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Micronutrient deficiency also known as “hidden hunger” refers to a condition 
that occurs when the body lacks essential vitamins and minerals that are 
required in small amounts for proper growth, development and overall 
health. These deficiencies are particularly common in developing countries, 
where a lack of access to a varied and nutritious diet makes it difficult for 
people to get the micronutrients they need. Micronutrient supplementation 
has been a topic of interest, especially during the Covid-19 pandemic, 
due to its potential role in supporting immune function and overall health. 
Iron (Fe), zinc (Zn), iodine (I), and selenium (Se) deficiency in humans are 
significant food-related issues worldwide. Biofortification is a sustainable 
strategy that has been developed to address micronutrient deficiencies 
by increasing the levels of essential vitamins and minerals in staple crops 
that are widely consumed by people in affected communities. There are 
a number of agricultural techniques for biofortification, including selective 
breeding of crops to have higher levels of specific nutrients, agronomic 
approach using fertilizers and other inputs to increase nutrient uptake by 
crops and transgenic approach. The agronomic approach offers a temporary 
but speedy solution while the genetic approach (breeding and transgenic) 
is the long-term solution but requires time to develop a nutrient-rich  
variety.
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Introduction

Over 2 billion people worldwide suffer from micronutrient deficiency which has a 
negative impact on their health and socio-economic condition (1). The principal reason is 
the consumption of cereal-based food which provide enough calories but they are deficient 
in phytochemicals (minerals, vitamins, antioxidants, and fiber). These phytochemicals are 
essential for the normal growth and development of humans and their deficiencies can have 
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serious health consequences, including diminished cognitive 
degeneration in children, increased risk of infections and a range 
of other negative effects on physical and mental health.

Green Revolution, which took place from the mid-20th 
century onwards, marked a significant shift in agricultural 
practices and policies, particularly in developing countries like 
India. During the revolution, the emphasis was shifted on 
boosting crop productivity, notably that of rice and wheat, 
which led to the domination of these two crops in the nation. 
The increased productivity ensured food security in the country 
but on the other hand, decreased bio-diversity resulted in a 
monotonous cereal-based diet and thus increased concern about 
nutritional security. The ever-growing population of India 
further worsens the problem of providing sufficient nutrients to 
all. Over 21.9% of the Indian population is living in extreme 
poverty with limited access to resources (2). With their poor 
purchasing power, they consume what they produce in their 
fields. In order to alleviate malnutrition and to attain nutritional 
security in the country, a second green revolution is therefore 
required, with a particular emphasis on the development of 
biofortified, nutrient-rich varieties.

Staple crops, such as rice, wheat and maize are the main 
source of calories for a large proportion of the world’s 
population, particularly in low-income countries. These crops, 
however, often lack essential vitamins and minerals, which 
might result in micronutrient deficiency. Biofortification can 
help to address this problem more sustainably and economically 
by increasing the levels of essential vitamins and minerals in 
staple crops. It is the process of enrichment of bio-available 
concentration in edible portions of food and aims at providing 
nutrient-rich food to rural resource-poor people who do not 
have access to diversified food, supplements and industrially 
fortified food (see Figure  1). Biofortification can be  a cost-
effective and sustainable way to address micronutrient 
malnutrition at the population level with an ultimate goal to 

reduce malnutrition and improve public health, particularly in 
populations that rely heavily on a single staple crop for their 
daily caloric intake. It requires a one-time investment unlike 
supplements, reach malnourished poor population and provide 
better quality food without compromising yield (see Figure 2). 
This can be  particularly important in developing countries 
where micronutrient deficiencies are common and can have 
serious health consequences. Iron, zinc, iodine and selenium 
deficiencies are the most common, which account for around 
60% of iron, 30% of zinc and iodine and 15% of selenium 
deficiency (3). However, biofortification alone is not enough to 
eradicate malnutrition. It cannot provide such a high level of 
nutrients as through supplements or fortified food but they 
improve daily dietary intake of nutrients (4). In the context of 
climate change also, the anticipated drop in dietary 
micronutrients makes biofortification more important for 
vulnerable groups to maintain good health.

The concept of simultaneously biofortifying crops with 
multiple essential micronutrients is an innovative and promising 
strategy to address widespread nutrient deficiencies and improve 
overall human nutrition. This approach, often referred to as 
“multi-nutrient biofortification” or “combinatorial 
biofortification,” aims to create crops that contain a balanced 
array of various essential vitamins and minerals. This strategy can 
provide a more holistic and comprehensive approach to combating 
malnutrition by addressing multiple nutrient deficiencies 
concurrently. By combining different nutrients in crops, their 
overall bioavailability and health benefits can be  maximized. 
Multi-nutrient biofortified crops can encourage dietary diversity 
as people consume a wider range of nutrients from staple foods. 
In addition to cost savings from development to distribution and 
synergies through aggregated health effects, multi-nutrient 
biofortification can result in significantly higher market coverage 
by preventing competition between numerous single-nutrient 
biofortified varieties (5).
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FIGURE 1

Different countries and their percentage of population suffering from malnutrition.
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Approaches of biofortification

Agronomic biofortification

Agronomic biofortification refers to the process of enriching 
the nutritional value of crops through fertilization and soil 
management. It offers an efficient and timely solution that is the 
quickest and most affordable way to produce nutrient-dense 
food, albeit it only offers a short-term fix. The majority of crops 
can benefit from this very simple method of biofortifying with 
iron, zinc, iodine, and selenium. To boost the content of 
micronutrients in the plant’s edible parts, micronutrient-
containing organic/inorganic fertilizers or biofertilizers are 
applied to the plant by foliar or soil application. Micronutrient 
concentration depends on the source of fertilizer used, method 
and rate of fertilizer application, stage of application, and 
translocation of nutrients within plants. Due to variations in 
mineral mobility, mineral accumulation among plant species and 
soil compositions in the particular geographic region of each 
crop, the success of agronomical biofortification is highly 
variable (6). The effectiveness of agronomic biofortification has 
increased with the development of high specialized fertilizers 
with high nutrient uptake efficiency and greater nutrient 
translocation to the consumable sections of a crop plant, which 
include water-soluble fertilizers, chelated fertilizers and nano-
fertilizers (7).

