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Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by
chronic anemia, intravascular hemolysis, and the occurrence of vaso-occlusive
crises due to the mechanical obstruction of the microcirculation by poorly
deformable red blood cells (RBCs). RBC deformability is a key factor in the
pathogenesis of SCD, and is affected by various factors. In this study, we
investigated the effects of adenylyl cyclase (AC) signaling pathway modulation
and different phosphodiesterase (PDE) modulatory molecules on the
deformability and mechanical stress responses of RBC from SCD patients
(HbSS genotype) by applying 5 Pa shear stress with an ektacytometer
(LORRCA). We evaluated RBC deformability before and after the application of
shear stress. AC stimulation with Forskolin had distinct effects on RBC
deformability depending on the application of 5 Pa shear stress. RBC
deformability was increased by Forskolin before shear stress application but
decreased after 5 Pa shear stress. AC inhibition with SQ22536 and protein
kinase A (PKA) inhibition with H89 increased RBC deformability before and
after the shear stress application. Non-selective PDE inhibition with
Pentoxifylline increased RBC deformability. However, modulation of the
different PDE types had distinct effects on RBC deformability, with
PDE1 inhibition by Vinpocetine increasing deformability while PDE4 inhibition
by Rolipram decreased RBC deformability after the shear stress application. The
effects of the drugs varied greatly between patients suggesting some could benefit
from one drug while others not. Developing drugs targeting the AC signaling
pathway could have clinical applications for SCD, but more researches with larger
patient cohorts are needed to identify the differences in the responses of
sickle RBCs.
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1 Introduction

Sickle cell disease (SCD) is an inherited hemoglobinopathy
characterized by a point mutation in the β-globin gene, resulting
in the production of an abnormal hemoglobin (HbS) (Piel et al.,
2017). The polymerization of HbS, which occurs in deoxygenated
conditions, causes a mechanical distortion of red blood cells (RBC)
resulting in a change of cell morphology into a sickle shape (Rees
et al., 2010; Connes et al., 2018). Repeated cycles of sickling and
unsickling may damage the RBC membrane, deteriorate
deformability, increase cell adhesiveness and ultimately lead to
vaso-occlusions, intravascular hemolysis, and chronic anemia
(Lamarre et al., 2012; Alapan et al., 2014; Connes et al., 2014;
Jang et al., 2021). Stiff and poorly deformable sickle RBCs have
detrimental effects on the microcirculation by being trapped in the
postcapillary venules and impairing blood flow, which may lead to
painful vaso-occlusive crises and organ damages (Eaton and
Hofrichter, 1987; Chiang and Frenette, 2005; Conran et al., 2009).

RBC deformability depends on intracellular viscosity, surface/
volume ratio, and the cytoskeletal interactions with the integral
membrane components, as well as ATP levels and redox state
(Huisjes et al., 2018; Kuck et al., 2020). ATP is an important
energy source for the proper function of ion channels and
essential for the intracellular ion balance to maintain cell
hydration (Chu et al., 2012; Leal Denis et al., 2016; Gallagher,
2017). Dehydration and reduced ATP levels have been reported
in RBCs from SCD patients (Gulley et al., 1982; Banerjee and
Kuypers, 2004, Sabina et al., 2009). The impaired production of
ATP in sickle RBCs could adversely affect AC signaling pathway.
The activation of signaling molecules and enzymes involved in
adenylyl cyclase (AC) pathway is dependent on the conversion of
ATP to cAMP. Several studies demonstrated a role of AC signaling
pathway in the regulation of the deformability of healthy RBCs
(Sprague et al., 2001; Muravyov et al., 2009; Muravyov and
Tikhomirova, 2013; Semenov et al., 2019). Indeed, ATP levels
could affect AC pathway, which may participate to the decrease
in RBC deformability in this disease. We have previously shown the
potential role of AC pathway for the modulation of RBC
deformability in SCD patients and demonstrated that the
inhibition of cAMP hydrolysis by phosphodiesterases increased
the deformability of RBCs from SCD patients (Ugurel et al., 2019).

