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Аннотация. Представлено численное моделирование нестационарных задач теп-
лопроводности при сложном теплообмене, включающем такие механизмы теплооб-
мена, как теплопроводность, конвекция и излучение. Закон Стефана – Больцмана
описывает результирующий перенос тепла излучением между двумя телами, где
коэффициент теплопередачи является функцией температуры поверхности тела.
Разработан алгоритм и программное обеспечение для решения задачи теплопровод-
ности методом конечных элементов, исследовано влияние внешних воздействий на
распределение температурного поля в окрестности изолированного круглого отвер-
стия в центре корпуса. Исследованы температурные поля при различных граничных
условиях в отверстии пластины и приведены соответствующие изотермы.
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1. Introduction

The study of heat transfer processes has always played an important
role in the development of engineering and natural sciences. At first, the
studies were initiated mainly by the needs of the thermal power industry.
Further, the development of aviation, nuclear energy, and rocket and space
technology put forward new statements of heat transfer problems and, at
the same time, new, more stringent requirements for the completeness and
reliability of the predictive capabilities of the theory.

At present, the scope of intensive research and application of heat trans-
fer phenomena has expanded enormously; it includes the leading areas of
technology and basic natural sciences. The theoretical study of heat trans-
fer processes is based on their numerical simulation. This became possible
due to significant progress in the development of computational methods
for solving problems for partial differential equations and an increase in the
power of modern computers. Numerical modeling of heat transfer processes
is currently becoming increasingly important due to the fact that modern
science and technology require a reliable prediction of such processes, the
experimental study of which is difficult and expensive.

The main mechanisms of heat transfer are conduction, convection, and
radiation. In practice, it often happens that the thermal conductivity inside
the body and near its boundaries is different. This difference is due to
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a change in the conditions for the occurrence of heat transfer processes
and a change in the structure of the substance. External factors, such as
irradiation, can have a significant effect on thermal conductivity. In semi-
transparent media, thermal conductivity is accompanied by radiative heat
transfer. The effective thermal conductivity observed in such media is the
sum of thermal conductivity and radiative heat transfer.

The study in [2] presents a finite-volume method to calculate transient
radiative transfer in two-dimensional irregularly shaped enclosures. The
fully implicit scheme was used to discretize the transient term. The step
spatial differencing schemes and CLAM were used in this study. The ability
of the present formulation in modeling absorbing, emitting and anisotrop-
ically scattering media was examined using wall heat fluxes and incident
radiation. In [18], an integral equation for transient radiative transfer in a
3D absorbing and anisotropically scattering medium was formulated. The
method developed was applied to transient radiative transfer in 1D planar
and 2D cylindrical linearly anisotropically scattering media under pulse
radiation.

The study in [3] describes the simulation of heat transfer under sta-
tionary and non-stationary conditions. In the case of non-stationary heat
transfer, the influence of masonry joints on the thermal resistance of the
enclosing structure was considered. Thermal resistance was characterized
by the range of temperatures and the estimated damping of the range
of temperatures. A global solution to the two-dimensional model is con-
structed in [6] by improving the relative moisture diffusion equation on the
basis of experimental results. To prove the existence of a global solution,
the extension method of local solutions was used.

The study in [17] investigates the features of the distribution of a nonsta-
tionary temperature field over the thickness of a multilayer hollow cylinder
under convective heat exchange on its surfaces, taking into account the
presence of internal (distributed) heat sources. The study in [5] proposes
an iterative method for constructing an approximate solution at a given
time interval, based on the boundary element approach. An exact solution
of parabolic type is obtained and investigated; it is reduced to integrating
the Cauchy problem for an ordinary differential equation.

The study presented in [14] offers the development of a model that in-
cludes all standard transport equations and transient conditions to predict
the behavior of the process and materials upon heating to high temperature
in an enclosed vessel made of composite material. In [13], the authors pro-
vide a software application designed to study heat transfer problems. The
application is used to calculate and visualize the temperature distribution
in a flat plate body when it is heated or cooled. In [11], non-stationary
heat transfer in agarose gels of various concentrations was studied to make
a breakthrough in the technology of 3-D additive bioprinting.
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The authors of [4] investigated special boundary value problems for the
nonlinear parabolic heat-transfer equation. In the case of a power-law
dependence of the thermal conductivity coefficient on temperature, the
equation is used to describe the processes of radiative heat conductivity,
polytropic gas filtration in porous soil, migration of biological populations,
etc. Natural convection heat transfer in a partitioned square cavity is
studied in [10] utilizing nanofluids. According to the results, Rayleigh’s
number and location of the partition are important factors that extremely
affect the streamlines and isotherms.

