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Temporal and spatial
transcriptional regulation of
phytohormone metabolism
during seed development in
barley (Hordeum vulgare L.)

Pham Anh Tuan, Tran-Nguyen Nguyen, Parneet K. Toora
and Belay T. Ayele*

Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
Plant hormones play important roles in seed development; however,

transcriptional regulation of their metabolism and levels of the respective

bioactive forms during barley seed development is poorly understood. To this

end, this study performed a comprehensive analysis of changes in the expression

patterns phytohormone metabolism genes and levels of the respective bioactive

forms in the embryo and endosperm tissues. Our study showed the presence of

elevated levels of abscisic acid (ABA), bioactive forms of gibberellins (GAs),

jasmonate (JA) and cytokinins (CKs), auxin and salicylic acid (SA) in the

endosperm and embryo tissues at early stage of seed filling (SF). The levels of

all hormones in both tissues, except that of ABA, decreased to low levels during

SF. In contrast, embryonic ABA level increased during SF and peaked at

physiological maturity (PM) while the endospermic ABA was maintained at a

similar level observed during SF. Although its level decreased high amount of ABA

was still present in the embryo during post-PM. We detected low levels of ABA in

the endosperm and all the other hormones in both tissues during post-PM phase

except the relatively higher levels of jasmonoyl-isoleucine and SA detected at

late stage of post-PM. Our data also showed that spatiotemporal changes in the

levels of plant hormones during barley seed development are mediated by the

expression of specific genes involved in their respective metabolic pathways.

These results indicate that seed development in barley is mediated by

spatiotemporal modulation in the metabolism and levels of plant hormones.
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1 Introduction

Seed development is a complex physiological process that

determines seed yield and quality traits. Seeds of many filed crops

serve as reproductive units as well as source of food, feed and raw

materials for many industrial products. In cereal crops such as

barley (Hordeum vulgare), seed development can be divided into

three phases (Sabelli and Larkins, 2009; Domıńguez and Cejudo,

2014). The first phase represents double fertilization, which involves

the formation of embryo and endosperm, syncytium formation and

endosperm cellularization. The second phase of seed development

is characterized by differentiation of proliferating cells into

specialized cells, endoreduplication and deposition of storage

reserves. The third phase represents seed maturation, which

comprises programmed cell death (PCD), a shutdown of

metabolic activity as well as induction of desiccation tolerance

and dormancy. Therefore, seed developmental processes strongly

influence important seed traits such as size/weight and dormancy,

which refers to an adaptive trait that blocks seed germination under

optimal conditions (Bewley et al., 2013; Leprince et al., 2016). Given

that starch constitutes up to 75% of seed dry weight in cereals, its

deposition in the endosperm during seed filling (SF) is a critical

determinant of seed size/weight (Rogers and Quatrano, 1983; Evers

and Millar, 2002). The induction and maintenance of dormancy

during seed maturation is an important trait as the incidence of

preharvest sprouting (PHS) is closely associated with the degree of

dormancy manifested by the seeds. PHS, which refers to the

germination of seeds on the parent plant prior to harvest, is

known to cause significant yield and quality losses in cereal crops

(Benech-Arnold et al., 2013). It is well established that plant

hormones are involved in the regulation of many seed

developmental processes including SF and dormancy induction

and retention (Locascio et al., 2014). However, transcriptional

regulation of the metabolism of plant hormones and therefore the

level of their respective bioactive forms during barley seed

development is poorly understood.

ABA plays important roles in the regulation of embryo

development and SF (Chandler, 1999; Sreenivasulu et al., 2010b).

Previous studies have shown that both embryo and endosperm

tissues of developing barley seeds produce ABA (Sreenivasulu et al.,

2006; Sreenivasulu et al., 2008; Sreenivasulu et al., 2010a), and this

ABA is required for seed-filling (Sreenivasulu et al., 2010b; Chen

et al., 2013). Consistently, reduction in endosperm weight and

starch deposition, for example in the shrunken endosperm genetic

8 (seg8) mutant of barley, is closely associated with a decrease in

endospermic ABA level during the early phase of seed development

(Sreenivasulu et al., 2010a). In agreement with these reports,

positive correlations have been shown between ABA level and the

expression patterns of key starch biosynthesis genes of barley seeds

(Seiler et al., 2011). ABA level in seeds is controlled by a balance

between its biosynthesis and catabolism, which are regulated mainly

by the actions of 9-cis-epoxycarotenoid dioxygenase (NCED) and

ABA 8’-hydroxylase (ABA8’OH; encoded by CYP707A genes),

respectively (Nambara et al., 2010; Tuan et al., 2018a). GAs are

also known to regulate several seed developmental processes such as

embryo development, cell differentiation and SF (Sercan et al.,
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2022). For example, GA deficiency leads to increased rate of seed

abortion or significant reduction in embryo and seed growth rate

(Swain et al., 1995; Swain et al., 1997). However, the levels of GAs in

seeds of cereal crops such as rice (Oryza sativa) is reported not to be

correlated with the rate of SF (Yang et al., 2001). The level of

bioactive GAs in plants is determined by the balance between

their biosynthesis and inactivation. GA biosynthesis is comprised

of three stages in which the final stage is divided into 13-

hydroxylated and non-13-hydroxylated pathways, which produce

bioactive GA1 and GA4, respectively (Hedden, 2020). The

biosynthesis and inactivation of GA are regulated mainly by the

actions GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox), and

GA 2-oxidase (GA2ox), respectively (Yamaguchi, 2008).

It has been shown previously that seed dormancy in cereals is

regulated mainly by the balance between ABA and GA, which play

antagonistic roles (Tuan et al., 2018b). An imbalance in favor of

ABA is required to induce and retain dormancy while an imbalance

in favor of GA is necessary to promote dormancy release and

germination (Rodrıǵuez et al., 2015; Tuan et al., 2018a; Tuan et al.,

2020). Developing barley seeds have been reported to manifest the

highest degree of dormancy during their PM (Sreenivasulu et al.,

2006; Bewley et al., 2013). Consistent with these reports, seeds

exhibit high embryonic ABA/GA ratio or a peak in ABA level

around the time of their physiological maturity, and this ABA level

is regulated mainly by the expression of HvNCED2 (Benech-Arnold

et al., 1999; Chono et al., 2006). Moreover, the expression levels of

specific ABA biosynthesis and responsive genes in the embryo of

barley seeds are reported to be induced around physiological

maturity while the expression levels of key GA biosynthesis genes

are maintained at low level during the same period of seed

development (Sreenivasulu et al., 2006; Sreenivasulu et al., 2008).