Nanoparticles, which are extremely small particles with unique 
properties due to their size and structure, have gained attention as 
potential tools for biofortification. Nanofertilizers (NFs), a subset 
of nanotechnology applications in agriculture, hold significant 
potential to revolutionize traditional methods of enhancing crop 
nutrient content and improving overall nutritional quality. By 
harnessing the unique properties of nanoparticles, NFs offer a 

promising avenue for increasing the concentration and 
bioavailability of essential nutrients in food crops, a strategy 
known as “nanofertilizer-assisted biofortification.” Because of the 
large increase in surface area and the NFs’ small size, plants can 
easily absorb the particles (8).

Iron biofortification

Iron deficiency is a common problem, particularly in 
developing countries and it can have serious health consequences 
such as anemia affecting over half the population of children 
under the age of five and pregnant women in India. Biofortification 
can help to address this issue by increasing the iron content of 
crops, which can in turn help to improve the iron intake of 
individuals who rely on these crops as a dietary staple. Iron is a 
vital nutrient for humans, it is required for proper body 
functioning but cannot be  produced by the body and must 
be obtained from the diet. It is crucial for the production of red 
blood cells and the transportation of oxygen within the human 
body, supporting the immune system, providing energy and 
maintaining healthy skin, hair and nails. It is especially important 
for pregnant women, infants, and young children, as they have 
higher iron requirements. Anemia, weariness, and immune 
system impairment are just a few of the health issues that iron 
deficiency can cause, especially in impoverished nations where 
plant-based foods are the main source of Fe (9).

Applying iron-rich fertilizers to the soil and proper soil 
management, such as maintaining the pH and nutrient balance of the 
soil can help to improve the uptake of iron by crops. It is important to 
note that the efficacy of these methods can vary based on the particular 
crop and growing circumstances. Comparing vegans to meat-eaters, 
the former should consume 1.8 times more of the recommended daily 
intake (RDA) of Iron than later (10). Table 1 shows some of the crops 
that are successfully agronomically biofortified with iron.

Zinc biofortification

Zinc is a crucial micronutrient that is necessary for both plants 
and humans. It is involved in a wide range of physiological functions 
including immune response, protein and DNA synthesis, wound 
healing and involved in the metabolism of carbohydrates, proteins and 
fats. Zinc deficiency is a major public health problem affecting around 
30% of the world’s population, making people more susceptible to 
issues including maternal mortality, DNA damage, growth retardation, 
changes in taste and smell, immunological dysfunction, and an 
increased risk of infections (23).

Biofortification can assist to solve the issue of zinc deficiency and 
improve the nutritional value of crops, particularly in areas where 
deficiency is prevalent. Zinc deficiency in humans and soil show 
geographical overlap (24). A high percentage of agricultural land 
(36.5%) in India is zinc deficient and cultivating crops on these 
deficient soils further reduces zinc levels in edible portions (25). The 
deficit is particularly prevalent in low-income developing nations 
where a plant-based diet is the norm (26). Agronomic biofortification 
of zinc was reported to be  successful in a large number of crops 
(Table 2).

FIGURE 2

Methods of biofortification (Agronomic, Breeding and Transgenic).
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Iodine biofortification

Iodine is a necessary component of human metabolism and crucial 
for the proper function of the thyroid gland in humans, energy 
production and body temperature regulation, despite not being a 
necessary element for plants, although its application has been linked to 
higher yields and high iodine content in several crops (Table 3). It is 
estimated that the iodine intake of 30–38% of people worldwide is 
insufficient (45).

Iodine deficiency can lead to a variety of health  
problems, including goiter, infertility, growth impairment, 
hypothyroidism and intellectual disability. Iodine 
biofortification can be a particularly useful approach in areas 
where iodine deficiency is common and people rely heavily on 
plant-based foods as a source of nutrients. Biofortified plant-
based foods can help to increase the overall iodine intake of a 
population and improve the nutritional status of individuals 
who consume these foods. Adults should consume between 150 
to 290 μg of iodine per day, with a tolerable upper limit of 
1,100 μg per day (53, 54). One of the most common ways to 
fortify iodine is through the addition of iodine to salt. This is 
called iodized salt. Iodized salt may not be  effective in 
preventing iodine deficiency in all populations as it can raise 
blood pressure which is a major risk factor for heart disease and 
stroke. It is also linked to an increase in cases of osteoporosis, a 
condition that causes the bones to become weak and brittle. A 
promising strategy to raise the iodine content of crops is 
agronomic biofortification.

Selenium biofortification

Selenium is a trace element that is essential for human health. Due 
to its incorporation into selenoproteins like glutathione peroxidase, 
which perform a number of functions including antioxidant activity, it is 
essential for the immune system’s proper operation (55). Se deficiency 
affects hundreds of millions of people around the world (56). For plants, 
Se is not essential (57, 58), but when applied at low doses, it is beneficial 
for some groups of plants by increasing the activity of various enzyme 
systems; selenium alone or in combination with iodine was found to 
increase concentration, better quality in some plants (Table  4); for 
example, it delays tomato fruit ripening by inhibiting ethylene 
biosynthesis and enhancing the antioxidant defense system (80).

