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1. Introduction
ENR has been one of the most widely used antimicrobial 

drugs for the treatment of infections originating from both 
gram-positive and gram-negative bacteria in animals [1-3]. 
The diseases caused by these bacteria include respiratory, 
mammary, digestive, and dermal infections in livestock and 
aquaculture [4, 5]. ENR has also been used in the treatment 
of osteomyelitis, otitis, peritonitis, and pneumonia in 
humans [6, 7]. Although it has a vital role in preventing 
humans from microbial infection, the overuse of ENR and 
its residue can place human health at risk [8, 9]. Besides, the 
ENR residue generated from human and animal digestion, 
ENR residues in wastewater is considered a potential risk to 
the environment due to its accumulation in water and soil 
[10, 11]. Moreover, antibiotics are considered a factor in the 
development of anti-bacterial resistant bacteria [12]. Due to 
these potential dangers, it is crucial to construct analytical 
methods for the determination of ENR at low concentration 
ranges in an aqueous environment. 

Over past few decades, methods for quantifying ENR 
have been developed including capillary electrophoresis, 
high‐performance liquid chromatography, liquid 
chromatography-mass spectrometry, and fluorescence 
detection [13-17]. These methods provide high accuracy 
and good sensitivity; however, drawbacks such as extended 
sample pre-treatment time, complicated operation, 
requirements for well-trained operators, and high-cost 
equipment restrict their analytical performance. In recent 
years, electrochemical determination of ENR has emerged 
as an effective method owing to advantages like high 
sensitivity, good selectivity, and convenience [18]. In this 
method, scientists have mainly focused on modifying the 
working electrode to improve the electrochemical signal of 
the target. The modification consists of using nanomaterials 
like metal nanoparticles, carbon nanomaterials, polymers, 
organic materials, and metal-organic frameworks [19-25]. 
These materials have unique properties such as large active 
surface area, electrochemical catalytic ability, fast electron 
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transfer, and customised functional groups, making them 
beneficial for adsorption and electrochemical reactions of 
analytes on the electrode surface. Recently, polyglutamic 
acid (pGA) - a completely biodegradable and non-toxic 
compound - has attracted much attention in electrochemical 
research applications because its chain contains a series of 
free protonated carboxyl groups that facilitate interaction 
and linkages with desirable targets. In addition, pGA is easily 
produced on a conductive substrate via an electrochemical 
process with variable sizes of pGA molecules, making it a 
promising material in electrochemical applications [26-29]. 

In this study, we present a new method to modify pencil 
lead with pGA via a potentiostatic technique that has been 
employed in the detection of ENR for the first time. The 
fabrication conditions of the developed electrode were 
investigated to obtain the most effective sensor for ENR 
detection. This technique was carried out on a cost-effective 
electrode substrate with faster and simpler preparation 
methods compared to previously published ones. Besides, 
the pGA-based sensor, in combination with an eco-friendly 
environmental modifier, showed good performance in the 
quantification of ENR.

2. Materials and methods

2.1. Reagents and apparatus

Pencil lead (diameter of 0.5 mm, length of 15 mm) 
was purchased from Dong-a Pencil Co., Ltd., Korea. 
L-GA (99%), potassium ferricyanide (99.9%), potassium 
dihydrogen phosphate (99.9%), and di-potassium hydrogen 
phosphate (99.9%), were purchased from Merck, Sigma-
Aldrich. ENR (98%) was purchased from Tokyo Chemical 
Industry Co., Ltd., Japan. All reagents were directly used 
without further purification.

Electrochemical measurements were performed 
using a home-made multi-functional potentiogalvanostat 
manufactured at the Institute of Chemistry, Vietnam 
Academy of Science and Technology, Hanoi, Vietnam. 
The electrochemical cell contains a three-electrode system 
consisting of an Ag/AgCl electrode (reference electrode), 
a platinum wire (auxiliary electrode), and pencil lead 
(working electrode). 

Cyclic voltammetry was used for the investigation of the 
modified electrode’s properties.