Seed developmental processes are also regulated by other plant

hormones including auxin, jasmonate (JA), cytokinins (CK) and

salicylic acid (SA). The major roles of auxin during seed

development include controlling determination of embryo

structure and size, and development of endosperm and aleurone

(Locascio et al., 2014). For example, auxin activity is reported to be

necessary for initiating endosperm development and maintaining

its growth during seed development (Figueiredo et al., 2015).

Consistently, auxin deficiency induces abnormal endosperm

proliferation or premature endosperm cellularization and

formation of wrinkled seeds with reduced starch content or

endosperm mass. Auxin has also been implicated in the

regulation of seed dormancy (Shu et al., 2016), although its role

in barley with this respect remain to be elucidated. It has been

shown previously that exogenous indole acetic acid (IAA) or its

precursor inhibits seed germination in wheat (Triticum aestivum)

while this effect can be reversed by seed treatment with IAA

biosynthesis inhibitor or IAA antagonists (Morris et al., 1988;

Ramaih et al., 2003). Consistently, dormant seeds of wheat exhibit

enhanced expression levels of IAA biosynthesis genes and higher

IAA level as compared to non-dormant seeds (Liu et al., 2013). The

level of IAA, the most naturally occurring auxin in plants, is

controlled by the balance between its biosynthesis, which is

catalyzed mainly by family of tryptophan aminotransferases

(TAAs) and YUCCAs (YUCs), and its inactivation, which is
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regulated by members of Gretchen Hagen (GH3) IAA

amidosynthetase family, dioxygenase for auxin oxidation 1

(DAO1) and IAA-Leu-resistant 1 (ILR1) (Hayashi et al., 2021).

There is evidence for the involvement of JA, which includes

jasmonic acid and its derivatives, in the regulation of seed

developmental processes. Modulation of jasmonic acid level in

developing barley seeds has been shown to be associated with cell

wall invertase-mediated sucrose cleavage, which is crucial for

importing photoassimilates and thereby enhancing SF (Weschke

et al., 2003; Leclere et al., 2008). Previous studies also implicate

jasmonic acid as a regulator of PCD in the pericarp of developing

barley seeds (Sreenivasulu et al., 2006). In agreement with this

report, enhanced expression of JA-related genes have been observed

in older (10-14 DAA) than younger pericarps (Pielot et al., 2015).

With respect to seed dormancy, specific JA biosynthesis and

signaling genes exhibit upregulation during imbibition of after-

ripened/non-dormant barley seeds as compared to their dormant

counterparts (Barrero et al., 2009). Consistently, JA has been shown

to induce dormancy decay in seeds of other cereal species such as

wheat (Jacobsen et al., 2013; Nguyen et al., 2022). Jasmonoyl-

isoleucine (JA-Ile) is the most biologically active form of JA and

its level in plant tissues is regulated mainly by its biosynthesis,

which involves several enzymes including allene oxide synthase

(AOS), allene oxide cyclase (AOC) and jasmonic acid-amido

synthetase/jasmonate resistant (JAR) (Schaller and Stintzi, 2009;

Wasternack and Hause, 2013).

Several studies implicate CK in the regulation of embryo/

endosperm development, sink size establishment, and seed

dormancy and germination (Morris et al., 1993; Kucera et al.,

2005). Based on whole seed analysis, Powell et al. (2013) observed

much higher level of CKs at early stage of SF (10 to 12 DAA) than

any other barley seed developmental stages considered in their

study. Furthermore, the endosperm of developing maize (Zea mays)

and rice seeds have been shown to contain high amounts of CK

during their early stage of development, and this CK enhances cell

division in both embryo and endosperm tissues (Yang et al., 2002;

Tomaz and Marina, 2010). The level of CKs in plants is controlled

by the balance between its biosynthesis, which is mediated mainly

by isopentenyl transferase (IPT) and lonely guy (LOG), and

inactivation by the actions of CK oxidase/dehydrogenase (CKX)

and CK glucosyl transferases such as zeatin O-glucosyl transferase

(ZOG) (Kieber and Schaller, 2018). A previous study has shown

that silencing of CKX in barley, which leads to lower CKX activity, is

associated with increased seed weight/yield (Zalewski et al., 2010).

CK is also implicated as a negative regulator of seed dormancy, for

example, via repressing ABA signaling (Wang et al., 2011).

Consistently, CK level is higher during the later stages of seed

maturation in non-dormant than dormant wheat genotypes (Tuan

et al., 2019), and dormancy release due to after-ripening is

associated with upregulation of LOG genes (Chitnis et al., 2014).

Salicylic acid is well known for plant defense against pathogens;

however, it also regulates plant developmental processes. Although

some studies suggest SA as a negative regulator of seed size (Leclere

et al., 2008), it is reported not to have a pronounced role in the

regulation of seed size/weight under normal growing conditions

(Ali and Inas Abdulsattar, 2019; Çetinbas ̧-Genç and Vardar, 2021;
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Hu et al., 2022). A previous study has also indicated that SA inhibits

seed germination in barley (Xie et al., 2007), reflecting its role as a

positive regulator of seed dormancy. The level of SA in plants is

regulated by its biosynthesis, which involves two pathways that are

mediated by an isochorismate synthase (ICS) and phenylalanine

ammonia-lyase (PAL), and its inactivation, which is catalyzed

mainly by SA glucosyl transferase (SGT) (Vlot et al., 2009).

Despite the critical roles of plant hormones in seed

developmental processes, transcriptional regulation of their

metabolism and levels during seed development is still poorly

understood in barley, one of the most economically important

cereal crops world-wide. To gain insights into this phenomenon,

the present study performed a comprehensive analysis of changes in

the levels of bioactive forms of plant hormones and expression

patterns of genes involved in their respective metabolic pathways in

embryo and endosperm tissues of developing barley seeds.
2 Materials and methods

2.1 Plant materials

Plants of malting barley cv. Morex, which produces seeds with

low level of dormancy at harvest maturity (Rasmusson and

Wilcoxson, 1979; Han et al., 1996), were grown in a growth room

under a 22°C/18°C (day/night) with a 16/8 h photoperiod. Seed

developmental stages were determined by designating the first

extrusion of yellow anthers in the spikes as 0 days after anthesis

(DAA). Three independent biological replicates of developing seeds

were harvested at 10, 20, 30, 40 and 50 DAA from the middle region

of the spikes (~300 seeds per ~15 spikes per ~7 plants per replicate

for 10, 20 and 30 DAA samples and ~200 seeds per ~10 spikes per

~5 plants per replicate for 40 and 50 DAA samples). Embryo and

endosperm (endosperm + aleurone layer + pericarp) tissues were

separated from the seed samples and immediately frozen in liquid

nitrogen followed by storage at -80°C until further use.
2.2 Target gene sequence identification