Plants can absorb selenium from the soil, but the availability of 
selenium in the soil can vary widely. In some areas, the soil may 
be naturally low in selenium, while in others, selenium may be present 
but not in a form that plants can easily absorb. To ensure that plants are 
getting sufficient selenium, it may be necessary to add selenium to the 
soil. This can be done through the use of selenium fertilizers or through 
the application of selenium-rich compost or manure. It is also possible to 
provide selenium to plants through the use of selenium-rich irrigation 
water or through the use of selenium-enriched seeds.

Interaction among nutrients

The effectiveness of agronomic biofortification can be affected by 
interactions between macronutrients and micronutrients (81) (see 

TABLE 1 Agronomic biofortification of iron.

Crop Treatment References

Cereals

Rice Foliar application of FeSO₄ sprayed @ 0.2% at panicle initiation stage, 7 days after flowering 

(DAF), 14 DAF

(11)

Brown rice 0.5 and 1.0% FeSO4. 7H2O at maximum tillering, pre-anthesis and post-anthesis stages (12)

Aerobic rice Soil application of 67 mg FeSO₄.7H₂O per kg soil at the time of sowing; three foliar sprays (at 

40, 60 and 75 DAS) of 3% FeSO₄.7H₂O solution and 0.05 M Fe-EDTA used as seed treatment

(13)

Wheat Three foliar sprays of FeSO₄ at tillering, booting and heading stage (14)

Foliar application of Fe3O4 nanofertilizer (5 mg L−1) (15)

Pulses

Mungbean Foliar application of 0.5, 1 and 1.5% solutions of FeSO4 at branching and flowering stages.

Increased Fe concentration by 46% in grains.

(16)

Cowpea Four foliar application rates (0, 25, 50 and 100 μM L−1) each of iron chelates and ferrous 

sulfate.

Increased Fe concentration by 29–32%.

(17)

Chickpea Foliar application of FeSO4.7H2O resulting in an increased grain concentration by 21–22% (18)

Lentil Foliar spray of 0.5% FeSO4.7H2O at the pre-flowering stage.

Increase in concentration by 17.4 mg kg−1 in grains.

(19)

Vegetables

Potato Soil (Amino acid-based Fe complex) and foliar applied EDTA chelated Fe (20)

Red and green pigmented Lettuce Soilless culture: Fe at conc. 0.5, 1.0 and 2.0 mM iron (21)

Brassicaceae microgreens (Arugula, red cabbage, 

and red mustard)

Soilless media: Fe conc. 0, 10, 20, 40 mg L−1 (22)
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Table  5). While previous biofortification initiatives have mainly 
concentrated on increasing specific nutrients, a novel strategy could 
be  to simultaneously biofortify crops with a number of essential 
micronutrients, providing a more comprehensive nutritional profile. 
Some nutrients work synergistically in the body, enhancing the 
absorption and utilization of others. Zinc, for example, improves 
nitrogen metabolism by promoting effective uptake and assimilation. 
It also aids in the conversion of phosphorus into forms that are easily 
absorbed by plants, as well as in the regulation of stomatal function 

and water movement, both of which affect potassium absorption. The 
synthesis of selenium-containing phytochemicals, such as 
selenocompounds can be  improved by selenium biofortification. 
According to (82, 83), plants convert selenium into selenoamino acids, 
which are then converted into phytochemicals. These substances have 
antioxidant qualities beneficial to human health. Selenium also plays 
a role in reducing element toxicity and regulating the concentration 
of micronutrients in plants by modifying soil conditions, encouraging 
microbial activity, taking part in crucial physiological and metabolic 

TABLE 2 Agronomic biofortification of zinc.

Crop Treatment References

Cereals

Maize Soil application of ZnSO₄.7H₂O @ 2.5, 5 and 7.5 kg/ha (27)

Aromatic rice Soil and foliar application (at flowering) of zinc as ZnSO₄.7H₂O (28)

Basmati rice Different Zn sources applied at the rate 5 kg Zn/ha Singh and Shivay (29)

Rice Soil and foliar sprays (two) at maximum tillering and panicle initiation stage with different 

sources of zinc at different rates

(30)

Soil and foliar application of ZnSO₄.7H₂O and zinc-coated urea Prasad and Shivay (31)

Wheat Soil and foliar sprays (two) at maximum tillering and booting stage with different sources 

of zinc at different rates

(32)

Soil and foliar application of zinc as ZnSO₄.H₂O (33)

Dextran sulfate (DEX (SO4))-coated ZnO Nanoparticles Elhaj and Unrine (34)

Different rates and source of Zinc at 1/3- sowing, 1/3–3 weeks after sowing (WAS) and 

1/3–6 WAS

Prasad and Shivay (31)

Bread wheat, durum wheat and triticale Foliar application of 0.5% ZnSO₄.7H₂O at maximum tillering, flower initiation, milk and 

dough stages.

The maximum percent increase was 145.9% in wheat, 178.1% in durum wheat and 157.4% 

in triticale

(35)

Pulses

Chickpea Soil application (5 kg/ha) through ZnSO4.7H2O

Increase in concentration of zinc by 5.4 mg kg−1

(36)

Pigeon pea Soil application (20 kg/ha) ZnSO4.7H2O

Increase in concentration of zinc by 10.6 mg kg−1

Behera et al. (37)

Lentil Foliar spray of 0.5% ZnSO4.7H2O at the pre-flowering stage.

Increase in concentration by 10.5 mg kg−1 in grains.