Once the AC enzyme is activated by the G protein coupled
receptor (GPCR), it catalyzes the conversion of ATP to cAMP that
activates cAMP-dependent enzyme (Protein kinase A, PKA). The
signal transduction within the cell is carried out depending upon
enhanced cAMP levels, and the signal is terminated when cAMP is
converted to AMP by phosphodiesterases (PDE). Hence, PDEs
provide negative feedback for the signaling pathways. It has also
been shown in SCD mice model that activation of PKA through
stimulation of A2BR receptor with adenosine promotes cAMP
production, leading to RBC sickling (Zhang et al., 2011).
Significantly higher RBC cAMP levels have been reported in SCD
patients, and correlation with the frequency of painful vaso-
occlusive crises has been reported (Hines et al., 2003; Jit et al.,
2019). A reduction in cAMP level was also observed in sickle RBCs
during hydroxyurea treatment (Bartolucci et al., 2010), a treatment
that decrease the risk of vaso-occlusive crises and acute chest
syndrome in SCD. Six different PDE types (PDE1, PDE2A,

PDE3B, PDE4, PDE5, and PDE9A) have been identified in RBCs
to date and are important for the regulation of cAMP or cGMP
(Almeida et al., 2008; Adderley et al., 2010; Adderley et al., 2011),
however, their distinct roles in the regulation of RBC deformability
in SCD are unknown.

In the present study, we hypothesized that RBC deformability
from SCD patients is modulated by selective PDE types and AC
signaling pathway. We investigated the modulatory effects of AC,
PKA, and different PDE types on RBC deformability by incubating
SCD RBCs with selective stimulators and inhibitors. Moreover,
RBCs undergo various levels of shear stress in the blood
circulation that is fundamental for their ability to deform. Shear
stress at the physiological level regulates ATP release from RBCs and
calcium (Ca+2) influx within RBCs, the latter of which could directly
stimulate AC through Ca+2-calmodulin (Halls and Cooper, 2011;
Cinar et al., 2015; Danielczok et al., 2017). Indeed, we also exposed
RBCs from SCD patients to prolonged shear stress that is
physiologically relevant and evaluated mechanical stress
responses of RBCs by the changes in deformability, before and
after the application of shear stress and with or without drugs known
to modulate AC, PKA and PDE signaling pathways.

2 Materials and methods

2.1 Patients and controls

Homozygous SCD patients with HbSS genotype (n = 7) were
included in the study: age = 21.4 ± 16.5 years, HbF = 13.1 ± 6.6%,
HbS = 83.3 ± 6.0%, Hct = 24.5 ± 3.2%, RBC number = 2.85 ± 0.39
1012/L, MCHC = 347 ± 12.4 g/L, MCV = 87.4 ± 15.9 fl, all under
hydroxyurea therapy. The patients were diagnosed and followed at
the Sickle Cell Center of the Academic Hospital of Lyon. All patients
were at clinical steady state for at least 2 months prior to their
inclusion in the study (i.e., no acute episodes of infection, vaso-
occlusive crises, acute chest syndrome, stroke, priapism and no
blood transfusions in the preceding 3 months). Every donor gave
written informed consent before sampling. The study was conducted
in accordance with the guidelines set by the Declaration of Helsinki
and was approved by the Regional Ethics Committees (CPP Lyon-
Est, Hospices Civils de Lyon, L14-127).

2.2 Preparation of blood samples

Peripheral blood was withdrawn from antecubital vein of
each donor and taken into EDTA vacuum tubes (15 IU/ml).
Hematocrit was set to 40% for the experiments with autologous
plasma. Blood samples were treated with the stimulators or
inhibitors of the enzymes involved in the PKA pathway.
Forskolin (10 μM) and SQ22536 (100 μM) were used for the
stimulation and the inhibition of AC, respectively. H-89
(10 μM) and Pentoxifylline (10 μM) were used for the
inhibition of PKA and PDEs, respectively. For the selective
inhibition of PDEs, Vinpocetine (30 μM), Milrinone (20 μM),
and Rolipram (10 μM) were used to block the activities of PDE1,
PDE3, and PDE4, respectively. All chemical agents were
purchased from Sigma-Aldrich Co (MO, United States) and
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FIGURE 1
Effects of Forskolin on samples before and after shear stress. Changes in elongation index (EI) before continuous 5 Pa shear stress (A) and after
continuous 5 Pa shear stress (B), maximum elongation index (Elmax) (C), and the shear stress required to reach half of maximum elongation index (SS1/2)
(D) are shown. Elmax:SS1/2 is shown in (E). n = 7, ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 2
Effects of SQ22536 on samples before and after shear stress. Changes in elongation index (EI) before continuous 5 Pa shear stress (A) and after
continuous 5 Pa shear stress (B), maximum elongation index (Elmax) (C), and the shear stress required to reach half of maximum elongation index (SS1/2)
(D) are shown. Elmax:SS1/2 is shown in (E). n = 6, ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.
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incubated with blood samples at 37 C for 15 min, except
Vinpocetine which was incubated for 30 min. A vehicle
(DMSO or PBS) was prepared in the same volume (v/v) and
studied under the same conditions as a control. After the
incubation with the agents, whole blood samples were
measured directly. All experiments were performed within 4 h
after blood sampling.

