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SI-Lab in a nutshell
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Al for Health and Well-Being @Sl-Lab

* Quantitative radiology
* Radiomics
* Precision Radiology
* Deep Ensembling
* Unobtrusive monitoring & physiological computing
* Al-powered smart devices for risk prediction
* Smart cameras for ambient assisted living
* Event-based signal processing of EEG and brain complexity
* Infrared imaging and thermography

* Topological Data Analysis

* Interactive systems for training and rehab




Al in quantitative radiology: radiomics and deep radiomics

* Support radiologists’ work by quantifying information relevant for diagnosis (e.g., extracting relevant biomarkers)

Deep Radiomics workflow
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Precision radiology

e Attention-based deep neural networks

Prostate Cancer Aggressiveness based on MRI

85 cases — 100 lesions on MRI scans

Deep Radiomics models
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COVID-19 and Usual Interstitial Pneumoniae pattern
segmentation and quantification
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Deep Ensembling for lung ultrasound classification
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Bruno, A., Ignesti, G., Salvetti, O., Moroni, D., & Martinelli, M. (2023). Efficient Lung Ultrasound Classification. Bioengineering, 10(5), 555.
Bruno, A., Moroni, D., & Martinelli, M. (2023). Efficient adaptive ensembling for image classification. Expert Systems, 1-12. https://doi.org/10.1111/exsy.13424

1)




Deep Learning Approach to Human Osteosarcoma Cell Detection & Classification

Osteosarcoma aggressive malignant neoplasm of bones

Different cell populations were cultured on glass slides:
i) Undifferentiated Mesenchimal Stromal Cells (MSC)

ii) Osteosarcoma cells. MG-63 (human osteosarcoma cell line ATCC CRL-1427)

iii) Mixed cancer and normal cells T | cancersex
‘*,-‘ \% %6 . . \" o1 4 y2rtifact: 98%. 7
Images recorded with an optical microscope T SN 4
DL applied to identify and classify single cells: (o TR it 9
trained a Faster R-CNN B A ek e
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cancer'_clu;tert 99% 820 "’,,J ; cancer: 73%
Training / Validation: 80% / 20% BT 5 i A
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classification accuracy of 0.97 Lo e
A
@ D’Acunto, M., Martinelli, M., & Moroni, D. (2019). From human mesenchymal stromal cells to osteosarcoma cells classification by deep learning. Journal of

Intelligent & Fuzzy Systems, 37(6), 7199-7206.
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Imaging research environments and bio-banks
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Al-powered smart devices for risk prediction

Real use case: SEMEOTICONS
Objective:

* Prevention of cardio-metabolic diseases (CMD)

* Evaluation of vital signs from face analysis

* Sensorised mirror easily fitting daily life routines
* Personalised guidance with an empathic assistant

https://www.youtube.com/watch?v=0UWGg2Hsu6l
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@ Giorgi, D., Bastiani, L., Morales, M. A,, Pascali, M. A., Colantonio, S., & Coppini, G. (2022). Cardio-metabolic risk modeling and assessment through sensor-based m
measurements. International Journal of Medical Informatics, 165, 104823. -




Smart cameras for ambient assisted living

A smart camera is a camera equipped with an Al component.

It can be regarded as a smart sensors in the loT perspective

Advantages:

Distributed visual intelligence

Pervasive approach

Robustness & fault tolerance

< e People identification & re-
- U - identification
Autonomy Where are N @

Adaptability / Extensibility R

) @ Object detection
* New Al component can be developed for custom visud|
tasks

* Deep learning - Machine learning approach

Activity recognition for context-
aware applications

Experience:
* Technology tested in smart cities project in indoor and

outdoor scenarios in surveillance and urban mobility

Anomalous event
detection
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Event-based signal processing of EEG and brain complexity

e Brain waveforms ==) Brain events

e Events: birth-death of self-organized states
(coherent/synchronized states)

Potential applications to disorders of consciousness
and
e neurological diseases

t (ms) 1 r
@ @ Paradisi, P., & Allegrini, P. (2017). Intermittency-driven complexity in signal processing. Complexity and nonlinearity in cardiovascular signals, 161-195. u




Learning in bio-inspired neural network models

* A modeling/theoretical study: from single neurons to neural
populations (analogy with local field potential)

* Role of network topology on the complexity of the neural system
[self-organization features]

* Evolution of complexity features during learning

* Application to biomedical signal processing (EEG)