(19)

Oilseeds

Safflower Soil application (5 kg/ha) through ZnSO4.7H2O Roy and Ghosh (38)

Linseed Foliar application of ZnSO4.7H2O and Zn-EDTA (0, 0.25, 0.50, and 0.75%) at flowering 

and capsule formation stages

(39)

Vegetables

Brassicaceae microgreens (Arugula, red cabbage, 

and red mustard)

Soilless media: ZnSO4 (5–10 mg/L)

75–281% increase in zinc content in crop

(22)

Arugula (Broad leaf) Foliar application (Zn @ 1.5 kg/ha at 25 DAE)

279% increase in Zn content

(40)

Lettuce Different Zn doses (0,5, 10, 20, 30 mg kg−1) (41)

Broccoli 0.25% ZnSO4. 7 H2O @ 15 mL per pot (42)

Fruits

Pear Foliar spray of 1.5% ZnEDTA (43)

Banana Injection of ZnSO4. 7 H2O in pseudostem @ 1, 2 and 4%

Triple zinc content in fruit than control

(44)
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processes, generating element competition, stimulating metal 
chelation, organelle compartmentalization and sequestration (84). It 
is preferable to combine Zn, Se, and Fe in conjunction with the 
employment of plant growth-promoting bacteria (PGPR) and 
arbuscular mycorrhizal fungus (AMF), in order to develop 
biofertilizers that are ecologically benign yet result in crops that are 
enriched in microelements (85).

In some cases, certain nutrients can compete with each other for 
absorption. By ensuring an adequate balance of multiple nutrients, 
competition for absorption can be minimized. Adequate levels of 
nutrients like magnesium, zinc and manganese are important for 
vitamin C synthesis. These nutrients can impact the enzyme systems 
involved in ascorbic acid production. Certain micronutrients, such 
as copper and manganese, are cofactors for enzymes involved in the 
synthesis of antioxidants and flavonoids (86). Adequate levels of these 
micronutrients can positively influence the production of these 
compounds. The formation of roots, the movement of shoots and the 
re-localization of nutrients from vegetative tissue to the seeds are all 
positively impacted by a plant’s N and P status. As a result, the crop’s 
edible sections absorb more micronutrients and have higher 
concentrations of them (87).

Salt, high/low temperature, heavy metals, and drought all cause 
the overproduction of reactive oxygen species (ROS) and the 
induction of oxidative stress in plants (85). It has been 
demonstrated that biofortification with Zn, Se, and Fe using 
various types and forms of fertilizer can reduce the damage caused 
by oxidative stress by increasing the content of ROS-scavenging 
enzymes such as superoxide dismutase (SOD), ascorbate 
peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), 
monodehydroascorbate reductase (MDHAR), dehydroascorbate 
reductase (DHAR), glutathione reductase (GR), glutathione 
S-transferase (GST), and peroxiredoxin (PRX) content in different 
sites of plant cells (88, 89).

Biofortification through conventional 
breeding

Traditional plant breeding is a method of improving the 
nutritional content of crops by selecting for desired traits through 
controlled crosses between different plant varieties. The process 

involves selecting plants with desirable traits, such as higher 
micronutrient content and crossing them with other plants to create 
a hybrid with improved characteristics. Over time, this process is 
repeated and the offspring are screened for desired traits.

Plant breeding techniques are used in the biofortification 
approach to develop staple food crops with greater micronutrient 
content (97), this assists to target low-income households in the 
country. Numerous crops have been targeted for biofortification 
through crop breeding due to their improved acceptance (Table 6). 
A biofortified crop system is highly sustainable. Nutritionally 
improved varieties will continue to be grown and consumed year 
after year, even if government attention and international funding 
for micronutrient issues fade (105). Since the last four decades, yield 
qualities and resistance breeding have received the majority of 
attention resulting in lower amounts of nutrients in the existing 
varieties (106).

Biofortification by breeding is attained when crops have naturally 
some concentrations of micronutrients, such as iron, zinc and vitamin 
A, which means when genetic diversity is accessible in usable form. 
Some examples of biofortified crops include iron-rich beans, zinc-rich 
rice, selenium-rich rice, wheat and maize, iodine-rich cassava, maize, 
and sweet potatoes and vitamin A-rich sweet potatoes.

This method is widely accepted as it is safe and does not raise the 
same safety concerns as genetic engineering. However, traditional 
breeding can be a slow and labor-intensive process, and it may take 
many years to develop a crop with improved nutrient content.

Target crops for biofortification

Cereals

Rice, wheat and maize are the major calorie supplement for 
two-thirds of the Indian population thereby ruling the people’s diet in 
the country. Biofortification of cereals with iron, zinc, protein and 
provitamin-A content can assist to bring down the issue of hidden 
hunger in the population who does not have access to diversified food 
or supplements. Cereals are typically deficient in both protein and 
vitamin A. Proteins are vital for humans as they build cells, act as 
enzymes for chemical reactions, regulate hormones, support the 
immune system, aid in muscle function, and facilitate communication 

TABLE 3 Agronomic biofortification of iodine.

Crop Treatment References

Tomato Potassium iodide (KI), KIO3 + SA, KI + SA @ I-7.88 μM and 7.24 μM (45)

Pepper KI at 0.25 to 1 mg/L

Increased iodine content by 350–1,330 μg/kg

(46)

Cabbage and cowpea Potassium iodide @ 15 kg I /ha

Increase in iodine conc. to 109.1 mg/kg in cabbage and 5854.2 mg/kg in cowpea

(47)

Carrot Iodine dose at 0.5 mg/L (48)

Potato KIO3 @ 2.0 kg iodine per hectare (49)

Apple and Pear Foliar application of KI and KIO3 (0.5, 1.0 and 2.5%) (50)

Leafy greens

(Rapeseed and Amaranthus)

Soil and foliar Iodine application at different concentrations (0, 5, 10 kg/ha) (51)

Sweet basil and lettuce KI @10 μM (52)
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between cells, among other essential roles in maintaining overall 
health and bodily functions. Dietary protein deficiency can lead to 
varied effects on body weight and composition. Inadequate protein 
intake often results in increased food consumption, body weight, and 
fat mass. Extremely low protein diets cause fatty liver, reduced energy 
absorption, and persistent decreases in lean mass (107). Vitamin A 
aids in cell communication, supports reproduction and growth, and 
acts as an antioxidant to protect cells. Its deficiency can cause problems 

in the eyes (ophthalmological), skin (dermatological), and immune 
system (immune impairment) (108).