Mathematical modeling of the heat transfer during the pyrolysis process
used for the treatment of end-of-life tires is presented in [19]. To simplify
the modeling, a hierarchy of 2D models for the temperature, which de-
scribes the non-stationary heat transfer in such a pyrolysis station, was
created. The study in [8] presents the results of computer simulation
of non-stationary temperature fields arising in polar dielectrics irradiated
with medium-energy focused electron beams when studied using scanning
electron microscopy techniques. The mathematical model is based on the
solution of the multidimensional non-stationary equation of heat conduc-
tion by the numerical finite element method. In [12], a finite element model,
based on the discrete ordinates method and least-squares variational prin-
ciple is developed to simulate the transient radiative transfer in absorbing
and scattering media. The numerical formulations and detailed steps are
given.

The study in [8] presents the results of computer simulation of non-
stationary temperature fields arising in polar dielectrics irradiated with
medium-energy focused electron beams when studied using scanning elec-
tron microscopy techniques. The mathematical model is based on the
solution of the multidimensional non-stationary equation of heat conduc-
tion by the numerical finite element method. In [1], a finite element model,
based on the discrete ordinates method and least-squares variational prin-
ciple is developed to simulate the transient radiative transfer in absorbing
and scattering media. The numerical formulations and detailed steps are
given.

This article provides a numerical simulation of nonstationary heat con-
duction problems under complex heat transfer, which includes such heat
transfer mechanisms as heat conduction, convection, and radiation. The
resulting heat transfer by radiation between two bodies is described by the
Stefan-Boltzmann law, where the heat transfer coefficient is a function of
the body surface temperature.

The scientific novelty of the article is the development of a numerical
model of a non-stationary process of complex heat transfer and a finite
element mesh of multiply connected domains.

The purpose of this article is to develop a computational algorithm for
a non-stationary process of complex heat transfer under mixed boundary
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conditions and to study the temperature field distribution based on a finite
element model of a multiply connected body.

2. Formulation of the problem

The process of heat conduction in a homogeneous rigid body is con-
sidered in the article. The equation of the two-dimensional boundary
value problem of nonstationary heat conduction in a rectangular Cartesian
coordinate system has the following form [20], [16]:

𝐾𝑥𝑥
𝜕2𝑇

𝜕𝑥2
+𝐾𝑦𝑦

𝜕2𝑇

𝜕𝑦2
+ 𝑤 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
, (2.1)

where
𝑇 = 𝑇 (𝑥, 𝑦, 𝑡) is the temperature field in domain Ω;
𝐾𝑥𝑥,𝐾𝑦𝑦 are the coefficients of thermal conductivity in directions Ox,

Oy, respectively;
𝑤 = 𝑤 (𝑥, 𝑦, 𝑡)− is the energy of heat sources inside the body;
𝜌 is the density of the body material;
𝑐 is the specific heat capacity of the body material.
To solve problem (2.1), it is necessary to specify the initial and boundary

conditions.
The initial condition is the body temperature at some initial time 𝑡0:

𝑇0 = 𝑇 (𝑥, 𝑦, 𝑡0). (2.2)

The boundary condition of the first kind is temperature 𝑇𝑠1 set on a
part of surface 𝑆1:

𝑇𝑠1 = 𝑇 (𝑥, 𝑦, 𝑡), 𝑥, 𝑦 ∈ 𝑆1. (2.3)

The boundary condition of the second kind is the heat flux of density 𝑞
set on a part of surface 𝑆2:

𝐾𝑥𝑥
𝜕𝑇

𝜕𝑥
ℓ𝑥 +𝐾𝑦𝑦

𝜕𝑇

𝜕𝑦
ℓ𝑦 = −𝑞, (2.4)

where ℓ𝑥, ℓ𝑦 – the direction cosines of the outer normal to surface 𝑆2; the
heat flux is positive if heat is dissipated from the body. If surface 𝑆2 is
insulated, then 𝑞 = 0.

