
Maintenance Performance Optimization for Critical 
Subsystems in Cement Pre-Grinding Section: 
A Case Study Approach  

1. Introduction

Today’s cement manufacturing firms face unin-
tended machine downtimes and high maintenance 
costs, landing to a struggle to sustain their market 
shares. The quality and output of grinding and mill-
ing operations greatly depend on the availability and 
reliability of the critical subsystems in these systems. 

The decline in availability and reliability is attributed 
by machine downtime and other aspects of opera-
tions like human error [1] and high spares lead times 
[2] among other factors, has been shown to signifi-
cantly affect the productivity and profitability of such 
systems. Moreover, increased maintenance costs 
compared to other operational costs in many cement 
firms are experienced. On the other hand, the im-
pact of machine downtime on plants’ availability and 

This paper aims to develop a simulation-based framework to identify critical equipment, 
critical maintenance and operational factors (e.g., maintenance actions, spare sourcing lead 
times and fill rate) affecting plant performance (availability and maintenance cost). The study 
develops a framework that utilizes empirical maintenance data. Pareto analysis is employed 
to identify critical subsystems, while expert input is incorporated to derive model variables. 
A full factorial Design of Experiment (DOE) is employed to establish the variables with 
significant main and interaction effects on the plant availability and maintenance cost. The 
framework is applied to a real case study of a cement-manufacturing firm, where a simula-
tion model is developed based on the empirical maintenance and operational data while 
considering the availability and maintenance cost as the performance measures. Simulation 
results highlight the bucket elevator as the critical subsystem. At the same time, spare parts 
importation probability, among other parameters like the preventive maintenance interval 
and utilization of adjust maintenance action, significantly affects the performance (availability 
and maintenance cost) as main and interaction effects. The research was applied to only one 
case study, in this case, a cement grinding plant. The study provides a pragmatic reference 
model framework to practitioners that enhances maintenance decision-making by identifying 
critical equipment, maintenance and operational parameters and disclosing their effect (main 
and interaction) on the plant performance (availability and maintenance cost). This study is 
one of the first to (i) investigate the maintenance and operational factors’ main and interac-
tion effects on maintenance cost and (ii) integrate the spare parts importation probability 
as a factor affecting plant performance. The developed framework assists in determining 
critical systems to be optimized, considers various maintenance strategies simultaneously, 
the stochasticity of spare parts availability and replenishment and ultimately discovers the 
interactions for decision support.  
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maintenance cost has been researched over the years 
due to its criticality [1, 3, 4], resulting in huge losses 
due to penalties for undersupplies. 

Many industrial facilities such as the company un-
der study are faced by extended downtimes, leading 
to loss of productivity and eventually business reputa-
tion due to unmet demands [5]. Factors attributed 
to the protracted downtime include but not limited 
to the unplanned failures, the use of various mainte-
nance actions, availability of spares and sourcing op-
tions which retain significant lead times. 

Maintenance management is employed to address 
these challenges to increase equipment availabil-
ity and other industrial performance measures like 
maintenance costs [6]. Hence, there is a necessity for 
manufacturing and support processes to have detailed 
maintenance planning to achieve high plant availabil-
ity and reduced maintenance cost [7]. In circumstanc-
es where critical spares require importation due to 
their uniqueness in function, industries face high lead 
times challenges. Therefore, an efficient inventory 
management of spare parts for production machin-
ery is essential and optimal strategies in procurement, 
stocking and supply play an important role [7]. 

The increasing demand for production and pres-
sure for cost reduction in industrial set ups demands 
continuous maintenance improvement [8]. This in-
volves the optimal use of available maintenance re-
sources including staff, tools, machinery, and money. 
In many large scales, plant-based industries, mainte-
nance costs can account for as much as 40 per cent 
of the operational budget [9]. The operational and 
maintenance related factors such as spares availabil-
ity, preventive maintenance, maintenance actions 
have been shown to affect the maintenance cost of 
industrial plants. Various studies have been conduct-
ed on parameters’ (corrective and preventive mainte-
nance actions) main effect on availability [9], mainte-
nance cost [10] and [11] on repair time. 

However, there is limited evidence in the literature 
regarding the effects and interactions of these main-
tenance parameters on the maintenance costs. The 
reliance of main effects potentially offers a sub opti-
mal decision support hence the need to incorporate 
the interactions. This is a novel area of research, and 
little is currently known regarding the effects of the 
parameters on maintenance cost. There have been 
no works published so far to the best of the author’s 
knowledge that investigates the effects of operational 
and maintenance factors on maintenance costs.

