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Introduction: The vagus nerve, the primary neural pathway mediating brain-

body interactions, plays an essential role in transmitting bodily signals to the

brain. Despite its significance, our understanding of the detailed organization and

functionality of vagal afferent projections remains incomplete.

Methods: In this study, we utilized manganese-enhanced magnetic resonance

imaging (MEMRI) as a non-invasive and in vivo method for tracing vagal nerve

projections to the brainstem and assessing their functional dependence on

cervical vagus nerve stimulation (VNS). Manganese chloride solution was injected

into the nodose ganglion of rats, and T1-weighted MRI scans were performed at

both 12 and 24 h after the injection.

Results: Our findings reveal that vagal afferent neurons can uptake and transport

manganese ions, serving as a surrogate for calcium ions, to the nucleus tractus

solitarius (NTS) in the brainstem. In the absence of VNS, we observed significant

contrast enhancements of around 19–24% in the NTS ipsilateral to the injection

side. Application of VNS for 4 h further promoted nerve activity, leading to greater

contrast enhancements of 40–43% in the NTS.

Discussion: These results demonstrate the potential of MEMRI for high-

resolution, activity-dependent tracing of vagal afferents, providing a valuable tool

for the structural and functional assessment of the vagus nerve and its influence

on brain activity.

KEYWORDS

manganese-enhanced magnetic resonance imaging, neuronal tracing, vagus nerve,
vagus nerve stimulation, nucleus tractus solitarius

Introduction

The vagus nerve, a critical component of the peripheral nervous system, supports rapid
communication between the brain and the body’s internal organs. It allows the brain to
control physiological functions related to respiratory, cardiovascular, immune, and digestive
systems (Tracey, 2002; Thayer and Lane, 2007; Chang et al., 2015; Travagli and Anselmi,
2016; Powley, 2021). It also allows these organ systems to influence the brain, shaping
perception, behavior, cognition, and emotion (Craig, 2002; Critchley and Harrison, 2013;
Azzalini et al., 2019; Hsueh et al., 2023). Such brain-body interactions are termed as
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“interoception” (Chen et al., 2021), a concept that has recently
gained considerable interest in the fields of neuroscience and
integrative physiology.

The vagus nerve is being increasingly recognized as a major
target of bioelectric medicine (Birmingham et al., 2014). Vagus
nerve stimulation (VNS), which involves delivering electrical pulses
to the vagus nerve at varying levels, has been explored as a
therapeutic strategy. It has been used to treat epilepsy (Morris and
Mueller, 1999), depression (Rush et al., 2005), pain (Chakravarthy
et al., 2015), or to promote learning and rehabilitation (Engineer
et al., 2011, 2019). It has also gained attention for its potential
in relieving chronic conditions affecting internal organs and
systems (Premchand et al., 2014; Bonaz et al., 2016). However,
the mechanism of action for VNS is incompletely understood.
Optimizing the application of VNS for therapeutic effects often
relies on a trial-and-error process.

The internal structure of the vagus nerve is complex,
encompassing nerve fibers with diverse morphological features,
fascicular organizations, and functional associations (Stakenborg
et al., 2020; Havton et al., 2021). Approximately 80% of vagal nerve
fibers are afferent (Berthoud and Neuhuber, 2000; Powley et al.,
2019), enabling sensory neurons in the nodose ganglia (NG) to
relay a variety of bodily signals to the nucleus tractus solitarius
(NTS) in the brainstem (Prescott and Liberles, 2022; Ran et al.,
2022). These signals, once in the NTS, can further ascend to various
brain regions (Craig, 2002; Browning and Travagli, 2014; Berntson
and Khalsa, 2021). The interplay between ascending (sensory) and
descending (motor) pathways forms the functional neural circuits
of interoception, which play a critical role in regulating both mental
and physiological states (Chen et al., 2021).