Polished rice is a poor source of micronutrients; 60–80% of Fe 
and around 30% of Zn are lost during polishing (109) yet consumers 
prefer polished rice because of their long storage and their taste 
preference. Pureline varieties of rice developed by ICAR-IIRR are 
DRR Dhan 45, DRR Dhan 48 and DRR Dhan 49 having zinc content 
ranging from 22.6–25.2 ppm. Protein-rich variety CR Dhan 310 has 

TABLE 4 Agronomic biofortification of selenium.

Crop Targeted micro-nutrient Treatment References

Pulses

Chickpea Selenium Two foliar Se fertilizers (sodium selenate and sodium selenite) at four rates 

(0, 10, 20, 40 g ha−1)

(59)

Soybean Selenium Foliar application of sodium selenite and Se-enriched fertilizer (60)

Lentil Selenium Foliar application of 40 g/ha of Se as potassium selenate (K2SeO4) (10 g/ha 

during full bloom and 30 g/ha during the flat pod stage)

Increased seed Se concentration from 201 to 2,772 μg/kg

(61)

Oilseeds

Mustard Selenium Accumulation of 358 mg kg−1 in seed (62)

Root crops

Carrot and Broccoli Selenium Selenium conc. at 1.65 mg/kg, 0.92 mg/kg and 88 μg/L, 48.6 μg/L (63)

Carrot Iodine and selenium KI + Na2SeO3 & KIO3 + Na2SeO3 (64)

Turnip Selenium Selenite at 50 to 100 mg L−1 (65)

Radish Selenium Selenate and selenite @ 20 μmol L−1 (66)

Carrot Iodine and selenium KI + Na2SeO4 (4 kg I /ha: 0.25 kg /ha)

Iodine and selenium content (7.7 and 4.9 times)

(67)

Carrot Iodine and selenium KI and Na2 SeO4

(4 kg I ha−1: 0.25 kg Se ha−1)

(68)

Cole crops

Broccoli Selenium Se dose, selenite and selenate (69)

Cabbage Selenium Na2O4Se: betaine: adjuvant (10 μM: 10 μM: 1%) (70)

Broccoli and Carrot Selenium Selenium enriched S. pinnata (soil amendment) (71)

Broccoli Selenium Sodium selenate (50 μM) (72)

Mustard sprout Selenium Selenate and selenite @ 20 μmol L−1 (66)

Cabbage Selenium 8 mg kg−1 and 16 mg kg−1 Se yeast (73)

Cucurbits crops

Pumpkin Selenium and iodine Selenium and iodine combination (74)

Leafy vegetables

Lettuce Selenium Selenate at 40 μmol L−1 (75)

Lettuce Selenium Selenate application at low concentration (58)

Lettuce Iodine and selenium Foliar application of Na2SeO4 and Na2SeO4 + KIO3 and for iodine content 

in roots KIO3 and Na2SeO4 + KIO3

(76)

Solanaceous vegetables

Tomato Selenium Selenium dose at 10 mg L−1 (77)

Tomato Selenium Sodium selenite at 5 mg L−1

Accelerated accumulation of selenium by 53%

(78)

Cherry tomato Selenium Selenium at 2.0–4.0 μmol L−1 + grafting (soilless media) Se concentration 

(9.8 mg kg−1)

(79)
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10.6% protein content in polished rice in comparison to 7.0–8.0% in 
popular varieties.

Wheat is the second main crop of India after rice. Breeding wheat 
to improve the quality of the crop has become the recent focus. 
However, farmers’ acceptance of nutrient-dense cultivars and the 
introduction of new biofortified varieties into wheat-growing areas is 
crucial in the fight against hidden hunger (110, 111). Although iron 
and zinc are abundantly present in the aleurone layer, however, their 
bioavailability is affected by the presence of phytate (112).

Supplementing with vitamin A presents a problem due to its high 
cost and need for efficient transportation and storage methods, which 
are challenging to implement in remote, sparsely populated locations 
(113). Maize is an ideal crop for biofortifying it with provitamin A due 
to its natural diversity in carotenoid content, which includes 
predominant carotenoid components lutein and zeaxanthin, as well as 
β & α-carotene and β-cryptoxanthin (114). Traditional maize contains 
less amount of proteins, lysine and tryptophan, over-dependency on 

this cereal causes diseases such as kwashiorkor and pellagra (115, 
116). There are presently several varieties of quality protein maize 
(QPM) being grown throughout the country having high lysine and 
tryptophan levels.

Pulses

Pulses are a major source of protein and other vital nutrients for 
millions of people, especially in developing countries. Biofortification 
can effectively address malnutrition by providing more of the key 
nutrients needed for proper growth, development and overall health. 
Pulses are not only nutritionally valuable but also environmentally 
beneficial, as they have the ability to fix nitrogen in the soil, enhancing 
its fertility. Lentils and beans are particularly promising candidates for 
enhancing iron and zinc content through conventional breeding 
methods. These pulses exhibit inherent genetic potential for heightened 

TABLE 5 Effect of nutrients on other nutrients and phytochemicals.