The boundary condition of the third kind is when the convective heat
transfer occurs on a part of surface 𝑆3:

𝐾𝑥𝑥
𝜕𝑇

𝜕𝑥
ℓ𝑥 +𝐾𝑦𝑦

𝜕𝑇

𝜕𝑦
ℓ𝑦 = −ℎ (𝑇𝑠 − 𝑇∞) , (2.5)

where
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𝑇𝑠 is the temperature on surface 𝑆3;
𝑇∞ is the ambient temperature;
ℎ is the heat transfer coefficient;
𝑞ℎ = ℎ (𝑇𝑠 − 𝑇∞) is the density of the heat flux dissipated from the body

surface due to convection.
Radiative heat exchange occurs on a part of surface 𝑆4:

𝐾𝑥𝑥
𝜕𝑇

𝜕𝑥
ℓ𝑥 +𝐾𝑦𝑦

𝜕𝑇

𝜕𝑦
ℓ𝑦 = −𝜀 · 𝜎0

(︀
𝑇 4
𝑠 − 𝑇 4

∞
)︀
, (2.6)

where 𝑇𝑠 is the temperature on surface 𝑆4, 𝜀 is the absorption coefficient
of the surface, 𝜎0 is the Stefan-Boltzmann constant, 𝑞𝑟 = 𝜀 · 𝜎0

(︀
𝑇 4
𝑠 − 𝑇 4

∞
)︀

is the density of the heat flux dissipated from the surface of the body due
to radiation.

To linearize the boundary condition, the radiative component 𝑞𝑟, is
presented in a form similar to the convective component 𝑞𝑟 = 𝛼𝑟 (𝑇𝑠 − 𝑇∞),
where the radiative heat transfer coefficient is 𝛼𝑟 = 𝜖 · 𝜎0

(︀
𝑇 3
𝑠 + 𝑇 2

𝑠 𝑇∞+

𝑇 2
∞𝑇𝑠 + 𝑇 3

∞
)︀

[15]. The value of 𝛼𝑟 is calculated from the temperature
values at the previous time iteration.

Problem (2.1)–(2.6) has a variational formulation: solving equation (2.1)
with boundary conditions (2.2)–(2.6) is equivalent to finding the minimum
of the functional at a fixed time point [9]:

𝜒 =
∫︀
𝑉

1
2

[︂
𝐾𝑥𝑥

(︀
𝜕𝑇
𝜕𝑥

)︀2
+𝐾𝑦𝑦

(︁
𝜕𝑇
𝜕𝑦

)︁2
− 2

(︀
𝑤 − 𝜌𝑐𝜕𝑇𝜕𝑡

)︀
𝑇

]︂
𝑑𝑉+

+
∫︀
𝑆2

𝑞𝑇𝑑𝑆 +
∫︀
𝑆3

ℎ
2 (𝑇 − 𝑇∞)2 𝑑𝑆 +

∫︀
𝑆4

𝜀·𝜎0
2

(︀
𝑇 4 − 𝑇 4

∞
)︀2
𝑑𝑆

(2.7)

Functional (2.7) is used to substantiate the FEM in relation to two-
dimensional problems of heat conduction.

3. Solution method

The finite element solution to the problem consists of two stages: con-
struction of a discrete model of the structure and solution of the non-
stationary problem of heat conduction.

3.1. Method for constructing a finite element mesh

The method for constructing a finite element mesh is based on the con-
nection of elementary subdomains. An elementary subdomain is a domain
for which there is an algorithm for constructing a finite element mesh.
It is assumed that the topology of the model of a complex 2D domain is
represented by a system of surfaces interconnected along the boundary lines
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and intersected at nodal points; the boundary lines may have a number of
intermediate nodes; surfaces can be connected by multiple lines. Two lines
must be connected so that one of them intersects the other at the endpoint.

The finite element mesh of the domain is described by the following
discrete set

Ω = {𝑛,𝑚,𝐾,𝑀},
where 𝑛 is the number of mesh nodes; 𝑚 is the number of finite elements;
𝐾 is the set of coordinates of nodes; 𝑀 is the set of node numbers by
elements.

