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Abstract: Water utilities are urged to decrease their real water losses, not only to reduce costs but also to assure long-term sustainability.
Hardware- and software-based techniques have been broadly used to locate leaks; within the latter, previous works that have used data-driven
models mostly focused on single leaks. This paper presents a methodology to locate multiple leaks in water distribution networks employing
pressure residuals. It consists of two phases: one is to produce training data for the data-driven model and cluster the nodes based on their
leak-flow-rate-independent signatures using an adapted hierarchical agglomerative algorithm; the second is to locate the leaks using a
top-down approach. To identify the leaking clusters and nodes, we employed a custom-built k-nearest neighbor (k-NN) algorithm that com-
pares the test instances with the generated training data. This instance-to-instance comparison requires substantial computational resources for
classification, which was overcome by the use of high-performance computing. The methodology was applied to a real network located in a
European town, comprising 144 nodes and a total length of pipes of 24 km. Although its multiple inlets add redundancy to the network
increasing the challenge of leak location, the method proved to obtain acceptable results to guide the field pinpointing activities. Nearly 70%
of the areas determined by the clusters were identified with an accuracy of over 90% for leak flows above 3.0 L=s, and the leaking nodes were
accurately detected over 50% of the time for leak flows above 4.0 L=s. DOI: 10.1061/JWRMD5.WRENG-6005. This work is made avail-
able under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

The demand for water is continuously rising, triggered mainly by
the accelerated growth of the population, economic development,
and changes in consumption habits (UN 2021). Food production,
energy generation, industrial use, and human consumption are
water uses directly linked to population growth. According to the
UN (2019), the world population is expected to reach 8.5 billion
people by 2030 and 9.7 billion people by 2050, resulting in a
20%–30% increase in water demand by that time. Although de-
mand is increasing, the availability of fresh water is diminishing,
triggering an expected global water deficit of 40% by 2030 (UN

2021). In this regard, reducing demand in all water-related sectors
is one option to lessen this misbalance.

Real or technical water losses directly impact water utilities
and have a substantial effect on total demand. These losses include
leakage from pipelines, service connections, and storage tanks.
They have many negative consequences for water distribution net-
works (WDN), including difficulties in ensuring service cover-
age and intermittent conditions that can lead to low pressures
and pollution intrusion (Baader et al. 2011; Erickson et al. 2017).
Furthermore, water leaks can cause soil fluidization around leak-
ing pipes, which can not only damage nearby infrastructure but
also trigger anticipated investments for asset renovation, replace-
ment, and expansion of current systems (Beal and Flynn 2014).
Moreover, real losses also impact operative costs such as treatment
supplies, energy, and exploitation (Baader et al. 2011). Several
countries have reported significant proportions of real losses com-
pared with their net water production, such as Mexico (40% to
60%), Scotland (38%), Brazil (36%), and Italy (27%) (OECD
2016). These figures highlight both an opportunity to alleviate
water stress in urban settings and an urgent necessity to reduce
water losses.

Unattended leaks may enlarge in time, compounding the afore-
mentioned impacts. Hence, water utilities are increasingly cogni-
zant of the importance of responding quickly and effectively to
reported leaks and incorporating proactive strategies to detect and
locate hidden leaks. In this line, extensive research has been con-
ducted involving leak location and awareness (Li et al. 2015; Puust
et al. 2010; Wu and Liu 2017).

Leak location methods are classified into hardware- and
software-based (Ayadi et al. 2022; Li et al. 2015; Valizadeh et al.
2009). Hardware-based methods include acoustic and nonacoustic
techniques. The former rely on detecting leaks by the noise char-
acteristics they produce; they may require extensive planning plus a
long number of preprepared locations for installing the sensors and
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may not perform well in plastic pipes (Puust et al. 2010), which are
increasingly common. The latter, such as ground-penetrating radar
and tracer gas, are frequently used in intermittent-supply networks,
low-pressure systems, or leakages that are difficult to locate with
acoustic methods (Baader et al. 2011). However, the drawbacks of
nonacoustic techniques include their reliance on the need for highly
experienced personnel, eventually specialized contractors, and the
associated high cost.