While undertaking maintenance, Preventive 
(PM) and corrective maintenance (CM) inherently 
utilize spare parts, hence, a cost-effective solution 

is to consider spare parts and maintenance policies 
jointly. Different studies have shown the importance 
and influence of spare parts availability in mainte-
nance cost optimization (e.g., [12], [13]). While con-
sidering the sourcing options and their effect on the 
maintenance costs, the probability of stochastic lead 
times due to extended sourcing lead times like im-
porting has not received significant attention. Work 
in this area is extensive but is primarily concerned 
with the availability, while the effect of the stochastic 
nature of using either locally or imported spare parts 
remain unexplored in literature.  To incorporate the 
stochasticity of spare parts sourcing, this study is the 
first to the author’s knowledge to study the impact of 
the probability of importing spare parts with a view of 
deriving decision support on the effect of the same to 
maintenance cost and equipment availability.

In summary, a closer look to the literature, reveals 
several questions pointing to the research gaps and 
shortcomings. One of the first questions to arise is if 
there is a framework that can help the practitioners 
in establishing critical equipment, operational and 
maintenance related parameters and understand how 
they affect the plant performance. It will also be in-
teresting to see whether the probability of spare parts 
importation has an effect on the plant performance, 
hence, the need to establish how and if the spare 
parts importation probability has main effects as well 
as interactive effects along the other parameters af-
fecting the plant performance. Last but not least, it 
will also be interesting to see, whether maintenance 
and operational related parameters have effects on 
plant maintenance cost. These are questions which 
are currently unanswered, and hence explored here, 
deriving the study’s original contributions as outlined 
in the following section. 

The first contribution of this paper is to fill the 
literature gap by development of a framework that 
is derived from maintenance empirical data and 
experts’ judgment. Downtime is the main criteria 
used in the selection of the critical subsystem after 
analysing maintenance and reliability degradation of 
subsystems in various cement plant sections like raw 
materials handling, material drying, cement storage 
facilities and packaging. Most studies in literature 
have considered multiple sections of a single manu-
facturing plant which may lead to simplified optimi-
zation. This study deals with a single section of the 
plant and offers a deeper dive into factors that affect 
maintenance performance. In this paper, five sub-
systems with failure and operational uniqueness are 
inter-linked to form a system. A case study approach 
adopted in this paper gives in-depth information on 
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challenges derived from empirical data which can 
also have a similarity with other manufacturing plants 
with critical subsystems.  

Secondly, the paper considers the stochasticity 
of spare parts availability among other maintenance 
parameters like CM and PM actions. These param-
eters especially spares import probability has been 
overlooked in many studies that attempt to optimize 
maintenance cost. In an event where spares are not 
readily available locally and there is high dependency 
on overseas manufacturers, the spares import proba-
bility become a critical factor and is addressed in this 
research. The effect of probability utilization of CM 
actions on availability and maintenance cost comes 
out clearly in this paper offering a significant deci-
sion support to engineering managers. Moreover, no 
previous study has demonstrated the use of the prob-
ability of importation with stochastic respective lead 
times as observed in the present study.

Lastly, this paper reveals the impact of interac-
tions between various maintenance (PM and CM) 
and spare strategies on the performance measures, 
in this case the availability and maintenance cost. 
Majority of work in this area concerns itself with the 
main effects of the control variables on the response 
variables availability and maintenance cost, and as a 
result offer sub optimal decision support. To the best 
of our knowledge, our study constitutes the first anal-
ysis on the impact of interactions effect of the various 
maintenance variables on maintenance costs. 

The subsequent section of this paper comprises 
of; section 2; review of relevant literature, section 
3; outlined methodology of the research, section4; 
discussion of the results, section 5; the discussion 
of managerial implications of the study and finally is 
section 6 that provides conclusion and recommenda-
tions for future study.

2. Literature Review

Maintenance is defined as a function to keep a 
tool, machine or system in a working condition by 

proper usage, repairing broken repairable units, re-
placing components of subsystems to make the re-
pairable items available for use whenever need arises 
[14]. The effective maintenance practices and strate-
gies has the potential to reduce the risks of catastroph-
ic failures, minimize maintenance costs, increase sys-
tems availability, increase productivity, and enhance 
reliability of the repairable items. Maintenance is a 
key cost driver in manufacturing industries and maxi-
mum effort need to be given in terms of research and 
development. 

