Aldubaie et al | Article 8777 *J Pure Appl Microbiol.* 2023;17(3):1722-1736. doi: 10.22207/JPAM.17.3.37 Received: 14 June 2023 | Accepted: 16 August 2023 Published Online: 02 September 2023

RESEARCH ARTICLE

Prevalence of Hepatitis C Viral Infection among Diabetes Mellitus Patients in Qassim Region, Saudi Arabia

Muneerah Hamad Aldubaie^{1,2}, Prarthana M. Suryavamshi¹, Uma M. Irfan³, Hamad A. Al-Hamed⁴, Turki Abdullah Almogbel⁵, Ahmad Almatroudi¹, Faris Alrumaihi¹ and Khaled Allemailem¹*

¹Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.

²Department of Laboratory, Dr. Sulaiman Al Habib Medical Group, Riyadh 11635, Saudi Arabia.

³School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

⁴Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Buraydah 52211, Saudi Arabia. ⁵Diabetes Center, King Fahd Specialist Hospital, Buraydah 52211, Saudi Arabia.

Abstract

The worldwide prevalence of Diabetes Mellitus (DM) associated with Hepatitis C Virus (HCV) infection are reported with higher rates of morbidity and mortality. The frequency of HCV is approximately 3-4 million cases each year and in parallel the incidence of DM is increasing alarmingly. World Health Organization (WHO) has specified that DM will be the 7th leading cause of mortality by 2030. The increasing association between HCV and DM has been indicated by some significant reports recently. HCV infection leads to hepatic steatosis and rapid insulin resistance, which in turn upsurges the risk factors for hepatic fibrosis and hepatocellular carcinoma. This study is designed to examine the association between HCV and DM, and different risk factors associated with HCV infection in Qassim region, Kingdom of Saudi Arabia (KSA). A total of 634 blood samples were obtained from diabetic and non-diabetic patients. These blood samples were first screened for HCV infection by enzyme-linked immunosorbent assay (ELISA) and positive samples were again confirmed by TaqMan HCV quantitative test and the viral load in different samples was estimated. The HCV prevalence was identified as 2.5% in diabetic patients with a positive association between HCV and DM (RR= 1.24, OR= 1.77) which is not significant statistically. However, the HCV prevalence among diabetic females was significantly different from males (p<0.05). The behavioural factors had no significant impact to acquire HCV infection. This study indicated a positive association between HCV and DM. Gender was an association factor in the HCV and DM status. Further studies with larger sample size is significant to properly assess the temporal relationship between HCV and DM.

Keywords: Hepatitis C Virus, Viral Load, Diabetes Mellitus Type I, Diabetes Mellitus Type II, Qassim Region

*Correspondence: k.allemailem@qu.edu.sa

Citation: Aldubaie MH, Suryavamshi PM, Irfan UM, et al. Prevalence of Hepatitis C Viral Infection among Diabetes Mellitus Patients in Qassim Region, Saudi Arabia. *J Pure Appl Microbiol.* 2023;17(3):1722-1736. doi: 10.22207/JPAM.17.3.37

© The Author(s) 2023. **Open Access**. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

Hepatitis C virus infection (HCV) and Diabetes Mellitus (DM) are well-known causes of morbidity and mortality throughout the world. It is now reported that more than 170 M individuals are infected with HCV globally.¹⁻⁷ Approximately 3-4 million cases occur every year with a significant risk of progression to chronic liver disease, cirrhosis and hepatocellular carcinoma.^{8,9} The Ministry of Health (MOH) in Saudi Arabia, reported 9000 new cases of viral hepatitis in 2007, in that 32% were HCV infections.9 A Saudi study performed on blood donors showed 0.4 - 1.1% prevalence of HCV infection.¹⁰⁻¹³ Data on prevalence of HCV infection in the general population in KSA is lacking as no population-based studies have been carried out.9 Diabetes affects all ages, communities and continents. According to a national epidemiological health survey conducted on 16,917 Saudi subjects, the prevalence of DM was found to be 23.7%.¹⁴⁻¹⁶

HCV infection notoriously called as a silent disease caused by the HCV is a positive sense, *ss*RNA virus belonging to family *Flaviviridae* and genus *Hepacivirus*.¹⁷ It consists of 7 genotypes and 86 subtypes. 5-25% of the patients with chronic HCV pose the risk of developing cirrhosis after 25-30 yrs.¹⁸ Genotypes 1 and 4 are responsible for 86% of chronic HCV infections in Saudi Arabia.¹⁹⁻²¹ HCV is primarily transmitted through exposure of infected blood.²² Unsafely performed injection practices is the most predominant mode for transmission

and it accounts to 40% of HCV infections reported worldwide. $^{\rm 23}$

There is mounting evidence on the relationship between HCV and type 2 DM. People infected with HCV were observed to have increased risk of type 2 DM in controlled studies. HCV infection can lead to fibrosis and cirrhosis of the liver which may in turn lead to glucose intolerance and DM.²³⁻²⁵ According to the histological examination on the pancreases from patients with HCV, defects in function and morphology of beta islet cells of pancreas containing desensitized response of insulin to glucose were showed.^{25,26} HCV is found to induce hepatic steatosis, insulin resistance (IR) and impaired insulin signalling.²⁷ Tumor necrosis factor alpha (TNF- α) can affect the signalling of insulin in patients with HCV.^{28,29} A large Taiwanian cohort study revealed that patients who developed DM and have chronic HCV, had the highest risk by 2-3-fold for getting liver decompensation and cirrhosis.³⁰ DM also raises the risk of getting hepatocellular carcinoma (HCC) in patients with chronic HCV.^{31,32} The decreased rates of early virological response as well as sustained virological response (SVR) among patients with chronic HCV infection treated with a combination of ribavirin and pegylated interferon- α (PEG-IFN- α) are related to increasing levels of IR.33-35 There is a direct relationship between IR and high viral load of HCV.³⁶ A study revealed that the prevalence of HCV infection was higher in type 2 diabetic patients as compared to type 1 diabetic patients (84% vs.