Field emission scanning electron microscopy (FE-SEM) 
(Hitachi S-4800, Japan) and attenuated total reflectance 
-Fourier transform infrared spectroscopy (ATR-FTIR) 
(Perkin Elmer, L1600400 Spectrum Two, UK) was used to 
characterise the morphology of the electrode surface.

2.2. Preparation of modified electrode

Initially, pencil lead electrodes were polished with 
tissue paper and rinsed with 90% ethanol and double-
distilled water. The electrochemical modification of pGA 
on the pencil lead electrodes was carried out by using 
a potentiostatic technique in a 0.1-M phosphate buffer 
solution (PBS) at pH 7 containing 5.0 g of l-1 glutamic acid 
(GA). In this step, negative and positive potentials were 
alternatively applied for 10 s for various numbers of cycles. 
Both synthesis parameters were examined.

2.3. Characterisation of pGA/PLE

Cyclic voltammetry (CV) was used to study the 
electrochemical property of GA and the modified 
electrodes. The measurement was performed in 5.0×10-3 M 
K3Fe(CN)6/0.1 M PBS solution (pH 7) at various scan rates 
from 10 mV to 100 mV. 

The electrode performance in ENR was conducted by 
using square wave stripping voltammetry (SW-AdSV) in a 
PBS solution containing ENR at various concentrations.

All experiments were performed at 25±2oC.

3. Results and discussion

3.1. Electrochemical polymerisation of GA on pencil 
lead electrode

The electrochemical reaction of GA on pencil lead was 
characterised by cyclic voltammetry to determine suitable 
voltametric parameters for the polymerisation of GA. Fig. 
1A shows cyclic voltammograms of a pencil lead electrode 
in PBS solution (pH 7) with and without GA. Obviously, 
no peak was obtained in the free glutamic solution in the 
examined potential range. Meanwhile, two peaks at -1 and 
1.8 V clearly appeared in the GA solution. These peaks 
correspond to the electrochemical polymerisation of GA on 
the electrode surface [30, 31]. Hence, suitable potentials for 
electrode fabrication were selected in the range from -1.2 
to 2.0 V.

To synthesise pGA on the pencil lead, a clean pencil lead 
bar was immersed in GA solution, then the potentiostatic 
technique was performed in two successive steps. In step 
1, a negative potential was applied to the electrode for 10 
s to form −COO−. Subsequently, step 2 was carried out by 
applying a positive potential for 10 s to form −NH2

●+. The 
process was repeated for a certain period to grow chains 
of pGA that were created by the combination of −COO− 
and (−NH2

●+) on the pencil lead surface. Fig. 1A illustrates 
a potentiostatic graph with the anodic and cathodic 
potentials of 2.0 and -1.0 V. The proposed mechanism of 
polymerisation of GA is illustrated in Fig. 1B. 
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Figure 2 shows the SEM images of pGA/PLE 
on the electrode surface. As seen in Fig. 2A, the 
pencil lead electrode has a smooth surface. After 
modification, pGA clusters are present with a 
scattered distribution on the pencil lead substrate 
(Fig. 2B). At higher magnification as seen in Fig. 
2C, pGA deposition is clearly identified with a 
cluster size of several hundred nanometres.

The presence of pGA on PLE can be confirmed 
by ATR-FTIR spectroscopy, as demonstrated in 
Fig. 2D. A comparison between the unmodified 
electrode and the pGA/PLE-modified electrode 
reveals distinct differences in the spectral peaks. 
Specifically, the pGA/PLE spectrum exhibits 
significant peaks at 3398 cm-1, which can be 
attributed to the stretching vibration of both the 
N-H and O-H functional groups. Additionally, 
peaks at 1603, 1543 cm-1, and 1712 cm-1, which 
correspond to amide I, amide II, and C=O in the 
carboxylic group, respectively, are observed. 
These peaks are indicative of the presence of 
a pGA layer on the PLE electrode surface. 
Moreover, both the PLE and pGA/PLE electrodes 
show identical peaks at 2919, 2850, and 1458 
cm-1, which can be attributed to C-H stretching 
and C-C bending in the PLE composition. The 
obtained results agree with those of previous 
publications [26, 32-37].