In the scope of maintenance, maintenance poli-
cies like corrective maintenance (CM) and preven-
tive maintenance (PM) are considered critical to en-
sure asset performance and operations.   Corrective 
Maintenance (CM) is defined by [15] as unscheduled 
repairs on reported failures of repairable subsystems 
or replacement of parts to restore the equipment to 
As Good as New (AGAN) state while PM was de-
fined by [16] as the scheduled maintenance actions 
required to operate a system at its acceptable level of 
performance. Referring to [17], several CM actions 
has been discussed including repair, replace, inspect, 
clean and adjust. Various studies has integrated CM 
and PM in systems’ maintenance optimization. For 
instance, [18], [19] and [20] integrated PM and CM 
maintenance strategies with lubricants condition 
monitoring to address the ageing degradation of a 
multi-unit system, [21] used the two policies in seek-
ing their effects on equipment reliability using a prob-
abilistic model. However, [16] cites disadvantages of 
CM as unplanned stoppages, spare parts challenges, 
high repair cost, high waiting, troubleshooting and 
maintenance times. While considering CM and PM 
policies, the use of spares while  administrating these 
policies is significant, hence the need to consider 
joint maintenance and spares policies. Several studies 
reviewed in this field that employ PM and CM have 
been highlighted in Table 1.

Studies in literature have integrated the effects 
of spare parts to various  maintenance performance 
measurements such as availability (e.g. [22]),  main-
tenance time (e.g. [23]) and life cycle cost (e.g., [24]). 

Article Objectives/Outcomes

[15] To study current maintenance strategies and reliability of critical equipment

[16] Maintenance strategies and their combined impact on manufacturing performance

[17] Improving maintenance strategies to reduce the standstill time 

[18], [19], [20] Utilization of maintenance policies to address the degradation of critical subsystems

[21], [24] To seek the effects of PM and CM strategies on equipment reliability

Table 1. Summary of reviewed PM and CM articles 
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Other studies have investigated the effect of spare 
parts lead times on PM (e.g., [25], [26], [27]), effects 
of spare parts logistics on serviceability of repairable 
items [28]. These studies and others disregard the ef-
fect of stochastic lead times due to spares importation 
which directly affect the equipment performance. 

The aspect of prioritizing the maintenance opera-
tions to most critical subsystems has been a factor of 
consideration by many authors. Criticality analysis 
help organizations to understand better the systems, 
subsystems and repairable items that are most essen-
tial to their operations. This fosters sound decision 
making on assets maintenance, project management 
and upgrade decisions. Recent studies has employed 
criticality analysis to rank subsystems in their order of 
maintenance priority, e.g., [29] used a criticality anal-
ysis process model to prioritize systems and compo-
nents, [26] employed the analytic hierarchy process 
(AHP) to deduce the impact of subsystem failures 
on human health, risk priority number (RPN) was 
employed by [30] as key step in reliability centred 
maintenance (RCM) for conventional milling ma-
chine system. Other studies has used pareto analysis 
including [31], [32], [33] among others. However, the 
incorporation of experts’ views and empirical main-
tenance data has been i dentified as a potential gap 
in the ranking of critical subsystems, which is a very 
underdeveloped area of research. 

The over reliance of one-factor-at-a-time (OFAT) 
in many studies has been a challenge over the past 
years. The main disadvantage as cited by [34] is that 
it fails to consider the possible interactions between 

factors. Moreover,  OFAT does not consider interac-
tions and therefore cannot be used in optimization 
and this challenge can only be overcome by use of 
design of experiments (DOE) [32] added. Further, 
considering optimization studies in maintenance, it is 
becoming exceptionally challenging to overlook the 
interactive effects of variables that define the plant’s 
performance measurements. To accomplish this, 
DOE and the Analysis of Variance (ANOVA) are 
employed to derive the main and interaction effects 
and establish if the various variable provide signifi-
cance effect on the response (performance) variable 
respectively [35]. Work in this area is extensive but 
is primarily concerned with the main and interaction 
effects of maintenance related parameters on main-
tenance repair time and availability. On this subject, 
no known work seems to exist investigating the main 
and interactions effects of the parameters on mainte-
nance cost.

3. Research Methodology & Data 
Analysis

The methodology employed in this paper con-
sists of several steps including data collection, data 
pre-processing, data exploration, model parameters 
extraction and modelling. This section describes the 
mentioned steps in the following sub-sections. Figure 
1 illustrates the mentioned methodological steps.

Five maintenance actions ‘Adjust’, ‘Repair’, “Re-
place,’ ‘Clean’ and ‘Inspect’ actions form the correc-

Figure 1. Methodological steps
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tive maintenance, CM while the planned preventive 
maintenance, PM occurs after every 8760 hours of 
running (i.e., once annually). The failure of the criti-
cal subsystems in this section poses high risks in the 
organization including high maintenance costs, ex-
cessive labour utilization, low sales volumes and ulti-
mately decreased profitability. 

3.1 Data Collection & Pre-processing

The data collected in this study is the maintenance 
data captured in the central control room between 
2015 and 2020, i.e., 6 years of operation equivalent 
to 52, 160 hours. The data comprises of the subsys-
tem, stop, and start time, the section responsible for 
the downtime and the failure description. The data 
indicates the time when the mill was running and 
when it was down due to various reasons.