Figure 1. Flow Chart Representing the Methodology of the Study

Journal of Pure and Applied Microbiology

www.microbiologyjournal.org

16%).³⁷ Furthermore, another study indicated that type-2 diabetes was more common in patients with HCV than in patients with an HBV infection.³⁸ Due to insufficient data on prevalence of HCV and its association with DM in Qassim region, this study was designed to investigate the prevalence of HCV infection; its association with DM and the risk factors associated with HCV/DM comorbidities. The methodology used in the study was represented by Figure 1.

MATERIALS AND METHODS

Sample study

The cross-sectional study was conducted during the period 2018-2019 in Buraidah, Qassim. All the Saudi nationals who attended the King Fahad Specialist Hospital (KFSH), including Diabetes Centre were invited to participate in this study. Among those, 634 subjects consented to participate and were enrolled in the study by convenience sampling method (the power of the sample size estimate was 0.99). The study was conducted after obtaining due ethical clearance from the Institutional Ethical Committee and **Regional Research Ethics Committee (Registration** NO. H-04-Q-001). Informed consent was taken from the participants, and consent for the minors was taken from their parent/guardians. Blood samples with aseptic precautions were drawn from all study subjects who attended KFSH above the age of 10 years and were willing to participate in the study. Subjects less than 10 years of age or with pancreatic disease other than DM or with a history of it or with hepatocellular carcinoma or cirrhosis from another cause and subjects who refused to participate in the study were excluded.

Data collection

The participants signed the informed consent and the parental or guardian consent was obtained for minors, respectively. Information was also collected using a pre-structured questionnaire, which included information on demographic characteristics such as gender, age, education level and marital status. Additionally, information on the type of DM, duration of the disease, family history of DM, DM treatment information, and history of exposures to risk factors for example: sharing personal items, injections, history of hospitalization, surgical procedures etc were collected. Clinical information was gathered from routine laboratory tests and medical records: e.g., glucose level and liver function test values were recorded. According to the American Diabetes Association criteria for type 2 diabetes, a person is considered diabetic if HbA1c \geq 6.5%, Fasting plasma glucose \geq 126 mg/dl (7.0mmol/l), 2hr plasma glucose \geq 200 mg/dl (11.1 mmol/l), and Random plasma glucose \geq 200 mg/dL (11.1 mmol/L).³⁹

Screening for HCV

Screening for HCV was done using Monolisa anti-HCV ELISA kit which is an indirect qualitative enzyme immunoassay for the detection of HCV infection based on the detection of anti-HCV (IgG) antibodies in serum. Positive samples were further confirmed by using TaqMan HCV quantitative test which was done in Nucleic Acid Testing (NAT) section of KFSH, Buraidah. The NAT is considered as the gold standard for detection of HCV replication.⁴⁰

COBAS AmpliPrep/COBAS TaqMan HCV Test

The quantitative RT-PCR for the confirmation and detection of the viral load of HCV was performed using COBAS AmpliPrep/ COBAS TaqMan HCV Test. Classification of viral load result: <60,0000IU/ML was considered low, (60,

Table 1. Demographic Distribution Data in Study

 Participants

Demographic Data Fre		Frequency N=634	Percent
Age	10-20 years	15	3.0%
	21-30 years	116	18.3%
	31-40 years	115	18.1%
	41-50 years	136	21.5%
	51-60 years	170	26.8%
	>60 years	78	12.3%
Gender	Male	288	45.4%
	Female	346	54.6%
Marital	Single	105	16.6%
status	Married	529	83.4%
Education	Non-educated	135	21.3%
level	School-educatio	n 251	39.6%
	University- education	248	39.1%

0000-80,0000IU/ML) was considered intermediate and >80, 0000 IU/ML was considered as high viral load.⁴¹

Statistical Analysis

All the data obtained was analyzed by using Excel, Epi InfoTM and SPSS and descriptive statistical analysis was performed.^{42,43} Results obtained on categorical measurements were designated in numbers (%). Fishers Exact and Cochran's Mantel-Haenszel tests were used to test associations between the prevalence of HCV among diabetics/non-diabetics and sociodemographic characteristics, behavioural factors and biochemical parameters of liver function by calculating the p value. The results were then presented in tables, charts and graphs. The level p<0.05 was set as statistically significant.

RESULTS

Demographic Characteristics

This study included 634 participants. The majority (26.8%) of participants for this study were between 51-60 years old and at least 3% were between 10-20 years of age. There ratio of females (54.6%) was more than males and more married (83.4%) than single participants in the study sample. Majority of the participants (39.6%) had either school or university level education and 21.3% reported not having any formal education (Table 1).

Diabetes Mellitus Profile for Study Participants

Among these participants, 56.1% were diabetic and 43.9% were non diabetic; 80.9% had type 2 DM and 19.1% had type 1 DM. The proportion of participants with DM <5 years, 5-10 years, 11-20 years and >20 years were 35.1%, 27.5%, 28.1% and 9.3% respectively (Table 2).

Behavioural Factors for HCV

Only 13.4% of participants had blood transfusion, 1.6% had haemodialysis, 2.1% had experience tattooing in their life, 53.9% had surgeries with differences in the number of surgeries, 70.3% had hospitalization with different times of admission. Hijama was practiced by 36.3% of participants with different times. Furthermore, 2.1% were intravenous drug users, 9.1% were sharing their personal items with others (Table 3).

Serological Test and Quantitative PCR

Out of 634 participants, only 13 were positive for anti-HCV. The prevalence of anti-HCV was found to be 2.1% (Table 4).

