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PREDICTORS OF AVERAGE WAIT TIME 

AT AN INTERSECTION USING 

ARTIFICIAL NEURAL NETWORK 

 
Abstract: This paper reports the results of the studies on 

identifying the predictors of average wait times of 

vehicles at intersections. The strength and direction of the 

relationship of these predictors were gauged from the 

values and sign of the predictor.  

Simulated data obtained using a JavaScript algorithm 

were used. The variables tested for predictability included  

the traffic light time (seconds), traffic density per minute, 

number of input tracks (1 or 2), and number of output 

tacks (1 or 2). The program can then simulate the average 

wait time in seconds for an intersection (down, right, up, 

and left). The programme simulated the average wait 

times for the four directions of traffic flows at the 

intersection.  These data were used in an artificial neural 

network algorithm. About 70% of the data were used for 

training and the remaining 30% were used for testing. 

The ANN model used is called a multi-layer perceptron 

(MLP). All the 4 models developed have one input layer, 

one hidden layer, and one output layer.  

The results indicated that density as the strongest 

predictor accounting for 100% importance among the 

variables tested. In some situations, traffic light times or 

the number of input or output tracks in some directions 

could also predict wait times to a lesser extent. Density 

was positively related to the wait times. These findings 

have been largely supported by the published literature 

when linked to traffic flow and travel times. 

Keywords: Average Wait Times, Predictors, Traffic 

Intersection, Simulated Data, Artificial Neural Network, 

Traffic Density 

 

 

1. Introduction 
 

To be able to devise an adaptive intelligent 

traffic control system for smart cities, one 

needs to understand the predictors of average 

wait time and the strength and direction of 

the relationship between the predictors and 

average wait time. This information can then 

be optimized to design an adaptive 

intelligent traffic control system. The aspects 

of this study are adaptive intelligent traffic 

control systems more commonly 

implemented in smart cities and the average 

vehicle wait time at intersections and its 

predictors. Some recently available literature 

are discussed briefly on these aspects below. 
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 In a review paper, Mandhare, Kharat, and 

Patil (2018) discussed various adaptive and 

non-adaptive and simulation/real time/hybrid 

approaches of traffic routing and a signal 

controlling decisions, input and output 

variables like traffic volume, waiting time, 

previous and current traffic data for traffic 

routing, collection and communication 

methods of traffic data, smart traffic control 

at intersections and traffic management 

improvement to minimise congestion. RFID 

tags, readers and sensors were used, as fixed 

and pre-set traffic management system to 

detect and remove congestion in the studies 

of Atta, Abbas, Khan, Ahmed, and Farooq 

(2020). The study showed that a sensor 

based totally fuzzy judgment version can 

reduce the road traffic congestion to the 

minimum. This was achieved by letting the 

fuzzy device to decide on adjusting the 

signal timings. Simulation results confirmed 

the model.  

Internet of Things (IoT) and Vehicular Ad 

Hoc Network (VANET) have emerged as 

promising technologies for an Intelligent 

Traffic Management System (ITMS). For 

prioritising emergency vehicles through 

congested traffic, Sumi and Ranga (2018) 

proposed a system which measures the gap 

between an intersection and the emergency 

vehicle and then dispatch the emergency 

vehicle (EV) from that intersection 

irrespective of whether the traffic signals are 

hacked, the type of incident and emergency 

car type. Thus, the EV bypasses heavy traffic 

and reaches its destination on time 

minimising delay in transmission of 

emergency messages. A separate mechanism 

exists to handle hacking problems. The 

model was tested using a simulation study. 

Internet of Vehicles (IoV) technology was 

used and practically demonstrated by 

Kumar, et al. (2018) to regulate traffic and 

identify the optimal route to destination. The 

street maps were segmented into a number of 

small distinct maps. Ant colony algorithm 

was applied to each map to find the optimal 

route. Fuzzy logic based traffic intensity 

calculation function was used to model 

heavy traffic. An intelligent traffic 

monitoring system using graph theory and 

formal methods was proposed by Latif, 

Afzaal, and Zafar (2018).  Only proof of its 

correctness has been offered by the authors.  

