticosteroid usage (p < 0.001) and daily urinary volume

(p < 0.001) were statistically significant influencing factors for

UTI. Detailed clinical information and the results of the univariate

analysis are listed in Table 1.

3.2. Laboratory test results at multiple time
points

The results of our study showed there were significant

differences in laboratory test results between the two groups either

at the first or the second time point, as illustrated in Figure 3. For

the laboratory results collected at the first time point, higher packed

cell volume (PCV, p= 0.049) and higher serum potassium (K+, p=

0.020) were associated with an increased risk of UTI, whereas after

receiving appropriate therapeutic intervention, laboratory tests

collected at the second time point showed that higher hemoglobin

(Hb, p = 0.048), lower albumin (ALB, p = 0.049), higher serum

potassium (K+, p< 0.001), higher serum sodium (Na+, p= 0.048),

and higher serum chloride (Cl-, p = 0.012) were associated with a

higher risk of potential UTI.

3.3. Machine learning model development
and validation

Based on the results of the univariate analysis, five clinical

variables were selected in the subsequent model construction:

gender (p = 0.082), age (p = 0.084), time before admission (p =

0.074), corticosteroid usage (p < 0.001), and urinary volume (p <

0.001). As for the laboratory parameters, the features selected for

modeling are listed in Supplementary material 2.

Table 2 presents the results of the model performance in both

the training cohort and the testing cohort. Among all combinations
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TABLE 1 Clinical information of the included patients.

UTI group
(n= 56)

Non-UTI
group
(n= 54)

p-value

Sex

Male 26 (46.4) 34 (63.0) 0.082

Female 30 (53.6) 20 (37.0)

Age 56.4± 17.4 51.1± 14.5 0.084

Height (cm) 163.5± 7.5 163.8± 9.4 0.857

Weight (kg) 63.9± 11.2 63.8± 13.0 0.673

BMI 23.83± 3.36 24.0± 3.91 0.745

Smoking

Yes 4 (7.1) 6 (11.1) 0.469

No 52 (92.9) 48 (88.9)

Drinking

Yes 2 (3.6) 4 (7.4) 0.434

No 54 (96.4) 50 (92.6)

Time before

admission

(hours)

7.7± 4.6 6.1± 4.3 0.074

Heart disease

Yes 4 (7.1) 4 (7.4) 1.000

No 52 (92.9) 50 (92.6)

Pulmonary disease

Yes 3 (5.4) 1 (1.9) 0.618

No 53 (94.6) 53 (98.1)

Diabetes

Yes 9 (16.1) 9 (16.7) 0.933

No 47 (83.9) 45 (83.3)

Hypertension

Yes 31 (55.4) 29 (53.7) 0.862

No 25 (44.6) 25 (46.3)

Surgery

Yes 43 (76.8) 45 (83.3) 0.391

No 13 (23.2) 9 (16.7)

Intubation

Yes 50 (89.3) 43 (79.6) 0.161

No 6 (10.7) 11 (20.4)

Corticosteroid use

Yes-I.V. 20 (35.7) 19 (35.2) <0.001

Yes-Inhale 3 (5.4) 7 (13)

No 33 (58.9) 28 (51.8)

Coma severity

Severe brain

injury

36 (64.3) 36 (66.7) 0.793

(Continued)

TABLE 1 (Continued)

UTI group
(n= 56)

Non-UTI
group
(n= 54)

p-value

Moderate

brain injury

20 (35.7) 18 (33.3)

Urinary volume

Oliguria or

anuria

3 (5.4) 1 (1.9) <0.001

Normal

urinary

volume

11 (19.6) 18 (33.3)

Polyuria 42 (75.0) 35 (64.8)

Pneumonia

Yes 41 (73.2) 43 (79.6) 0.429

No 15 (26.8) 11 (20.4)

Bold values indicate that p < 0.05.