Despite the crucial role of the vagus nerve in mediating
brain-body interactions, current methodologies constrain our
understanding of its structural and functional connectivity.
Viral tracing, while useful for localizing neuronal projections
(Kaelberer et al., 2018), cannot provide functional characterization.
Immunohistochemistry with cFos enables the localization of
neuronal responses (Cunningham et al., 2008), but lacks the
capability for longitudinal measures. In vivo electrophysiology
offers acute measures of neuronal activity (Cao et al., 2021),
but is limited by its invasive nature and restricted scope.
Functional magnetic resonance imaging (fMRI) offers non-invasive
yet indirect measures of neural activity but lacks spatial resolution
or specificity to discern fine-grained activations at brainstem
nuclei (Cao et al., 2017). Diffusion MRI tractography can map
structural connectivity but not functional connectivity (Zhang
et al., 2020). These methodological limitations underscore the need
for development and exploration of alternative methods.

Manganese-enhanced magnetic resonance imaging (MEMRI)
provides an alternative for potentially addressing the limitations
of the aforementioned methods (Pautler et al., 1998; Silva et al.,
2004; Saar and Koretsky, 2018). Being an analog of the calcium
ion (Ca2+), the manganese ion (Mn2+) can enter the calcium
channels of excitable neurons, travel along axonal pathways, enter
post-synaptic neurons, and continue to migrate along the circuit
(Takeda et al., 1998; Pautler, 2004). In addition, the axonal transport
and cellular uptake of manganese are activity dependent. Increase
in neural activity results in increased transport and accumulation of
manganese ions (Lin and Koretsky, 1997; Duong et al., 2000; Bearer
et al., 2007). Importantly, increase in manganese ions shortens the
T1 relaxation time, enhancing the contrast in T1-weighted MRI and

allowing MEMRI to assess function (Silva et al., 2004). By using
manganese ions as an anterograde tracer in animal studies, MEMRI
following local injection of manganese has been used to trace active
neural pathways in the central nervous system (Pautler et al., 1998;
Watanabe et al., 2001; Saleem et al., 2002; Yu et al., 2005; Chuang
et al., 2009), yielding important insight into the cytoarchitecture
and function of specific brain regions and systems. Applications
of MEMRI with animal models of neurological disorders have
also shown axonal transport deficits in the Alzheimer’s disease
(Smith et al., 2007; Wesson et al., 2010; Kim et al., 2011; Gallagher
et al., 2012; Bertrand et al., 2013; Saar et al., 2015; Fontaine et al.,
2017; Bearer et al., 2018), Parkinson’s disease (Pelled et al., 2007;
Soria et al., 2011; Olson et al., 2016), amyotrophic lateral sclerosis
(Jouroukhin et al., 2013), and more (Saar and Koretsky, 2018).
However, the use of MEMRI is rarely used with humans, due to
the toxicity of manganese at the dose used in animal studies.

Despite the large number of studies that have used MEMRI
for the central nervous system, it has rarely been applied to the
peripheral nervous system. To date, only a few studies have utilized
MEMRI for neuronal tracing along the spinal cord and sciatic
nerve (Matsuda et al., 2010; Cha et al., 2019; Krishnan et al., 2020).
Its utility in tracing the vagus nerve remains unexplored, to the
best of our knowledge, despite the critical role of the vagus in
mediating brain-body interactions in health and disease. Therefore,
the primary goal of the present study is to transfer the protocol of
MEMRI-based neuronal tracing from the central nervous system
to the peripheral nervous system, focusing on the vagus nerve
and its ascending projections into the brainstem. Specifically, we
aimed to demonstrate the feasibility of tracing the ascending vagal
pathway via the injection of MnCl2 into the left or right nodose
ganglion. Next, we verified the activity-dependence of this Mn2+

tracing and uptake by modulating vagal activity through cervical
VNS. Finally, we explored the effective time window for MEMRI
following the injection. The findings and methodologies presented
herein may provide the methodological foundation for in vivo
anatomical tracing and functional characterization of the ascending
vagal pathway in the rat brain. Lastly, we discussed future directions
for using MEMRI to investigate the neural circuits of interoception
and evaluate bioelectric treatment of brain-body disorders with
animal models.