Thus, various types of intelligent traffic 

control systems have been developed and 

even used in different smart city contexts. 

These include, fixed, dynamic or vehicle-

based systems and using conventional as 

well as modern technologies.  

Harahap, Darmawan, Fajar, Ceha, and 

Rachmiatie (2019) proposed a model of 

queue at a road intersection with traffic 

lights. The appropriate traffic light duration 

can be determined based on the arrival of the 

vehicle. This helps to obtain the queue 

waiting time under the driver's time stress 

threshold. The waiting time in the queue was 

dependent on the accuracy of the traffic light 

time duration setting, both red and green 

lights on all intersection lines. The vehicle 

waiting time model in the queue at the red 

light phase, the waiting time model in the 

green light phase with the arrivals by 

Poisson process using M/M/1 queuing model 

and the waiting time of all vehicles for an 

entire traffic light cycle were determined. 

The queue waiting time model can facilitate 

estimation of the average wait time of 

vehicles at intersections. The average 

number of vehicles in the queue (density) 

was a variable included in this study.  

A new approach of intelligent signal timing 

based on the traffic flow timing, in which, by 

temporally clustering optical flow features of 

moving vehicles using Temporal Unknown 

Incremental Clustering (TUIC) model 

reduced average vehicle wait time 

significantly compared to other algorithms in 

experiments (Kumaran, Mohapatra, Dogra, 

Roy, & Kim, 2019). A Reinforced Learning 

(RL)-based traffic signal control method that 

employs a graph convolutional neural 

network (GCNN) was tested by Nishi, Otaki, 

Hayakawa, and Yoshimura (2018) on a six-

intersections environment. The policies 

learned using the proposed method could 
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control the traffic flow with the shortest 

mean wait times under a wide variety of 

traffic demand conditions.  

A model called Phase-Aware Deep Learning 

and Constrained Reinforcement Learning 

was proposed by Sur (2019) for optimization 

and constant improvement of signal and 

trajectory for autonomous vehicle operation 

modules for an intersection. The results 

obtained from the model helped to reduce 

the vehicle wait time significantly. The 

results of a case study on a novel smart 

traffic control framework using local traffic 

smart server and remote cloud server proved 

smooth progress of travel by reducing the 

waiting time for the green lamp onset 

(Kuppusamy, Kalpana, & Venkateswara 

Rao, 2019).  

Experimental results on using two 

algorithms developed by Li, et al. (2019) 

indicated that these two algorithms 

outperformed the signal control method by 

reducing total traffic delays at intersections 

(vehicle wait times) leading to increasing 

intersection capacity and operation 

efficiency. In the trials of Liu S., et al. 

(2018) the average delay and average stop 

times of vehicles at intersections increased 

with increased traffic density with or without 

single-vehicle or multi-vehicle guidance 

systems in connected vehicles.  

To determine the predictors of average wait 

time at intersections using artificial neural 

networks. 

 

2. Method 
 

A brief account of ANN methods and MLP 

models followed by using 70% of the data 

for training and the remaining 30% for 

testing are provided below. 

 

2.1. ANN Models in General 

 

A tutorial describing ANN methods was 

provided by Jain, Mao, and Mohiuddin 

(1996). Artificial neural networks (ANN) are 

used to solve several problems like pattern 

recognition, prediction, associated memory, 

and control. Conventional approaches are 

not flexible enough to apply beyond the 

context in which they were used. ANN is an 

answer for such situations. ANN can be 

applied to situations in which the normal 

numerical capabilities of computers are 

inadequate. ANN methods were developed 

to imitate some of the human neural network 

systems.  

ANN is an engineering approach to 

biological neurons. It deals with situations of 

many inputs and one output. ANN consists 

of a large number of simple processing 

elements interconnected with each other and 

layered. A multilayered ANN was 

diagrammatically described by Sharma, Rai, 

and Dev (2012). ANN improves on the rules 

of computer algorithms and facilitates 

decision-making. The two basic types of 

ANN are feed-forward and feedback. In 

Feedforward Network, the signal travel in 

one way only but in Feedback Network, the 

signal travel in both directions by 

introducing loops in the network. Since 

ANN is used in this study, its use for 

predictive purposes is only explained further.  