2.3 Measurements of RBC deformability

RBC deformability was measured by ektacytometry, using the
laser-assisted optical rotational cell analyzer (LORRCA MaxSis,
Mechatronics, Netherlands) at 37°C. The laser integrated device
consists of a rotating and a static cylinder that generate shear
stresses. Briefly, 2.5 mL iso-osmolar polyvinylpyrrolidone (PVP)
solution (360 kDa, 29.9 ± 0.5 mPa s, Mechatronics, Netherlands)
was mixed with 12.5 uL of the blood sample and placed into the
measuring chamber between the two cylinders. RBC deformability
was measured by applying 9 different shear stresses (0.30, 0.57, 1.08,
2.04, 3.87, 7.34, 13.92, 26.38, and 50 Pa). A diffraction pattern of
RBCs was generated by the laser beam traversing the blood sample.
An Elongation Index (EI) was calculated from the diffraction pattern
collected by the camera of the LORRCA, which reflected RBC
deformability, such as: (A–B)/(A + B), with A and B
corresponding to the vertical and horizontal axis of a theoretical
ellipse fitting the diffraction pattern. The Lineweaver-Burke method
was used to calculate the maximum elongation index at infinite

shear stress (EImax) and the shear stress required to reach half of
this maximum elongation index (SS1/2) (Baskurt et al., 2009). In
order to normalize SS1/2, the ratio SS1/2/EImax was calculated
(Baskurt and Meiselman, 2013).

2.4 Application of prolonged shear stress to
blood samples

The effects of prolonged shear stress on the deformability of
RBCs treated or not with the different molecules used in this study,
were also investigated. Mixed PVP-RBC suspensions were exposed
to continuous shear stress of 5 Pa for 300 s using ektacytometry
(LORRCA MaxSis, Mechatronics, Hoorn, Netherlands).The shear
stress level at 5 Pa corresponds to a physiological shear stress level at
arterial walls (Papaioannou and Stefanadis, 2005). RBC
deformability was measured before and after the application of
shear stress. Data were recorded as curves of EI-shear stresses.

The following experimental procedure was conducted on blood
samples with or without chemical agents: (1) RBC suspensions were
used to evaluate RBC deformability before continuous shear stress
exposure between 0.3 and 50 Pa, (2) after the measurement has been
completed, the sample is aspirated from the gap and the cup is
cleaned before the replacement of the next sample, (3) the measuring
chamber was filled with new suspension, and 300 s of continuous
5 Pa shear stress were applied and, (4) RBC deformability was
measured again immediately following the end of the 5 Pa shear
stress exposure.

FIGURE 3
Effects of H-89 on samples before and after shear stress. Changes in elongation index (EI) before continuous 5 Pa shear stress (A) and after
continuous 5 Pa shear stress (B), maximum elongation index (Elmax) (C), and the shear stress required to reach half of maximum elongation index (SS1/2)
(D) are shown. Elmax:SS1/2 is shown in (E). n = 5, ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.
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2.5 Statistical analysis

Statistical analysis and data presentation using commercial
software were performed (Prism, GraphPad Sofware Inc.,
United States). The results are shown as a mean ± SD. Shapiro-
Wilk normality test was applied for all data sets whether they are
normally distributed. A non-parametric Wilcoxon test was
performed for the matched data sets which were not normally
distributed. Deformability measurements were evaluated before
and after shear stress application using a two-way ANOVA with
repeated measures followed by Bonferroni multiple comparisons
test. A p-value less than 0.05 was considered statistically significant.