Materials and methods

Subjects

This study involved 19 male Sprague-Dawley rats, each
weighing between 320 and 400 g. All procedures received approval
from our Institutional Animal Care and Use Committee. Prior
to surgery, the rats were pair-housed in a single cage within an
environment controlled to maintain a 12:12 h light-to-dark cycle,
with the lights turned on at 6 a.m. and turned off at 6 p.m. Following
surgery, each rat was housed individually.

Experimental design

Our study design is demonstrated in Figure 1. The rats were
randomly allocated into three groups: group 1 (n = 9), group 2
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(n= 5), and group 3 (n= 5). Groups were differentiated based on the
intended goals of tracing the left vagus nerve (group 1) or the right
vagus nerve (group 2) and further assessing the effect of the left
vagus nerve stimulation (group 3) against a sham control (group 1).
All three groups underwent identical surgical and MRI procedures.

Every rat underwent a T1-weighted (T1w) brain MRI scan prior
to MnCl2 injection into the left or right nodose ganglion (NG).
Following this pre-contrast MRI, the rats were briefly operated on
to expose the NG and the cervical vagus nerve on either the left side
(group 1 and 3) or right side (group 2). A solution of MnCl2 (1.0 µl
of 500 mM, Sigma-Aldrich, St Louis, MO, USA) was injected into
the exposed NG. A cuff electrode (Microprobes for Life Science,
Gaithersburg, MD, USA) was then wrapped around the exposed
vagus nerve. In the case of group 3, electrical stimulation was
delivered via the implanted electrode to stimulate the left vagus for
4 h, after which the electrode was removed. For groups 1 and 2,
the electrode was removed without administering any stimulation,
thus serving as a sham control for group 3. Post-surgery, all animals
were allowed to recover. At 12 and 24 h post MnCl2 injection, each
animal underwent another T1w brain MRI scan. The location and
level of contrast enhancement due to MnCl2 uptake and transport
by vagal afferent nerves were assessed by evaluating the voxel-wise
intensity difference between pre-contrast and post-contrast MRI.

Anesthesia, MRI, and surgical protocol

Every rat was initially anesthetized with 5% isoflurane for
5 min prior to MRI. The isoflurane was combined with oxygen
and delivered at a rate of 500 mL/min. This setting was applicable
to other isoflurane dosages mentioned in this protocol unless
otherwise stated. During the MRI process, anesthesia was sustained
with 1–3% isoflurane. The precise isoflurane dosage varied slightly
among animals and was adjusted based on monitored physiological
vitals (Model-1030, SA instruments, Stony Brook, NY, USA), such
as maintaining the respiratory rate around 40–60 cycles per minute
and body temperature at 37–37.5◦C.

For the MRI, each rat was positioned in a customized rat holder
in a prone posture with its head secured using a bite bar and two ear
bars. Brain MRI was conducted using a 7T horizontal-bore small
animal MRI system (BioSpec 70/30; Bruker Instruments, Billerica,
USA) fitted with a gradient insert (maximum gradient: 200 mT
m−1; maximum slew rate: 640 mT−1 s−1). A 1H RF transmit
volume coil (86 mm inner diameter) and a 1H RF receive-only
rat-head surface coil were used for the brain MRI. The imaging
session started with a localizer to identify the brainstem and other
areas of interest. Then a 2D Turbo RARE pulse sequence was
used to acquire T2-weighted (T2w) images covering the brainstem
(TR/TE = 6637.715/32.50 ms; FA = 90◦; matrix size = 192 × 192;
FOV = 32 mm × 32 mm; slice thickness = 0.438 mm; slices = 64;
NEX = 2; ETL = 8). A 3D RARE pulse sequence was used to
acquire T1w images covering the same region with the same
orientation as T2w scans (TR/TE = 300/10 ms; FA = 90◦; matrix
size = 192× 192× 64; FOV = 32 mm× 32 mm× 28 mm; NEX = 4;
ETL = 8). The same MRI procedure was used both before and after
injection of MnCl2, generating pre-contrast and post-contrast MRI
images for comparison.