There are three layers in ANN structure: the 

input layer of the collected data, an output 

layer of computed information, and one or 

more hidden layers to connect the input and 

output layer. A neuron is a basic processing 

unit of a NN and performs both the 

collection of the inputs and the production of 

the output. Each input is multiplied by 

connection weights, and its products and 

biases are added and then passed through an 

activation function to produce an output. Bp 

algorithm is used for training feedforward 

ANN. The algorithm is based on supervised 

learning and hence learning occurs 

iteratively. It compares the estimated value 

with the actual value and iteration stops 

when the mean squared error is minimised 

using adjusted weights for each training 

model. Using the appropriate mathematical 

equations, each input in the input layer is 

multiplied by a connection weight between 

the neuron in the input layer to a neuron in 
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the hidden layer and gets its products, and 

biases are summed formally to a net input, 

then passed to the hidden layer by a 

nonlinear sigmoid activation function to 

produce an output. A signal is sent from the 

hidden layer to all neurons in the output 

layer and computes the input to neuron 

function. Then the outer layer signals are 

computed using a sigmoid activation 

function. The error training between target 

output and measured data is estimated. The 

procedure is repeated for all pairs of the 

training set (each training cycle is known as 

an epoch) and repeated till the error value is 

reduced to a limit value. It is important to 

optimise the learning rate and stability. The 

performance of ANN can be measured using 

root mean square error (RMSE), the mean 

absolute percentage error (MAPE), mean 

absolute bias error (MABE) (minimum value 

better for all the three), and coefficient of 

determination (R2, higher better) (Mohamed, 

2019). 

 

2.2. ANN for Predictive Purpose 

 

The need to be cautious about overtraining 

and recognise the limitations of extrapolation 

when using ANN for predictions was 

stressed and solutions were suggested by 

Yin, Rosendahl, and Luo (2003). The 

extrapolation problem was solved by the use 

of data with maximum and minimum values 

for training. The overtraining problem was 

solved by terminating the training by 

monitoring the training data and all the 

sample data. The training was terminated 

when both the energy function for the testing 

set and that for all the samples reduced to a 

relatively low value. But this procedure is 

cumbersome and may not be possible in all 

situations. 

In a review, Ferrero Bermejo, Fernandez, 

Polo, and Márquez (2019) noted that ANN is 

used for ideal predictions, and prediction in 

presence of additional external variables like 

weather, asset reliability assessments for 

timely maintenance. ANN has the 

advantages of generating prediction models 

with high correlation coefficients, quick 

fitting, and flexibility to behaviour patterns, 

namely, by pattern-recognition and fault 

tolerance capability, especially, when data 

are absent and are noisy, can adapt to more 

complex and non-linear problems, can adjust 

to real-time dynamic changes, possible to 

process and integrate quickly and the 

possibility to predict the incremental output. 

 

2.3. Analysis Methodology 

 

The data for the research has been simulated 

using a JavaScript algorithm. The inputs in 

the program include the traffic light time 

(seconds), traffic density per minute, number 

of input tracks (1 or 2), and number of 

output tacks (1 or 2). The program can then 

simulate the average wait time in seconds for 

an intersection (down, right, up, and left).  

ANN models were developed for ‘down,’ 

‘right,’ ‘left,’ and ‘up’ intersections. Average 

wait time was the dependent variable, the 

number of input and output tracks were the 

factors, and traffic light time and traffic 

density were the covariates. 70% of the data 

was used for training and the rest for testing 

the models. The ANN model used is called a 

multi-layer perceptron (MLP). All the 4 

models developed have one input layer, one 

hidden layer, and one output layer. 

The 2 input and 2 output tracks scenario 

intersection is shown below in Figure 1. 

The 2 input and 1 output tracks scenario 

intersection is shown below in Figure 2. 

An example of a simulation run is shown in 

Figure 3. 