of parameters, Model 1 achieved an ACC of 0.752 ± 0.033,

sensitivity of 0.751 ± 0.034, specificity of 0.756 ± 0.044, and

AUC of 0.823 ± 0.020 in model training, and 0.682 ± 0.029,

0.695 ± 0.088, 0.708 ± 0.067, and 0.704 ± 0.055 in the model

test. Model 2 and Model 3 showed slight improvements in AUC

(0.824 ± 0.013 and 0.833 ± 0.013 in the training cohort; 0.710

± 0.011 and 0.708 ± 0.055 in the testing cohort). Model 4

performed the best in terms of AUC. Figure 4 shows the statistical

distribution of the selected features for Model 4. More specifically,

ACC, sensitivity, specificity, and AUC of model 4 in the training

cohort were 0.773 ± 0.031, 0.785 ± 0.032, 0.762 ± 0.034, 0.868 ±

0.015, respectively, and in the testing cohort were 0.682 ± 0.041;

0.685 ± 0.051; 0.673 ± 0.113; 0.751 ± 0.024, respectively. An

example of how LDA model 4 distinguishes the upcoming UTI

group and non-UTI group in the training cohort is illustrated in

Supplementary material 3. All ROC curves are summarized and

illustrated in Figure 5, Supplementary material 4. The calibration

curves of each model are represented in Figure 6.

Table 3 represents the predictive performances of upcoming

UTI of different machine learning models in the testing cohort.

Apart from the LDA model, the decision tree model achieves an

AUC of 0.636 ± 0.050, accuracy of 0.618 ± 0.084, sensitivity

of 0.607 ± 0.103, and specificity of 0.618 ± 0.167. The random

forest mode, support vector machine model, and eXtreme Gradient

Boosting model demonstrate improved predictive performance

with an AUC of 0.718 ± 0.061, 0.703 ± 0.071, and 0.687 ± 0.065,

respectively. The logistic regression model achieved a relatively

better performance among the recently proposed models, with

an AUC of 0.728 ± 0.102, accuracy of 0.673 ± 0.045, sensitivity

of 0.668 ± 0.128, and specificity of 0.681 ± 0.145. However, in

summary, the LDAmodel achieves the best predictive performance

of upcoming UTI in the testing cohort.

4. Discussion

In this retrospective cohort study, we collected clinical and

multi-time-point laboratory information to construct machine
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FIGURE 3

Mean value and the statistical distribution of packed cell volume, [PCV, (A)]; serum potassium (B), hemoglobin [Hb, (C)], serum albumin [ALB, (D)],

serum sodium (E), and serum chloride (F) in the UTI group and non-UTI group. Lab 1: Laboratory results tested after patients’ admission; Lab 2:

Laboratory results tested 48h after admission.

TABLE 2 Machine learning model performance in predicting upcoming urinary tract infection.

Models ACC Sensitivity Specificity AUC

Model 1 Model training 0.752± 0.033 0.751± 0.034 0.756± 0.044 0.823± 0.020

Model testing 0.682± 0.029 0.695± 0.088 0.708± 0.067 0.704± 0.055

Model 2 Model training 0.745± 0.017 0.740± 0.029 0.751± 0.009 0.824± 0.013

Model testing 0.636± 0.076 0.624± 0.046 0.629± 0.130 0.710± 0.011

Model 3 Model training 0.752± 0.022 0.761± 0.026 0.743± 0.020 0.833± 0.013

Model testing 0.664± 0.046 0.654± 0.088 0.652± 0.135 0.708± 0.055

Model 4 Model training 0.773± 0.031 0.785± 0.032 0.762± 0.034 0.868± 0.015

Model testing 0.682± 0.041 0.685± 0.051 0.673± 0.113 0.751± 0.024

learning models for predicting the potential risk of UTI in ICH

patients. The models showed good performance and achieved the

highest AUC of 0.868 ± 0.015 in the training cohort and 0.751

± 0.024 in the testing cohort when multi-time-point laboratory

information was used. These results suggest that our models can

potentially assist in providing more effective prevention of UTI

after ICH to facilitate timely intervention in clinical practice.