Software-based methods aim to reduce the time to locate and
repair leaks. According to Li et al. (2015), they are divided into
numerical-methods-based and data-driven approaches. Numerical
methods include traditional and transient-based hydraulic models
(Kapelan et al. 2003). Data-driven techniques rely on massive data
gathering to perform statistical analysis, pattern recognition and
signal processing, with the limited need for further knowledge
from the physical system (Chan et al. 2018; Wu and Liu 2017).
Mathematical physically based models and real-time data have
been increasingly incorporated into data-driven approaches (Van
Der Walt et al. 2019). However, these models are occasionally em-
ployed merely to produce data that will feed the data-driven model
without further feedback from the real water network to assist the
data-driven model or evaluate its results.

Research in this field has mainly been focused on locating single
leaks (Candelieri et al. 2014b; Casillas et al. 2013; Ferrandez-
Gamot et al. 2015; Perez et al. 2011; Quevedo et al. 2011;
Quiñones-Grueiro et al. 2018, 2021), so further steps need to be
undertaken to develop methods able to locate multiple leaks.
Recently, Wang et al. (2022) suggested a deep learning method to
locate bursts in WDNs using model simulations of single leaks as
training data sets. Although the method estimated the probability of
a burst occurring in each pipe, the authors suggested that multiple
leaks location can be estimated by aggregating single pipes with
high probability leak. Although this is a valid first attempt to
describe an area of potential bursts, stronger conclusions can be
achieved if the training set contains multiple leaks and if more than
one burst event per pipe are simulated. It can also be noted that the
use of extremely high flow rates for leaks (5–100 L=s) favored the
accuracy of the results.

Approaching leak location as an inverse problem, Pudar and
Liggett (1992) proposed a sensitivity matrix considering that the
variation in pressure in each point of the WDN is closely related
to the location and magnitude of a leak. The sensitivity matrix S
contains the pressure variation in a measuring nodeM due to a leak
from an orifice of an area A in a node J, as shown in Eq. (1)

S ¼

2
6666664

∂p1

∂A1

· · ·
∂p1

∂AJ

..

. . .
. ..

.

∂pM

∂A1

· · ·
∂pM

∂AJ

3
7777775

ð1Þ

Perez et al. (2011) used the concept of pressure residual as the
difference in pressure between a leak scenario and the faultless
model due to a change in demand or, specifically, a leak. They used
a transposed version of the sensitivity matrix, employing flow rates
instead of orifice areas. They normalized the residuals and com-
pared them with a previously set threshold, creating a binarized
sensitivity matrix that indicates whether the leak affects or not
the correspondent sensor node. Quevedo et al. (2011), Meseguer
et al. (2014), and Perez et al. (2014) acknowledged that binar-
izing the sensitivity matrix implies a certain loss of information.
They chose to use the entire data set avoiding the accuracy depend-
ence on the selected threshold. Quevedo et al. (2011) used the

correlation function between the observed residual vector and
all vectors included in the matrix. The highest of the correlation
coefficients points to the leaking node.

Casillas et al. (2013) replicated the normalized sensitivity matrix
concept by applying five methods for leak location: binarization,
Euclidian distance, correlation, angle comparison, and least-square
optimization. The best results were obtained for the latter two.
However, the study did not assess whether the proposed sensitivity
matrix varies with different leak flow rates.

Candelieri et al. (2014b) developed two case studies in Italy
and Romania, simulating scenarios with one leak each, varying the
flow rate. They used pressure and flow residuals as inputs for spec-
tral clustering algorithms (k-means, farthest-first, and partitioning
around medoids) and non-network-based clustering algorithms
(k-means and farthest-first) to group similar instances. The clus-
tering process was evaluated using a measure called “localization
index” (Candelieri et al. 2014a). After clustering, a support vec-
tor machine was employed as a machine learning algorithm to
associate a new instance with a leaking cluster. Those authors
concluded that spectral clustering is highly efficient but compu-
tationally demanding, making it less suitable for large-scale
problems.