* Project “Future Artificial Intelligence Research” (FAIR), [funded by National Recovery and Resilience Plan]

* Research Task: Self-organization and complexity in bio-inspired models of neural networks during
learning processes

@e




Al & computer vision for Infrared imaging and thermography in biomedical applications

* Image processing and computer vision methods for
infrared image analysis

1. Forehead
* Response to physiological stimuli 2. Nasal Septum
* Stress analysis and physiological computing e
 Noninvasive contactless measurement 6. Right Chesk
* HR analysis and Heart Rate Variability (Near-infrared) S

9. Left Maxillary
10. Right Maxillary
11. Left Forehead
12. Right Forehead
13. Left Chin

14. Right Chin

* Applications to:
e Obesity
* Anorexia Nervosa and Horticultural Therapy
* Generative art

e S s B i B

Healthy control
Jalil, B., Hartwig, V., Moroni, D., Salvetti, O., Benassi, A., Jalil, Z., ... & Guiducci, L. (2019). A pilot study of infrared thermography based assessment of local skin temperature response in overweight and lean

women during oral glucose tolerance test. Journal of Clinical Medicine, 8(2), 260.
(‘r | @ Curzio, O., Billeci, L., Belmonti, V., Colantonio, S., Cotrozzi, L., De Pasquale, C. F., ... & Maestro, S. (2022). Horticultural Therapy May Reduce Psychological and Physiological Stress in Adolescents with I l
Anorexia Nervosa: A Pilot Study. Nutrients, 14(24), 5198. a




Topological Data Analysis (TDA) & Machine Learning for Health and Well Being

* Topological Data Analysis (a mathematical theory) provides tools
for gaining insigth into topological and geometric structure of

patterns -
* Computable, multiscale and informative feature . )
* It can be thought informally as a (powerful) generalization of the s
number of connected components, loops and voids (Betti numbers)
* Our research themes: &

* Interplay of TDA with Machine Leaning

* Provide trainable topological layers to allow neural
networks to deal with topological information v

* Understanding deep learning with TDA-based approaches

. Ap|olications: image processing, statistical shape R
analysis, time series, finance, protein folding, sensor 1 2.

coverage.... 1% @ e

* 3D faces and correlation with obesity [GPH+2017] T @ | Elj

* Raman spectra classification | I _ —

* Chondrosarcoma grading (histology) [Sci.Rep.2023] (1-homology, Euclidean itztion)  (1-homology, Euclidean filtration)

* Alzheimer disease detection (cerebrospinal fluid) - ot
[AITA2023] -
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Moroni, D., & Pascali, M. A. (2021). Learning topology: bridging computational topology and machine learning. Pattern Recognition and Image
(1[' | Analysis, 31(3), 443-453.




Assistive tecnologies for physical and cognitive training

EEG Headset ﬁ

Kinect
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Data collection platform -
-,

Microsoft Kinect
Gesture and movement monitoring — whole body
and hands

I
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Tailored physical
activity

guided and monitored
automatically

Exergame with gestural
control:

«choose the tail
corresponding to the
sound»

Attention tests
(ANT) based on gestural
control, integrated with
EEG monitoring

Exergame with gestural
control:

«join the dots to
disclose the picture»
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Track-Hold: Al-powered system for neuromotor rehabilitation based on a passive robotic aid

15 million people are affected by cardiovascular pathologies 10-20% of the cases had X
experience of cerebrovascular disease or cerebral stroke (stroke = 2nd cause of mortality) @ @
The physiological presupposition of neurorehabilitation is represented by the phenomenon of

Neuroplasticity and the consequent learning and motor control process:
the ability of the brain to modify its structure and functions according to the activities of its

neurons, related for example to somato-sensory stimuli.

Track-Hold (by Wearable Robotics) is a passive robotic arm  Exercises are dictated by a functional basis. Daily life movements,

designed to record the movements of the upper limbs of performed by manipulating the device, are broken down into sub-

human beings: movements, which consist in reaching a keypoint characterized by a

* Execution of exercises in a “weightless” mode precise angle and 3D position.

°@Durely neurological exercise * Data analysis & intelligent services for performance evaluation
@ Righi, M., Magrini, M., Dolciotti, C., & Moroni, D. (2022). A case study of upper limb robotic-assisted therapy using the track-hold device. Sensors, 22(3), 1009.
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