Sequences of the ABA, GA, auxin/IAA, JA, CK and SA

metabolism genes of barley were identified by blast searching

their homologs in Arabidopsis (Arabidopsis thaliana) and rice

against the barley genome sequence data in Ensembl Plants

(http://plants.ensembl.org/). The resulting sequences of the

targeted phytohormone metabolism genes of barley were

confirmed by BLAST searching the respective homologs in the

NCBI database. Primers of the target genes were designed from

their respective nucleotide sequences using Primer 3 software

(http://bioinfo.ut.ee/primer3-0.4.0/primer3/) (Supplementary

Table 1). Gene specificity of the primer sequences was confirmed

by BLAST searching them against the NCBI GenBank database,

melting curve analysis and gel electrophoresis. Primer sequences of

CK metabolism (HvIPT1, HvIPT2, HvCKX1 and HvCKX3) and SA

biosynthesis (HvICS, HvPAL1 and HvPAL6) genes are as reported

previously (Hao et al., 2018; Gasparis et al., 2019).
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2.3 RNA extraction and quantitative RT-PCR

Total RNA extraction from the three independent biological

replicates of the respective embryo and endosperm tissues and the

subsequent cDNA synthesis and qPCR assays were performed as

described previously (Izydorczyk et al., 2017). The qPCR assays

were carried out using 5 µl of diluted cDNA as template, 1.2 µl (5

mM) of each of the forward and reverse primers (final concentration

of 300 nM), 10 µL of SsoFast Eva Green Supermix (Bio-Rad,

Hercules, CA, USA) and 2.6 µl of dd water in a total reaction

volume of 20 µL on CFX96 real-time system (Bio-Rad). The qPCR

assay of each sample was performed in duplicates with the following

thermal cycling conditions: initial denaturation and DNA

polymerase activation at 95°C for 3 min followed by 40 cycles of

denaturation at 95°C for the 30s, annealing at 60°C for 30s and

extension at 72°C for 30s. Relative transcript levels of the target

genes were determined via designating one of the samples as a

calibrator using a method described before (Livak and Schmittgen,

2001). Hvbactin was used as a reference gene for normalization.
2.4 Hormone levels

Extrac t ion of ABA, GAs , IAA, JA (JA-I le ) , CKs

(isopentyladenine [IPA], trans-zeatin [tZ] and dihydrozeatin

[dZ]) and SA was performed from three independent biological

replicates of the embryo and endosperm tissues as described

previously (Lackman et al., 2011; Son et al., 2016; Izydorczyk

et al., 2017). Lyophilized tissues of each sample were ground into

fine powder followed by homogenization of the fine powder with 6

mL of 80% (v/v) acetonitrile containing 1% (v/v) acetic acid and
Frontiers in Plant Science 04
internal standards of the hormones studied. Subsequent extraction

and purification of the hormones were performed using Oasis

cartridge columns (Waters, Milford, MA, USA) as described

before (Lackman et al., 2011; Son et al., 2016). Quantitative

analysis of their levels was conducted using LC-ESI-MS/MS

(Agilent 1260-6430; Agilent, Santa Clara, CA, USA) as reported

previously (Yoshimoto et al., 2009).
2.5 Statistical analysis

Statistically significant differences in gene expression and

hormone levels among the seed tissues and development stages

were tested using two-way ANOVA and Fisher’s least significant

difference (LSD) test at P<0.05.
3 Results

3.1 Seed phenotypes during development

Seed development in barley cv. Morex was studied from 10 to 50

DAA (Figure 1A). Both fresh and dry weights of the seeds samples

increased from 10 to 20 DAA, and after 20 DAA the seed fresh

weight started to decline while the dry weight continued to increase

until 30 DAA but remained at a similar level thereafter (Figures 1B,

C). Thus, the seed developmental period covered in this study was

divided into three phases, SF (10-30 DAA), physiological maturity

(PM, 30 DAA) and post-physiological maturity (post-PM, 40-50

DAA) (Figure 1A). Seeds desiccated at high rate from 10 to 40 DAA
A

B DC

FIGURE 1

Developing seeds of barley. Malting barley cv. Morex seeds from 10 to 50 days after anthesis (DAA) (A). Seed fresh weight (B), dry weight (C) and
moisture content (D) during seed development. Data are means ± SE (n = 30). SF, seed filling; PM, physiological maturity; post-PM; post
physiological maturity.
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(1.6 to 2.4% moisture loss/day), and the rate of desiccation

decreased markedly during transition from 40 to 50 DAA (0.34%

moisture loss/day), leading to a final seed moisture content of 8.4%

by 50 DAA (Figure 1D).
3.2 Expression patterns of ABA metabolism
genes and ABA level

Relatively higher expression levels of embryonic HvNCEDs

were observed during SF, which gradually declined to very low

levels by post-PM. The expression of endospermic HvNCED1

remained at a relatively low level during SF while that of

HvNCED2 exhibited an increase (6-fold; Figures 2A, B). Both

genes were upregulated during transition from SF to PM phase

(>3.0-fold) but downregulated during transition from PM to post-

PM phase. While the expression of HvNCED1 decreased to

undetectable level during the post-PM phase, a slight increase was

observed for HvNCED2. In general, the expression levels of

HvNCEDs were higher in the endosperm than those observed in

the embryo.

Minimal to no expression of HvCYP707As was detected during

SF in both embryo and endosperm tissues. However, a relatively

higher expression level of HvCYP707A2 was observed in the

endosperm at the early stage of SF, which decreased to

undetectable level as SF progressed (Figures 2C, D). The

expression level of HvCYP707A1 increased (>3.2-fold) in both

embryo and endosperm tissues as seeds transitioned from SF to

PM phase. Its expression level in the embryo continued to increase

during transition from PM to post-PM (4.5-fold) but declined (2.3-

fold) during post-PM phase. In the endosperm, HvCYP707A1

expression was maintained at a similar level during the same

period. As compared to that observed in the endosperm, the

expression level of HvCYP707A1 in the embryo was slightly lower

at PM (~2-fold) but higher at the early stage of the post-PM phase

(3-fold). No expression of HvCYP707A2 was detected in both

embryo and endosperm tissues at PM and post-PM phases.

The amount of ABA in the embryo showed over 4-fold increase

during SF phase (Figure 3A), and attained its maximum level at PM.