A large and growing body of literature has investigated the

independent risk factors for UTI in stroke patients (6–9, 13–

18, 33–35). With a retrospective cohort consisting of 412 cases,

one study suggested that clinical and laboratory parameters

collected at admission were correlated with UTI after stroke,

including older age, higher serum urea, and higher serum albumin

(7). Similarly, another study suggested that laboratory results

collected on the 2nd day of admission were also related, including

higher interleukin-6, and lower hemoglobin (14). Moreover,

postvoid residual volume >100mL, longer length of hospital stays,

prolonged duration of an indwelling catheter, higher modified

Rankin scale score, higher white blood cell count, higher copeptin,

and higher procalcitonin were also reported to be high-risk

factors for UTI after stroke (6, 8, 9, 13, 15–18, 33–35). Our

analysis identified several features that were associated with a

higher risk of UTI in ICH patients. Due to the large number

of variables collected at the clinical practice, it is also reasonable

to assume that the relationship between a single variable and

the risk of UTI after stroke is still inconsistent, as suggested

by these results, and traditional statistical analysis may perform

below expectations.
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FIGURE 4

Boxplots indicating statistic distribution of the selected features for Model 4, including 3 Lab 1st features (hemoglobin, [Hb, (A)], serum creatine, [SCr,

(B)], serum potassium [K+, (C)]) and 6 1Lab features (mean corpuscular volume [MCV, (D)], standard di�erence of red blood cell distribution width

[RDW-SD, (E)], lymphocyte percentage [LY%, (F)], serum creatine [SCr, (G)], hydroxybutyrate dehydrogenase [HBDH, (H)], serum potassium [K+, (I)]).

Lab 1: Laboratory results tested after patients’ admission; 1Lab: The rate of change of laboratory results.

Compared with the traditional multivariate logistic model,

the scalability of machine learning algorithms allows a systematic

analysis of a large dataset with numerous variables. One

study suggested that the machine learning model showed good
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FIGURE 5

Receiver operating characteristics curves of machine learning models in predicting upcoming UTI of ICH patients. (A–D). Model training; (E–H)

Model testing.

FIGURE 6

Calibration plots of observed vs. predicted UTI risk in the training cohort (A) and testing cohort (B). The dotted line indicates a good agreement

between the predicted probability of the model and the actual probability.

TABLE 3 Di�erent machine learning model performances in predicting the upcoming UTI in the testing cohort.

Models AUC Accuracy Sensitivity Specificity

Linear discriminant analysis 0.751± 0.024 0.682± 0.041 0.685± 0.051 0.673± 0.113

Decision tree 0.636± 0.050 0.618± 0.084 0.607± 0.103 0.618± 0.167

Logistic regression 0.728± 0.102 0.673± 0.045 0.668± 0.128 0.681± 0.145

Random forest 0.718± 0.061 0.627± 0.053 0.671± 0.113 0.618± 0.093

Support vector machine 0.703± 0.071 0.673± 0.078 0.692± 0.193 0.709± 0.121

eXtreme Gradient Boosting 0.687± 0.065 0.636± 0.149 0.622± 0.155 0.671± 0.182
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performance in predicting the UTI with an AUC of 0.808 and ACC

of 0.703, with the selected parameters based on recommendations

and a review of literature (Supplementary material 5) (29). Model

1 in our research was designed with the same strategy. Although

the sample size of our research is rather small, this model achieved

a similar performance (model training, AUC = 0.823; model test,

AUC= 0.704) to the previous one. With the fast progression of

ICH, the prediction of upcoming UTIs should rely on multi-

time-point data, and variation of the parameters should also be

considered. Therefore, in the study, we managed to adapt machine

learning algorithms to enroll the most relevant features from a

multi-time-point dataset.

The modeling strategy of Models 2, 3, and 4 in our research

was recommended by experienced neuro-intensive care physicians.