Immediately after the pre-contrast MRI, every animal was
moved to a surgical station adjacent to the MRI room. Each rat

was anesthetized using 5% isoflurane and received an injection of
carprofen (10 mg/kg, IP, Zoetis, NJ, USA). The animal was then
positioned supine for surgery, with anesthesia maintained at 2%
isoflurane. We confirmed adequate anesthesia using a toe pinch
reflex test. We then shaved the rat along its neck and cleaned the
exposed skin using iodine. An incision was performed along the
ventral midline, extending from the mandible to the sternum. The
underlying tissue was dissected to expose the trachea and the left
or right carotid artery. We identified the cervical vagus nerve next
to the carotid artery and further dissected the tissue connecting
the carotid artery and the cervical vagus nerve to isolate the vagus
nerve. Following the vagus nerve rostrally, we identified the NG.

The NG received a 1.0 µl injection of 500 mM MnCl2 solution,
administered using a Nanofil 10 µl sub-microliter injection
system fitted with a beveled 35-gauge needle (World Precision
Instruments, Sarasota, FL, USA). To visually guide and verify the
injection, we mixed the MnCl2 solution with a green dye (fast
green FCF, Sigma-Aldrich, St. Louis, MO, USA). An example of
this is shown in Figure 1D. After injection, a bipolar cuff electrode
(MicroProbes, Gaithersburg, MD, USA) was wrapped around the
exposed vagus nerve.

For the rats in groups 1 and 2, we removed the electrode
immediately after implantation and allowed the animals to recover
from surgery. However, for those in group 3, we administered vagus
nerve stimulation (VNS) for 4 h. We delivered electrical current
pulses via the cuff electrode at an inter-pulse duration (IPD) of
50 ms, a pulse amplitude (PA) of 1 mA, a pulse width (PW) of
0.5 ms, and a frequency of 5 Hz. The stimulation pattern consisted
of 20 s on and 40 s off. After VNS, we removed the electrode, and the
animals were allowed to recover. Note that groups 1 and 2 did not
receive stimulation but underwent the same surgical procedure and
electrode implantation as those in group 3. This made groups 1 and
2 comparable, with group 1 serving as a sham control for group 3.

Image processing and statistical analysis

For individual animals, we processed MRI data using a
combination of FSL (Smith et al., 2004), AFNI (Cox, 1996), and
MATLAB scripts developed in-house. The T2-weighted (T2w)
images were linearly registered to a rat brain template (Valdes-
Hernandez et al., 2011) using FLIRT. Furthermore, we registered
the T1w images to the T2w images from the same rat using FLIRT.
After this, we registered them to the brain template based on
the linear transformation determined from the T2w images to the
template. After preprocessing, we normalized the intensity of each
T1w slice by its average voxel intensity within the same slice.

The voxel-wise intensity increase in the post-contrast T1w MRI
was calculated relative to the pre-contrast T1w MRI using the
following Equation,

1I(r) =
Ipost(r)− Ipre(r)

Ipre(r)
× 100%.

Here, Ipost and Ipre represent the voxel intensity at each location r
in the post- and pre-contrast MRI, respectively. We calculated the
relative enhancement 1I(r) for each voxel in each animal and then
averaged this across animals in each group.

For each group, we performed a right-tailed paired t-test for
comparing the differences between Ipost and Ipre for every voxel at
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FIGURE 1

Experimental design and examples of MnCl2 injection into NG. Panels (A–C) illustrate the experimental timelines for groups 1, 2, and 3, respectively.
For all three groups, the time of MnCl2 injection into either the left or right NG is marked as t. The time of VNS and MRI are marked relative to the
time of MnCl2 injection. Panel (D) shows the right and left NG before and after MnCl2 injection. The NG appears as green after injection because of
the green dye added to the MnCl2 solution.

a 98% confidence level (or a significance level of alpha = 0.02). The
statistically significant voxels were color-coded and shown on the
rat brain template to highlight the brain regions where Mn2+ ions
were accumulated.