The following relationship is the condition for the coincidence of bound-
ary nodes of two sets Ω1 and Ω2⃒⃒

𝑥1𝑖 − 𝑥1𝑗
⃒⃒
< 𝜀 &

⃒⃒
𝑥2𝑖 − 𝑥2𝑗

⃒⃒
< 𝜀,

where (𝑥1𝑖 , 𝑥
2
𝑖 ) ∈ 𝐾1 is the set of coordinates of the nodes of set Ω1 =

{𝑛1,𝑚1,𝐾1,𝑀1}, 𝑖 = 1, 2, . . . , 𝑛1, (𝑥1𝑗 , 𝑥
2
𝑗 ) ∈ 𝐾2 is the set of coordinates

of the nodes of set, and Ω2 = {𝑛2,𝑚2,𝐾2,𝑀2}, 𝑗 = 1, 2, . . . , 𝑛2, 𝜀 > 0 is
a sufficiently small number.

When the topology conditions of the model of complex domain of con-
nection of two subsets Ω1 and Ω2 are satisfied, the following resulting set is
formed Ω = Ω1∪Ω2, where 𝑛 = 𝑛1+𝑛2−𝑞; 𝑚 = 𝑚1+𝑚2; 𝐾 = 𝐾1∪𝐾

′
2;

𝑀 =𝑀1∪𝑀
′
2; 𝑞 = 𝐾1∩𝐾2 is the number of nodes located on the boundary

of connection of subdomains; 𝐾
′
2 is the set of coordinates of the nodes of

subset Ω2, not considering the nodes with the same coordinates; 𝑀
′
2 is

the set of renumbered nodes of subset Ω2.
To number the local node numbers of sets Ω1 and Ω2, the following

sets of natural numbers are introduced, respectively:

𝑁1 = { 𝑖 |𝑖 ≤ 𝑛1 } ∈ 𝑁 and 𝑁2 = { 𝑗 |𝑗 ≤ 𝑛2 } , 𝑗 ∈ 𝑁.

Then the following sets are introduced: 𝐴 and 𝐵 𝐴 = 𝐵 = 𝑞. The
elements of these sets are local numbers of coinciding boundary nodes from
the sets of nodes 𝑁1 and 𝑁2, respectively, satisfying the relation of the
Cartesian product of sets:

𝐴×𝐵 =

{︃
(𝑖, 𝑗)|𝑖 ∈ 𝑁1 & ∃𝑗 ∈ 𝑁2 :

𝑙∑︁
𝑘=1

⃒⃒⃒
𝑥𝑘𝑖 − 𝑥𝑘𝑗

⃒⃒⃒
< 𝑙𝜀

}︃
,where 𝑙 = 2.

Algorithm for constructing set 𝑀 :
1) elements of set 𝑀1 are assigned to the initial elements 𝑘=1, 2, . . . ,𝑚1

of set 𝑀 , i.e. 𝑀1 ⊂𝑀 ;
2) subsequent elements 𝑘 = 𝑚1 + 1,𝑚1 + 2, . . . ,𝑚1 + 𝑚2 of set 𝑀

are formed by replacing the local node numbers of set 𝑀2, with global
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numbers, i.e. 𝑀 =𝑀1∪𝑀
′
2, where 𝑀

′
2 is a set consisting of global node

numbers. The process of calculating global node numbers is conducted
as follows. If the local node number 𝑖 of the set of natural numbers
𝑁2 (𝑖 = 1, 2, . . . , 𝑛2) belongs to set 𝐵, i.e. 𝑖 ∈ 𝐵, then it is assigned
the corresponding local node number from set 𝐴. Otherwise, its value is
calculated on the basis of relation 𝑖 = 𝑖+ 𝑛1 − 𝑧. The value of variable 𝑧
is defined as the number of elements of set 𝐵, the value of which is less
than the value of the current number 𝑖:

𝑧 = |𝑄(𝑖;𝐵)|, where 𝑄(𝑖;𝐵) = {𝑗 ∈ 𝐵 : 𝑗 < 𝑖}.

Algorithm for constructing set 𝐾:
1) elements of set 𝐾1 are assigned to the initial elements 𝑘 = 1, 2, . . . , 𝑛1

of set 𝐾, i.e. 𝐾1 ⊂ 𝐾;
2) subsequent elements 𝑘 = 𝑛1 + 1, 𝑛1 + 2, . . . , 𝑛1 + 𝑛2 − 𝑞 of set 𝐾

are formed from the elements of subset 𝐾2, without considering the
coordinates of the node numbers located in set 𝐵, i.e. 𝐾 = 𝐾1 ∪ 𝐾

′
2,

where 𝐾
′
2 ⊂ 𝐾2 and 𝐾

′
2 = 𝑛2 − 𝑞.