As the seed transitioned from PM to post-PM phase, ABA level in

the embryo decreased (~3-fold) and remained at a similar level

thereafter. ABA was also detected in the endosperm tissue and its

level increased (>2-fold) during the early stage of SF but showed a

slight decline (1.3-fold) as the seed enters in to PM. Endospermic

ABA level showed a drastic decline (over 9-fold) as the seed

transitioned from PM to post-PM phase and remained at similar

level afterward. Overall, higher level of ABA (>4-fold) was evident

in the embryo than endosperm tissue during the entire duration of

seed development.
3.3 Expression patterns of GA metabolism
genes and GA levels

The expression levels of embryonic GA biosynthesis genes,

HvGA20oxs and HvGA3oxs decreased (over 6-fold) during SF,
Frontiers in Plant Science 05
leading to the prevalence of low levels of their expression by PM

and thereafter (Figures 4A–E). In the endosperm, the expression

levels of HvGA20ox3 and HvGA3ox1 were maintained at elevated

levels during the entire period of seed development. The expression

level of endospermic HvGA20ox2 exhibited an increase during SF,

leading to the detection of its highest expression level at PM. A

similar level of its expression detected at PM was maintained during

seed transition from PM to post-PM phase before declining to

undetectable level by the late stage of post-PM. No expression of

endospermic HvGA20ox1 and HvGA3ox2 was detected during seed

development except the high expression level of HvGA3ox2

observed at the early stage of SF. Endospermic HvGA20ox3 and

HvGA3ox1 showed much higher levels of expression than any other

member of their respective gene families in both tissue. Whereas

HvGA20ox1 and HvGA3ox2 exhibited relatively higher levels of

expression in the embryo than endosperm during the entire period

of seed development.

Expression levels of embryonic HvGA2oxs showed either

maintenance at similar levels or slight decline during the entire

period of seed development except that of HvGA2ox6 exhibited an

increase through PM (>3.4-fold) followed by a gradual decline

afterward (Figures 4F–J). The expression levels of endospermic

HvGA2ox3, HvGA2ox6 and HvGA2ox7 increased (>14-fold) during

the earlier stage of SF but exhibited slight/gradual decrease to low

levels through PM and thereafter (Figures 4G, I , J). No expression of

endospermicHvGA2ox1 andHvGA2ox4 was detected at all phases of

seed development except the transient increase observed for

HvGA2ox1 at PM (Figures 4F, H). Overall, higher expression levels

of HvGA2ox1 and HvGA2ox4 were apparent in the embryo than

endosperm during the entire period of seed development while

HvGA2ox7 exhibited higher expression level in the endosperm than

embryo. Based on their relative expression levels, HvGA2ox7 showed

much higher expression level in the endosperm than any other

GA2ox gene family member at all developmental phases. Whereas

HvGA2ox6 exhibited higher expression level in the embryo than the

other family members at all developmental phases except at early

stage of the SF phase and late stage of the post-PM phase.

The levels of embryonic GA1 and GA4 detected at the early stage

of SF showed marked reduction (over 3-fold) as SF progressed, and

no GA1 or GA4 was detected at PM and thereafter (Figures 3B, C).

The level of endospermic GA1 increased (2-fold) during the early

stage of SF while that of GA4 was maintained at similar elevated

level. The levels of both GA1 and GA4 decreased to undetectable

level during transition from SF to PM and remained at similar levels

afterward. Higher levels of both GA1 and GA4 (over 2-fold) were

observed in the endosperm as compared to that detected in the

embryo during the SF phase.
3.4 Expression patterns of IAA metabolism
genes and IAA level

The expression levels of embryonic HvTAA1, HvAAOs and

HvYUCs were maintained at almost similar low/undetectable levels

throughout the entire seed developmental phases studied. However, a

transient increase in expression level was observed for HvAAO at the
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early stage of post-PM phase (Figures 5A–E). The high expression level

of HvTAA1 detected in the endosperm decreased to low level during

the early stage of SF (over 7-fold) and remained at almost similar level

afterward. The expression level of endospermic HvAAO1 was

maintained at a similar level throughout the entire period of seed

development while that ofHvAAO2 was elevated during SF and at PM

but decreased gradually to very low level afterward. The expression

levels of both HvYUC4 and HvYUC5 increased from undetectable to
Frontiers in Plant Science 06
high level during SF, and remained at similar elevated level thereafter

except that of HvYUC5 declined to undetectable level during post-PM

phase. Overall, HvTAA1, HvAAO2, HvYUC4 and HvYUC5 exhibited

higher expression levels in the endosperm than embryo except that

HvYUC4 and HvYUC5 showed higher expression levels in the embryo

at the early stage of SF, and HvAAO2 and HvYUC5 exhibited similar

low levels of expression in both tissues during the later stage of

post-PM.
B

C

D

A

FIGURE 2

Expression of abscisic acid (ABA) metabolism genes during seed development. Relative transcript levels of HvNCEDs (A, B) and HvCYP707As (C, D) in
embryo and endosperm tissues at different phases of seed development. Gene transcript levels were determined using Tab-actin as reference gene,
and the transcript levels of TaNCEDs and TaCYP707As were expressed relative to the transcript levels of TaNCED1 and TaCYP707A1 in 10 DAA
embryo samples, respectively, which were arbitrarily set a value of 1. Data are means ± SE of three biological replicates. Different letters show
significant difference at P<0.05 (LSD test). DAA, days after anthesis; ND, not detected.
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TheHvGH3.2,HvDAO1 andHvILR1 genes exhibited no orminimal

expression levels during the seed developmental phases studied.

Relatively higher expression level of HvGH3.6 was observed at early

stage of SF, which gradually decreased to very low level as seed

development progressed (Figures 5F–I). HvGH3.2, HvDAO1 and

HvILR1 showed higher levels of expression in the endosperm than

embryo during the entire period of seed development, whereasHvGH3.6

was expressed at a higher level in the embryo than endosperm.
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Embryonic IAA level exhibited a gradual decline as seed

development progressed from SF through post-PM phases

(Figure 3D). The level of IAA in the endosperm increased (over

3-fold) during the early stage of SF before exhibiting a gradual

decrease thereafter. The endosperm appeared to contain a higher

level of IAA (over 5-fold) during the late stage of SF and at PM

while slightly higher level of IAA was apparent in the embryo at the

early stage of SF and during post-PM phase.
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FIGURE 3

