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Editorial on the Research Topic

Advances in brain dynamics in the healthy and psychiatric disorders

Psychiatry aims at diagnosing and treating psychological disorders and other mental
health conditions affecting how subjects behave, think, or feel. Psychiatrists resort to a
variety of diagnostic techniques, ranging from standard semiotics to physiological testing,
and imaging or stimulation techniques, and treatment strategies may be behavioral,
pharmacological, or instrumental. However, knowledge of how neural activity translates
into behavior is often insufficient to define precise nosological categories and to interact
with the brain in a language it can understand. Improvements in both modeling and
treatment require a better understanding of the underlying neural processes and finding new
meaningful variables to characterize both healthy brain activity and its pathology.

The brain is, in general, thought of as a spatially-extended dynamical system subject
to some control parameter. This framework allows not only describing and to some extent
predicting healthy (1) and pathological (2–4) brain activity and treatment outcomes (5),
but also maintaining activity within or steering it toward desirable dynamical regimes (6).
The challenge is specifying the dynamics and identifying its control parameters and the
appropriate strategies allowing to effectively act on the system (6).

Dynamical systems can be studied in three main ways: perturbing the system, observing
its unperturbed dynamics, and characterizing its symmetries. Prima facie, the most sensible
strategy to quantify the neural correlates of psychiatric disorders would seem to require
observing task-related brain activity and behavior. However, finding appropriate tasks,
capable of testing individuals with tasks they can perform (7) is not always easy, particularly
when testing dynamically complex brain functions (8). Moreover, this strategy is necessarily
associated with lengthy (possibly anxiogenic) testing sessions, whose neural correlates may
be hard to gauge, and whose time and economic costs can also be sizeable.

An alternative strategy involves extracting meaningful properties from spontaneous
brain activity. Spontaneous activity can be thought of as a data bank of cortical fluctuation
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patterns (9) with complex spatio-temporal structure (10),
displaying similar non-trivial properties across a wide range
of scales (11, 12). These properties are replicated in behavioral
fluctuations (13), suggesting that behavior is in essence a
coarse-grained version of neural fluctuations. Importantly, these
properties are altered in various brain pathologies (14, 15) and
can be modulated by pharmacological manipulations (16). These
fluctuations are intrinsically multiscale with complex relations
among scales (17, 18), so that characterizing the temporal scales of
cognitive processes is in general non-trivial (19, 20).

These fluctuations can be thought of as the statistical and
dynamical signatures of underlying non-linear dynamical processes
in terms of which the system can be described, and the behavioral or
neural variables capable of modulating them as control parameters
for the dynamics (10).

Dynamics and thermodynamics and, more specifically, non-
linearity and non-equilibrium properties constitute two sides of
the same coin. This can be appreciated by considering symmetries
and their break down. For instance, the breakdown of time-reversal
symmetry, a measure of the extent to which it is possible to discern
a preferred time direction of a stationary stochastic process (21),
which is associated with the presence of strong non-linearities
(22), constitutes the hallmark of systems operating away from
equilibrium (23). These systems use part of their free energy budget
to performwork or store energy in alternative forms, dissipating the
rest as heat in the environment. The second law of thermodynamics
prescribes that this transformation should be associated with an
irreversible increase in entropy of the environment. The higher
the price in entropy lost to dissipation, the more conspicuous the
irreversibility. Thus, time-reversal symmetry can be used not only
as an indicator of whether a system is at equilibrium or not (24, 25),
but also as a quantifier of its distance from such a condition (26).
Importantly, irreversibility can be quantified from experimental
data (27). Not surprisingly, the marked irreversibility of healthy
spontaneous brain activity (22, 28, 29) shows specific alterations
in various conditions (28–31), including Alzheimer’s disease (28),
ADHD (29), bipolar disorder (29), and schizophrenia (28, 29).

Dissipation is also proportional to the violation of fluctuation-
dissipation relations (FDRs) (32), expressing fundamental
symmetries of equilibrium systems (33). In such systems,
the autocorrelation of some observable’s fluctuations in the
unperturbed system is related through temperature to the response
to small external perturbations. Brain fluctuations are profoundly
different from the Gaussian ones with exponentially vanishing
memory of equilibrium systems (34–37), and this relationship
must be expressed differently, e.g., close to equilibrium, in terms of
an effective temperature (38).

Mirroring dynamics’ multiscaleness, irreversibility and FDRs’
violations may manifest differently at different spatial and temporal
scales (39–41). Accordingly, brain activity and its pathology can be
described in terms of the characteristic scales of such properties
(10, 28, 42).

Insofar as the brain ultimately manipulates information, one
may want to quantify brain activity in terms of information
processing, erasure, and transfer. A deep relation exists between
information and thermodynamics of a physical system (43, 44). In
particular, the Landauer principle states that information erasure

FIGURE 1

Brain activity in healthy and pathological states are traditionally

described by extracting functionally relevant features of its

dynamics. Complementary descriptions can be found by using the

relationships between dynamics, thermodynamics, and information.

Ultimately, brain activity and its pathologies can be characterized in

terms of physically meaningful dynamical, thermodynamical and

information theoretic variables (10).

is a dissipative process (45), Likewise, effective information use

is related to thermodynamic efficiency. This is because neural
systems compute implicit models of the environment through
their dynamics. However, a fraction of retained information does
not improve the system’s predictive power and is equivalent to
thermodynamic inefficiency (46) (see Figure 1).

This Research Topic presents five contributions dealing with
various aspects of psychiatric pathology, particularly of obsessive-
compulsive disorder (OCD), but also unipolar depression,
ranging from general characterization to symptom provocation,
to treatment evaluation, and using various techniques (NIRS,
MEG, TMS, but also behavioral techniques). Liu et al. found an
association between OCD and brain aging acceleration. Bernardi
et al. highlighted differences in the temporal scales ofMEG activity’s
irreversibility in OCD with respect to healthy controls. Maia et al.
propose a tutorial for TMS-guided symptom provocation in OCD.
Stephenson et al. show the feasibility of an electronically delivered
cognitive behavioral therapy program associated with functional
neuroimaging evaluation. Finally, Yang et al. usedNIRS to highlight
topographically specific activations in first-episode vs. recurrent
depression patients.
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