Soldevila et al. (2016) recognized that pressure residual vectors
for many nodes could be very similar, hence, practically indistin-
guishable. To solve this issue, they grouped nodes with similar sig-
natures in a composed class. Then they used the k-nearest neighbor
(k-NN) algorithm for classification purposes. The authors applied
their methodology in the Hanoi district metered area (DMA) net-
work for three leak scenarios covering 24 h, aiming to smooth the
effect of uncertainty.

A summary of the main aspects considered in the existing
literature involving pressure residuals is presented in Table 1, iden-
tifying the number of modeled leaks, the simulation period
employed, the performance assessment strategy, and the computa-
tional implications.

Several gaps have been identified in previous works. First, most
of them focused on methods to locate a unique leak, disregarding
the most common situation of leaks occurring simultaneously at
different locations. Second, the performance of the leak location
methodologies was assessed using a limited assortment of magni-
tudes. Third, numerous cases analyzed data from selected, limited
time steps instead of considering multiple time steps. Finally, leaks
that are large enough to be visible were commonly used in the re-
ported methods, in consequence, there is a lack of evaluation of the
location’s performance in case of smaller leaks.

This paper addresses these gaps by proposing a methodology
to locate multiple leaks using a comprehensive number of leak
scenarios varying leaks in space and magnitude, and including
24 hourly time steps. It combines physically based and data-driven
models as a follow-up to a previous single-leak location method
(Corzo et al., unpublished data, 2022). The hydraulic model not
only generates training data for the data-driven model, but it also
ensures that hydraulic processes are considered by the latter. In this
manner, the classification and clustering algorithms are enlarged
with data preprocessing to capture the physics underpinning the
real system (thus making this approach hybrid, that can be attrib-
uted to physically aware data-driven model). The computational
effort of analyzing multiple leaks implies the use of high-
performance computing (HPC).

The paper is structured as follows: first, the “Methodology and
Tools” section describes the proposed two-phase methodology and
the means employed. Following, the study case is presented,
and the experimental setup is described. Then, the results of apply-
ing the methodology are depicted, followed by the “Discussion”
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Table 1. Summary of previous research using pressure residuals to locate leaks

References Leak type Position Simulation period Performance assessment Computational implications Assessed variable

Perez et al. (2011) Single Nodes Minimum flow
regime

No distinction regarding leak
magnitudes

No reference to massive runs Pressure

Quevedo et al. (2011) Single Nodes One time step Performance is assessed
considering one leak in one node,
although it is mentioned that more
leaks were used

No reference to massive runs Pressure

Casillas et al. (2013) Single Nodes 24 h Assessment of different metrics for
many leak rates. No analysis of
accuracy variation with the leak
flow rate

No reference to massive runs Pressure

Candelieri et al.
(2014b)

Single Pipes Not specified General assessment of all test data
sets. Ten not-specified leak
magnitudes

29,800 scenarios (Abbiategrasso)
and 3,150 (Neptun)

Flow and pressure

Perez et al. (2014) Single Nodes Individual results for
multiple time steps

Referred to one leak in one node No reference to massive runs Pressure

Ferrandez-Gamot et al.
(2015)

Single Nodes Not specified No distinction regarding leak
magnitudes

155 runs from five leak magnitudes
and 31 locations

Pressure

Soldevila et al. (2016) Single Nodes 24 h Performance is assessed regarding
the simulation period

No reference to massive runs Pressure

Zhang et al. (2016) Single–double Nodes Individual results for
multiple time steps

Performance is assessed regarding
the number of leaking zones

Increases search efficiency
(2,000 samples per scenario,
two scenarios)