3.2 Exploratory Data Analysis

Data exploration was performed to inform vari-
ous aspects of consideration in modelling.  From data 
exploration, the system was broken down into 5 ma-
jor subsystems as described in Table 2.

3.3 Model Parameters Extraction

Various model parameters were extracted for all 
the subsystems based on each failure characteristics. 
Table 3 illustrates a sample of model parameters 
from each subsystem after data exploration. TIF was 
the time when a subsystem initially failed in the first 
year of the study period. TNF is the time between 
failures and was represented by a random probability 
distribution.  

All the repairable subsystems undergoes both PM 
and CM where CM involves various maintenance ac-
tions based on [20] and [37]. Under CM, five main-
tenance actions (Ri) were considered and modelled, 
Repair- R1, Adjust- R2, Clean- R3, Inspect- R4, and Re-
place- R5. A ‘repair’ action refers to the actions tak-
en to restore a repairable item into functional state. 
‘Adjust’ action relates to tasks such as calibration, 
reset and shafts-motor alignment without necessar-
ily stopping the machine. ‘Clean’ action includes re-
moval of debris, unclogging of pipes and other parts 
of conveying components.   ‘Inspect’ action refers to 
examination of a repairable item for conformity by 
measuring, observing, or testing relevant characteris-
tics of a repairable item. The ‘replace’ action entails 

Subsystem Purpose

Cyclones This unit is primarily used to separate cement particles from the gas stream.

Recirculation fan
Provides the appropriate air volume to sweep the ground cement components from the 
mill to the separator, balance the material layer thickness inside the mil, control mill outlet 
temperature, maintain pressure difference in the mill and control the product fineness.

Roller Press Used as a pre-grinding unit before the ball mill to reduce the particles size of the raw materials, 
i.e., clinker, gypsum and pozzolana.

Roller press Bucket elevator
Chain bucket elevator is used to convey the product of the roller press from a low level to an 
elevated level where separation occurs. It is essential in transportation of materials with high 
density and strong abrasiveness, and relatively hot as in this case study.

Separator
The function of the separator is to separate the fine-sized cement particles from the coarse-
sized to avoid material condensation and overgrinding in the mill and improve the mill grinding 
efficiency.

Table 2. Subsystems and their descriptions 

Subsystem Time to Initial Failure (TIF) 
(Hrs.)

Time to Next Failure (TNF) 
(Hrs.)

Cyclones 7632 9.64e+003 + 7.9e+003 * BETA (0.164, 0.141)

Recirculation fan 1512 NORM (3.03e+003, 2.2e+003)

Roller Press 168 GAMM (1.24e+003, 0.507)

Roller press Bucket elevator 1924 WEIB (354, 0.501)

Separator 3360 EXPO(2.89e+003)

Table 3. Subsystems time characteristics  
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getting rid of an old item and installing a new one. In 
this case, the machine is restored to As Good as New 
(AGAN) state. Table 4 below provides a summary 
of mean time to repair (MTTR) for different subsys-
tems derived from empirical data.

Table 5 below shows various maintenance actions 
and utilization, MTTR and failure frequencies.

Figure 2 shows a Pareto chart obtained from data 
driven criticality analysis aimed at identifying the criti-
cal subsystems for consideration while modelling the 
system. Roller press and Bucket elevator constitutes 
90% of total downtime and the other three consti-
tutes 10%. The researcher decided to model all the 
subsystems to identify basis of further study.

From figure 4, the subsystems (En) included Cy-
clones (E1), Recirculation fan (E2), Roller press (E3), 
Bucket elevator (E4) and Separator (E5).

3.4 System Modelling

3.4.1 Notations

Throughout this paper, the notations in table 6 
are adopted. 

Figure 3 is a schematic representation of model 
conceptual framework that mimics the real system in 
terms of running and maintenance. 

To model the subsystems’ availability and reliabil-
ity degradation, the approach of [29] is adopted where 
impact factor (IF), with values of 0 to 1 and failure 
severity (FS) is introduced. IF in this case is a variable 
that impacts the life of the subsystem based on the 
maintenance action carried out. FS follows a Semi-
Markov decision process (SMDP), influenced by the 
last maintenance action carried out on a subsystem. 