3 Results

3.1 RBC deformability from SCD patients is
improved by the inhibition of adenylyl
cyclase and protein kinase A

Adenylyl cyclase (AC) stimulation by Forskolin exerted distinct
effects on RBC deformability depending on the application of the
constant shear stress of 5 Pa. Deformability was improved before the
continuous 5 Pa application by 3.7% but deteriorated after by 4.8%,
particularly at high shear stress levels (26.38 Pa and 50 Pa) (Figures
1A, B). Interestingly, EImax decreased with Forskolin treatment

before and after the 5 Pa application although SS1/2 and SS1/2:
EImax values did not change (Figures 1C–E). On the other hand, AC
inhibition by SQ22536 resulted in an increase of RBC deformability
by 8%–10% between 1.08 Pa and 50 Pa both before and after the
constant 5 Pa application (Figures 2A, B). SQ22536 increased EImax
values and decreased SS1/2 and SS1/2:EImax values, which indicates
a significant increase in RBC deformability (Figures 2C–E). The
inhibition of Protein kinase A (PKA) by H89 slightly increased RBC
deformability by 2.7% before the 5 Pa application but only at
13.92 Pa level (Figure 3A). After the 5 Pa application,
H89 increased RBC deformability between 2.04 Pa and 50 Pa
levels by 4% (Figure 3B). EImax values increased and SS1/2 and
SS1/2:EImax values decreased with H89 both before and after the
application of the continuous 5 Pa shear stress (Figures 3C–E).
These results support a modulatory effect of AC/PKA signaling
pathway on RBC deformability in SCD.

3.2 Different PDE types exert distinct effects
on sickle cell deformability

Non-selective inhibition of PDEs by Pentoxifylline resulted in an
increase of RBC deformability between 1.08 Pa and 50 Pa by 5.5%
before the 5 Pa application and between 1.08 Pa and 7.34 Pa after by
4.7% (Figures 4A, B). EImax did not change but SS1/2 and SS1/2:
EImax values significantly decreased with Pentoxifylline both before

FIGURE 4
Effects of Pentoxifylline on samples before and after shear stress. Changes in elongation index (EI) before continuous 5 Pa shear stress (A) and after
continuous 5 Pa shear stress (B), maximum elongation index (Elmax) (C), and the shear stress required to reach half of maximum elongation index (SS1/2)
(D) are shown. Elmax:SS1/2 is shown in (E). n = 6, ANOVA, *p < 0.05, **p < 0.01.
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and after the 5 Pa application (Figures 4C–E). We then investigated
the effects of the different types of PDEs on RBC deformability from
SCD patients. The inhibition of PDE1 by Vinpocetine significantly
increased EI values at high shear stresses (≥7.34 Pa) by 3% both
before and after the application of 5 Pa. The inhibition of PDE4 by
Rolipram also changed EI values at high shear stresses (≥13.92 Pa).
However, Rolipram increased deformability before the 5 Pa
application by 4.5% and decreased it after by 6.5% (Figures 5A,
B; Figures 6A, B). Vinpocetine decreased SS1/2:EImax ratio but did
not change EImax and SS1/2 values (Figures 5C–E). On the
contrary, Rolipram did not change SS1/2 and SS1/2:EImax but
decreased EImax values both before and after the application of
5 Pa (Figures 6C–E). The inhibition of PDE3 by Milrinone did not
significantly affect RBC deformability (data not shown). Figure 7
shows the changes in RBC deformability obtained with the different
drugs, before and after the 5 Pa shear stress application, for one SCD
patient.

4 Discussion

The salient findings in the present study demonstrate the
beneficial effects of the inhibitors of adenylyl cyclase (AC)/
Protein kinase A (PKA) signaling pathway on the deformability
of RBCs from SCD patients. The inhibition of AC and PKA
increased RBC deformability before the application of shear

stress, while the stimulation of AC decreased it after the 5 Pa
shear stress application. To our knowledge, this is the first study
investigating the effects of different PDE families on mechanical
stress responses of sickle RBCs. Non-selective phosphodiesterase
(PDE) inhibition increased RBC deformability. However, blocking
particular PDE families produced divergent results showing that the
function of the different PDEs is variable in RBCs from SCD
patients.