Pressure

Quiñones-Grueiro
et al. (2018)

Single Nodes 6 h No distinction regarding leak
magnitudes

No reference to massive runs Pressure

Salguero et al. (2018) Single Nodes Not specified No distinction regarding leak
magnitudes

No reference to massive runs Flow and pressure

Quiñones-Grueiro
et al. (2021)

Single Nodes Minimum flow
regime

No distinction regarding leak
magnitudes

2,000 scenarios for leak location Flow and pressure

Zhou et al. (2019) Training on single,
test with two leaks

Pipes 24 h with varying
data collection
duration

Performance assessed for any leaks,
data collection duration and number
of meters

One burst event per pipe in a real
network

Pressure
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section, where the factors that influence the leak location accuracy
are presented. Finally, conclusions and recommendations are
drawn.

Methodology and Tools

Methodology

The proposed methodology consists of two phases, namely (1) data
set generation and clustering, and (2) location of multiple leaks.
The input for Phase 1 is a calibrated hydraulic model, and the input
for Phase 2 is a list of values related to pressure data coming from
sensors in the field, namely a test residual vector. The objective of
the first phase is to generate three data sets to be used as inputs for
Phase 2, whose final objective is to identify where the leaks are
occurring. Fig. 1 shows, for both phases, the required inputs in the
light gray data boxes, the generated train data in dark gray, and the
steps to be performed in the open boxes.

We formulated leak location as a classification problem. Unlike
single leaks, conceived as a multiclass problem, the allocation of
more than one leak is a multiclass multilabel problem; hence, an

instance receives more than one label representing the probable lo-
cations of the multiple leaks. The training data are represented by
residual vectors constructed from various leak magnitudes and
locations for all time steps. The classes of the training instances
are the IDs of the leaking nodes. When a new instance (a residual
vector obtained from field pressure measurements or from synthetic
data) is presented to the trained classifier, it is categorized based on
its similarity to the training instances, resulting in the identification
of the most likely leaking nodes.

Phase 1: Data Set Generation and Identification of Areas
with Similar Leak Signatures
This phase consists of seven steps (Fig. 1). Starting from the cali-
brated hydraulic model, the first step is to simulate the network
condition with no leaks, namely, the healthy state. The pressure
values obtained at the sensor nodes for all time steps are the base-
line to calculate the pressure residuals for all leak scenarios.
Twenty-four hourly time steps are considered to capture the pres-
sure sensitivity throughout the day and reduce the number of false
negatives.

The second step is to run the model while simulating individual
leaks in each node as additional demands within a predetermined

Fig. 1. Overview of the methodology to locate multiple leaks.
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range of values. For this matter, a pressure-driven approach (PDA)
is employed. Then, the pressure residuals for all sensor nodes are
calculated by comparing the resultant pressure values in the leak
scenario with those obtained for the healthy state, yielding the re-
sidual vectors for each modeled leak. A matrix DS1 (M × N × t)
withM representing the sensor nodes, N corresponding to the num-
ber of simulated leaks, and t corresponding to 24 hourly calculation
time steps is produced. In this way, the first train data set (DS1) is
obtained.

In the third step, the residual vectors are aggregated to obtain
leak-flow-rate-independent signatures, used in the fourth step to
create clusters. This aggregation is made considering that the
residual vectors are inadequate for clustering, as they vary accord-
ing to the leaks’ location and magnitude. By trimming down one of
these dimensions, the leak flow rate, each leak location is given a
distinctive vector (called a leak signature in the remaining text),
which, unlike the residual vectors, is dimensionless and indepen-
dent of the leak magnitude. Three strategies for aggregation are
explored using DS1: one based on the leak flow rate [Eq. (2)],
one based on the sum of the pressure residuals within the vector
[Eq. (3)], and one based on the residual vector’s range [Eq. (4)]

θi ¼
ri
f

ð2Þ

θi ¼
riP
n
i¼1 ri

ð3Þ

θi ¼
ri −minðrÞ

maxðrÞ −minðrÞ ð4Þ

where i = position within the vector; θ = aggregated result for each
position i; f = leak flow rate; and r = each one of the pressure
residuals. The criterion to assess the quality of the data aggregation
is the variability of the results for different leak flow rates in a single
leak location. The smaller the standard deviation for all positions
in the residual vector, the more homogeneous the results; thus,
the resulting signature represents better a given leak location.