ANN models were developed for ‘down,’ 

‘right,’ ‘left,’ and ‘up’ intersections. Average 

wait time was the dependent variable, the 

number of input and output tracks were the 

factors, and traffic light time and traffic 

density were the covariates. 
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Figure 1. Two input and two output tracks scenario of the intersection 

 

 
Figure 1. Two input and one output track intersection scenario 

 

 
Figure 2. An example of a simulation intersection scenario 
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3. Results 
 

3.1. Summary Statistics 
 

The summary statistics are shown below. 

Table 1 provides the descriptive statistics of 

simulation results consisting of minimum, 

maximum, mean, and standard deviation 

values for traffic flows in the four directions. 

The minimum wait time was the highest (8 

seconds) for up and down traffic flows.  

The maximum wait time was the highest 

(215 seconds) for right and up traffic flows. 

The mean wait time was the highest for left 

(27.82 seconds) for down (27.04 seconds). 

Right flow recorded the lowest mean traffic 

flow of 20.70 seconds. As has been indicated 

by the minimum and maximum values over 

75 observations, the standard deviation was 

higher than the mean values for all traffic 

flows. 

In Table 2, the number of output tracks for 

all four directions of traffic flows are 

presented.

 

Table 1. Descriptive Statistics from simulation results 

Direction N Minimum Maximum Mean Std. Deviation 

Down 

Average wait 

time (seconds) 
75 8.00 200.00 25.4833 35.51193 

Traffic light time 

(seconds) 
75 5.0 25.0 15.000 6.1403 

Density (per 

min) 
75 2.0 30.0 10.187 6.4655 

Valid N 

(listwise) 
75     

Left 

Average wait 

time (seconds) 
75 7.00 150.00 27.8167 36.22642 

Traffic light time 

(seconds) 
75 5.0 25.0 15.000 6.1403 

Density (per 

min) 
75 2.0 30.0 10.187 6.4655 

Valid N 

(listwise) 
75     

Right 

Average wait 

time (seconds) 
75 7.00 215.00 20.7033 31.31581 

Traffic light time 

(seconds) 
75 5.0 25.0 15.000 6.1403 

Density (per 

min) 
75 2.0 30.0 10.187 6.4655 

Valid N 

(listwise) 
75     

Up 

Average wait 

time (seconds) 
75 8.00 215.00 27.0367 35.86948 

Traffic light time 

(seconds) 
75 5.0 25.0 15.000 6.1403 

Density (per 

min) 
75 2.0 30.0 10.187 6.4655 

Valid N 

(listwise) 
75     
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Table 2. Number of output tracks 

Direction Frequency Percent Valid Percent Cumulative Percent 

Down Valid 

1.0 42 56.0 56.0 56.0 

2.0 33 44.0 44.0 100.0 

Total 75 100.0 100.0  

Left Valid 

1.0 40 53.3 53.3 53.3 

2.0 35 46.7 46.7 100.0 

Total 75 100.0 100.0  

Right Valid 

1.0 38 50.7 50.7 50.7 

2.0 37 49.3 49.3 100.0 

Total 75 100.0 100.0  

Up Valid 

1.0 37 49.3 49.3 49.3 

2.0 38 50.7 50.7 100.0 

Total 75 100.0 100.0  

 

The number of vehicular output for down 

and left directions were higher for 1 track 

situations and right direction, it was 

marginally higher for 1 track situations. For 

up direction, the 2 track situation had a 

marginally higher vehicular output.  

The number of input tracks for all four 

directions of traffic flows is given in Table 3. 

 

Table 3. The number of input tracks 

Direction Frequency Percent Valid Percent Cumulative Percent 

Down Valid 

1.0 31 41.3 41.3 41.3 

2.0 44 58.7 58.7 100.0 

Total 75 100.0 100.0  

Left Valid 

1.0 31 41.3 41.3 41.3 

2.0 44 58.7 58.7 100.0 

Total 75 100.0 100.0  

Right Valid 

1.0 41 54.7 54.7 54.7 

2.0 34 45.3 45.3 100.0 

Total 75 100.0 100.0  

Up Valid 

1.0 38 50.7 50.7 50.7 

2.0 37 49.3 49.3 100.0 

Total 75 100.0 100.0  

 

One track input had a higher input than 2 

tracks in the case of right and marginally 

higher input in the case of up traffic flows. 