Phytohormone levels during seed development. Levels of abscisic acid (ABA, (A) bioactive gibberellins (GA1, (B) and GA4, (C) indole acetic acid (IAA,
D), jasmonate [jasmonate iso-leucine (JA-Ile, E)], cytokinin [isopentyladenine (IPA, F), trans-zeatin (tZ, G) and dihydrozeatin (dZ, H)] and salicylic acid
(SA, I) in embryo and endosperm tissues at different phases of seed development. Data are means ± SE of three biological replicates. Different letters
show significant difference at P<0.05 (LSD test). DAA, days after anthesis; ND, not detected.
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3.5 Expression patterns of JA biosynthesis
genes and JA-Ile level

Embryonic HvAOSs exhibited relatively higher levels of

expressions during SF, after which their expression levels declined

gradually to lower levels. The expressions of HvAOC1 and HvJAR1

were maintained at similar low level throughout the entire period of

seed development (Figures 6A–D). In the endosperm, minimal or
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no expression of the HvAOSs was detected at all phases of seed

development. In contrast, elevated expression levels of HvAOC1

and HvJAR1 were observed at early stage of SF, and a similar level

was maintained through PM for HvAOC1 before declining (over 4-

fold) to very low level afterward. The expression level of HvJAR1

declined (over 2-fold) through PM and continued to decrease

thereafter. Overall, higher expression levels of HvAOSs (>2.5-fold)

were evident in the embryo than endosperm during the entire
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FIGURE 4

Expression of gibberellin (GA) metabolism genes during seed development. Relative transcript levels of HvGA20oxs (A-C), HvGA3oxs (D, E) and
HvGA2oxs (F-J) in embryo and endosperm tissues at different phases of seed development. Gene transcript levels were determined using Tab-actin
as reference gene, and the transcript levels of HvGA20oxs, HvGA3oxs, and HvGA2oxs were expressed relative to the transcript levels of HvGA20ox1,
HvGA3ox1, and HvGA2ox1 in 10 DAA embryo samples, respectively, which were arbitrarily set a value of 1. Data are means ± SE of three biological
replicates. Different letters show significant difference at P<0.05 (LSD test). DAA, days after anthesis; ND, not detected.
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period of seed development while HvAOC1 and HvJAR1 exhibited

higher levels of expressions (~2-fold) in the endosperm than

embryo during SF and at PM (Figures 6C, D).

The levels of embryonic and endospermic JA-Ile decreased 17-fold

and over 7-fold, respectively, during early stage of SF, and almost

similar low level of JA-Ile was maintained in both tissues as the seed

transitioned to PM (Figure 3E). The levels of embryonic and

endospermic JA-Ile observed at PM were maintained during

transition to post-PM and thereafter except that endospermic JA-Ile

increased (~2-fold) during post-PM phase. Higher level of JA-Ile (~2-

fold) was observed in the embryo at early stage of SF but its level in the

endosperm was higher at late stage of post-PM phase.
3.6 Expression patterns of cytokinin
metabolism genes and cytokinin levels

All the CK biosynthesis genes except HvIPT2 showed relatively

higher expression levels in the embryo at early stage of SF after

which their expressions decreased to low levels (Figures 7A–D).

HvIPT2 was expressed at very low level throughout the entire period

of seed development. The endospermic HvIPT1 and HvLOG3 genes

showed similar expression patterns as their embryonic

counterparts. In contrast, endospermic HvIPT2 and HvLOG5

exhibited marked increases during early and/or late stages of SF,

leading to the prevalence of their highest level of expression by PM,

which was maintained through post-PM. HvIPT2 and HvLOG5
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exhibited higher levels of expression in the endosperm than embryo

during seed development except at early stage of SF. Whereas

HvLOG3 showed higher level of expression in the embryo during

SF and at PM.

The embryonicHvCKX1 andHvCKX3 exhibited relatively higher

levels of expression at early stage of SF and their expression levels

decreased to either undetectable or low levels thereafter (Figures 7E,

F). While the expression level of embryonic HvZOG1 increased

gradually during seed development, that of HvZOG3 exhibited an

increase during the early stage of SF followed by a very gradual

decrease thereafter (Figures 7G, H). In the endosperm, the expression

ofHvCKX1was detected only at PM and early stage of post-PMwhile

HvCKX3 showed high level of expression at early stage of SF but

decreased markedly (22-fold) by late stage of SF and remained at

almost similar level during the subsequent phases of seed

development. The expression levels of the two endospermic

HvZOGs increased during seed development except that the

expression of HvZOG3 decreased at the late stage of post-PM.

Between the two endospermic HvCKX genes, HvCKX3 exhibited a

much higher level of expression during seed development and its

expression level in the endosperm was markedly higher than that

observed in the embryo. Likewise, endospermic HvZOG1 showed a

higher level of expression than that of HvZOG3 during seed

development, and the expression levels of both genes were

significantly higher in the endosperm than embryo.

The levels of all three forms of bioactive CK decreased (>3.3-

fold) in both embryo and endosperm during early stage of SF after
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FIGURE 5

Expression of indole acetic acid (IAA) metabolism genes during seed development. Relative transcript levels of HvTAA1 (A), HvAAOs (B, C), HvYUCs
(D, E), HvGH3s (F, G), HvDAO1 (H) and HvILR1 (I) in embryo and endosperm tissues at different phases of seed development. Gene transcript levels
were determined using Tab-actin as reference gene, and the transcript levels of HvTAA1, HvAAOs, HvYUCs, HvGH3s, HvDAO1 and HvILR1 were
expressed relative to the transcript levels of HvTAA1, HvAAO1, HvYUC4, HvGH3.2, HvDAO1 and HvILR1 in 10 DAA embryo samples, respectively,
which were arbitrarily set a value of 1. Data are means ± SE of three biological replicates. Different letters show significant difference at P<0.05 (LSD
test). DAA, days after anthesis; ND, not detected.
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which similar levels were maintained (tZ) or their levels increased

slightly (dZ) or decreased gradually (IPA) through post-PM phase

(Figures 3F–H). Overall, a higher level of tZ was observed in the
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endosperm than embryo during SF and at PM while higher level of

IPA was detected in the embryo than endosperm during all phases

of seed development. Higher level of dZ was also prevalent in the

embryo at early stage of SF.
3.7 Expression patterns of salicylic acid
metabolism genes and salicylic acid levels

Embryonic HvICS and HvPAL genes expressed consistently at

low levels during the entire phases of seed development except the

relatively higher expression level of HvPAL5 detected at early stage

of SF (Figures 8A–C). In the endosperm, low expression level of

HvICS was detected at early stage of SF followed by a marked

increase (~6-fold-fold) of its expression level during transition

from SF to PM and maintenance at similar level thereafter.