We also compared the level of enhancement between groups.
First, we identified the highest contrast enhancement (in terms of
1I) within a region of interest (primarily the NTS) for each group.
We then compared these results between the different groups
using a right-tailed two-sample t-test with a confidence level of
95% (alpha = 0.05).

Results

In our study with rats, we evaluated the potential of MEMRI
for tracing vagal afferent projections within the brain. Since vagal
afferent neurons are located within the NG, we injected MnCl2
into this region and used MRI to identify and measure T1w
contrast enhancement, which results from neuronal uptake and
axonal transport of Mn2+ ions along the ascending vagal pathways.
Figure 2 provides a representative example from a single rat that
received a MnCl2 injection into its left NG. At 24 h following
the injection, T1w MRI showed notable contrast enhancement at
the left NG, the left cervical vagus nerve, and the left NTS, as
well as at the right NTS, relative to the pre-injection baseline.
The enhancement at the ipsilateral NTS was more substantial

than that at the contralateral NTS. These results suggest that the
Mn2+ ions were taken up by sensory neurons in the left NG,
transported along the ascending vagal nerves, and then taken up
by post-synaptic neurons in the left NTS, which received direct
vagal projections. Further uptake by neurons in the right NTS
might occur through its neuronal connection with the left NTS, or
through weak connections with the left NG.

This finding was corroborated in two animal groups that
received MnCl2 injections either in the left (n = 9) or the right
(n = 5) NG (Figure 3). When compared to the pre-injection
baseline, the NTS and the area postrema (AP) exhibited significant
enhancement in T1w MRI (paired t-test, p < 0.02). At the
12 h mark following the MnCl2 injection, significant contrast
enhancement was evident at the ipsilateral NTS and to a lesser
degree at the contralateral NTS. At the group level, the strongest
contrast enhancement was observed at the ipsilateral NTS, with
enhancement levels of 24.75 ± 4.18% or 27.06 ± 1.28% following
left or right NG injection, respectively. These findings demonstrate
the high spatial specificity of MEMRI in localizing nuclei that
receive vagal afferent projections.

Furthermore, we investigated whether the observed Mn2+

uptake was dependent on activity, by applying electrical current
pulses (IPD = 50 ms; PW = 0.5 ms; PA = 1 mA; 5 Hz; alternating
20 s ON and 40 s OFF over a 4 h period) to the left cervical
vagus nerve (group 3, n = 5). We then compared the resulting
contrast enhancement to the sham group that did not receive
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FIGURE 2

T1w MRI before and after MnCl2 injection into the left NG in a single animal. Panels (A,C) show a single slice of T1w MRI covering the brainstem and
NG before and (24 h) after injection, respectively. Panels (B,D) zoom in the area within the yellow bounding box. In panel (D), locations of visible
enhancement are highlighted with arrows and annotated with anatomical labels.

FIGURE 3

T1w contrast enhancement after MnCl2 injection into the left or right NG. Panels (A,B) show the group-averaged percentage of T1w enhancement
at 12 h after MnCl2 injection into the left (group 1) or right (group 2) NG relative to the pre-injection baseline, respectively. Highlighted in color are
voxels of statistically significant enhancement (paired t-test, right-tailed p < 0.02), where the color indicates the percentage of contrast
enhancement. The four slices cover the lower brainstem and cerebellum.

stimulation (group 1, n = 9). At 12 h following the MnCl2 injection,
the left NTS exhibited the greatest contrast enhancement, with
43.10 ± 6.89% in the presence of VNS relative to 24.75 ± 4.18%
without VNS (Figure 4). A similar trend was observed at 24 h
after the MnCl2 injection, where contrast enhancement at the left
NTS was higher with VNS (41.74 ± 9.46%) than without VNS
(17.28 ± 3.47%). The effect of VNS was significant at both 12 h
(p = 0.0160) and 24 h (p = 0.0061) post-MnCl2 injection (Figure 5).
These findings suggest that the Mn2+ uptake at the NTS was
sensitive to functional changes in vagal nerve activity as a result of
VNS.