Subsystem R1 R2 R3 R4 R5

E1   2.04 + EXPO (0.525)   

E2 GAMM (1.39, 3.95) 1 + EXPO (4.03) UNIF (0.12, 6.72) 2.35 + WEIB (2.52, 1.98) 2.13 + 4.41 * BETA 
(0.936, 1.05)

E3 1 + 20 * BETA (0.554, 
1.12)

24 * BETA (0.524, 2.97) 1 + WEIB (2.75, 1.12) 1.02 + 5.71 * BETA (1.73, 
1.31)

4 + 11 * BETA 
(0.486, 0.524)

E4 5 * BETA (0.497, 0.499) WEIB (3.46, 1.34) 1 + WEIB (2.72, 0.833) 1 + WEIB (3.57, 0.809) UNIF (2, 24)

E5 5 * BETA (0.497, 0.499) 8.92 * BETA (0.643, 1.28) 1 + WEIB (2.89, 1.96) UNIF (2, 5) 2 + 8 * BETA 
(0.807, 0.765)

Table 4. Related random maintenance action delay time in hours  

Maintenance Action MTTR (Hrs.) Failure Frequency % Utilization

Repair 7.19 69 34

Adjust 3.69 67 33

Clean 3.52 28 14

Inspect 5.09 18 9

Replace 12.79 22 11

Table 5. Maintenance actions MTTR, failure frequencies and percentage utilization  

Figure 2. Pareto Analysis Chart reflecting the effect of downtime to subsystems
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3.5 Performance Measures

Two performance measurements; Availability 
(AM) and Total maintenance cost (CTM) were derived 
from the simulation-based model as illustrated in 
equations (1) and (2) respectively. The availability of 
the pre-grinding system is a percentage of grinding 
hours and both grinding hours and downtime. Down-
time is a contribution of PM, CM actions and time 
spent while sourcing spares. The Total maintenance 
cost is a combination of both spares and labour costs.

(1)

(2)

3.6 Simulation Model

PM and CM maintenance strategies were integrat-
ed in one model to derive the performance measure-
ments explained in 3.5 above. The simulation model 
involves a collection of methods and applications to 
mimic the real pre-grinding system and ARENA sim-
ulation software was used to integrate various inputs 
from empirical data.

Response Variables Description

AM Mill Availability

CTM Total Maintenance Cost (KES)

Model Parameters Description

Ri Maintenance Actions; i = {1,2,3,4,5}

ɳri Maintenance Actions Utilization (%)

f Fill rate

ρi Import Probability

TPM PM Interval

En nth subsystem

n Number of subsystems; n = {1,2,3,4,5}

i Number of maintenance actions; i= {1,2,3,4,5,6}

FSj Failure Severity for jth level

j Severity level; j = {1,2,3,4}

Table 6. Notations  

Figure 3. Conceptual framework of the pre-grinding system model



207Nganga et al.

International Journal of Industrial Engineering and Management Vol 14 No 3 (2023)

4. Results 

The model was set to run for 52,160 hours, equiv-
alent to 6 years of production period. While running 
the model at 10 replications, the availability Am half 
width was ±7 while the desired half width was ±2. To 
achieve the desired half width, the following formula 
(3) was used, and the model was run at 120 replica-
tions {equation (4)}. 

(3)

Where n is the number of the desired replica-
tions, no is the number of current replications, ho is 
the current half width and h2 is the desired half width.

(4)

4.1 Model Results

As shown in table 7, availability of 79.3% and to-
tal maintenance cost of KES 24489K was generated 
from the simulation model. Expected mill availability 
and total maintenance cost from empirical data was 
82% and KES 25640K respectively. The results vali-
date the model with acceptable range of±10% [36]. 

The impact of PM interval was evaluated by vary-
ing the intervals from 4380 hours to 13140 hours. 
From Figure 4, it is illustrated that as PM interval 
increases, CTM increases with decrease in AM. CM ac-

tions are mostly utilized that are more expensive and 
the activities of CM results to high downtime thus 
reducing the subsystems availability. The vertical dot-
ted line is the reference point for TPM from empirical 
data. CTM increases from KES 12 million to KES 46 
million while AM decreases by 32.57% from 90.49% 
to 57.92%.

From figure 5, ɳr1 was varied from 24% to 44%. 
The impact of this variation reduced the CTM by 
KES 5 million from KES 27 million to KES 22 mil-
lion. The mill availability, AM was slightly affected as 
it dropped by 1% from 79.6% to 78.6%. The mar-
ginal decrease of system reliability was attributed by 
initiative-taking response to breakdowns by the main-
tenance teams because the PM interval is not yet 
reached. With reduced MTTR and lack of waiting 
time for spares in terms of lead times, AM was not 
significantly affected, and this confirms that the reli-
ance of spares importation can impact the downtime 
due to high lead times as in this case study.

The effect of varying the import probability, ρi was 
evaluated by varying ρi from 0% to 20% as shown in 
Figure 6. The vertical dotted line represents the im-
port probability utilization from the empirical data, 
at 10%. 