The expression levels of HvPAL1 and HvPAL5; however, showed

decline (1.7- to 13-fold) during the early stage of SF, after which the

expression of HvPAL1 was maintained at a similar level while that

of HvPAL5 decreased further except the slight transient increase

observed at PM. Of all the SA biosynthesis genes, HvICS showed

consistently higher expression level in the endosperm than embryo

during seed development while HvPAL1 exhibited higher

expression level in the endosperm only prior to PM. In contrast,

HvPAL5 exhibited higher expression level in the embryo at early

stage of SF (1.7-fold) and late stage of post-PM (over 2-fold). The

expression level of HvSGT increased gradually in both embryo and

endosperm tissues during seed development except it decreased

slightly in the embryo at late stage of post-PM (Figure 8D). Our data

also showed higher expression level of HvSGT in the endosperm

than embryo at the early stage of SF (~3-fold) and late stage of post-

PM (over 2-fold).

The level of SA decreased (over 7-fold) in both embryo and

endosperm tissues during SF and as the seed transitioned from SF to

PM phase (over 1.7-fold; Figure 3I). While the level of SA in embryo

continued to decrease during post-PM phase (1.4-fold), its level in

the endosperm showed slight increase during transition from PM to

post-PM phase and thereafter. As compared to that detected in the

endosperm, the level of SA in the embryo was higher (over 1.6-fold)

at late stage of SF as well as at PM but lower (2-fold) at late stage of

post-PM phase.
4 Discussion

The present study investigated the spatial and temporal

transcriptional regulation of phytohormone metabolism and

levels during seed development in barley. Our data showed that

SF in a developing barley seed peaks at 20 DAA and the seed attains

a maximum dry weight, which marks its physiological maturity, by

30 DAA as reported previously (Benech-Arnold et al., 1999;

Sreenivasulu et al., 2008; Seiler et al., 2011). The prevalence of an

increase in ABA level in both embryo and endosperm tissues during

SF reflects its importance in the regulation of embryo development

and deposition of storage reserves. Consistently, ABA has been

reported to induce the development of embryo and regulate
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FIGURE 6

Expression of jasmonate (JA) biosynthesis genes during seed
development. Relative transcript levels of HvAOSs (A, B), HvAOC1
(C) and HvJAR1 (D) in embryo and endosperm tissues at different
phases of seed development. Gene transcript levels were
determined using Tab-actin as reference gene, and the transcript
levels of HvAOSs, HvAOC1 and HvJAR2 were expressed relative to
the transcript levels of HvAOS1, HvAOC1 and HvJAR2 in 10 DAA
embryo samples, respectively, which were arbitrarily set a value of 1.
Data are mean ± SE of three biological replicates. Different letters
show significant difference at P<0.05 (LSD test). DAA, days after
anthesis; ND, not detected.
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endosperm weight and starch content in developing barley seeds

(Chandler, 1999; Sreenivasulu et al., 2010a). The increase in

endospermic ABA level observed during SF is associated with

upregulation of HvNCEDs and downregulation of HvCYP707A2,

indicating the importance of both ABA biosynthesis and catabolism

in regulating ABA level and thereby storage reserve accumulation.

However, the amount of ABA in the endosperm was much lower

than that observed in the embryo of developing barley seeds

although the endosperm exhibited more enhanced expression

levels of the two ABA biosynthesis genes. Given endospermic
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genes encoding proteins that act as positive regulators of ABA

signaling (Chen et al., 2013) as well as those involved in sucrose

hydrolysis and starch biosynthesis (Sreenivasulu et al., 2006;

Sreenivasulu et al., 2008; Seiler et al., 2011) are upregulated

during SF in barley, our data implicate the significance of both

ABA level and sensitivity in regulating starch deposition in the

endosperm. PCD in the endosperm and aleurone tissues is a major

physiological event occurring during maturation of cereal seeds

(Domıńguez and Cejudo, 2014). Previous reports implicated ABA

as a negative regulator of PCD in these tissues of barley mainly via
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FIGURE 7

Expression of cytokinin (CK) metabolism genes during seed development. Relative transcript levels of HvIPTs (A, B), HvLOGs (C, D), HvCKXs (E, F)
and HvcZOGs (G, H) in embryo and endosperm tissues at different phases of seed development. Gene transcript levels were determined using Tab-
actin as reference gene, and the transcript levels of HvIPTs, HvLOGs, HvCKXs and HvcZOGs were expressed relative to the transcript levels of
HvIPT1, HvLOG3, HvCKX1 and HvcZOG1 in 10 DAA embryo samples, respectively, which were arbitrarily set a value of 1. Data are mean ± SE of three
biological replicates. Different letters show significant difference at P<0.05 (LSD test). DAA, days after anthesis; ND, not detected.
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inhibiting the synthesis of ethylene, which acts as a positive

regulator of PCD (Bethke et al., 1999). Therefore, the prevalence

of low ABA level in the endosperm, which also consists of the

aleurone tissue in this study, during the post-PM phase might

reflect its importance in facilitating programmed death of

endospermic cells.
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The detection of relatively high levels bioactive GAs in both

embryo and endosperm tissues at the early stage of SF may

implicate their contribution in controlling embryo development,

differentiation of proliferating cells into specialized cells, organ

expansion and SF (Sabelli and Larkins, 2009; Domıńguez and

Cejudo, 2014; Sercan et al., 2022). However, the levels of bioactive
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FIGURE 8

Expression of salicylic acid (SA) metabolism genes during seed development. Relative transcript levels of HvICS (A), HvPALs (B, C) and HvSGT (D) in
embryo and endosperm tissues at different phases of seed development. Gene transcript levels were determined using Tab-actin as reference gene,
and the transcript levels of HvICS, HvPALs, and HvSGT were expressed relative to the transcript levels of HvICS, HvPAL1 and HvSGT in 10 DAA
embryo samples, respectively, which were arbitrarily set a value of 1. Data are mean ± SE of three biological replicates. Different letters show
significant difference at P<0.05 (LSD test). DAA, days after anthesis.
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GAs were much higher in the endosperm than embryo during SF

phase, reflecting the major role they play in regulating endosperm

growth and accumulation of storage reserves. In agreement with our

results, whole seed based analysis of developing seeds of barley cv.