Thus, set Ω is formed – a finite element representation of a multiply
connected domain.

3.2. Method for solving the non-stationary heat conduction
problem with complex heat transfer

The method for solving the problem is based on the variational grid
generation of the heat conduction process, which satisfies the integral iden-
tity for the generalized solution to the problem on the set of piecewise
polynomial grid functions. A triangular finite element with three nodes at
the vertices was considered as an example (Fig. 1). On the side face 𝑗𝑘, the
load is a heat flux of density 𝑞, on the side face 𝑖𝑗 the load is a convective
heat transfer 𝑞ℎ, and on the side face 𝑖𝑘 the load is a radiative heat transfer
𝑞𝑟; heat sources of energy 𝑤 act inside the body. The thickness of the
element is assumed unit. The temperature values at the nodes of the finite
element 𝑒 form vector {𝑇}𝑇𝑒 = {𝑇𝑖, 𝑇𝑗 , 𝑇𝑘}𝑒, and the nodal thermal loads
form vector {𝑄}𝑇𝑒 = {𝑄𝑖, 𝑄𝑗 , 𝑄𝑘}𝑒.

The temperature inside the element is approximated by a linear poly-
nomial:

𝑇 (𝑥, 𝑦) = 𝛼1 + 𝛼2𝑥+ 𝛼3𝑦. (3.1)

Substituting the values of nodal temperature and the corresponding
coordinates of the nodes in relation (3.1), we obtain three equations, from
which expressions for coefficients 𝛼1, 𝛼2, 𝛼3 are determined. Substitut-
ing the found values into (3.1), we obtain the following expression [16]:

{𝑇 (𝑥, 𝑦)} = [𝑁 (𝑥, 𝑦)]𝑒 {𝑇}𝑒 . (3.2)
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Figure 1. Triangular finite element

Differentiating expression (3.2) with respect to time, for element 𝑒, we
have:

𝜕𝑇

𝜕𝑡
= [𝑁 (𝑥, 𝑦)]𝑒

𝜕

𝜕𝑡
{𝑇}𝑒 . (3.3)

Taking into account expressions (3.2) – (3.3), we write integral (2.7) over
all finite elements:

𝜒 =

𝑚∑︁
𝑒=1

𝜒𝑒 =

𝑚∑︁
𝑒=1

⎡⎣∫︁
𝑉𝑒

1

2
{𝑇}𝑇 [𝐵]𝑇𝑒 [𝐷]𝑒[𝐵]𝑒{𝑇}𝑑𝑉 +

+

∫︁
𝑉𝑒

𝜌𝑐[𝑁 ]𝑒{𝑇}[𝑁 ]𝑒
𝜕

𝜕𝑡
{𝑇}𝑑𝑉 −

∫︁
𝑉𝑒

𝑤[𝑁 ]𝑒{𝑇}𝑑𝑉

⎤⎦+

+

𝑚∑︁
𝑒=1

⎡⎣∫︁
𝑆2𝑒

𝑞[𝑁 ]𝑒{𝑇}𝑑𝑆 +

∫︁
𝑆3𝑒

ℎ

2
{𝑇}𝑇 [𝑁 ]𝑇𝑒 [𝑁 ]𝑒 {𝑇} 𝑑𝑆−

−
∫︁
𝑆3𝑒

ℎ𝑇∞[𝑁 ]𝑒{𝑇}𝑑𝑆 +

∫︁
𝑆3𝑒

ℎ

2
𝑇 2
∞𝑑𝑆 +

∫︁
𝑆4𝑒

𝛼𝑟
2
{𝑇}𝑇 [𝑁 ]𝑇𝑒 [𝑁 ]𝑒 {𝑇} 𝑑𝑆−

−
∫︁
𝑆4𝑒

𝛼𝑟𝑇∞[𝑁 ]𝑒{𝑇}𝑑𝑆 +

∫︁
𝑆4𝑒

𝛼𝑟
2
𝑇 2
∞𝑑𝑆

⎤⎦ . (3.4)