3.2. Electrochemical properties of pGA/PLE

Electrochemical properties of pGA/PLE 
were examined by cyclic voltammetry. The 
measurements were performed by cyclic potential 
scanning from 0.8 to -0.2 V in PBS solution (pH 7) 
containing 5 mM K3Fe(CN)6 at different scanning 
rates. Fig. 3A reveals two clear peaks at 0.18 and 
0.25 V, which correspond to the reduction of Fe3+ to 
Fe2+ and the oxidation of Fe2+ to Fe3+, respectively. 
It is evident that the reduction peak on PGA/PLE 
is more symmetric and sharper than that of the 
pencil lead electrode. Also, the peak current on 
the modified electrode is higher than that of the 
unmodified one (Fig. 3A). These indicate that the 
PGA/PLE exhibited better electron transfer ability 
and a larger electrochemical active area than the 
unmodified electrode, which could improve the 
analytical signal. 

Figure 3B illustrates a good linear relationship 
between peak current and the square root of the 
potential scanning rate in both oxidation and 
reduction directions with correlation coefficients 
of 0.9698 and 0.9573, respectively, indicating 
the electrochemical process was controlled by 
diffusion [38].
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3.3. The response signal of ENR on the pGA/PLE

The electrochemical response of ENR on the prepared 
electrode was evaluated by using the SW-AdSV method in a 1 
µM ENR solution. As can be seen in Fig. 4A, no peak appeared in 
the blank solution, while a peak at 0.8 V was clearly observed in 
the ENR solution. The peak is attributed to the oxidation of ENR 
on the electrode surface with a reaction mechanism proposed in 
Fig. 4B [39]. In addition, the result shows a much higher peak 
current on pGA/PLE than the signal on PLE (13.5 times higher). 
This increase could be explained by the improvement of ENR 
accumulation on pGA surface.
       

7 
 

much higher peak current on pGA/PLE than the signal on PLE (13.5 times higher). This 

increase could be explained by the improvement of ENR accumulation on pGA surface. 

 

 

 

Fig. 4. (A) Square wave graph of PLE (black line) and pGA/PLE (red line) in 1 µM 

ENR solution; (B) The proposed mechanism of oxidation of ENR. 

3.4. Optimization of pGA/PLE polymerization and pH of supporting electrolyte 

ENR determination significantly depends on the preparation parameters and pH 

of the supporting electrolyte. This section details the influence of these parameters on 

the ENR signal. 

Influence of polymerization method on the ENR signal: In comparison with the 

pencil lead electrode modified with pGA by the cyclic voltammetry method, the ENR 

peak current on pGA/PLE produced by the potentiostatic method provided a higher 

ENR peak current (1.45 times higher) (Fig. 5A) and was three times faster. Therefore, 

7 
 

much higher peak current on pGA/PLE than the signal on PLE (13.5 times higher). This 

increase could be explained by the improvement of ENR accumulation on pGA surface. 

 

 

 

Fig. 4. (A) Square wave graph of PLE (black line) and pGA/PLE (red line) in 1 µM 

ENR solution; (B) The proposed mechanism of oxidation of ENR. 

3.4. Optimization of pGA/PLE polymerization and pH of supporting electrolyte 

ENR determination significantly depends on the preparation parameters and pH 

of the supporting electrolyte. This section details the influence of these parameters on 

the ENR signal. 

Influence of polymerization method on the ENR signal: In comparison with the 

pencil lead electrode modified with pGA by the cyclic voltammetry method, the ENR 

peak current on pGA/PLE produced by the potentiostatic method provided a higher 

ENR peak current (1.45 times higher) (Fig. 5A) and was three times faster. Therefore, 
7 

 

much higher peak current on pGA/PLE than the signal on PLE (13.5 times higher). This 

increase could be explained by the improvement of ENR accumulation on pGA surface. 

 

 

 

Fig. 4. (A) Square wave graph of PLE (black line) and pGA/PLE (red line) in 1 µM 

ENR solution; (B) The proposed mechanism of oxidation of ENR. 