Eq. (5) is used to assess the three signature aggregation
strategies

AS ¼
Xn
i¼1

Xm
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a
k¼1 ðθmk

− θ̄mÞ2
a − 1

s
ð5Þ

where AS = aggregation score; n = number of nodes in the model;
m = number of sensor nodes; a = number of simulated leaks; and
θ = leak signature values. Because low scores indicate more homo-
geneous data and high aggregation scores indicate a significant
divergence from the mean, the approach with the lowest AS among
the signatures will be selected.

The obtained values for each residual vector are to be averaged
to establish the leak location signature, ϕ. This way, the sample
space is reduced from N (number of leaking nodes) times
F (number of modeled leaks) residual vectors to N signatures
for clustering.

Step 4 is about generating the clusters based on the preceding
signatures. Two clustering algorithms, k-means (KM) and agglom-
erative hierarchical clustering (AH), are utilized, incorporating data
preprocessing to capture the hydraulic response of the network.
First, the undetectable nodes, those whose leaks do not impact
any sensor nodes across all time steps, are separated because their
signatures, which are made entirely of zeros, cannot be related to
those from other nodes.

Next, the correlation matrix for the remaining nodes is calcu-
lated using the Pearson correlation coefficient (PCC). Nodes with

low correlations below a threshold (0.95 in the case study) are ex-
cluded, requiring special attention from the water utility if a burst
is detected. Afterward, the clustering algorithms are applied to the
remaining nodes. AH is performed using PCC, Euclidian distance
(ED), and cosine distance (CD). Leak location performs better
when the nodes within a cluster are more similar to one another.
To evaluate this similarity, the average signature for each cluster
(relative to its centroid) is computed using Eq. (6)

ϕkm ¼
Pnk

i¼1 ϕmi

nk
ð6Þ

where k = cluster; ϕ = value of the signature component in the
position m; and n = number of nodes in the referred cluster. Then,
the correlation between each signature and the average signature of
the correspondent cluster is calculated. The minimum value of all
correlation coefficients is the clustering score (CS), as shown in
Eq. (7), which is used to compare results between metrics. Finally,
the metric with the highest CS is selected to run the AH algorithm
and determine the optimal number of clusters (K)

CS ¼ minðCorrðϕk;ϕkÞÞ ð7Þ

In Step 5, the node whose signature correlates better to the aver-
age of the signatures in its cluster is selected as representative for
each group of nodes. In Step 6, multiple leaks are simulated in the
K representative nodes. To model two simultaneous leaks, one of
them, called the base leak, remains placed in a certain node, and a
second leak, called the dynamic leak, is simulated in the remaining
nodes one at a time. Eventually, these leaks will converge at the
same location, resulting in a single leak; this gives the model the
chance of locating either single or multiple leaks. The residual vec-
tors are built by comparing the pressure at the sensor nodes before
and after the leaks. A matrix of M columns and r rows is built,
where M is the number of sensor nodes and r is the number of
residual vectors. The result of this process is the train data set DS2.
Step 7 is analogous to Step 2, although multiple leaks are simulated
in all the model nodes, resulting in the third train data set (DS3).
In this case we have simulated two simultaneous leaks.