Minimizing the functional (3.4) on the set of nodal values of the tem-
perature field {𝑇}, we obtain the following system of equations:

𝜕𝜒

𝜕{𝑇}
=

𝜕

𝜕{𝑇}

𝑚∑︁
𝑒=1

𝜒𝑒 =

𝑚∑︁
𝑒=1

𝜕𝜒𝑒
𝜕{𝑇}

= 0. (3.5)

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 45. С. 104–120



FINITE ELEMENT MODELING OF NONSTATIONARY PROBLEMS 113

The contribution of the individual finite element 𝑒 to the total sum (3.5)
can be represented as a matrix differential relation:

𝜕𝜒𝑒
𝜕{𝑇}

= [𝐶]𝑒
𝜕

𝜕𝑇
{𝑇}𝑒 + [𝐾]𝑒{𝑇}𝑒 − {𝑄}𝑞𝑒 − {𝑄}𝑔𝑒 − {𝑄}ℎ𝑒 − {𝑄}𝑟𝑒, (3.6)

where the thermal conductivity matrix is:

[𝐾]𝑒 =

∫︁
𝑉𝑒

[𝐵]𝑇𝑒 [𝐷]𝑒[𝐵]𝑒𝑑𝑉 +

∫︁
𝑆3𝑒

ℎ[𝑁 ]𝑇𝑒 [𝑁 ]𝑒𝑑𝑆 +

∫︁
𝑆4𝑒

𝛼𝑟[𝑁 ]𝑇𝑒 [𝑁 ]𝑒𝑑𝑆, (3.7)

heat capacity matrix is:

[𝐶]𝑒 =

∫︁
𝑉𝑒

𝜌𝑐[𝑁 ]𝑇𝑒 [𝑁 ]𝑒𝑑𝑉, (3.8)

and vectors of nodal heat fluxes equivalent to the heat flux of density 𝑞,
generation of heat sources 𝑤, convective heat transfer and radiative heat
fluxes, respectively:

{𝑄}𝑞𝑒 = −
∫︁
𝑆2𝑒

𝑞[𝑁 ]𝑇𝑒 𝑑𝑆; {𝑄}𝑔𝑒 = −
∫︁
𝑉𝑒

𝑤[𝑁 ]𝑇𝑒 𝑑𝑉 ;

{𝑄}ℎ𝑒 = −
∫︁
𝑆3𝑒

ℎ𝑇∞[𝑁 ]𝑇𝑒 𝑑𝑆; {𝑄}𝑟𝑒 = −
∫︁
𝑆4𝑒

𝛼𝑟𝑇∞[𝑁 ]𝑇𝑒 𝑑𝑆.

Summing up in (3.5) the contributions of all finite elements, a general
system of differential equations is formed:

[𝐶]
𝜕

𝜕𝑡
{𝑇}+ [𝐾]{𝑇} = {𝑄}𝑞 + {𝑄}𝑔 + {𝑄}ℎ + {𝑄}𝑟, (3.9)

where [𝐾], [𝐶] are the global matrices of thermal conductivity and heat

capacity; {𝑄}𝑞, {𝑄}𝑔, {𝑄}ℎ, {𝑄}𝑟 are the global vectors of nodal heat
loads equivalent to given surface heat fluxes, given generation of internal
heat sources, convective heat and radiative heat flows, respectively. All
thermal loads can be nonstationary.

The components of the matrices and vectors entering equation (3.9) are
determined by summing over all the corresponding components with the
same indices.

Next, we consider the solution to the matrix differential equation (3.9) by
the finite-difference method, using the central-difference scheme. Equation
(3.9) is written as:

[𝐶]
𝜕

𝜕𝑡
{𝑇}+ [𝐾]{𝑇} = {𝑄}, (3.10)
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where [𝑄] = {𝑄}𝑞 + {𝑄}𝑔 + {𝑄}ℎ + {𝑄}𝑟.
For the midpoint of the time interval Δ𝑡 = 𝑡1 − 𝑡0, the derivative of the

global vector {𝑇} is approximately represented by the following expression:

𝜕

𝜕𝑡
{𝑇} = 1

Δ𝑡
({𝑇}1 − {𝑇}0) . (3.11)

At the same midpoint of the time interval, the global vectors of nodal
temperatures and thermal nodal loads are approximately calculated as:

{𝑇} = 1

2
({𝑇}1 − {𝑇}0) (3.12)

{𝑄} = 1

2
({𝑄}1 − {𝑄}0) . (3.13)

Substituting expressions (3.11) – (3.12) into differential equation (3.10),
the following recursive relation is formed:(︂

[𝐾] +
2

Δ𝑡
[𝐶]

)︂
{𝑇}1 =

(︂
2

Δ𝑡
[𝐶]− [𝐾]

)︂
{𝑇}0 + 2{𝑄}. (3.14)

Knowing the nodal temperatures at the beginning of the time interval,
the nodal temperatures at the end of the time interval are determined
by formula (3.14). Matrices [𝐾], [𝐶], {𝑄} are calculated until equation
(3.14) is solved, when the thermophysical properties (thermal conductivity
coefficient, specific heat capacity, heat transfer coefficient under convection)
do not depend on temperature. If the thermophysical properties depend on
temperature, then equation (3.14) becomes nonlinear and must be solved
by iterative methods.

If the load depends on temperature, then formula (3.14) becomes implicit
and the solution is also obtained by iterations. The boundary conditions of
the first kind, that is, the nodal temperatures specified on the surface of the
model, are taken into account in equation (3.14). The boundary conditions
of the second kind (2.4) – given heat fluxes and boundary conditions of
the third kind (2.5) – convective flows are taken into account through the
corresponding terms of the functional (3.4). In the nonstationary problem
of heat conduction, the initial condition (2.2) is taken into account at the
first step of calculations, as the values of the nodal temperatures at the
beginning of the first time interval.

4. Algorithm and software for solving the problem

A computational algorithm for solving non-stationary problems of heat
conduction with complex heat transfer has been developed based on the
finite element method; it consists of the following parts:

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 45. С. 104–120



FINITE ELEMENT MODELING OF NONSTATIONARY PROBLEMS 115

1. Construction of a discrete model of a two-dimensional domain of
complex configuration.

2. Calculation of the coefficients of the thermal conductivity matrix and
the vector of thermal loads.

3. Summation over finite elements and construction of a resolving system
of equations.

4. Accounting for the given boundary conditions of the first kind.
5. Solving the system of equations by the method of square roots.
6. Visualization of calculation results.
Based on the algorithm for solving the problem in the algorithmic lan-

guage C++, a software package was developed that allows automation of
the process of calculating the temperature field of a two-dimensional domain
of a complex configuration and visualizing the calculation results.

5. Computational experiment

Consider as a test problem the process of heat transfer in a plate, on the
two boundaries of which heat exchange with the external medium occurs
due to radiation and convection (Fig. 2).

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝜆

(︂
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2

)︂
,

⃒⃒⃒⃒
0 < 𝑥 < 𝐿

0 < 𝑦 < 𝐻,

The initial and boundary conditions are written as:

𝑡 = 0 : 𝑇 = 𝑇0, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝐻;

𝑥 = 0 : 𝜆
𝜕𝑇

𝜕𝑥
= 𝑘1(𝑇

𝑒1 − 𝑇 ) + 𝜀𝜎((𝑇 𝑒1)4 − 𝑇 4), 𝑡 > 0, 𝑘1 > 0;

𝑥 = 𝐿 :
𝜕𝑇

𝜕𝑥
= 0, 𝑡 > 0;

𝑦 = 0 :
𝜕𝑇

𝜕𝑦
= 0, 𝑡 > 0;

𝑦 = 𝐻 : 𝜆
𝜕𝑇

𝜕𝑦
= 𝑘2(𝑇

𝑒2 − 𝑇 ) + 𝜀𝜎
(︀
(𝑇 𝑒2)4 − 𝑇 4

)︀
, 𝑡 > 0, 𝑘2 > 0.

Plate dimensions are 𝐿 = 𝐻 = 0.3𝑚. Plate material is hard rubber
(𝜆 = 0.16𝑊/(𝑚 · ∘𝐶), 𝜌 = 1190 𝑘𝑔/𝑚3, 𝑐 = 1900𝐽/(𝑘𝑔 · ∘𝐶)). The
initial temperature of the solution domain is 30∘𝐶, 𝑘1 = 50𝑊/(𝑚2 · ∘𝐶),
𝑇 𝑒1 = 20∘𝐶, 𝜀 = 0.8, 𝑘2 = 35𝑊/(𝑚2 · ∘𝐶), 𝑇 𝑒2 = 35∘𝐶.