Two-track had higher input than one track in 

the case of both down and left traffic flows. 

 

 

3.2. ANN results 

 

The ANN models for ‘down,’ ‘right,’ ‘left,’ 

and ‘up’ intersections are shown below. The 

case processing summary in Table 4 shows 

the ratios used for different simulation 

scenarios. 
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Table 4. Case Processing Summary 

Direction N Percent 

Down 

Sample 
Training 53 70.7% 

Testing 22 29.3% 

Valid 75 100.0% 

Excluded 0  

Total 75  

Left 

Sample 
Training 47 62.7% 

Testing 28 37.3% 

Valid 75 100.0% 

Excluded 0  

Total 75  

Right 

Sample 
Training 56 74.7% 

Testing 19 25.3% 

Valid 75 100.0% 

Excluded 0  

Total 75  

Up 

Sample 
Training 50 66.7% 

Testing 25 33.3% 

Valid 75 100.0% 

Excluded 0  

Total 75  

 

Generally, an approximate 70:30 ratio was 

used for training and testing the data.  

The detailed information on the network in 

the simulation is presented in Table 5 (See 

Appendix). 

The factors and covariates for the prediction 

of the average wait time for different 

intersection scenarios are described in Table 

5. These data are indicators of the ANN 

algorithms used in this study. 

The network diagrams for the intersection 

scenarios are provided in Figure 4-7 (see 

Appendix). 

 

4. Network Diagrams 
 

4.1. Down 

 

The factors and covariates are on the left 

side of the diagram. A hyperbolic tangent 

function is used for the hidden layer 

activation. The output is the average vehicle 

wait time at the intersection, which is 

identified by the outer layer activation 

function. 

 

4.2. Left 

 

In Figure 5 (see Appendix), the network 

diagram of the left scenario is presented. The 

hidden layer and the output layer definitions 

are kept the same. 

 

4.3. Right 

 

The network diagram for the right 

intersection scenario is presented in Figure 6 

(see Appendix) with the same functional 

specifications as for the above two scenarios. 

 

4.4. Right 

 

The network diagram of up intersection 

scenarios with similar parameters as the 

above three is given in Figure 7 (see 

Appendix). 

 

4.5. Parameter Estimates 

 

The parameter estimates of the four 

intersection scenarios and variable 

importance analysis are given and explained 

below Table 6. 
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Table 6. Parameter estimates of the intersection scenarios using ANN 

Direction- Down 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) 
Average wait time 

seconds 

Input Layer 

(Bias) -.877  

[Number of output tracks=1.0] -.346  

[Number of output tracks=2.0] -.892  

[Number of input tracks=1.0] -.113  

[Number of input tracks=2.0] -1.138  

Traffic light time seconds .057  

Density per min 1.370  

Hidden Layer 1 

(Bias)  .912 

H(1:1)  1.302 

 

4.6. Down direction 

 

The ‘down’ model is shown above. The 

model includes a bias (the equivalent of the 

contract in the regression models), and the 

other rectangles represent input variables 

(these are: number of output track=1, 

number of output track=2, number of input 

track=1, number of input track=2, traffic 

light time, and density per min). 

 

For interpretation, we need to focus only on 

the positive or negative signs of the variables 

marked in yellow below. For example, the 

number of output track=1 is negatively 

associated with average wait time, vehicle 

density per min is positively associated with 

average wait time, and so on.  

The independent variable importance 

analysis is given in Table 7 and the diagram 

on normalised importance is given in Figure 

8 below. 

 

Table 7. Independent variable importance- Down 

Direction Importance Normalized Importance 

Down 

Number of output tracks .035 3.9% 

Number of input tracks .071 8.0% 

Traffic light time (seconds) .011 1.3% 

Density (per min) .883 100.0% 
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Figure 8. Independent variable parameters chart- Down 

 

As both the table and the chart shows, the 

highest importance is for the density factor 

with 100% importance. The importance of 

all the other three factors is less than 10%. 