Table 2. History of the Diabetes Mellitus Reported by Study Participants

Chronic Illness		Frequency (N=634)	Percent
Diabetes Mellitus	Yes	356	56.1%
	No	278	43.9%
Type of Diabetes	Diabetes Mellitus type1	68	19.1%
Mellitus	Diabetes Mellitus type2	288	80.9%
Diabetes Mellitusyes	349	98.0%	
Medication	No	7	2.0%
Type of	Oral	222	63.4%
Medication	Insulin injection	83	23.7%
	Combination of both	43	12.3%
	Other	2	0.6%
Family History of	Yes	255	72.2%
Diabetes Mellitus	No	98	27.8%
Duration of Diabetes	< 5 years	125	35.1%
Mellitus	5-10 years	98	27.5%
	11-20 years	100	28.1%
	>20 years	33	9.3%

The viral load estimation showed 8 samples (61.5%) as target that not detected and the remaining were target detected (Figure 2).

Association between Demographic Characteristics and HCV

There was non-significant association (*p* >0.05) between all demographic data (age, gender, marital status, Education level) and HCV infection. The age groups 41-50 years, 51-60 years and >60 years showed high percentages of presence of anti-HCV, being 2.2%, 3.0%, and 3.9% respectively, compared to the other age group and male was higher with positive anti-HCV (2.4%) than female (1.7%). Married participants were also higher with anti-HCV positive (2.3%) than non-married (0.9%). The participants who were non-educated had higher percent of anti-HCV positive status (3.0%) than participants with other education levels (Table 5).

Prevalence of HCV in Diabetic and Non-Diabetic Participants

The prevalence of anti-HCV in diabetic participants was 2.5% and there was an association between HCV and diabetes mellitus as the risk difference was 13.4%, while the relative risk was 1.24 and the odds ratio was 1.77. However, the association was not statistically significant as p =0.40; therefore, the null hypothesis was rejected

and the alternative hypothesis was accepted (Table 6).

The prevalence of anti-HCV in nondiabetic participants was 1.4% and there was non-significant association between all exposures in general health (types and duration of DM, use and type of DM medication) and HCV with p > 0.05as stated in Table 7.

Association between Behavioural Factors and HCV

There was non-significant association between all behavioural factors associated with HCV in the participants including blood transfusion, haemodialysis, tattooing, surgery and times of surgeries, hospitalization and times of hospitalization, practicing hijama or times of practicing hijama, IV drug users and sharing personal items, and HCV infection. Among the participants who had blood transfusion, 4.7%, 1.8% who had history of surgeries, 2.5% of participants who had history of hospitalization and 3.0% with history of practicing hijama were anti-HCV positive (Table 8A and 8B).

HCV and Diabetes Mellitus

Figure 3 compares the prevalence of HCV and diabetes mellitus in different age groups. It shows that both age groups (51–60 years and >60 years) have the highest prevalence of HCV and

Distribution of viral load

Figure 2. Reported results of viral load for positive anti-HCV including target detected and target not detected.

Journal of Pure and Applied Microbiology

diabetes mellitus (0.5%), while the age groups (10–20 years and 21–30 years) have the lowest prevalence (0.0%). There was non-significant association between HCV and diabetes mellitus that considered all age groups as p = 0.74, while in all age groups 10-20 years, 21-30 years, 41-50 years and >60 years, p = 1.00. The age group of 31-40 years had p=0.20, and p=0.31 was in 51-60 years' age group.

There was a significant association between HCV and diabetes mellitus in female (p=0.03), with higher percentage (0.9%), while there was non-significant association between HCV and diabetes mellitus in male (p=0.46) and the percentage in male was lower (0.5%). The association between HCV and diabetes mellitus considered both gender as statistically non-

Behavioural Factors		Frequency (N=634)	Percent
Blood transfusion	Yes	85	13.4%
	No	549	86.6%
Haemodialysis	Yes	10	1.6%
	No	623	98.4%
Tattooing	Yes	13	2.1%
	No	621	97.9%
Surgery	Yes	342	53.9%
	No	292	46.1%
Times of surgery	Once	195	57.0%
	Twice	80	23.4%
	Three times	32	9.4%
	>Three time	s 35	10.2%
Hospitalization	Yes	446	70.3%
	No	188	29.7%
Times of	Once	214	48.0%
hospitalization	Twice	95	21.3%
	Three times	59	13.2%
	>Three time	s 78	17.5%
Hijama	Yes	230	36.3%
	No	404	63.7%
Times of Hijama	Once	116	50.4%
	Twice	50	21.8%
	Three times	29	12.6%
	>Three time	s 35	15.2%
IV Drugs	Yes	13	2.1%
	No	621	97.9%
Sharing personal	Yes	58	9.1%
items	No	576	90.9%

significant (p = 0.50) the percentages for both gender is shown in Figure 4.

A percentage of 1.4% of HCV and diabetes mellitus was found in married participants, while there was no HCV and diabetes mellitus in single participants. Furthermore, there was nonsignificant association between HCV and diabetes mellitus that considering marital status (p=1.00 for singles, and p=0.37 for married). Non-significant association between HCV and diabetes mellitus including both single and married was found with p=0.60 (Figure 5)

Figure 6 illustrated that the highest percentage of HCV and diabetes mellitus were in university education level (0.6%), followed by non-educated level (0.5%), while the lowest percentage was found in school-educated level (0.3%). Furthermore, there was non-significant association between HCV and diabetes mellitus considering all education levels (p= 0.58), while p=1.00 was determined for both non-educated and school-educated participants, and p=0.16 was calculated for university education level.

Clinical Lab Findings

The available records of the levels of liver function tests among the participants with elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 6.7% and 9.1% were found to be anti-HCV positive, respectively. Moreover, there was non-significant association between ALT and HCV (p=0.28) and between AST and HCV (p=0.09) (Tables 9 & 10).

Association between Liver Function Tests, HbA1c and HCV

Two participants were found with high viral load as 808882 IU/ml and 1987207 IU/ml, respectively had Diabetes mellitus and one participant with the highest viral load showed a high liver function and high value of HbA1c.