4.2 Full Factorial Effects and Interactions 
Experiment Results

To investigate the influence of effects and in-
teractions of the various responses under research, 
OFAT, 2-factor full factorial and analysis of Vari-
ances (ANOVA) was conducted. Table 8 shows the 
variables ranges used in the experiments.

4.2.1 Main Effects Results

An analysis was conducted to evaluate the main 
effects of independent variables on the main perfor-

Scenario AM (%) CTM (1000 KES)

‘As is”  79.3  24489

Empirical  82  25640

Table 7. Comparison of simulation results  

Figure 4. The effect on mill subsystems performance by varying TPM



208 Nganga et al.

International Journal of Industrial Engineering and Management Vol 14 No 3 (2023)

mance measures. As shown in table 9, TPM reduced 
the system AM by 32.09% when PM interval was var-
ied from 4380 hrs. to 13140 hrs. This is because when 
TPM is prolonged, corrective maintenance becomes 
the major maintenance strategy to be utilized, which 
is expensive and leads to high downtime, therefore, 
CTM increases by KES 33,057K because of increased 
CTM actions. The adjust utilization, ɳr2 reduces CTM by 
KES 5,065.8K since no spares are needed in adjust-
ment and AM is slightly affected as adjustment is done 
on-run. By holding more spares, the fill rate, f in-
creases cost by KES 1,240K but slightly affects AM. ɳr3 

reduces maintenance cost because the maintenance 
actions do not require spares. However, increasing 

ρi increases AM by 2.49% simply because spares are 
available for replacement. 

Control Variables Model Value
Ranges

Min Max

Pm Interval (Hrs.) 8760 4380 13140

Fill rate (%) 70 49 91

Import Probability (%) 10 0 20

Repair Utilization (%) 34 25.5 42.5

Adjust Utilization (%) 33 25 42

Clean Utilization (%) 14 10.5 17.5

Replace Utilization (%) 11 8.25 13.75

Table 8. Variable ranges as used in experiments  

Control 
Variables

Main Effect Sizes on Performance Measures

AM (%) CTM (KES)

TPM -32.09 33,057.1 K

ɳr2 -1.06 -5,065.8 K

f -1.72 1,240.0 K
ɳr3 -0.13 -1,437.6 K
ρi 2.49 -1,769.2 K

ɳr1 -1.11 -5,797.5 K

ɳr5 0.12 1,986.2 K

Table 9. Main effects sizes of the control variables   

Figure 5. The effect on mill subsystems performance by varying utilization of repair action (ɳr1)

Figure 6. The effect on mill subsystems performance by varying import probability (ρi)
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4.2.2 Interaction Effects Results

Referring to table 10, TPM has the interactions with 
major effects on both performance measures AM and 
CTM. For instance, interaction between TPM and ɳr2 

and TPM and ɳr1 has major saving in CTM. This is be-
cause both ɳr1 and ɳr2 do not incur spares cost. TPM 
alone had a major increase in cost. This is because 
any time the system goes through PM, labor cost in-
creases due to demand of high skilled personnel to 
do the replacements as well as expensive spares. 

The interactions with >95% confidence interval 
was considered. TPM + ɳr2 and TPM + ɳr1 had major 
effect on both AM and CTM .  TPM + f, and TPM + ρi had 
effect on AM only while TPM + ɳr5 had effect on CTM 
only. PM interval twice a year that equates to mini-
mal utilization of repairs and adjustments in between 
the PM intervals and maximum utilization of spares 
import probability results to positive gain in both per-
formance measures. 

5. Discussion

The initial results of the model analysis provide 
several significant aspects to the practitioners and 

academia. In the first place, the model provides a 
pragmatic reference model practitioners can use to 
identify critical subsystems and parameters. The iden-
tification of the bucket elevator and the roller press 
as critical shows the subsystems require more focus 
in terms of maintenance activities to improve the mill 
performance. This model is unique as it provides for 
stochasticity of the system, an aspect important while 
mimicking real life system operations and analysis.

While considering the effect of PM Interval as 
shown in Figure 6, the analysis intimated that an in-
crease in the PM interval significantly increased the 
CTM while there was a decrease in AM. An extended 
PM interval means a reduced frequency of under-
taking Preventive maintenance. This directly affects 
the reliability of the different parts maintained due 
to the reduced renewal effect. The reduced PM ac-
tion means extended usage of parts before replace-
ment. This has two cardinal effects, firstly, the use of 
corrective maintenance in increased in this case and 
secondly, increased failure is expected. These two 
issues inherently lead to increased downtime which 
causes the reduction of availability while increased 
corrective maintenance actions which are inherently 
time and cost-intensive eventually lead to high main-
tenance costs. This same phenomenon is seen while 