 

 

 

4.7. Left direction 

 

Similar tables and diagrams with similar 

explanations are given for the left 

intersection scenario below (Tables 8 and 9 

and Figure 9). 

 

Table 8. Parameter estimates of the intersection scenarios using ANN 

Direction - Left 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) H(1:3) 
Average wait time 

seconds 

Input Layer 

(Bias) -.329 1.215 .468  

[Number of output 

tracks=1.0] 
-.318 -.388 .272  

[Number of output 

tracks=2.0] 
-.458 1.114 -.218  

[Number of input 

tracks=1.0] 
-.126 .576 .309  

[Number of input 

tracks=2.0] 
-.153 .527 .040  

Traffic light time 

seconds 
.003 -.050 -.284  

Density per min -.315 -1.331 -.339  

Hidden Layer 1 

(Bias)    .763 

H(1:1)    -.706 

H(1:2)    -1.863 

H(1:3)    .278 
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The left model is shown above. The model 

includes a bias (the equivalent of the contract 

in the regression models), and the other 

rectangles represent input variables (these 

are: number of output track=1, number of 

output track=2, number of input track=1, 

number of input track=2, traffic light time, 

and density per min). There are three hidden 

layers.  

For interpretation, we need to focus only on 

the positive or negative signs of the variables 

marked in yellow below. In the case of the 

hidden layer H(1:1), except for traffic light 

times, all others are negatively associated 

with the average wait time, the highest being 

for the number of output tracks (2.0) with -

0.458 followed by density per minute with 

0.315. The positive association between 

traffic light times is negligible.  

In the case of the Hidden layer (H1:2), the 

number of output track 2.0 was positively 

associated with the average wait time with 

the value of 1.114. The highest negative 

relationship for the same dependent variable 

was obtained for vehicle density per minute 

with a value of  

-1.331. While the number of output tracks 

1.0 was negatively associated (-0.388), the 

number of input tracks 1.0 and 2.0 were 

positively associated with average wait time 

with their values around -0.5. The effect of 

traffic light was negligible.  

In the case of Hidden layer H (1:3), the 

number of output tracks 1.0 (0.272), input 

tracks 1.0 (0.309), and 2.0 negligibly (0.040) 

were positively related to the average wait 

time. A negative relationship was obtained 

for the number of output tracks 2.0 (-0.218), 

traffic light times (-0.284), and vehicle 

density (-0.339).  

The independent variable importance 

analysis using standardised relative values is 

given in Table 8 and the diagram on 

normalised importance is given in Figure 9. 

 
Figure 9. Independent variable parameters chart-Left 
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Table 9. Independent variable importance-Left 

Direction Importance 
Normalised 

Importance 

Left 

Number of output tracks .111 13.0% 

Number of input tracks .007 0.8% 

Traffic light time (seconds) .031 3.6% 

Density (per min) .852 100.0% 

 

Table 10 and Figure 9 reveal density as the 

most important predictor of average wait 

time with 100% normalised importance. The 

number of output tracks was the next 

important factor with 13% normalised 

importance. The importance of the other two 

factors was less than 5%. 

 

4.8. Right direction 

 

 

Table 10. Parameter estimates of the intersection scenarios using ANN 

Direction-Right 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) 
Average wait time 

seconds 

Input Layer 

(Bias) 2.016  

[Number of output tracks=1.0] .478  

[Number of output tracks=2.0] 1.394  

[Number of input tracks=1.0] .766  

[Number of input tracks=2.0] 1.402  

Traffic light time seconds 1.445  

Density per min -2.182  

Hidden Layer 1 
(Bias)  2.117 

H(1:1)  -2.457 

 

There was only one hidden layer in this case. 

Positive associations for average wait time 

were obtained with four factors except for 

density. The highest two positive 

relationships were obtained for traffic light 

time (1.445) and the number of input tracks 

2.0 (1.402), closely followed by the number 

of output tracks of 2.0 (1.394). Density had 

the highest association, but in the negative 

direction (-2.182).  

The data on the relative importance and their 

normalised ranking are given in Table 11 

and Figure 10. 