 Table 4. Reported Results of Anti-HCV for Study

 Participants

HCV ELISA	Frequency (N=634)	Percent
Positive Anti-HCV	13	2.1%
Negative Anti-HCV	621	97.9%

Journal of Pure and Applied Microbiology

www.microbiologyjournal.org

Aldubaie et al | J Pure Appl Microbiol. 2023;17(3):1722-1736. https://doi.org/10.22207/JPAM.17.3.37

Anti-HCV VS DIABETES MELLITUS WITH AGE GROUP N=634

Figure 3. HCV vs Diabetes Mellitus Considered age group. Including age groups 10-20 years, 21-30 years, 31-40 years, 41-50 years, 51-60 years and more than 60 years study participants.

Anti-HCV VS Diabetes Mellitus with gender

■ Female ■ Male

Figure 4. HCV vs Diabetes Mellitus with Gender. It includes four categories: males and females have HCV and DM, have HCV but no DM, have DM but no HCV, no HCV and no DM

Anti-HCV VS Diabetes considered marital status N=634

60.0% -			48.9%	
50.0% - 40.0% -				32.6%
30.0% - 20.0% -				10.004
10.0%	0.0%1.4%	0.2%0.5%	5.8%	10.6%
0.0%	Anti-HCV+, DM	Anti-HCV+, No DM	Anti-HCV-, DM	Anti-HCV-, No DM
■ Single	0.0%	0.2%	5.8%	10.6%
Married	1.4%	0.5%	48.9%	32.6%

■ Single ■ Married

Figure 5. HCV vs Diabetes Mellitus with Marital status. Including single and married with HCV and DM, with HCV only, with DM only and without HCV and DM

Anti-HCV VS DIABETES MELLITUS WITH EDUCATION LEVEL N=634

■ Non-educated ■ School-education ■ Uni

-education University-education

Figure 6. HCV vs Diabetes Mellitus with respect to Education Level. Including three categories: non educated, school educated and university education

Participants with low viral load showed normal liver functions (Table 11).

Among 13 positive anti-HCV, the target was not detected in 8 participants, 5 of these 8 participants were diabetic, while the other 3 were non-diabetic. Among 5 participants with sustained virological load, 4 participants had DM as shown in Figure 7.

DISCUSSION

Many studies have suggested the association between the HCV infection and DM.⁴⁴⁻⁴⁸ There are many risk and behavioural factors which can contribute to acquiring HCV infection. The present study assessed the prevalence of HCV in diabetic and non-diabetic subjects and evaluated the association between demographic characteristics and the presence of HCV infection, viral load and DM.

In the present study, the prevalence of HCV in diabetic participants was 2.5% which was higher than what previously reported in Dammam city (1.9%),¹ in Turkey (2.2%) and in Tunisia (1.3%).^{49,50} However, it was lower than what reported in USA (4.2%), in T2D reported from India $(5.7\%)^{51,52}$; in Pakistan (36%),⁵³ in Nigeria (11%) and among T2DM in study reported in Taiwan (6.8%).^{54,55}

The prevalence of HCV in non-diabetic participants was 1.4% which was higher than what previously reported in Dammam city $(0.074\%)^1$, in Yemen (1.3%), in Tunisia (0.6%) and in Turkey (0.5%).^{49,50,56} However, it was lower than what reported in USA (1.6%) and in Taiwan (2.6%).^{51,55}

A significant association between the female gender, Anti-HCV and DM was determined, which is in an agreement with the study conducted in USA, which showed that the diabetic HCV cohort had a higher proportion of female participant.⁵ However, another study showed that among the HCV infected patients, males had an increase frequency of DM.⁴⁴

This study has also showed a higher percentage of HCV in older age group such as age more than 60 years when considered to the total participants. HCV percentage was also high among older diabetic participants as suggested

Demographic data		Anti-HCV positive	Anti- nega	HCV Itive	Ρ			
			(N=13)	(N=6	521)			
Age	10-20	years	0 (0.0%)	19 (1	00%)	0.60		
	21-30	years	1 (0.9%)	115 (9	9.1%)			
	31-40	years	1 (0.9%)	114 (9	9.1%)			
	41-50	years	3 (2.2%)	133 (9	7.8%)			
	51-60	years	5 (3.0%)	165 (9	7.0%)			
	>60 y	ears	3 (3.9%)	75 (96	5.1%)			
Gender	Male		7 (2.4%)	281 (9	7.6%)	0.58		
	Fema	le	6 (1.7%)	340 (9	, 8.3%)			
Marital status	Single	-	1 (0.9%)	104 (9	9.1%)	0.70		
	Marri	ed	12 (2.3%)	517 (9	7.7%)			
Education level	Non-e	educated	4 (3.0%)	131 (9	7.0%)	0.67		
	Schoo	l-education	4 (1 6%) 247		8 4%)	0.07		
	Unive	rsity-education	5(2.0%) 247 (30.4%)		8.0%)			
	onive		5 (2.0%) 245 (58.0%)					
Table 6. HCV Prevalence Among Diabetic and Non-Diabetic Participants								
Diseases		Anti-HCV	Anti-H	CV	Р	Odds	95% CI	
		positive(N=13)	negative(N	l=621)	•	ratio	5070 0	
		pesitive(it 10)				1010		
Diabetes Mellitus	Yes	9 (2.5%)	347 (97.	5%)				
	No	4 (1.4%)	274 (98.	6%)	0.40	1.77	0.54 -5.83	

Table 5. Association between Demographic Data and HCV

Journal of Pure and Applied Microbiology

www.microbiologyjournal.org

by studies conducted in Dammam and Egypt.^{1,57} A study conducted in central region of Yemen also revealed that there was increasing in seropositivity of HCV with older age.⁵⁶

This study found that there is no significant association between HCV and type of DM, as previously determined in Dammam city which found that 15% of type 1 diabetic patients had HCV compared to 35% of patients with type 2 diabetic who had HCV.¹ A study conducted in Pakistan showed that out of 100 diabetic participants, only 36 had HCV seropositivity and all of them had type 2 DM.⁵³ Furthermore, a following study in the same country found strong relationship between HCV and type 2 DM.⁵⁸