Finally, we compared the contrast enhancement at 12 h and
24 h post-MnCl2 injection to assess the time-dependent uptake,
transport, and accumulation of Mn2+. Figure 5 depicts the contrast
enhancement at the ipsilateral NTS across all three groups. In the
absence of VNS, spontaneous vagal activity resulted in slightly
higher contrast enhancement at 12 h post-injection, compared
to the 24 h mark. The effect of VNS was more pronounced at
24 h, resulting in an additional 24.46% enhancement, compared to
18.35% at 12 h (Figure 5). This suggests that, following unilateral
injection of MnCl2 into the NG, Mn2+ ions are absorbed by post-
synaptic neurons in the NTS within a 12-h period, and that MEMRI
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FIGURE 4

Difference in contrast enhancement with vs. without VNS. Panels (A,B) summarize the group-averaged contrast enhancement at 12 h after MnCl2
injection into the left NG without or with 4 h of VNS applied to the left cervical vagus, respectively. Highlighted in color are voxels of statistical
significance (paired t-test, right-tailed p < 0.02), where the color indicates the percentage of enhancement relative to the pre-injection baseline.

FIGURE 5

The summary of intensity increase in NTS on the ipsilateral side of nodose ganglion injection. The bar plot shows the mean and standard error of the
mean of maximum intensity increase within NTS. The comparison includes all three groups. The blue bar indicates group 1, where rats received left
nodose ganglion injection but not VNS. The red bar indicates group 2, where rats received right nodose ganglion injection but not VNS. The yellow
bar indicates group 3, where rats received left nodose ganglion injection and VNS on the same side. The bar plots contain comparisons at both 12 h
and 24 h post-injection. *Denotes that the difference is statistically significant on the right-tailed two-sample t-test (p < 0.05), **denotes that the
difference is statistically significant on the right-tailed two-sample t-test (p < 0.01).

is highly sensitive to the cumulative effect of vagal afferent activity
over a 24-h period.

Discussion

This study extends a large number of studies that have used
MEMRI for neuronal tracing in the central nervous system (Pautler
et al., 1998; Silva et al., 2004; Saar and Koretsky, 2018) and
demonstrates the feasibility for a new application of mapping
vagal afferent projections in rats. By injecting MnCl2 into the NG
and applying subsequent MRI imaging, we were able to visualize
and quantify the T1w contrast enhancement, which signifies the
neuronal uptake and axonal transport of Mn2+ ions along the
vagal nerve pathways. Our findings confirm the robustness and
spatial specificity of this technique, showing significant contrast

enhancement at the NTS and AP which receive direct vagal
projections. Importantly, we also discovered that Mn2+ uptake
measured by MRI was sensitive to variations in vagal nerve activity
induced by vagus nerve stimulation, demonstrating the feasibility
of using MEMRI to not only trace neuronal pathways but also
monitor changes in neural activity along the pathways. Although
prior studies have demonstrated the utility of MEMRI for tracing
spinal and sciatic nerves (Matsuda et al., 2010; Cha et al., 2019;
Krishnan et al., 2020), our study offers the first demonstration for
tracing the vagus nerve.