In SCD, RBC ATP level is reduced, and ATP depletion is
associated with increased number of irreversibly sickled RBCs
(Jensen et al., 1973; Banerjee and Kuypers, 2004). RBCs are
known to release ATP in a response to mechanical stress.
Inactivation of AC/PKA signaling pathway attenuates ATP
release and improves mechanical stress responses of RBC by
increasing deformability (Sprague et al., 2001). Therefore, one
may suggest that PKA inhibition could be beneficial for the
rheological properties of sickle RBCs. Since PKA activity is
dependent on cAMP levels, AC activity is also important for
PKA-dependent processes by the conversion of AMP to cAMP.
Sickle RBCs are known to contain more than 4-fold cAMP levels
compared to healthy RBCs (Hines et al., 2003). The stimulation of
AC by Forskolin has been shown to further increase cAMP levels in
sickle RBCs, which resulted in increased adhesiveness to laminin
(Hines et al., 2003). Our results in the present study demonstrate
that AC stimulation by Forskolin lead to a reduction of RBC
deformability, plausibly by the enhancement of cAMP levels.

FIGURE 5
Effects of Vinpocetine on samples before and after shear stress. Changes in elongation index (EI) before continuous 5 Pa shear stress (A) and after
continuous 5 Pa shear stress (B), maximum elongation index (Elmax) (C), and the shear stress required to reach half of maximum elongation index (SS1/2)
(D) are shown. Elmax:SS1/2 is shown in (E). n = 6, ANOVA, *p < 0.05, **p < 0.01.
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Interestingly, few studies showed that Forskolin increased
deformability of healthy RBCs (Muravyov et al., 2009; Muravyov
and Tikhomirova, 2013). However, Semenov et al. (2019)
demonstrated that the improvement of RBC deformability by
Forskolin would be dependent on both the dosage of the drug
and the level of shear stress. Similarly, we showed that Forskolin
increased RBC deformability before the implementation of constant
shear stress; however, RBC deformability was decreased after the
5 Pa application. Physiologically relevant shear stress increases
deformability in healthy RBCs (Meram et al., 2013). The
impairment of RBC deformability by Forskolin after 5 Pa
application in SCD patients could be explained by the calcium
influx through shear stress sensing mechanisms that could stimulate
AC and lead to the elevation of intracellular cAMP levels (Figure 8).
Several nonselective cationic ion channels are present at the
membrane of RBCs and can be activated by shear stress,
resulting in increased Ca2+ influx (Kaestner et al., 2020; Egée and
Kaestner, 2021; Nader et al., 2023). The decrease of RBC
deformability through AC stimulation was well observed at high
shear stresses suggesting that the effect of Forskolin is shear stress
dependent.

The inhibition of AC and PKA by SQ22536 and H89,
respectively, significantly increased RBC deformability of SCD
patients. The improving effects of H89 and SQ22536 on RBC
deformability were more pronounced than the effects of

Forskolin, which can be observed in SS1/2, EImax, and SS1/2:EImax

parameters. The SS1/2 parameter provides a global index of RBC
deformability, while EImax indicates the limiting elongation index at
infinite shear stress (Baskurt et al., 2009). EImax may be affected by
cell shape and membrane properties, however, this parameter is not
impacted by cytoplasmic viscosity (Baskurt et al., 2009). A reduced
SS1/2 often indicates improved RBC deformability, however, this
might also be related to a reduced EImax. Therefore, SS1/2:EImax ratio
should be considered and reflects the dependence of EI on SS
independent of EImax alterations (Baskurt and Meiselman, 2013).
In our previous study, we also showed that the inhibition of AC/
PKA signaling pathway resulted in a rise of RBC deformability in
SCD patients (Ugurel et al., 2019). AC inhibition reduces cAMP
levels and suppresses PKA activation. PKA targets several
membrane proteins and regulates the activities of ion channels.
PKA phosphorylates dematin, Protein 4.1 and adducin in RBC
membrane that promotes the dissociation of the spectrin network
and reduces membrane stability (Cohen and Gascard, 1992;
Koshino et al., 2012; Chen et al., 2013). PKA also targets CFTR
channel in RBC and regulates Cl efflux (Decherf et al., 2007). This
mechanism could affect cell volume with a significant impact on
RBC deformability. On the other hand, the enhancement of AC/
PKA signaling increases the adhesion of sickle RBCs to endothelium
through Lu/BCAM adhesion molecule (Zennadi et al., 2004;
Gauthier et al., 2005). Abnormal adherence of sickle RBCs to