The present study found that the association between duration of DM and HCV was not statistically significant. A study conducted in

General health		Anti-HCV positive (N=13)	Anti-HCV negative (N=621)	Ρ
Type of Diabetes Mellitus	Diabetes Mellitus type1 Diabetes Mellitus type2	0 (0.0%) 9 (3.1%)	68 (100.0%) 279 (96.9)	0.21
Type of medication	Oral Insulin injection Combination of both Other	7 (3.1%) 2 (2.4%) 0 (0.0%) 0 (0.0%)	215 (96.9%) 81 (97.6%) 43 (100.0%) 2 (100.0%)	0.71
Duration of Diabetes Mellitus	< 5 years 5-10 years 11-20 years >20 years	4 (3.2%) 4 (4.1%) 1 (1.0%) 0 (0.0%)	121 (96.8%) 94 (95.9%) 99 (99.0%) 33 (100.0%)	0.44

Table 7. Diabetes Mellitus Profile and HCV

■ No DM ■ Have DM

Figure 7. Comparative study between Viral Load with Diabetes Mellitus. Including target not detected, and target detected but with different viral loads

Aldubaie et al | J Pure Appl Microbiol. 2023;17(3):1722-1736. https://doi.org/10.22207/JPAM.17.3.37

Behavioural Factors	5	Anti-HCV positive (N=13)	Anti-HCV negative (N=621)	Ρ		
Blood transfusion	Yes	4 (4.7%)	81 (95.3%)	0.08		
	No	9 (1.6%)	540 (98.4%)			
Haemodialysis	Yes	0 (0.0%)	10 (100.0%)	1.00		
	No	13 (2.1%)	610 (97.9%)			
Tattooing	Yes	0 (0.0%)	13 (100.0%)	1.00		
-	No	13 (2.1%)	608 (97.9%)			
Surgery	Yes	6 (1.8%)	336 (98.2%)	0.58		
- /	No	7 (2.4%)	285 (97.6%)			
Times of surgery	Once	4 (2.0%)	191(98.0%)	0.75		
- /	Twice	1 (1.2%)	79 (98.8%)			
	Three times	1 (3.1%)	31 (96.9%)			
	>three times	0 (0.0%)	35 (100.0%)			
Hospitalization	Yes	11 (2.5%)	435 (97.5%)	0.36		
	No	2 (1.1%)	186 (98.9%)			
Times of hospitalization	Once	6 (2.8%)	208 (97.2%)	0.77		
	Twice	1 (1.0%)	94 (99.0%)			
	Three times	2 (3.4%)	57 (96.6%)			
	>Three times	2 (2.6%)	76 (97.4%)			
Hijama	Yes	7 (3.0%)	223 (97.0%)	0.24		
,	No	6 (1.5%)	398 (98.5%)			
Table 8B. HCV and I	Behavioural Factor	rs	<u>_</u>			
Behavioural		Anti-HCV	Anti-HCV	Р		
factors		positive	negative			
		(N=13)	(N=621)			
Times of Hijama	Once	5 (4 3%)	111 (95 7%)	0.75		
nines of rigania	twice	1 (2 0%)	49 (98 0%)	0.75		
	Three times	1 (3 4%)	28(96.6%)			
	>three times	0(0.0%)	35 (100.0%)			
IV Drugs	Yes	0 (0.0%)	13 (100.0%)	1.00		
	No	13 (2 1%)	608 (97 9%)	2.00		
Sharing Personal	Yes	0 (0.0%)	58 (100.0%)	0.62		
Items	No	13 (2.3%)	563 (97.7%)			
		== (=::;;)				

	Table 8A. Ass	ociation Betweer	n HCV and B	ehavioural I	Factors
--	---------------	------------------	-------------	--------------	---------

Dammam, Saudi Arabia has shown that 85% of HCV cases were with duration of more than 5 years of diabetes mellitus, compared to 15% in those with equal or less than 5 years. The association was significant between chronicity of diabetes mellitus and HCV¹. However, a previous study showed that the majority of patient with HCV seropositive had less than 5 years duration of DM.⁵³

There is an evidence that the insulin users are more prone to acquire infection since the

unsafe injection and contaminated equipment's may lead to the infection, however this study showed no significant association between insulin injection and HCV. The percentage of anti-HCV was lower in insulin users compared to participants taking oral medication. A study conducted in France found no difference in diabetic participants with seropositivity for HCV comparing with the mode of treatment, being 62.5% for oral agents, 37.5% for insulin treatment.⁵⁹ However, a recent

Aldubaie et al J Pure Appl Microbiol	2023;17(3):1722-1736	. https://doi.org/10.22207/	JPAM.17.3.37
--	----------------------	-----------------------------	--------------

Table 9. Association Between ALT and HCV				Table 10. A	Association Be	tween AST and	HCV	
ALT	Anti-HCV positive (N=9)	Anti-HCV negative (N=401)	Ρ	_	AST	Anti-HCV positive (N=10)	Anti-HCV negative (N=408)	Ρ
Normal Elevated	8 (2.0%) 1 (6.7%)	387 (98.0%) 14 (93.3%)	0.28	_	Normal Elevated	8 (2.0%) 2 (9.1%)	388 (98.0%) 20 (90.9%)	0.09

Anti-HCV Positive	ALT	AST	HbA1c	Viral load	
1.	53 U/L	31 U/L	6.50%	Target not detected	
2.	83 U/L	76 U/L	9.30%	1987207 IU/ml	
3.	26 U/L	29 U/L	7.70%	Target not detected	
4.	36 U/L	32 U/L	6.90%	808882 IU/ml	
5.	-	23 U/L	7.20%	Target not detected	
6.	-	-	-	160655 IU/ml	
7.	24 U/L	17 U/L	-	Target not detected	
8.	38 U/L	34 U/L	5.60%	167728 IU/ml	
9.	-	-	-	Target not detected	
10.	-	-	-	Target not detected	
11.	28 U/L	21 U/L	-	Target not detected	
12.	33 U/L	54 U/L	5.80%	2511 IU/ml	
13.	12 U/L	14 U/L	-	Target not detected	