To check the reliability of the developed computational algorithm and
program, the test problem described above was solved. For comparison,
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Figure 2. Domain of problem solution

Table 1 presents the results of calculations at the characteristic points of the
domain, in case of the presence of a homogeneous plate at the boundaries:
simultaneous heat transfer and radiation, and radiation and heat transfer.

Table 1

Temperature values at characteristic points of the domain

𝑡𝑛 = 10ℎ, Δ𝑡 = 100 𝑠 (0.0, 0.1552) (0.1552, 0.3) (0.1552, 0.1552)

heat transfer and radiation [7] 20.3645 34.7254 29.8328

heat transfer and radiation 20.3660 34.7302 29.9221

radiation 29.9896 30.0109 30.0000

heat exchange 20.3660 34.7301 29.9221

The presented results correspond to the boundary conditions of the
problem and confirm the fact that at low temperatures of the body the
effect of radiation on the temperature field is insignificant. Figure 3 shows
a graphical representation of the temperature field.

𝑎 𝑏 𝑐

Figure 3. Temperature field isotherms (∘𝐶)

To study the nonstationary heat conduction process under complex heat
transfer (𝑡𝑛 = 10ℎ,Δ𝑡 = 100 𝑠), the above problem is solved for a plate with
a round hole in the center.
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The boundary conditions are:

I – the boundary of the hole is insulated (Fig. 3 c),

II – constant temperature of 20∘𝐶 is set at the boundary of the hole
(Fig. 4 𝑎),

III – the heat flux 𝑞 = 10𝑊/𝑚2 is set on the right side of the plate
(Fig. 4 𝑏),

IV – a heat source 𝑄 = 5𝑊/𝑚3 is set inside the plate (Fig. 4 𝑐).

𝑎 𝑏 𝑐

Figure 4. Temperature field isotherms (∘𝐶)

The presence of a round hole in the center of the plate, the boundaries
of which are insulated, causes a slight change in the temperature around
the hole. A constant temperature of 20∘𝐶 at the hole boundary sharply
lowers the temperature around the hole, and setting a heat flux of density
𝑞 = 10𝑊/𝑚2 on the right side of the plate leads to a further expansion
of the domain with low temperatures. It should also be noted that the
presence of a point heat source 𝑄 = 5𝑊/𝑚3 inside the plate increases the
temperature in the vicinity of its location.

To study the temperature field during the extension of finite time 𝑡𝑛,
Table 2 shows the temperature values at the characteristic points of the
plate (the location of the heat source).

In the plate, during the extension of finite time, a smooth cooling of
the structure occurs, and in the presence of a constant temperature at
the boundary of the hole and heat flow on the right side of the plate, the
dynamics of the process is higher, while in the case of a solid plate and
the presence of insulation of the boundary of the hole, the dynamics of the
process is lower.

6. Conclusion

By conducting a computational experiment, it was established that:
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Table 2

Temperature values at characteristic points of the domain

𝑡𝑛, 𝑠 Homogeneous Hole

I II III IV

6000 29.98 29.88 29.89 29.88 31.41

12000 29.64 29.14 28.49 28.49 31.34

18000 29.12 28.40 27.17 27.17 31.30

24000 28.60 27.77 26.09 26.09 31.19

30000 28.13 27.24 25.21 25.21 31.09

36000 27.71 26.79 24.49 24.49 31.01

1. Verification of calculation results is numerically shown by the test
problem.

2. Given the initial parameters: the presence of a constant temperature
at the boundary of the hole sharply lowers the temperature in the vicinity
of the hole, and setting the heat flux on the right side of the plate leads to
a further expansion of the area with low temperatures.

3. In the process of increasing the finite amount of calculation time, the
structure is smoothly cooled, and in the presence of a constant temperature
at the hole boundary and heat flow on the right side of the plate, the
dynamics of the process is higher, while with a solid plate and the presence
of insulation of the hole boundary, it is lower.

4. A computational algorithm for constructing a finite element model of
a multiply connected domain was developed.

5. A computational algorithm for a non-stationary process of complex
heat transfer under mixed boundary conditions was developed and the
temperature field distribution was studied on the basis of a finite element
model of a multiply connected body.
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