FIGURE 6
Effects of Rolipram on samples before and after shear stress. Changes in elongation index (EI) before continuous 5 Pa shear stress (A) and after
continuous 5 Pa shear stress (B), maximum elongation index (Elmax) (C), and the shear stress required to reach half of maximum elongation index (SS1/2)
(D) are shown. Elmax:SS1/2 is shown in (E). n = 7, ANOVA and Wilcoxon for EImax data, *p < 0.05, **p < 0.01, ***p < 0.001.
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endothelial cells was postulated to be important in the initiation and
progression of vaso-occlusive crises (Hebbel, 1997; Kaul and Fabry,
2004). AC/PKA signaling pathway also activates ERK1/2 signaling
molecule, which phosphorylates ICAM-4 adhesion receptor on
RBCs and promotes sickle cell adhesion (Zennadi et al., 2012).
This mechanism of action could be reversed by blocking AC or PKA
activities that suppresses sickle RBC adhesion to the endothelium
(Zennadi et al., 2012).

AC induced synthesis of cAMP requires the stimulation of G
protein coupled receptors (GPCR) which includes β2-adrenergic
receptors (βAR) and prostacyclin receptors (IPR) in RBCs (Sprague
et al., 2008). Intracellular signal transduction is mediated by
increased levels of cAMP, which is then carried out by PKA
(Figure 8). However, the signal can be attenuated due to the
hydrolysis of cAMP by phosphodiesterases (PDEs) (Baillie, 2009).
Although 11 different PDE families are present in various cell types,
only 6 of them (PDE1, 2, 3, 4, 5, and 9) are defined in mature RBCs
or erythroid precursors (Almeida et al., 2008; Adderley et al., 2011).
Non-selective inhibition of PDE by Pentoxifylline in the present
study significantly increased the deformability of RBCs from SCD
patients, both before and after the application of a constant shear
stress for prolonged time, which confirms previous findings (Ugurel

et al., 2019) but contrast with another study (Cummings and Ballas,
1990). A previous case report in the late seventies showed that
Pentoxifylline treatment in a patient with SCD and frequent vaso-
occlusive crises improved RBC deformability and decreased blood
viscosity (Keller and Leonhardt, 1979). A recent study demonstrated
that the elastic modulus of RBC was decreased by Pentoxifylline
treatment in vivo, which improved blood flow in subjects with
cerebrovascular and peripheral arterial diseases (Aifantis et al.,
2019). Pentoxifylline is postulated to increase intracellular ATP
concentrations, decrease Ca2+ concentrations by activation of the
Ca2+—Mg2+ ATPase and calmodulin, and increase the
phosphorylation of proteins into the RBC membrane (Schubotz
and Mühlfellner, 1977; Aifantis et al., 2019), which could increase
RBC deformability. We previously demonstrated that tyrosine
phosphorylation of membrane proteins was increased by the
application of Pentoxifylline in vitro and was accompanied by an
increase of RBC deformability in healthy donors (Ugurel et al.,
2022). However, several clinical trials conducted in SCD did not
demonstrate any clinical improvement induced by Pentoxifylline, as
a preventive molecule, in patients with frequent vaso-occlusive crises
(Sherer and Glover, 2000). In contrast, a study demonstrated that
the use of Pentoxifylline during the acute phase of vaso-occlusive

FIGURE 7
Representative figure of the effects of Forskolin, SQ, H-89, Pentoxifylline, Vinpocetine, Milrinone, and Rolipram on a blood sample collected from a
patient with sickle cell disease.
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crisis could be helpful for faster recovery (Poflee et al., 1991).
Nevertheless, its clinical impact seems to be rather limited
(Sherer and Glover, 2000).

According to the present study, the inhibition of PDE1 by
Vinpocetine significantly increased RBC deformability of SCD
patients. Vinpocetine was previously shown to improve RBC
deformability in healthy subjects and stroke patients (Hayakawa,
1992; Muravyov and Tikhomirova, 2015). This selective inhibitor of
PDE1 has no effect on the increase of cAMP in either βAR or IPR
pathway suggesting that PDE1 is involved in hydrolysis of cGMP in
RBCs (Adderley et al., 2009). The improvement of RBC
deformability from SCD patients by PDE1 inhibition could be
explained by the elevation of intracellular cGMP levels.
PDE4 inhibition by Rolipram decreased RBC deformability from
SCD patients. The alterations seem to be more pronounced after the
5 Pa application showing that mechanical stress responses of sickle
RBCs are deteriorated by PDE4 inhibition. PDE4 is known to be
responsible for hydrolyzing cAMP in healthy RBCs. The selective
inhibition of PDE4 by Rolipram increased cAMP levels in RBCs with
the stimulation of adrenergic pathway by isoproterenol (Adderley
et al., 2009). Rolipram was shown to increase the deformability in
healthy RBCs (Muravyov and Tikhomirova, 2015), however we have
demonstrated that this drug decreased RBC deformability from SCD
patients, particularly at high shear stress. We suspect that the
responses of sickle RBCs to mechanical stress would be altered
due to the impairment in cAMP signaling. Furthermore, prolonged
hypoxia in transgenic SCD mice increased PDE4 levels in lung
tissue, which was reversed by Rolipram, preventing the development