3.4. Optimization of pGA/PLE polymerization and pH of supporting electrolyte 

ENR determination significantly depends on the preparation parameters and pH 

of the supporting electrolyte. This section details the influence of these parameters on 

the ENR signal. 

Influence of polymerization method on the ENR signal: In comparison with the 

pencil lead electrode modified with pGA by the cyclic voltammetry method, the ENR 

peak current on pGA/PLE produced by the potentiostatic method provided a higher 

ENR peak current (1.45 times higher) (Fig. 5A) and was three times faster. Therefore, 

7 
 

much higher peak current on pGA/PLE than the signal on PLE (13.5 times higher). This 

increase could be explained by the improvement of ENR accumulation on pGA surface. 

 

 

 

Fig. 4. (A) Square wave graph of PLE (black line) and pGA/PLE (red line) in 1 µM 

ENR solution; (B) The proposed mechanism of oxidation of ENR. 

3.4. Optimization of pGA/PLE polymerization and pH of supporting electrolyte 

ENR determination significantly depends on the preparation parameters and pH 

of the supporting electrolyte. This section details the influence of these parameters on 

the ENR signal. 

Influence of polymerization method on the ENR signal: In comparison with the 

pencil lead electrode modified with pGA by the cyclic voltammetry method, the ENR 

peak current on pGA/PLE produced by the potentiostatic method provided a higher 

ENR peak current (1.45 times higher) (Fig. 5A) and was three times faster. Therefore, 

7 
 

much higher peak current on pGA/PLE than the signal on PLE (13.5 times higher). This 

increase could be explained by the improvement of ENR accumulation on pGA surface. 

 

 

 

Fig. 4. (A) Square wave graph of PLE (black line) and pGA/PLE (red line) in 1 µM 

ENR solution; (B) The proposed mechanism of oxidation of ENR. 

3.4. Optimization of pGA/PLE polymerization and pH of supporting electrolyte 

ENR determination significantly depends on the preparation parameters and pH 

of the supporting electrolyte. This section details the influence of these parameters on 

the ENR signal. 

Influence of polymerization method on the ENR signal: In comparison with the 

pencil lead electrode modified with pGA by the cyclic voltammetry method, the ENR 

peak current on pGA/PLE produced by the potentiostatic method provided a higher 

ENR peak current (1.45 times higher) (Fig. 5A) and was three times faster. Therefore, 

Fig. 4. (A) Square wave graph of PLE (black line) and pGA/PLE 
(red line) in 1 µM ENR solution; (B) The proposed mechanism of 
oxidation of ENR.

3.4. Optimisation of pGA/PLE polymerisation and pH of 
supporting electrolyte

ENR determination significantly depends on the preparation 
parameters and pH of the supporting electrolyte. This section 
details the influence of these parameters on the ENR signal.

Influence of polymerisation method on the ENR signal: In 
comparison with the pencil lead electrode modified with pGA by 
the cyclic voltammetry method, the ENR peak current on pGA/
PLE produced by the potentiostatic method provided a higher 
ENR peak current (1.45 times higher) (Fig. 5A) and was three 
times faster. Therefore, to obtain sufficient ENR signal and to 
reduce preparation time, the potentiostatic method was chosen for 
electrode modification.

Influence of polymerisation cycle number on the ENR signal: 
The impact of cycle number in the polymerisation process on ENR 
signal was investigated by SWV in a PBS solution containing 1 
µM ENR. As shown in Fig. 5B, when the cycle number changed 
from 1 to 20, the peak current significantly increased and reached 
its highest value at 20 cycles. The peak current gradually decreased 
over the range of cycles from 30 to 50. Therefore, the 20-cycle 
polymerisation process was chosen for the next experiment. 
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Fig. 5. (A) Square wave voltammograms in ENR solution of pGA/
PLE fabricated by cyclic voltammetry and potentiostatic method; 
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potentials in polymerisation.