Table 11. Liver Function Tests and Blood Glucose Level in HCV Positive Cases

study revealed a higher infection among insulin users 65% compared to those with non-insulin treatment 35%.¹

No significant association between sharing personal item, tattooing, blood transfusion, hospital admission and surgical operation, IV drug use, hijama and HCV was determined in the present study. A recent study also showed a non-significant association between surgery and blood transfusion with HCV.⁵² However, a previous investigator found a significant association between most of these behavioural factors and HCV like sharing personal item, tattooing and blood transfusion, while dialysis, surgery, hospital admission had non-significant association with HCV. Moreover, a higher number of operation and hospital admission were found to have significant association with HCV.¹ Furthermore, a study conducted in Nile delta showed that the risk factors like blood transfusion and surgeries were significantly associated with HCV seropositivity when considered people with age of more than 20 years.⁶⁰ However, another study showed nonsignificant association between IV drug, sharing sharp item and hijama by health care worker with HCV, while a significant association between tattooing and hijama by people with HCV was found.⁶¹

No significant association was found between transaminase and HCV, which was unlike to the study conducted in Dammam city, showing the elevation of transaminases were a predictor for HCV.¹ A previous study in Pakistan found that high ALT levels were in associations with HCV seropositivity in diabetic participants.⁵³

CONCLUSION

The present study shows a positive correlation between HCV and diabetes mellitus. Demographic characteristic like gender, had a significant influence on HCV and DM status. Different behavioral factors, however, had no significant impact on acquiring HCV infection. Further investigations are required to determine whether the HCV infection can lead to DM or vice versa. A temporal relationship between HCV and DM needs to be established with the help of prospective studies. This study recommends that a good awareness about increasing HCV incidence and preventive control measures in the region need to be performed. Future screening of HCV among patients suffering from diabetes mellitus and vice versa is also highly recommended. Further study is required to find the prevalent genotype among diabetic patients in Qassim region.

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS' CONTRIBUTION

MHA, PMS, UMI, AA and KA designed the experiments. MHA, HAAH and TAA performed the experiments. MHA, PMS, UMI and FA analysed the data. MHA, PMS, UMI, AA and KA wrote and revised the manuscript. All authors read and approved the final manuscript for publication.

FUNDING

None.

DATA AVAILABILITY

All datasets generated or analysed during this study are included in the manuscript.

ETHICS STATEMENT

This study was approved by the Institutional Ethics Committee and Regional Research Ethics Committee with registration NO. H-04-Q-001.

INFORMED CONSENT

Written informed consent was obtained from the participants before enrolling in the study.

REFERENCES

- Ba-Essa EM, Mobarak EI, Al-Daghri NM. Hepatitis C virus infection among patients with diabetes mellitus in Dammam, Saudi Arabia. *BMC health Serv Res.* 2016;16(1):313. doi: 10.1186/s12913-016-1578-0
- 2. Ndako JA, Owolabi AO, Olisa JA, et al. Studies on the Prevalence of Hepatitis C Virus Infection in Diabetic

Patients. *BMC Infect Dis.* 2020;20:664. doi: 10.21203/ rs.2.13403/v1

- Liu Y, Ye S, Xiao X, et al. Association of diabetes mellitus with hepatitis B and hepatitis C virus infection: evidence from an epidemiological study. *Infection and Drug Resistance*. 2019;12:2875-2883. doi: 10.2147/ IDR.S218536
- Al Humayed SM, Mahfouz AA, Awadalla NJ, Alsabaani AA. Hepatitis C virus infection at primary healthcare level in Abha City, Southwestern Saudi Arabia: Is type 2 diabetes mellitus an associated factor? *Int J Environ Res Public Health.* 2018;15(11):2513. doi: 10.3390/ ijerph15112513
- Gavril OI, Gavril RS, Mitu F, et al. The Influence of Metabolic Factors in Patients with Chronic Viral Hepatitis C Who Received Oral Antiviral Treatment. *Metabolites*. 2023;13(4):571. doi: 10.3390/ metabo13040571
- Alzahrani N. Hepatitis C virus, insulin resistance, and diabetes: A review. *Microbiol Immunol.* 2022;66(10):453-459. doi: 10.1111/1348-0421.13023
- Blach S, Terrault NA, Tacke F, et al. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. *Lancet Gastroenterol Hepatol.* 2022;7(5):396-415. doi: 10.1016/S2468-1253(21)00472-6
- McHutchison JG. Understanding hepatitis C. Am J Manag Care. 2004;10(2 Suppl):S21-9. https://www. ajmc.com/view/mar04-1730ps021-s029
- Abdo AA, Sanai FM, Al-Faleh FZ. Epidemiology of viral hepatitis in Saudi Arabia: are we off the hook? Saudi J Gastroenterol. 2012;18(6):349-357. doi: 10.4103/1319-3767.103425
- Mehdi SR, Pophali A, Rahim KA-A. Prevalence of hepatitis B and C and blood donors. Saudi Med J. 2000;21(10):942-944. https://smj.org.sa/ content/21/10/942
- EI-Hazmi MM. Prevalence of HBV, HCV, HIV-1, 2 and HTLV-I/II infections among blood donors in a teaching hospital in the Central region of Saudi Arabia. Saudi Med J. 2004;25(1):26-33. https://smj.org.sa/ content/25/1/26
- Madani TA. Hepatitis C virus infections reported in Saudi Arabia over 11 years of surveillance. Ann Saudi Med. 2007;27(3):191. doi: 10.5144/0256-4947.2007.191
- Alqahtani SM, Alsagaby SA, Mir SA, et al. Seroprevalence of viral hepatitis B and C among blood donors in the Northern Region of Riyadh. *Healthcare*. 2021;9(8):934. doi: 10.3390/healthcare9080934
- Al-Nozha MM, Al-Maatouq MA, Al-Mazrou YY, et al. Diabetes mellitus in Saudi Arabia. Saudi Med J. 2004;25(11):1603-1610. https://smj.org.sa/ content/25/11/1603
- Alqurashi KA, Aljabri KS, Bokhari SA. Prevalence of diabetes mellitus in a Saudi community. Ann Saudi Med. 2011;31(1):19-23. doi: 10.4103/0256-4947.75773
- Robert AA, Al Awad AD, Al Dawish MA. Current status of knowledge and awareness of diabetes mellitus in Saudi Arabia. *Curr Diabetes Rev.* 2021;17(5):26-32. doi: 10.2174/1573399816999201012200841