Crop Targeted nutrient Treatment Improved traits References

Legume crops

Green beans Macro (N, P, K, Ca, and Mg) and 

Micronutrients (Fe, Mn, Zn, Cu, and Ni)

Zn Chelate and Zn Sulphate 

(25 to 50 μM)

Antioxidant activity and macro and 

micro-nutrient content

(90)

Oilseeds

Mustard Boron and nitrogen Borax (0.5 and 1%) and 

urea (1%)

Increased oil and protein content (91)

Cole crops

Cabbage Selenium 8 mg kg−1 and 16 mg kg−1 Se 

yeast

Antioxidant activity and nutritional 

quality (ascorbic acid, soluble sugar, free 

amino acids, SOD activity, Glucosinolates, 

and Phenolic compounds)

(73)

Broccoli Nitrogen and Zinc 0.25 + 0.25 of N and Zn 

(foliar application)

Antioxidant activity, Zn (more than 

50 mg K−1) and total phenol content

(92)

Cucurbits crops

Cucumber Potassium Potassium sulphate at 

0.014–4 g L−1

Potassium content (93)

Leafy vegetables

Spinach PSB PSB + FYM applied at 

different stages

Micronutrients (Ca, Mg, Zn and Fe), 

vitamin C and beta-carotene

(94)

Lamb’s Lettuce Selenium Soil and foliar application of 

Selenium

Phenolic compounds (95)

Alfalfa Selenium Selenate and selenite @ 

20 μmol L−1

Anthocyanin concentration (66)

Solanaceous vegetables

Pepper Iodine Hydroponic experiment: KI 

conc. 0.25–5 mg L−1

Ascorbic acid (46)

Tomato Selenium Selenium dose at 10 mg L−1 Ascorbic acid, soluble sugar, chlorophyll-a 

content, peroxidase, catalase, and 

superoxidase dismutase

(67)

Tomato Selenium Sodium selenite at 2 mg L−1 Biosynthesis of phytochemical compound (96)

Root vegetable

Turnip Selenium Selenite at 50 to 100 mg L−1 Selenium content and other minerals viz., 

Mg, P, Zn, Mn, and Cu.

(65)
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TABLE 6 Varieties developed through conventional breeding.

Crop Variety Trait Country Year release References

Cereals

Rice DRR Dhan 45 Zn India 2016 (98)

DRR Dhan 48, DRR Dhan 49 Zn India 2017 (98)

Saurbhi Zn India 2017 (98)

Fedearroz BIOZn 035 Zn Colombia 2021 (99)

Inpara 11 Siam HiZInc Zn Indonesia 2022 (99)

BRRI Dhan 64 Zn Bangladesh 2014 (99)

CR 310, CR 311 Protein India 2018 (100)

Zinco Rice MS Zn India 2018 (101)

WB 02, HPBW 01 Fe, Zn India 2017 (102)

Pusa Tejas Protein, Fe India 2017 (102)

Pusa Ujala Protein, Fe, Zn India 2017 (102)

Wheat HD 3171 Zn India 2017 (102)

Nohely F2018 Zn Mexico 2018 (99)

TARNAB-REHBAR Zn Pakistan 2023 (99)

TARNAB-GANDUM-I Zn Pakistan 2023 (99)

Zinc Gahun-1 Zn Nepal 2020 (99)

HI 8777 Zn, Fe India 2018 (102)

MACS 4028 Protein, Zn and Fe India 2018 (103)

PBW 752 Protein India 2018 (103)

Maize Vivek QPM 9 lysine and tryptophan India 2008 (102)

Pusa HM8 Improved, Pusa HM4 lysine and tryptophan India 2017 (102)

Pusa Vivek QPM9 Improved provitamin-A, lysine and tryptophan India 2017 (102)

ZS246A Vitamin A Africa 2016 (99)

ZS500A Vitamin A Africa 2019 (99)

ICTA HB-18ACP + Zn Zinc Guatemala 2018 (99)

Fortaleza 17 Zinc Guatemala 2020 (99)

SGBIOH2 Zinc Colombia 2019 (99)

Pusa HQPM 5 Improved, Pusa HQPM 7 

Improved, IQMH 201

provitamin-A, lysine and tryptophan India 2020 (2)

Pearl millet RHB 233, RHB 234 Iron and zinc India 2019 (103)

ICSR 14001, ICSH 14002 Iron India (104)

VR 929 Iron India 2020 (2)

LCIC MV5 Iron Nigeria 2023 (99)

Chakti Iron Nigeria 2018 (99)

CFMV1, CFMV 2 Calcium, iron and zinc India 2020 (2)

Sorghum CLMV1 Iron and zinc India 2020 (2)

Parbhani Shakti Zinc India 2018 (99)

Finger Millet Pusa Ageti Masoor Iron India 2017 (102)

IPL 220 Iron and zinc India 2018 (103)

Little Millet IPL 220 Iron and zinc India 2018 (103)

Pulses/Legumes

Lentil Kufri Manik, Kufri Neelkanth Anthocyanin India 2020 (2)

Bhu Sona, Bhu Krishna Provitamin-A, Anthocyanin India 2017 (102)

Rasuwa black Iron Nepal 2020 (99)

Barimasur-4, B-5, B-6 Iron Bangladesh 2010 (99)

(Continued)
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mineral accumulation. Harnessing this natural richness entails 
meticulous selection of parental genotypes demonstrating superior 
mineral concentrations. Through systematic interbreeding over 
successive generations, novel cultivars can be  developed wherein 
augmented iron and zinc levels are seamlessly integrated while preserving 
key agronomic attributes. Consequently, these biofortified varieties 
emerge as pivotal assets for ameliorating micronutrient deficiencies and 
fostering enhanced nutritional quality within food systems.

Vegetables and fruits

The consumption of vegetables and fruits is important for a healthy 
diet, as they are rich in vitamins, minerals, fiber, and other essential 
nutrients. They offer a diverse, low-calorie, protective and nutrient-
dense diet. It has long been understood that eating the recommended 
amounts of vegetables and fruits has favorable health effects and 
frequent consumption of a range of these foods has been associated 
with decreased risk of diseases. The benefits of biofortifying vegetables 
and fruits include reducing the risk of chronic diseases, increasing 
economic productivity and promoting overall health and well-being.