Phase 2: Location of Multiple Leaks
This phase consists of two steps, identified as Steps 8 and 9 in
Fig. 1. The detailed algorithm for these steps is presented in Fig. 2.
In Step 8, the identification of the clusters containing the leaks
occurs. To this end, the test residual vectors are computed at each
time step by contrasting the pressure values at the sensor nodes
in the leak scenario with those in the healthy state. All vectors
concerning the undetectable nodes are excluded from the test
set for two reasons. First, it is useless to search for a leak in
the water network that is ostensibly nonexistent, and second, they
increase the number of false negatives. Each test vector is com-
pared with the individual vectors contained in DS2, and a simi-
larity index is obtained using Eq. (8) (Corzo et al., unpublished
data, 2022)

Sðp; qÞ ¼ Sðq;pÞ ¼ 1

1þ dðp; qÞ ð8Þ

where S = similarity index concerning vectors p and q; and d =
distance between them, which can be estimated using either the
ED or CD. This procedure is completed for all time steps; then,
the average similarity index is calculated for each residual vector
in DS2. Only the maximum value remains for each representative
node, and the clusters whose nodes obtain the highest values of S
are recognized as the areas containing the leaks.
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The final step of the method is Step 9, to estimate where the
leaking nodes are located. This process starts by filtering from
DS3 the vectors produced by leaks in the previously selected
clusters. Next, the test residual vectors are compared with the fil-
tered training vectors for each time step, and the similarity indexes
are calculated for all instances. Finally, the similarity values are
averaged throughout all time steps, and the most likely leaking
nodes are identified. Two criteria are used to this end. First, a fixed
number of nodes: the k nodes with the highest values are selected.
Values of k equal to three and five were previously used (Corzo
et al., unpublished data, 2022) to evaluate the impact on the loca-
tion accuracy while controlling the size of the set of leaking
nodes. Second, a threshold for the similarity index is used: all nodes

whose maximum similarity surpasses the defined threshold will be
nominated. For this matter, the 95th percentile has been selected.
When a threshold is considered, the number of identified nodes is
variable. An advantage of using a threshold over a fixed number of
nodes is that all nodes under identical maximum similarity condi-
tions are considered.

Performance Assessment
Two metrics are used to assess the performance of the methodol-
ogy. The first will assess leaking cluster identification. Because two
exact values are expected, a helpful response should maintain the
number of false positives low and the number of true positives high.
For this reason, precision will be computed as the ratio between the

Fig. 2. Detailed algorithm for Phase 2: location of multiple leaks.

© ASCE 04023066-6 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(12): 04023066 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

IH
E

 D
el

ft
 I

ns
tit

ut
e 

Fo
r 

W
at

er
 E

du
ca

tio
n 

on
 0

9/
28

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



number of true positives and the sum of true and false positives.
The second metric uses accuracy (Φ) to assess the identification
of the leaking nodes. This way, Φab cd or a leak occurring in nodes
a and b with flow rates c and d, respectively, can take the following
values: Φab cd ¼ 0.0 if none of the actual leaking nodes is identi-
fied; Φab cd ¼ 0.5 if only one is pointed out, and Φab cd ¼ 1.0 if
both nodes are identified.

Tools

Python Libraries
Several Python libraries have been involved in this research. Pandas
(McKinney 2010) served to manage massive one-dimensional and
multidimensional data sets. Scikit-learn (Pedregosa et al. 2011) was
used to calculate the distance between residual vectors, and SciPy
(Virtanen et al. 2020) and Yellowbrick (Bengfort and Bilbro 2019)
were mostly employed for clustering. Furthermore, the Water
Network Tool for Resilience (WNTR) (Klise et al. 2017) was used
to perform all simulations and gather data from the hydraulic
model. WNTR is built on EPANET and is compatible with its
version 2.2 (Rossman et al. 2020), allowing the user to select a
demand-driven approach (DDA) or a pressure-driven approach
(PDA). All simulations in this paper used the latter.