Influence of applied polymerisation potential on the ENR signal: 
The applied potential used in the polymerisation step also plays a 
crucial role in the improvement of the ENR signal. Cathodic and 
anodic potential couples of -1.2 and 1.6 V, -1.2 and 1.8 V, -1.2 and 
1.9 V, -1.2 and 2.0 V, -1.2 and 2.1 V, -1 and 2 V, -0.8 and 2 V, and 
-0.6 and 2 V were selected for the investigation. As demonstrated 
in Fig. 5C, among these potential couples, the highest ENR peak 
current was obtained when applying a potential couple of -1 and 
2 V. These potential values were appropriate for polymerisation 
in that it supplied sufficient energy for the formation of the ions 
and free radicals. The decrease in peak current at more negative 
cathodic potentials and positive potentials could be because of the 
generation of hydrogen bubbles on the electrode surface, preventing 
polymer formation. Therefore, the polymerisation potential couple 
of -1 and 2 V was chosen for the following experiment.

The influence of pH on ENR signal: The pH value of the 
supporting electrolyte solution has a significant impact on the 
electrochemical oxidation of ENR. To determine an optimal pH 
value for ENR analysis, the oxidation signal was recorded in a PBS 
solution containing 1 µM ENR at different pH values (Fig. 6A). At 
pH of 4 and 5, relatively low peaks were obtained. Then, the peak 
currents increased with increasing pH value and the highest current 
was obtained at pH8. The peak current slightly decreased at pH9. 
Therefore, the PBS solution with pH8 was chosen as the optimal 
parameter for the analysis of ENR for the next experiments. Fig. 
6B shows a linear relationship of pH value vs. peak potentials of 
ENR with the slope of the linear curve being 0.049, demonstrating 
that an equal number of electrons and protons were present in 
the ENR reaction. It is also observed in Fig. 6C that when pH 
was changed from 4 to 9, peak positions gradually moved to the 
negative direction. This result suggests that protons participated in 
the oxidation reaction of ENR.
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3.5. Calibration curve for ENR detection

After the optimisation of electrode preparation and analysis 
conditions, a calibration curve was established to evaluate the 
performance of ENR detection by SW-AdSV over a concentration 
range from 0.1 to 5 µM (Fig. 7). Within this concentration range, 
the peak current and ENR concentration are linearly correlated 
with the following regression equation: Ip (µA)=14.074 CENR 
(µM)-0.353. A correlation coefficient of 0.9988 was obtained. The 
reproducibility of the measurement was also investigated with an 
acceptable relative standard deviation of 4.3% (data not shown 
here). An LOD of 0.122 µM was obtained through the equation 
LOD=3σ/b; where σ and b are the standard deviation and the linear 
slope, respectively.
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4. Conclusions 

In this study, a novel sensor for ENR detection was successfully developed using 

polyglutamic-modified pencil lead graphite and a potentiostatic method. Optimal 

voltametric parameters, including applied cathodic (-1 V) and anodic (2 V) potentials 

were determined, and the synthesis time was set to 10 s for 20 cycles. The use of a PBS 

with pH8 was found to be a suitable medium for ENR detection. The sensor 

demonstrated acceptable reproducibility and a low detection limit of 0.12 µM for ENR. 

The results of this initial study suggest that the fabrication of the sensor is simple, low 

cost, less time consuming, and environmentally friendly. Thus, it has potential 

applications in ENR quantification. 
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Fig. 7. (A) Square wave voltammograms of pGA/PLE in PBS 
solution containing ENR over a concentration range from 0.1 to 5 
µM; (B) Calibration curve between peak current and concentration.

4. Conclusions
In this study, a novel sensor for ENR detection was successfully 

developed using polyglutamic-modified pencil lead graphite 
and a potentiostatic method. Optimal voltametric parameters, 
including applied cathodic (-1 V) and anodic (2 V) potentials 
were determined, and the synthesis time was set to 10 s for 20 
cycles. The use of a PBS with pH8 was found to be a suitable 
medium for ENR detection. The sensor demonstrated acceptable 
reproducibility and a low detection limit of 0.12 µM for ENR. The 
results of this initial study suggest that the fabrication of the sensor 
is simple, low-cost, less time-consuming, and environmentally 
friendly. Thus, it has potential applications in ENR quantification.
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