Control Variables
Interaction Effect Sizes P-Value

AM (%) CTM (KES) AM CTM

TPM + ɳr2 -0.83 -3,742.9 K 0.042 0.000
TPM + f -1.30 1,086.0 K 0.001 0.270
TPM + ɳr3 -0.06 -1,091.0 K 0.888 0.267

TPM + ρi 1.89 -1,547.5 K 0.000 0.112

TPM + ɳr1 -0.83 -4,304.5 K 0.043 0.000

TPM + ɳr5 0.12 1,517.8 K 0.605 0.039

ɳr2 + f 0.22 -293.3 K 0.938 0.925

ɳr2 + ɳr3 0.05 -23.8 K 0.979 0.945

ɳr2 + ρi -0.12 718.1 K 0.966 0.817

ɳr2 + ɳr1 -0.15 -311.2 K 0.951 0.862

ɳr2 + ɳr5 0.01 -128.9 K 0.973 0.913

f + ɳr3 0.05 -23.8 K 0.986 0.994

f + ρi -1.46 820.0 K 0.616 0.793

f + ɳr1 0.23 -189.6 K 0.950 0.945

f + ɳr5 -0.24 -228.9 K 0.954 0.889

ɳr3 + ρi -0.08 355.3 K 0.979 0.910

ɳr3 + ɳr1 0.11 404.9 K 0.969 0.923

ɳr3 + ɳr5 -0.01 -589.9 K 0.970 0.998

ρi + ɳr1 -0.16 907.6 K 0.978 0.798

ρi + ɳr5 0.06 -741.3 K 0.927 0.957

ɳr1 + ɳr5 -0.01 -55.6 K 0.991 0.934

Table 10. Interactions effects sizes and P-Values of control variables using Full Factorial and ANOVA   
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investigating the effect of Repair Utilization illustrat-
ed in Figure 7. The results showed that an increase in 
the utilization of the repair maintenance action signif-
icantly increased the CTM while there was a marginal 
decrease in AM. 

While investigating the effect of spare parts Im-
portation probability on the plant performance, Fig-
ure 8 shows the results while varying ρi. The plant 
availability, AM increases from 78.2% to 80.4%, the 
latter resulting from maximum ρi utilization. AM is in-
creased if spares importation is maximized since the 
replaceable items are customized to fit the purpose 
and this ensures spares availability during downtime. 
Perhaps the most significant finding is that the depen-
dence on local spare sourcing, especially when the 
installed system is of a special category like the sys-
tem under study, retains protracted lead times. This 
intriguing result is because of the requirement by the 
local suppliers to customize the spares compared to 
original equipment manufacturers who retain system 
knowledge and capacity to manufacture spares within 
considerable lead times.  For the system under study, 
spare importation is advantageous in both cost and 
lead times, hence the maintenance cost reduction, 
CTM by KES 2 million. These findings cannot be ex-
trapolated to all types of industrial plants as it is im-
portant to bear in mind the type of spare parts and 
the possible localized solutions required. For spare 
parts that retain such characteristics, it will be impor-
tant for the practitioners to consider the importation 
probability as it significantly improves plant perfor-
mance.

While reviewing the second phase where main 
and interaction effects are determined, the results 
doubtlessly, despite dependent on the case study 
characteristics, has some reliable conclusions. The 
parameters with significant main effects included 
TPM, ρi, ηr1; ηr2 and f as shown in Table 8. However, 
while considering the interaction effects, the effect 
sizes significantly change, laying the emphasis of the 
need to explore factor effects concurrently. Signifi-
cant interaction effects are discovered between vari-
ous parameters like TPM and ρi, TPM and ηr1, TPM and 
ηr2, and TPM and f (See Table 10). It is worth noting 
that the interactions provide important insights on 
parameters that when considered separately would 
provide improved performance but when interac-
tively considered the perceived improvement is re-
duced. However, on the other hand several interac-
tions show an improved performance of the grinding 
mill. These results emphasize that practitioners and 
analysts must explore factor effects concurrently to 
understand how their simulation model behaves 

when its factors are changed. Despite the use of p-
values, information about the size of an effect and its 
possible error must be allowed to interact with expert 
knowledge. Taken collectively, these results suggest it 
is essential to optimize variables jointly since the deci-
sion variables or controls can interact with each other 
and yield a sub-optimal solution. 

As for the managerial implications. this study in-
corporated two maintenance policies, CM and PM 
and four maintenance actions, repair, replace, clean, 
and adjust. Spares availability as well as import prob-
ability was also considered to identify their implica-
tions in maintenance performance of the cement 
grinding system. From the exploratory study, PM 
was conducted once a year while fill rate and spares 
importation was not put into consideration. Main-
tenance actions were selected based on technicians’ 
judgement during CM.  In this study, all the men-
tioned factors were evaluated in simulation-based 
model and deductions made. The approach in this 
study has portrayed a great benefit of implementa-
tion of stochastic utilization of various maintenance 
actions during CM and validated the best PM inter-
val, scientifically evaluated instead of the old Ad Hoc 
maintenance approach employed by many manufac-
turing plants.