MEMRI provides several advantages for tracing the vagus
nerve. Foremost, MEMRI uses MRI and thus is non-invasive. The
injection of Mn2+ ions into the nodose ganglion, a peripheral
structure housing the cell bodies of vagal afferent neurons,
involves a relatively minor surgical intervention without major
complications. Post-injection, the animal typically recovers well
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ahead of the subsequent MRI scans, providing an ample time
window (1–2 days) for introducing various bodily states or
applying various settings of neuromodulation. The impacts of
these states or interventions on vagal nerve transport and activity
can be assessed through MEMRI. Moreover, MEMRI can be
conducted over multiple sessions, enabling chronic experiments
and repeated monitoring of longitudinal changes in neural activity
and anatomical connections.

MEMRI presents an opportunity for poly-synaptic neuronal
tracing in an activity-dependent manner, as previous studies
tracing CNS pathways have demonstrated (Pautler et al., 1998;
Watanabe et al., 2001; Saleem et al., 2002; Yu et al., 2005; Chuang
et al., 2009). In our investigation, we found evidence of Mn2+

induced contrast enhancement not only in the ipsilateral NTS,
which receives direct vagal projections from the Mn2+ injected
NG, but also in the contralateral NTS. This observation implies
that trans-synaptic uptake of Mn2+ occurs by neurons in the
ipsilateral NTS. Extensive inter-connections between the left and
right NTS further facilitate Mn2+ transportation to the opposing
side. It is also likely that the left (or right) nodose ganglion
projects to the right (or left) NTS; nevertheless, the contralateral
projections are much less common than the ipsilateral projections
(Altschuler et al., 1989). Also supporting poly-synaptic tracing, we
observed contrast enhancement beyond the NTS and AP regions,
reaching into other focal areas within the brainstem or cerebellum
(data are not shown). However, these additional enhancements
lacked consistency across animals and did not achieve statistical
significance.

While our current study was unable to consistently trace
vagal projections beyond the lower brainstem, we believe that
future studies may overcome this limitation through refinement
of the contrast agent or the administration method of manganese.
A potential strategy could involve the slow release of Mn2+

ions, extending the period during which neurons can uptake
and transport the manganese injected into the nodose ganglion.
Alternative carriers for Mn2+ ions such as manganese dipyridoxyl
diphosphate (MnDPDP) (Olsen et al., 2008; Pochwat et al., 2015)
or Mn2+ encapsulated in nanogels (Eguchi et al., 2019) could be
explored. Additionally, the use of osmotic pumps could facilitate
slow and controlled delivery of Mn2+, potentially enhancing the
efficacy of tracing (Vousden et al., 2018). Such alternatives may also
help lower the dose or toxicity of Mn2+ to enable broader and safer
applications in preclinical studies.

Given the central role of the vagus in interoception (Chen
et al., 2021), MEMRI may provide a valuable tool for investigating
the functional neural circuits that allow the brain to interact
with visceral organs for both physical and mental health. The
NTS, which receives vagal projections, maps visceral sensations
by organs (Ran et al., 2022). Physiological or pathophysiological
states concerning the brain’s interaction with multiple organs
may manifest a signature in the vagal relay onto the NTS,
which may be captured by MEMRI with local injection to the
nodose ganglion. Since the vagal afferent neurons branch out to
innervate different organs, the axonal transport from the nodose
ganglion to the NTS cannot be attributed to a single organ.
However, it is possible to perturb a specific organ and pinpoint
the resulting changes in Mn2+ transport and accumulation to
the organ under perturbation. One of such perturbation is to

stimulate the different branches of the vagus. Taking the gut as
an example, we may apply subdiaphragmatic VNS to perturb the
gut, without directly affecting the cardiovascular or respiratory
systems, and assess the resulting effects using MEMRI. To be
even more specific, one may also stimulate the nerve endings
of the vagal afferent innervation on the gut and use MEMRI to
evaluate the ascending vagal activity (Cao et al., 2017, 2021; Powley,
2021). Moreover, the vagus is not the only neural pathway for
brain-body interactions. Using a similar protocol as in this study,
we anticipate that local injection of MnCl2 into the dorsal root
ganglion may be used to trace and assess the ascending spinal
pathway, which awaits exploration and confirmation by future
studies.
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