- Nawaz A, Zaidi SF, Usmanghani K, Ahmad I. Concise review on the insight of hepatitis C. J Taibah Univ Med Sci. 2015;10(2):132-139. doi: 10.1016/j. jtumed.2014.08.004
- Zaltron S, Spinetti A, Biasi L, Baiguera C, Castelli F. Chronic HCV infection: epidemiological and clinical relevance. *BMC Infect Dis.* 2012;12(2):S2. doi: 10.1186/1471-2334-12-S2-S2
- Hazazi A, Almubarak M, Albloui F, Alsaweed O, Hawsawi Y, Alseraye F. Hepatitis C Virus Genotyping in Saudi Population. *Journal of US-China Medical Science*. 2019;16:144-148. doi: 10.17265/1548-6648/2019.03.005
- AlKahtani AM, Alsultan MN, Hakami AR, Alamri M. Prevalence of Hepatitis C Virus Genotypes in the Southern Region, Saudi Arabia. *bioRxiv*. 2019:603902. doi: 10.1101/603902
- 21. Shobokshi OA, Serebour FE, Skakni Ll. Skakni. Hepatitis C genotypes/subtypes among chronic hepatitis patients in Saudi Arabia. *Saudi Med J.* 2003:87-91. https://pubmed.ncbi.nlm.nih.gov/12897908/
- 22. Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. *Int J Med Sci.* 2006;3(2):47-52. doi: 10.7150/ijms.3.47
- Alter, Miriam J. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44(Suppl 1):S6-S9. doi: 10.1016/j.jhep.2005.11.004
- 24. Lonardo A, Adinolfi LE, Petta S, Craxi A, Loria P. Hepatitis C and diabetes: the inevitable coincidence? *Expert Rev Anti infect Ther.* 2009;7(3):293-308. doi: 10.1586/ eri.09.3
- Masini M, Campani D, Boggi U, et al. Hepatitis C virus infection and human pancreatic Beta-cell dysfunction. *Diabetes care*. 2005;28(4):940-941. doi: 10.2337/ diacare.28.4.940
- Chen J, Wang F, Zhou Y, et al. Chronic hepatitis C virus infection impairs insulin secretion by regulation of p38δ MAPK-dependent exocytosis in pancreatic β-cells. *Clin Sci.* 2020;134(5):529-542. doi: 10.1042/ CS20190900
- Hammerstad SS, Grock SF, Lee HJ, Hasham A, Sundaram N, Tomer Y. Diabetes and hepatitis C: a two-way association. *Front Endocrinol.* 2015;6:134. doi: 10.3389/fendo.2015.00134
- Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. *Gastroenterology*. 2004;126(3):840-848. doi: 10.1053/j.gastro.2003.11.056
- Agbecha A, Usoro CA, Etukudo M. Insulin resistance and tumor necrosis factor-[alpha] in chronic viral hepatitis C in Makurdi, Nigeria. *Journal of the Scientific Society.* 2017;44(2):100. doi: 10.4103/jss.JSS_25_17
- Huang YW, Yang SS, Fu SC, et al. Increased risk of cirrhosis and its decompensation in chronic hepatitis C patients with new onset diabetes: A nationwide cohort study. *Hepatology*. 2014;60(3):807-814. doi: 10.1002/ hep.27212
- Lai SW, Chen PC, Liao KF, Muo CH, Lin CC, Sung FC. Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with anti-diabetic therapy: a population-based cohort study. Am J Gastroenterol.

2012;107(1):46-52. doi: 10.1038/ajg.2011.384

- Veldt BJ, Chen W, Heathcote EJ, et al. Increased risk of hepatocellular carcinoma among patients with hepatitis C cirrhosis and diabetes mellitus. *Hepatology*. 2008;47(6):1856-1862. doi: 10.1002/hep.22251
- Dai CY, Huang JF, Hsieh MY, et al. Insulin resistance predicts response to peginterferon-alpha/ribavirin combination therapy in chronic hepatitis C patients. J Hepatol. 2009;50 (4):712–8. doi: 10.1016/j. jhep.2008.12.017
- 34. Sulehria SB, Athar CAA, Asad A. To Determine Improvement of Sustained Virological Response by Adding Metformin with Interferon & Ribavarin as Compared to Interferon & Ribavirin Alone in Chronic Hepatitis C patients with Insulin Resistance. Pak J Med Health Sci. 2021;15(2):268-271. http://pjmhsonline. com/published-issues/2021/feb/212268
- Romero-Gomez M, Viloria MD, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. *Gastroenterology*. 2005;128(3):636-641. doi: 10.1053/j.gastro.2004.12.049
- Moucari R, Asselah T, Cazals-Hatem D, et al. Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. *Gastroenterology*. 2008;134(2):416-23. doi: 10.1053/j.gastro.2007.11.010
- Kanwal N, Nasir B, Abrar MA, Kaukab I, Nawaz A, Murtaza G. Prevalence Of Hepatitis C In Diabetic Patients: A Prospective Study. Acta Pol Pharm. 2016;73(3):771-775. https://www.ptfarm. pl/wydawnictwa/czasopisma/acta-poloniaepharmaceutica/110/-/16250
- Akbar DH, Siddique AM, Ahmed MM. Prevalence of Type-2 diabetes in patients with hepatitis C and B virus infection in Jeddah, Saudi Arabia. *Med Princ Pract*. 2002;11(2):82-85. doi: 10.1159/000058012
- ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023. *Diabetes care*. 2023;46(Suppl 1):S19-S40. doi: 10.2337/dc23-S002
- Gupta E, Bajpai M, Choudhary A. Hepatitis C virus: Screening, diagnosis, and interpretation of laboratory assays. Asian J Transfus Sci. 2014;8(1):19-25. doi: 10.4103/0973-6247.126683
- Ali A, Nisar M, Ahmad H, Saif N, Idrees M, Bajwa MA. Determination of HCV genotypes and viral loads in chronic HCV infected patients of Hazara Pakistan. *Virol* J. 2011;8(1):466. doi: 10.1186/1743-422X-8-466
- 42. Dean AG, Arner TG, Sunki GG, et al. Epi Info™, a database and statistics program for public health professionals. CDC, Atlanta, GA, USA. 2011. https:// www.cdc.gov/epiinfo/user-guide/getting-started/ acknowledgements.html
- 43. IBM Corp. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp. Released 2021.
- Naing C, Mak JW, Ahmed SI, Maung M. Relationship between hepatitis C virus infection and type 2 diabetes mellitus: meta-analysis. World J Gastroenterol. 2012;18(14):1642-1651. doi: 10.3748/wjg.v18. i14.1642
- 45. Antonelli A, Ferrari SM, Giuggioli D, et al. Hepatitis C