Biofortification through transgenic/
biotechnological means

Biotechnology is a field of science that uses living organisms, cells 
or their components to make useful products or services. It has the 
potential to solve many of the world’s most pressing problems, such as 
producing enough food to feed a growing population, developing new 

treatments for diseases and enhancing the nutritional quality of crops. 
Biotechnology allows more precise and efficient targeting of specific 
nutrients than other means.

Nutritional quality in crops can be enhanced either by adding new 
genes that supply the plants with more vitamins or minerals or by 
enhancing the expression of already present genes that are involved in 
nutrient biosynthesis (see Table 7). Transgenic techniques can be used 
to simultaneously incorporate genes that increase the concentration of 
micronutrients, their bioavailability and inhibit antinutritional factors 
(ANFs) in crops that restrict the utilization of nutrients (117). Transgenic 
approach presents a rational solution to improve the concentration and 
bioavailability of micronutrients (106, 118) especially when there is a 
limited genetic base present in different plant varieties (119, 120).

Scientists have used biotechnology to develop crops that are high 
in beta-carotene, a precursor of Vitamin A, iron and zinc which are 
essential for human health but often lacking in the diet of people in 
developing countries. One of the examples is the development of 
vitamin A-rich rice called “golden rice,” which could help to address 
vitamin A deficiency in developing countries. Additionally, 
biotechnology can be used to improve the quality of food by increasing 
its shelf life, enhancing its flavor, reducing its allergenicity and 
producing food ingredients with health benefits like functional 
proteins, fibers and lipids. These ingredients can be used to improve 
the nutritional value of food products, making them more healthful 
and beneficial for consumers. This can help to make food more 
accessible and affordable for consumers, particularly in areas where 
food is scarce or expensive. It is a promising approach to improve the 
nutritional value of crops, but it is also a controversial issue and 
further research is needed to fully understand its potential impacts 
and risks.

TABLE 6 (Continued)

Crop Variety Trait Country Year release References

Cowpea CBC6 Iron Zimbabwe 2021 (99)

Pant Lobia-7 Iron India 2019 (99)

BRS Araca Iron Brazil 2009 (99)

Beans RWR 2245; RWR 2154; MAC 42; MAC 44; 

CAB 2; RWV 1129; RWV 3006; RWV 3316; 

RWV 3317; RWV 2887

Iron and zinc Rwanda 2014 (99)

Vegetables

Sweet Potato Delvia Vitamin A Zimbabwe 2021 (99)

Kokota, Chumfwa, Olympia Vitamin A Zambia 2014 (99)

Gerald, Joweria Vitamin A Uganda 2013 (99)

Cassava Slicass 12 Vitamin A Sierra Leone 2014 (99)

UMUCASS 44 Vitamin A Nigeria 2014 (99)

UMUCASS 52, UMUCASS 53, UMUCASS 54 Vitamin A Nigeria 2022 (99)

Fruits

Banana Apantu, Bira, Pelipita, Lai, To’o Vitamin A Uganda (99)

Mango Amarpali, Pusa Arunima, Pusa Surya, Pusa 

Pratibha, Pusa Peetamber, Pusa Lalima, and 

Pusa Shreshth

Beta-carotene, Vitamin C India IARI, India

Ataulfo Beta-carotene, Vitamin C Mexico USDA Agricultural Research Service

Grapes Pusa Navrang Antioxidants India IARI, India
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TABLE 7 Genes involved in micronutrient enrichment.

Crops Genes involved Micronutrient References

Wheat TaVIT1& TaVIT2 Fe and Mn (121)

NAM B1, GPC 1 and PhyA Zn and Fe (122)

Ama1 Tyrosine, lysin,

cysteine, methionine

(123)

CrtI, CrtB, Bacterial PSY Vitamin A (124)

Ferritin TaFer Fe (125, 126)

Rice OsVIT1, OsVIT2, Fe (127)

OsNAS1, OsNAS2 and OsNAS3 Fe and Zn (128, 129)

AtTC, AtHP Vitamin E (130)

THIC, THI1, TH1 Vitamin B1 (131)

AtPDX1.1, AtPDX02 Vitamin B6 (132)

ADCS, AtGTP cyclohydrolase 1 Vitamin B9 (133)

Carotene desaturase, daffodil PSY Provitamin A (134)

GmFAD3, ZmC1, chalcone synthase, phenylalanine ammonia

Lyase

Flavonoid, linoleic acid (135)

Maize GmFER, aspergillus phytase, aspergillus phy2 Fe (117)

Zmpsy 1 Vitamin A (136)

crtI, crtB Vitamin A (124)

HGGT Vitamin E, tocotrienol (136)

Corynebacterium glutamicum cordapA Lysine (137)

Sorghum LPA-1, PMI, PSY-1, CRT-I Vitamin A (138)

Barley DHPS Lysine, Zn (117, 139)

Phytase, AtZIP Fe (122, 139)

Zn transporter gene Zn (117)

AtVTE3, AtVTE4 Tocopherol (140)

HvCs1F β-glucans (140)

Oilseeds

Linseed VLCPUFA Cholesterol-lowering agents Newton (141)

PSY, crtB Carotenoids (142)

Canola PSY, crtB, phytoene desaturase, and lycopene cyclase Carotenoids (142, 143)

Aspartokinase (AK) and dihydrodipicolinic acid synthase (DHDPS) Lysine (144)

Mustard FAD3 Linoleic acid (145)

Soybean Phytoene synthase crtB β-carotene (126, 146)

FATB1-A and FAD2-1A Linoleic acid (137)

Vegetables

Tomato SINCED1 Vitamin A, pectin and lycopene (147, 148)

Delila, Rosea1, SIANT1 Anthocyanin (149, 150)

HMT, S3H, SAMT Iodine (151)

Potato GBSS Starch quality (152)

FPGS, HPPK/DHPS Folate (153)

AmA1, tar-1, Boxla, BoxIIa & BoxaIIa-2 Protein (3)

nptII Amylopectin component of starch (154)

Cauliflower Or gene β-carotene (155, 156)

(Continued)
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Challenges

There are several challenges that need to be overcome in order to 
effectively implement biofortification programs:

Limited availability of biofortified varieties: Many biofortified crops 
are still in the development or testing phase and may not yet be widely 
available for cultivation.