 

Table 11. Independent variable importance-Right 

Direction Importance Normalised importance 

Right 

Number of output tracks .035 4.5% 

Number of input tracks .024 3.1% 

Traffic light time (seconds) .167 21.5% 

Density (per min) .774 100.0% 
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Figure 10. Independent variables parameters chart- Right. 

 

As both Table 11 and Figure 10 reveals, the 

importance of density was the maximum at 

100%, followed by traffic light times 

(21.5%). The importance of the other two 

variables was less than 5%. 

 

4.9. Up direction 

 

The ANN parameter estimates of the up 

direction are given in Table 10. 

There were four hidden layers. In the case of 

H (1:1), a positive association for average 

wait times was obtained with the number of 

output tracks 1.0 (0.213) and density (0.993). 

Negative relationships were obtained for the 

remaining four factors, the highest being for 

the number of output tracks 2.0 (-1.519) and 

the lowest for traffic light times (-0.312). 

The other two were in the range of -0.6 to -

0.7.  

In the case of H(1:2), the highest positive 

relationship was obtained for the number of 

input tracks 1.0 (0.709) and the values for 

the number of input tracks 1.0 and 2.0 were 

in the range of 0.5 to 0.6. The highest 

negative value was obtained for traffic light 

times (-0.494), followed by density (-0.269). 

The negative relationship for the number of 

output tracks 2.0 was negligible.  

In the case of H(1:3), there were four 

negative relationships and two positive 

relationships with average wait times. The 

highest two negative relationships were 

obtained for density (-0.498) and traffic light 

times (-0.436). The values for the number of 

output tracks 1.0 and 2.0 were -0.177 and -

0.183 respectively.  
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Table 12. Parameter estimates of the intersection scenarios using ANN 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) H(1:3) H(1:4) 
Average wait time 

seconds 

Input Layer 

(Bias) -1.323 .642 .680 -.277  

[Number of output 

tracks=1.0] 
.213 .571 -.177 -.089  

[Number of output 

tracks=2.0] 
-1.519 -.066 -.183 .313  

[Number of input 

tracks=1.0] 
-.613 .709 .108 -.257  

[Number of input 

tracks=2.0] 
-.685 .568 .336 -.192  

Traffic light time 

seconds 
-.312 -.494 -.436 .283  

Density per min .993 -.269 -.498 .917  

Hidden Layer 1 

(Bias)     1.234 

H(1:1)     1.981 

H(1:2)     1.048 

H(1:3)     -.208 

H(1:4)     .575 

 

In the case of (H1:4), the highest positive 

association with average wait time was 

obtained for density (0.917), followed by the 

number of output tracks 2.0 (0.313). The 

values for input tracks 1.0 and 2.0 ranged 

from about -0.2 to -0.25. The negative 

relationship for the number of output tracks 

1.0 was negligible.  

 

Table 13 and Figure 11 provide the relative 

importance of independent variables using 

standardised values across all four layers.  

As revealed by both Table 13 and Figure 11, 

100% importance was obtained for density, 

followed by the number of output tracks with 

15.1% and traffic light time with 12.4%. The 

number of input tracks had only 2.4% 

importance.

Table 13. Independent variable importance-Up 

Direction Importance Normalised importance 

Up 

Number of output tracks .117 15.1% 

Number of input tracks .018 2.4% 

Traffic light time (seconds) .095 12.4% 

Density (per min) .770 100.0% 
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Figure 11. Independent variables parameters chart-Up 

 

5. Discussion 
 

Overall, the findings show 100% importance 

for density to predict average wait times at 

intersections in all directions of traffic. Such 

a consistent pattern may not be very 

common in actual situations. The differences 

among the four directions were noted only in 

the case of the subsequent importance 

rankings. In the case of both down 

directions, the other two factors had 

negligible importance. In the case of both 

left and up directions, the number of output 

tracks had significant importance ranging 

from 13 to 15%. Traffic light times were 

significant and second importance for right 

(21.5%) and up (12.4%) directions.  

It is known that when vehicle density on the 

road increases, their speed is reduced 

delaying their arrival at the intersections. 