Model 2 was established based on the multi-time-point parameters

and showed a similar performance toModel 1 with an AUC of 0.824

in the training cohort and 0.710 in the testing cohort. This finding

may be attributed to traditional machine learning models taking

enrolled features as independent factors rather than utilizing their

internal relationships (36). Additionally, the delta model (Model

3), which enrolled the rate of change of laboratory parameters,

exhibited similar predictive performance to Model 1 (training

cohort, AUC= 0.833; testing cohort, AUC= 0.708), indicating that

the rate of change may play an equally important role as the values

of predictive indicators. However, Model 4, which was designed to

simulate clinical decision-making, outperformed all other models

with an increase in AUC in both training and testing cohorts

(training cohort, AUC = 0.868; testing cohort, AUC= 0.751).

On the one hand, our research provided a model for predicting

UTIs to assist in therapeutic decision-making. By enabling early

detection, personalized care plans, optimized resource allocation,

reduced antibiotic overuse, and improved patient outcomes, the

model empowers healthcare teams to intervene proactively and

tailor treatments for individual patients, ultimately enhancing

patient care, reducing complications, and fostering a data-driven

approach to medicine while maintaining the vital role of clinical

expertise in decision-making. On the other hand, these results

also highlighted the importance of considering the variation

of laboratory results in conjunction with the patient’s clinical

presentation as a single laboratory finding may not be enough to

diagnose a UTI accurately. Monitoring these laboratory findings

over time can provide necessary information about the progression

of disease and the effectiveness of treatment, helping healthcare

providers optimize patient care to improve outcomes.

It should be noted that clinical factors such as the indwelling

time of the urinary catheter (37) and length of hospital stay (29)

have been related to the increased risk of UTI in previous research

studies. Compared with their study, the primary purpose of this

research was to identify patients who are at an increased risk

of developing UTI after ICH at an early stage. Hence, all the

incorporated features were gathered within a 3-day window after

admission, with features requiring a collection period exceeding 3

days, such as indwelling time, being excluded from consideration.

It is also worth noting that among all the combinations of

features, gender and serum creatinine levels were assigned with the

highest average coefficients in Model 4 (Supplementary material 6).

Previous studies have recognized female sex as a common clinical

risk factor due to anatomical differences, where the shorter distance

between the urethral and anal opening and vaginal cavity may

increase the risk of infection (3). Serum creatinine (Scr) is often

related to kidney function in clinical practice, where a blocked

urinary tract or chronic infection of the kidney may increase the

level and potentially cause an upcoming UTI. Several retrospective

cohort studies also identified significant differences in SCr between

UTI and non-UTI patients (38, 39). In summary, these results

further support the predictive performance of our model and

extend its clinical interpretability.

We also found that there is a significant relationship between

the ACC of Model 4 and hospitalization time. Given that the

laboratory information used in modeling was collected in the early

stages, it is clinically relevant to investigate if our model can still be

effective in predicting long-termUTI occurrences. We summarized

and analyzed the ACC values of UTI cases in the 5-fold test group

and found that the model performed much better in predicting

UTI onset within 14 days (31 cases, ACC = 0.806) compared

to 14 days or more (25 cases, ACC = 0.560). This discrepancy

can be attributed to the fact that the features used in this study

primarily reflect the patient’s early condition after ICH. However,

as the disease may progress fast, clinical treatment intervention

and patient management play a more critical role in determining

whether a UTI will occur. Therefore, wemust acknowledge that our

model is better suited for predicting UTIs occurring within 2 weeks.

This study has several potential limitations. First, its

retrospective cohort design may introduce inherent selection

bias. Second, the relatively small sample size may limit the

interpretability of the identified features, necessitating a larger-

scale study to corroborate our findings. Third, given that this was

a single-center study, data from multiple centers are needed to

validate the model’s performance. A multi-center study with a

larger sample size is essential to verify our results.

5. Conclusion

In this study, machine learning-based predictive models were

developed and validated by using statistics collected at multiple

time points for UTI prediction in ICH cases from a neuro-

intensive care unit. The model showed favorable performance and

clinical interpretability but should be verified in large, multi-center

research in future.
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