virus infection and type 1 and type 2 diabetes mellitus. *World Journal of Diabetes*, 2014;5(5):586-600. doi: 10.4239/wjd.v5.i5.586

- Desbois A-C, Cacoub P. Diabetes mellitus, insulin resistance and hepatitis C virus infection: a contemporary review. World J Gastroenterol. 2017;23(9):1697-1711. doi: 10.3748/wjg.v23.i9.1697
- Fabiani S, Fallahi P, Ferrari SM, Miecoli M, Antonelli A. Hepatitis C virus infection and development of type 2 diabetes mellitus: Systematic review and metaanalysis of the literature. *Rev Endocr Metab Disord*. 2018;19(4):405-420. doi: 10.1007/s11154-017-9440-1
- Serfaty L. Metabolic manifestations of hepatitis C virus: diabetes mellitus, dyslipidemia. *Clinics in Liver Disease*. 2017;21(3):475-486. doi: 10.1016/j.cld.2017.03.004
- Gisi K, Cetinkaya A, Ozkaya M, Kantarceken B, Gisi G, Koroglu S. Hepatitis B and C seroprevalence in patients with diabetes mellitus and its relationship with microvascular complications. *Prz Gastroenterol.* 2017;12(2):105-110. doi: 10.5114/pg.2016.64748
- N Kaabia, Jazia BE, Slim I, et al. Association of hepatitis C virus infection and diabetes in central Tunisia. World J Gastroenterol. 2009;15(22):2778-81. doi: 10.3748/ wjg.15.2778
- Mason AL, Lau JY, Hoang N, et al. Association of diabetes mellitus and chronic hepatitis C virus infection. *Hepatology*. 1999;29(2):328-333. doi: 10.1002/hep.510290235
- Laloo D, Walke P, Bhimo T, Prasad L, Ranabir S. Seroprevalence of hepatitis C infection in type 2 diabetes mellitus. *Indian J Endocrinol Metab.* 2015;19(2):296-299. doi: 10.4103/2230-8210.149325
- Ali SS, Ali IS, Aamir AH, Jadoon Z, Inayatullah S. Frequency of hepatitis C infection in diabetic patients. J Ayub Med Coll Abbottabad. 2007;19(1):46-49. https://

www.jamc.ayubmed.edu.pk/jamc/index.php/jamc/ article/view/4290

- Ndako JA, Echeonwu GO, Shidali NN, et al. Occurrence of hepatitis C virus infection in type 2 diabetic patients attending Plateau state specialist hospital Jos Nigeria. *Virol J.* 2009;6(1):98. doi: 10.1186/1743-422X-6-98
- 55. Chen HF, Li CY, Chen P, See TT, Lee HY. Seroprevalence of hepatitis B and C in type 2 diabetic patients. J Chin Med Assoc. 2006;69(4):146-152. doi: 10.1016/S1726-4901(09)70195-9
- Gacche RN, Al-Mohani SK. Seroprevalence and risk factors for hepatitis C virus infection among general population in central region of Yemen. *Hepat Res Treat*. 2012;689726. doi: 10.1155/2012/689726
- Elhawary El, Mahmoud GF, El-Daly MA, Mekky FA, Esmat GG, Abdel-Hamid M. Association of HCV with diabetes mellitus: an Egyptian case-control study. *Virol* J. 2011;8(1):367. doi: 10.1186/1743-422X-8-367
- Jadoon NA, Shahzad MA, Yaqoob R, Hussain M, Ali N. Seroprevalence of hepatitis C in type 2 diabetes: evidence for a positive association. *Virol J.* 2010;7(1):304. doi: 10.1186/1743-422X-7-304
- Rudoni S, Petit JM, Bour JB, et al. HCV infection and diabetes mellitus: influence of the use of finger stick devices on nosocomial transmission. *Diabetes Metab.* 1999;25(6):502-505. https://shorturl.at/ciyKX
- Habib M, Mohamed MK, Abdel Aziz F, et al. Hepatitis C virus infection in a community in the Nile Delta: risk factors for seropositivity. *Hepatology*. 2001;33(1):248-253. doi: 10.1053/jhep.2001.20797
- El-Wahab EWA, Mikheal A, Sidkey F, Shatat HZ. Factors associated with hepatitis C infection among chronic HCV Egyptian patients. *Iran J Public Health.* 2014;43(11):151-158. https://ijph.tums.ac.ir/index. php/ijph/article/view/3841