The effect of this on wait time at 

intersections depends on the number of 

vehicles, the number of input and output 

tracks, and traffic light times (if it is a 

traditional one). A significant reduction in 

wait times due to the use of a dynamic traffic 

light control system was reported by Chen, 

Chen, and Hsiungy (2016). Srivastava and 

Sudarshan (2013) analysed methods to build 

an intelligent system blending some of the 

existing technologies of traffic control 

thereby reducing the average waiting time of 

vehicles at intersections. The algorithms and 

models used were superior to the traditional 

methods in reducing the average wait times 

of vehicles at intersections and made the 

junction adaptive to the current density of 

traffic at the junction. Thus, vehicle density 

was used for adjusting the wait time 

automatically with an appropriate 

algorithmic model. In the studies of Patel 

and Ranganathan (2001), the average wait 
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time was reduced using an integrated system 

of ANN and expert systems fuzzy logic in 

which dynamic traffic light control was an 

important part. The average delay (wait 

time) and vehicle queue length (density) 

were reduced significantly by using a 

dynamic predictive control framework in the 

studies by Yao, Shen, Liu, Jiang, and Yang 

(2019). These findings support the negative 

effect of density on wait time obtained in 

this research.  

Liu and Zhang (2021) observed that the 

waiting time at an intersection is 

significantly associated with the final 

stopping location around the same time each 

day. In their study, the estimated and the 

actual waiting time compared well, when 

ANN models were used for the estimation of 

waiting time. It is known that waiting time 

mainly depends on the arrival time or the 

remaining time in a traffic light cycle. The 

ANN approach assumes that the vehicle’s 

location can be used for the estimation of the 

arrival time under a constant traffic volume 

(density) condition. Since the vehicle 

locations are heavily affected by the 

accumulated space between the vehicles, 

precise estimation of the waiting time is 

challenging. Some factors affecting the 

relationship between wait times and density 

can be understood from these results. 

According to Dogan, Akgungor, and Arslan 

(2016), ANN models have the potential to 

estimate the vehicle delay time (wait time) 

and the number of vehicle stops. There was a 

good agreement between the estimated and 

simulated values. One important aspect for 

the continuation of the present study is the 

comparison of predicted relationships and 

values with the actual field data. 

The capability of the Immune Network 

Algorithm-based Multi-Agent System 

(INAMAS) to predict vehicle queue length 

and wait times in different traffic scenarios 

was demonstrated by Darmoul, Elkosantini, 

Louati, and Said (2017). In this study, the 

different traffic scenarios are the traffic flow 

in the four directions.  

In the studies of Perez-Murueta, Gómez-

Espinosa, Cesar, and Gonzalez-Mendoza 

(2019), the use of platform continuous 

monitoring of the traffic flow situation in a 

specific geographic area led to a reduction in 

loss of travel time and wait time to provide a 

congestion detection and warning service. 

Deep neural networks can be used to obtain 

current traffic flow data if it is not already 

available with the existing system. Here, the 

deep neural network has been offered as a 

solution for the lack of historical data on the 

traffic in any specific geographical area.  

Traffic volume and wait times were reduced 

by using a two-dimensional self-organizing 

neural network traffic classifier and a 

Hopfield neural network, according to 

Kaedi, Movahhedinia, and Jamshidi (2008). 

A model generated by Benhamza and Seridi 

(2015) reduced congestion by maximising 

traffic flows and minimising wait times in 

the simulation studies. The only way to 

reduce congestion is to minimise wait times, 

which will also lead to increased traffic 

flows. This is the importance of the findings 

in the present study. 

 

6. Conclusion 
 

This research aimed to predict wait times 

using ANN as the method. Density was 

found to be the strongest predictor 

accounting for 100% importance among the 

variables tested. In some situations, traffic 

light times or the number of input or output 

tracks in some directions could also predict 

wait times to a lesser extent. 
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Apendix: 
 

 
Figure 4. The network diagram of the down intersection scenario 
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Figure 5. Network diagram of left intersection scenario 
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Figure 6. Network diagram of right intersection scenario 
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Figure 7. Network diagram of up intersection scenario 
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