Limited awareness and understanding of biofortification: Many 
people may not be aware of the benefits of biofortified crops or may 
have misconceptions about their safety or nutritional value.

Limited distribution and access: Even if biofortified crops are available, 
they may not reach the people who need them most, due to factors such 
as inadequate infrastructure, lack of storage facilities, or high costs.

Political and regulatory challenges: The development and 
distribution of biofortified crops can be hindered by political and 
regulatory barriers, such as concerns about intellectual property 
rights, biosafety and trade issues. The development and 
commercialization of genetically modified (GM) crops, which are a 
potential tool for biofortification, can be subject to complex and often 
controversial regulations.

Agricultural constraints: Biofortified crops may not always 
perform as well as non-biofortified varieties under certain growing 
conditions, such as drought or pests.

Limited adoption: Even if biofortified crops are available, farmers may 
not choose to grow them if they are not familiar with the benefits or if 
they are not convinced that the crops will be more profitable.

Consumer acceptance: Biofortified crops may be  perceived as 
being different or inferior to non-biofortified varieties, which could 
affect consumer acceptance.

Funding: Biofortification programs require ongoing funding 
in order to support research, development, and implementation efforts.

Coordination: Biofortification programs often involve multiple 
stakeholders, including governments, NGOs, farmers, and the private 
sector. Ensuring effective coordination among these stakeholders can 
be challenging.

Future prospects

The discipline of biofortification has a number of intriguing 
research areas that hold great potential for the future. It is becoming 

an increasingly important area of study as the global population 
continues to hike and the demand for nutrient-rich food is growing. 
Scientists are working on developing new varieties of crops that are 
high in essential vitamins and minerals, such as iron, zinc and 
vitamin A. As research in this field continues to advance, it is likely 
that we will see an increasing number of nutrient-rich crop varieties 
that can help to address global malnutrition and improve public 
health. Improved plant uptake and absorption of crucial nutrients is 
the subject of another field of biofortification research. This includes 
the use of fertilizers and other agricultural practices that can increase 
the availability of nutrients in the soil and enhance the plants’ ability 
to absorb them.

Overall, the future prospects for biofortification are very 
promising. Some potential benefits of biofortification include:

Expanding the range of biofortified crops: Currently, the main focus 
of biofortification has been on staple crops such as rice, wheat and 
maize, but there is potential to biofortify other crops as well, such as 
fruits, vegetables and legumes.

Improving the efficiency of biofortification: Scientists are working 
on ways to increase the nutrient content of crops using fewer 
resources, in order to make biofortification more cost-effective 
and sustainable.

Improving the distribution and access to biofortified crops: This may 
involve developing new storage and transport technologies, as well as 
working with governments and other organizations to create 
supportive policies and infrastructure.

Promoting the awareness and understanding of biofortification: This 
could involve educating the public about the benefits of biofortified 
crops and addressing any concerns or misconceptions about their 
safety or nutritional value.

Reducing malnutrition and improving public health: 
Biofortification can increase the nutrient value of locally-grown 
crops, which can help to address deficiencies in essential vitamins 
and minerals and improve the nutritional status of populations that 
rely on these crops as a major source of energy and nutrients and 
contribute to food security by increasing the availability of 
nutritious foods.

Supporting sustainable development: Biofortification can 
be implemented at a relatively low cost and can be integrated into 
existing farming practices, making it a sustainable and scalable 
solution for improving nutrition.

TABLE 7 (Continued)

Crops Genes involved Micronutrient References

Cassava Erwinia crtB phytoene-synthase gene, & Arbidoopsis 1-deoxyxylulose-5-

phosphate synthase

β-carotene (157, 158)

EFA1 gene Fe (159)

Ferritin FEA1 Fe (157)

ASP 1, Zeolin Protein

Sweet potato IbMYB1, npt II Anthocyanin, carotenoids and 

antioxidants

(160, 161)

Crtl, CrtB, CrtY, LCYe ß-Carotene (126, 162, 163)

Fruits

Apple Stilbene synthase Antioxidants (164)

Banana PSY2a β-carotene Waltz (165)
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Improving gender equity: Women and children are often the most 
vulnerable to malnutrition, and biofortification can help to reduce 
gender disparities in access to nutritious foods.

Conclusion

Biofortification heralds a transformative paradigm in a battle 
against malnutrition and hidden hunger, which is often not visible to 
the naked eye, as people may appear well-nourished but still 
be  deficient in essential vitamins and minerals. In some cases, 
biofortified crops may also have higher yields, which can help to 
improve food security and increase income for farmers. It can be a 
cost-effective and sustainable way to improve nutrition, as it relies on 
using existing agricultural infrastructure and practices. It can help to 
address dietary deficiencies and improve nutrition in low-income 
populations, which may not have the same access to nutrient-rich 
foods as those in higher-income groups. The integration of multi-
nutrient biofortification and cutting-edge nano-technology marks a 
groundbreaking leap.

However, there are several challenges that need to be overcome in 
order to effectively implement biofortification programs, including 
limited availability of biofortified varieties, high costs of production, 
limited awareness and understanding, limited distribution and access, 
and political and regulatory barriers. Biofortified food crops have the 
potential to significantly improve the lives and health of millions of 
underprivileged people in India with careful planning, execution, and 
implementation while requiring a low investment in research.
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