Himalaya detected higher levels of bioactive GAs during the early

stage of SF (Chandler, 1999). Reduction in the levels of endospermic

bioactive GAs as SF progresses is consistent with previous reports

that implicated GA to have a negative effect on the rate of SF in

other cereal species such as rice (Yang et al., 2001) although this

phenomenon remain to be studied in barley. The observation of

close associations between the decline in endospermic GA level with

downregulation of HvGA3ox2 and upregulations of HvGA2oxs

indicates the contributions of both GA biosynthesis and

catabolism in controlling bioactive GA levels during SF. Our

results also showed that the difference in the levels of bioactive

GAs between the endosperm and embryo tissues during SF is

associated with the expression patterns specific GA biosynthesis

(HvGA20ox3, HvGA3ox1 and HvGA3ox2) and GA catabolism

(HvGA2ox1 and HvGA2ox4) genes. GA has also been reported to

induce PCD in the aleurone of imbibing barley seeds (Domıńguez

and Cejudo, 2014); however, no bioactive GA was detected in the

endosperm during post-PM phases. It is therefore likely that the

PCD taking place in the endosperm of barley during seed

maturation is not GA dependent.

Auxin play important roles in regulating embryo structure and

size, and SF via controlling endosperm development and

stimulating photoassimilate transport (Darussalam et al., 1998;

Chandler, 1999; Locascio et al., 2014). In agreement with this

report, we observed relatively higher embryonic and endospermic

IAA level during SF than other developmental phases of barley

seeds. However, the detection of higher level of IAA in the

endosperm than embryo during the same period might suggest

the major role of auxin in regulating endosperm developmental

processes and accumulation of photoassimilates in barley seeds. A

study that involved analysis of whole seed of barley has also shown

an increase of IAA level during early stage of SF (8 to 20 DAA)

(Chandler, 1999). In support of these results, auxin deficiency in

developing seeds of pea (Pisum sativum) is associated with a

decrease in the partitioning of sucrose into storage starch

(Mcadam et al., 2017; Meitzel et al., 2021). The prevalence of

close associations between endospermic IAA level and expression

patterns of HvAAO2, HvYUC4 and HvYUC5 during SF indicates

the importance of IAA biosynthesis rather than its inactivation in

regulating IAA level in the endosperm. Our data also highlight that

the difference in IAA level between the endosperm and embryo

tissues is associated with the expression patterns of specific genes

involved in its biosynthesis (HvAAO2, HvYUC4 and HvYUC5) and

inactivation (HvGH3.6). In general, auxin is considered as a

suppressor of PCD (Kacprzyk et al., 2022); thus, the detection of

very low level of endospermic IAA as the seed matures implies the

occurrence of enhanced PCD in the endosperm during barley

seed maturation.

Jasmonate plays a role in the regulation of embryo development

and SF (Weschke et al., 2003; Leclere et al., 2008; Wasternack et al.,

2013). Therefore, the observation of high level of embryonic and

endospermic JA-Ile during early stage of SF in barley might indicate
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its role in regulating embryo developmental processes and

accumulation of storage reserves. Consistently, reduction of JA-Ile

level in cereal species such as rice has been shown to lead to a

decrease in seed yield via decreasing the number of spikelets and SF

rate (Kim et al., 2009). However, further study is required to

elucidate the role of JA in regulating these phenomena in barley.

The close association between the level of endospermic JA-Ile and

expression pattern of HvJAR1 during the same period of seed

development might imply the importance of JA biosynthesis in

regulating JA-Ile level. Previous studies have also shown the

presence of high level of jasmonic acid in the pericarp of

maturing barley seeds and its involvement in PCD (Sreenivasulu

et al., 2006). Given the tissue considered as endosperm in this study

comprises the pericarp, the prevalence of an increase in

endospermic JA-Ile level during the post-PM phase might suggest

that most of the JA-Ile detected in the endosperm originate from the

pericarp where it regulates PCD. This hypothesis is well supported

by the presence of higher level of JA-Ile in the endosperm than

embryo at late stage of post-PM phase. Our study also revealed that

the difference in JA-Ile level between the two tissues is mediated by

the expression of HvJAR1.

Cytokinins play important roles in the development embryo

and endosperm tissues and determination of sink size, and their

levels have been shown to be associated with SF (Morris et al., 1993;

Yang et al., 2000; Kong et al., 2015). Consistent with these reports,

our data showed the presence of high levels of IPA, tZ and dZ in the

embryo during early stage of SF and in the endosperm during SF.

Although their analysis was based on whole seed, Powell et al.

(2013) also observed much higher level of IPA, tZ and dZ during SF

(10 to 12 DAA) than any other stage of seed development they

studied. Our data also revealed the detection of higher levels of IPA

and tZ in the embryo and endosperm, respectively, during SF and at

PM of developing barley seeds, indicating the major bioactive forms

of CK produced in barley seeds vary with tissue and stage of

development. The levels of endospermic CKs during SF is closely

associated with the expression patterns of HvIPT1 and HvLOG3,

and HvZOG1 and HvZOG3, reflecting the importance of both CK

biosynthesis and inactivation in controlling the levels of CKs and

thereby endosperm development and accumulation of storage

reserves. It appears from our data that the difference in IPA level

between the endosperm and embryo tissues during SF and at PM is

mediated mainly by the expression of HvLOG3 while the difference

in tZ level between the two tissues is regulated by the expression of

HvIPT1 and HvIPT2 and/or HvLOG5. Although CK induces PCD

(Vescovi et al., 2012), the observation of low levels of CKs during

post-PM phase of barley seeds imply that its role in regulating

barley seed developmental processes is restricted mainly to the early

stage of SF, and other seed maturation associated events such as

PCD are CK independent.

The plant hormone SA is well known as an endogenous signal

in plant defense responses (Shah, 2003; Loake and Grant, 2007);

however, there is evidence supporting its role in plant growth and

developmental processes via regulating cell division and expansion

(Li et al., 2022). Therefore, the observation of markedly and

moderately high level of endospermic SA in both tissues during

the early and late stages of SF of barley seed development,
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respectively, might reflect its importance in the control of cell

division and expansion in the embryo and endosperm of

developing barley seeds tissues. The prevalence of close

associations between endospermic SA level and the expression

patterns of HvPAL5 and HvSGT during SF reflects the role of

both SA biosynthesis and inactivation in controlling SA level in the

endosperm of developing barley seeds. Given previous studies

reported that SA regulates PCD in response to abiotic stress

(Bernacki et al., 2021), the presence of elevated endospermic SA

level during post-PM phase might indicate its role in regulating

programmed death of endospermic cells during barley seed

maturation. Our results also showed that SA level during post-

PM is mediated mainly by the expression of HvICS.