The impact of spares sourcing, lead times and 
fill rate has been identified as factors that directly 
affect the overall performance of maintenance per-
formance in manufacturing industries and therefore 
cannot be ignored. The Ad hoc maintenance prac-
tices may not give the best outcome of plants’ per-
formance and therefore the model proposed in this 
study can help the maintenance manager to make the 
best decision. The linkage of both CM and PM strat-
egies while considering the impact of spares sourcing, 
lead times and fill rate offer sound decision support 
to engineering and production functions and are as-
pects not well addressed in literature. Our results, 
concurring with [37], emphasize the importance of 
incorporating these parameters into routine mainte-
nance planning practices.

In addition, the study has brought out clearly a 
need to consider interactions between maintenance 
policies and maintenance actions to determine which 
combination improves system reliability and avail-
ability whilst reducing maintenance cost at the same 
time without compromising on the profitability of 
the business. The application of full factorial and 
ANOVA experiments in the study has given better 
understanding unlike reliance of main effects alone. 
Relying on main effects only as has been a norm in 
Ad Hoc maintenance policies may not offer a work-
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able solution to emerging problems in manufacturing 
industries. 

It is important for the engineering managers to ap-
ply more scientific approaches while evaluating the 
best maintenance strategies to solve complex mainte-
nance challenges and to holistically evaluate different 
maintenance options before engaging the repairable 
items to maintenance actions. This study has shown 
that having PM schedule at least twice a year and uti-
lizing the ‘repair’ and ‘adjust’ maintenance actions 
between the PM interval will result to high plant avail-
ability and reliability due to minimal downtime and 
prolonged life of the repairable items and cut main-
tenance cost to almost a half. This method has a lot 
of potential to be used in various scientific fields. The 
findings from this study can be applied in all manufac-
turing industries that has repairable items and there-
fore it is not limited to cement manufacturing firms.

6. Conclusion

The main goal of the present study was to develop 
a framework that commences with empirical data, 
whose first aim was to derive the critical equipment. 
The second aim was integrating spare parts importa-
tion probability in the framework as a factor and in-
vestigate its impact on the plant performance. Lastly, 
the study aimed to develop and undertake the main 
and interactional effects of various operational and 
maintenance related parameters on the availability 
and maintenance cost of the plant. 

The investigation of the critical equipment in the 
plant has shown that the bucket elevator and roller 
press were the critical equipment in the cement plant 
section under study. Moreover, the use of repair and 
adjust maintenance actions were the most utilized in 
the maintenance of the plant section. On the other 
hand, the relevance of the spare parts importation 
probability is clearly supported by the current find-
ings which show that it significantly affects the plant 
performance (availability and maintenance cost). 
The third major finding of this study was that the PM 
interval, spare parts importation probability, filrate, 
adjust maintenance action utilization were found to 
have significant effects on the plant performance.

The analysis results while evaluating the model, 
conceivably support the hypothesis that interactions 
of the variables play a role in influencing the perfor-
mance measures. Taken together, these findings sug-
gest a role for the spare parts importation probabil-
ity along with other maintenance related parameters 
and strategies in affecting the plant performance. 

These findings have significant implications for the 
understanding of how the various operational and 
maintenance related parameters affect the plant per-
formance, in this case availability and maintenance 
cost. Hence, if enhanced, would greatly improve 
the maintenance strategies, spare parts provisioning 
strategies and ultimately improve the plant availability 
and reduce the maintenance cost. This combination 
of findings provides some support for the conceptual 
premise that while carrying out maintenance optimi-
zation, a balance of decision variables used, need to 
be struck by considering their effects, interactions and 
expert knowledge. The research lays a groundwork 
for future studies into other maintenance strategies 
with their possible interactions towards an in-depth 
optimization model.

The research lays a groundwork for future stud-
ies into other maintenance strategies with their pos-
sible interactions towards an in- depth optimization 
model. Moreover, simulation-based experiments 
and optimization on real cement plant data verify 
the validity and robustness. This study was limited to 
using one case study of the cement plant, however, 
despite of its limitation, the study certainly adds to 
our understanding of the influence of the aforemen-
tioned parameters to the industrial plant’s perfor-
mance. Further investigation and experimentation 
into other maintenance policies like opportunistic 
maintenance, condition-based monitoring is strongly 
recommended. Moreover, further research in other 
parameters like workforce utilization as well as lead 
times to evaluate their effect on maintenance cost 
and availability, is therefore, an essential next step 
in research.
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