of pulmonary arterial hypertension (De Franceschi et al., 2008).
Rolipramwas also shown to reduce ischemic/reperfusion liver injury
in transgenic SCD mice most likely by inducing over-expression of
Nos3 and reducing vascular activation (Filippini et al., 2008).
Although these studies revealed the protective effects of
PDE4 inhibition for ischemic injury and hypertension in a SCD
model, they did not investigate the efficacy of PDE4 on sickle RBCs.
Another PDE family investigated in the present study was PDE3,
which hydrolyzes both cAMP and cGMP in a complex manner. The
hydrolysis of cGMP by PDE3 can inhibit the hydrolysis of cAMP in
various cell types (Degerman et al., 1997; Bender and Beavo, 2006).
PDE3 inhibition in RBC had no effect on cAMP levels stimulated by
βAR, however PDE3 selectively regulates cAMP synthesis when
stimulated by IPR signaling (Hanson et al., 2008; Adderley et al.,
2009). We did not initially stimulate βAR or IPR pathways; however,
we studied the effects of PDE3 inhibition on sickle RBCs in native
conditions. Accordingly, the inhibition of PDE3 by Milrinone did
not significantly alter RBC deformability in SCD patients suggesting
sickle RBC deformability is not modulated in an IPR dependent way.

5 Conclusion

Although our study showed an effect of most of the drugs used
on RBC deformability from SCD patients, the potential clinical
relevance is unknown. Most of the changes observed in RBC
deformability are rather small in comparison with the effects of
other drugs currently used in the context of SCD, such as

FIGURE 8
A schematic view of Adenylyl cyclase (AC) signaling pathway and the effects of shear stress in red blood cells. Shear stress could activate some non-
selective cation channels which causes calcium (Ca+2) entry. Ca+2 ions bind Calmodulin (CaM) and activate membrane bound AC which is also activated
by β2 adrenergic receptors (βAR) and prostacyclin receptors (IPR). AC catalyzes the conversion of adenosine monophosphate (AMP) to cyclic adenosine
monophosphate (Chu et al.) that activates Protein kinase A (PKA). Phosphodiesterases (PDE) facilitate the conversion of cAMP to AMP or cyclic
guanosine monophosphate (cGMP) to guanosine monophosphate (GMP).
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Hydroxyurea (Charache et al., 1995; Lemonne et al., 2015) or
Voxelotor (Dufu et al., 2018; Migotsky et al., 2022), and where
clinical benefits have been reported. The only change we noted,
which seems to be physiologically relevant, is the decrease of RBC
deformability observed when stimulating AC with Forskolin and
blocking PDE4 by Rolipram. Following the application of prolonged
shear stress, both drugs reduced the RBC deformability of SCD
patients, indicating that the effects of these two compounds might be
shear-dependent. However, the results from the present study are
preliminary and limited to a small sample size: further studies are
needed with a larger group of patients to identify the factors that
could be involved in the variability of the responses. Developing
drugs targeting the AC signaling pathway mediated by βAR
receptors could have potential clinical application but further
studies are needed. Nevertheless, the Figure 7 shows the example
of a patient with SCD whose in-vitro responses to most of the drugs
were highly significant from a physiological/rheological point of
view, suggesting that the effects of the different drugs tested in the
present study are highly variable from one patient to another and
that some patients could benefit from one drug while other not.
Differential responses of sickle RBCs might be due to variable
expression levels of PDEs in each patient, as well. Our next
studies will include the quantification of PDEs in RBC samples
from SCD patients. Further large in-vitro studies are needed to
identify why some sickle RBCs could respond more than others.
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