Developing barley seeds attain highest level of dormancy at

their PM, which occurs 25 and 30 DAA (Sreenivasulu et al., 2006;

Bewley et al., 2013). Consistently, the level of embryonic ABA

increased during SF and peaked at PM. In addition, much higher

level of ABA was detected in the embryo than endosperm during

the same period. The increase in embryonic ABA level during SF

through PM is associated with the expression patterns of the two

HvNCED genes. Previous studies have also shown the occurrence of

a peak in embryonic ABA level during physiological maturity of

barley seeds and its regulation via expression ofHvNCED2 (Benech-

Arnold et al., 1999; Chono et al., 2006). However, the difference in

ABA level between the embryo and endosperm tissues is not

associated with the expression patterns of either ABA

biosynthesis or catabolic genes. Although embryonic ABA plays

important roles in dormancy induction and maintenance during

seed maturation in barley (Benech-Arnold et al., 1999), several

reports implicated the balance between the levels of ABA and GA as

the main factor controlling these seed developmental events (Tuan

et al., 2018a; Tuan et al., 2018b). In agreement with these reports,

the relatively higher levels of embryonic bioactive GAs detected at

early stage of SF declined to undetectable level by PM, leading to the

prevalence high ratio of ABA level to GA levels. In agreement with

these results, ABA and GA regulated transcriptional networks have

been reported to have critical roles in the control of dormancy

acquisition and maintenance during maturation of wheat seeds

(Yamasaki et al., 2017). The decrease in the levels of embryonic GAs

during the same period is associated with the expression patterns of

HvGA20oxs and HvGA3oxs, and HvGA2ox6, reflecting the

importance of both GA biosynthesis and catabolism in regulating

embryonic GA level and thereby establishment of dormancy during

barley seed development. The prevalence of a relatively lower

amount of embryonic ABA during post-PM phase, when no

bioactive GA was detected, as compared to that observed at PM

might underlie the weak dormancy manifested in the seeds of cv.

Morex at harvest maturity (Rasmusson and Wilcoxson, 1979; Han

et al., 1996). Our study also indicated that the level ABA in the

embryo during post-PM is associated with the expression patterns

of HvNCEDs and HvCYP707A1.

Other hormones such as auxin, JA, CK and SA are also involved

in the regulation of seed dormancy; however, their role in the

induction and maintenance of dormancy during seed maturation in

barley is yet to be elucidated. Previous reports implicated auxin as

positive regulator of seed dormancy in wheat (Morris et al., 1988;
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Ramaih et al., 2003). Thus, the decline in embryonic IAA level

during barley seed maturation, might imply the minimal role of

auxin in the establishment and retention of seed dormancy. In

agreement with our result, a decrease in embryonic IAA level has

been observed during maturation of wheat seeds irrespective of

variation in their level of dormancy (Tuan et al., 2019). The

association of embryonic IAA level with the expression patterns

of HvTAA1, HvYUC4 and HvYUC5 reflects the role of IAA

biosynthesis rather than its inactivation in controlling IAA level

in the embryo of developing barley seeds. It has been shown

previously that jasmonate induces seed dormancy decay in seeds

of cereal species such as wheat (Jacobsen et al., 2013; Nguyen et al.,

2022). Consistent with these reports, dormancy loss in barley seeds

due to after-ripening is associated with enhanced expression levels

of specific JA biosynthesis and signaling genes (Barrero et al., 2009).

Given cv. Morex of barley produces seeds with low level of

dormancy at harvest maturity (Rasmusson and Wilcoxson, 1979;

Han et al., 1996), the prevalence of low level of embryonic JA-Ile

during PM and post-PM might indicate that the induction and

maintenance of dormancy during maturation of barley seeds is not

JA dependent. Our data also revealed that embryonic JA-Ile level

during the same period is regulated via expression of the JA

biosynthesis genes studied.

Cytokinins regulate seed dormancy negatively (Kucera et al., 2005);

therefore, the detection of low level of embryonic IPA, tZ and dZ in

maturing seeds of cv. Morex suggests the minimal role of CK in

regulating of seed dormancy during barley seed maturation. In

contrast, a previous study in wheat reported the presence of higher

levels of tZ during maturation of wheat seeds that exhibit low level of

dormancy at maturity as compared to those exhibiting high level of

dormancy (Tuan et al., 2019). Therefore, further study is required to

elucidate the role of CKs in regulating dormancy in barley and other

cereal seeds. The prevalence of close associations between embryonic

CK levels and expression patterns ofHvLOG3 andHvZOG1 reflects the

importance of both CK biosynthesis and inactivation in the control of

CK levels in the embryo of maturing barley seeds. It has been shown

previously that exogenous SA inhibits barley seed germination and

GA-induced activity of a-amylase in the aleurone cells via ABA-

inducible WRKY gene (Xie et al., 2007). Thus, the reduction of

embryonic SA level as the seeds transitioned to PM and during post-

PM might indicate its contribution to the low level of dormancy

manifested in themature seeds of cv. Morex. The observed reduction of

embryonic SA level during the same seed developmental period is

closely associated with the expression patterns of HvPAL5 andHvSGT,

implying the importance of both SA biosynthesis and inactivation in

regulating SA level in the embryo of maturing barley seeds.

In summary, this study showed the temporal and spatial

modulation of the levels of bioactive forms of plant hormones

during seed development in barley as depicted in Figure 9, and this

modulation of plant hormone levels is mediated by transcriptional

regulation of genes involved in their respective metabolic pathways.

These results provide important insights into potential roles of

phytohormones in the regulation of seed developmental processes

such as SF as well as induction and maintenance of dormancy in

barley, important agronomic traits that play significant roles in

determining its yield and quality. Given the roles of plant hormones
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in seed development are also mediated by their distribution and

tissue sensitivity, elucidating the transcriptional regulation of their

transport and signal transduction is critical to extend our

understanding of hormonal regulation of seed development

in barley.
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FIGURE 9

Schematic diagram depicting the pattern of changes in the levels of bioactive forms of plant hormones within embryo and endosperm tissues during
barley seed development. Elevated levels of abscisic acid (ABA) and relatively high levels of gibberellins (GAs; GA1 and GA4), indole acetic acid (IAA),
jasmonate iso-leucine (JA-Ile), cytokinins [CKs; isopentyladenine (IPA), trans-zeatin (tZ) and dihydrozeatin (dZ)] and salicylic acid (SA) characterize
both embryo and endosperm tissues during the early and/or late stage of seed filling (SF). The embryo exhibit a peak in ABA level around
physiological maturity (PM) and the endosperm also consist of a relatively high level of ABA at this stage; both tissues exhibit relatively lower level of
ABA during post-PM phase. Both embryo and endosperm tissues contain low levels of all the other plant hormones at PM and during post-PM
phases except that the endosperm exhibit relatively higher levels of JA-Ile and SA at the late stage of post-PM phase. See Figure 3 for variations in
the levels of the plant hormones between the two tissues as such variation is not depicted in the diagram.
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