High-Performance Computing
The computational demand increases when a second leak is intro-
duced. Eq. (9) is used to estimate the number of simulations and the
corresponding number of residual vectors (Ω) that result from sim-
ulating double leaks

Ω ¼ ðn − 1Þ2 þ ðn − 1Þ
2

× lb × ld ð9Þ

where n = number of nodes where the leaks are placed; lb = number
of base leaks; and ld = number of dynamic leaks to be simulated.
Due to the increase in the search space, the Dutch National super-
computer Snellius, hosted by SURF (2022)—a cooperative associ-
ation of Dutch educational and research institutions, was utilized in
various stages of this study. Snellius is the most powerful high-
performance computing system in the Netherlands, offering power-
ful processing capabilities through parallel jobs, multiple cores,
ample memory, and extensive storage space. It employs Simple
Linux Utility for Resource Management (SLURM), a cluster man-
agement and job scheduling system (Jette et al. 2002).

SLURM is a centralized controller disk and execution monitor
(daemon) that receives user commands and tasks, monitors re-
sources, and distributes tasks to computing nodes. These nodes
represent computers with multiple processors and cores, grouped
into partitions based on hardware specifications. There are six par-
titions, each with a specific number of cores, memory, and maxi-
mum wall time, enabling the selection of the most suitable partition
for job requirements.

Case Study and Experimental Setup

The proposed methodology has been applied in a DMA of a
European town (López and Alfonso 2022). A DMA is used as a
unit of analysis because of their advantages in terms of controlled
boundary conditions for leak management. The hydraulic model
of the DMA was initially simplified and subsequently calibrated.
The simplification process involved the removal of unnecessary no-
des from the network model. These nodes were identified as those

without associated demand, those that did not represent changes in
pipe characteristics, and those that did not contribute to the hy-
draulic performance of the network. The objective of this simpli-
fication was to reduce the sample space, resulting in a model
comprising 144 nodes and 172 pipes. The total length of the pipes
remained unchanged at 24.3 km. Asbestos cement is the predomi-
nant material, followed by high-density polyethylene (HDPE)
and steel.

This district is fed by pumping stations located beyond the
four entrances; thus, the intermediate distribution makes the head
boundary conditions at the inlet nodes highly variable. Two inlets
are mostly operational, whereas the others are turned on and off
periodically. The district is fully instrumented; flow and pressure
sensors have been located at the inlets, and eight pressure sensors
are installed throughout the network; they are represented by nodes
named Sensor1 to Sensor4 and PT1 to PT4. The nodes referred to
as PT represent large consumers, namely, residential blocks fed by
hydrophores. Fig. 3 shows the location of the current instrumenta-
tion in the DMA.

The proposed experiment aims to assess the methodology’s
ability to accurately locate multiple leaks across a wide range of
magnitudes, starting from two simultaneous instances. A hydraulic
model was used to simulate single and double leaks, and the result-
ing pressure values were compared with those of a no-leak sce-
nario. The resulting residual vectors were the testing instances that
entered the classification model as inputs to identify the position of
the leaks.

In order to generate the test data set, two nodes were randomly
chosen from each cluster to form the test space and represent leaks.
All possible combinations among these nodes using individual
leaks ranging from 0.1 to 8.7 L=s were used in a manner that en-
sured the sum of the leaks remained within the range of the training
data set. This process prevented any duplication of instances in the
training data set. For detailed analysis, 15 leak intervals were de-
termined based on the sum of individual magnitudes: (0.2–0.5),
ð0.5–1.0Þ L=s, nine intervals between 1.0 and 10.0 L=s with a
range of 1.0 L=s, and four intervals between 10.0 and 18.0 L=s
with a range of 2.0 L=s. The resulting test data set contains
40,170 instances, 2,678 for each interval.

Fig. 3. Sensors’ placement in the case study.
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Results

The results of the methodology applied in the case study are pre-
sented and discussed in the following subsections, with a focus on
clustering (Phase 1, Steps 3–5) and multiple leak location (Phase 2,
Steps 8–9).

Phase 1: Data Set Generation and Identification of
Areas with Similar Leak Signatures

Following the methodology presented in Fig. 1, the calibrated
model was run for the network’s current state (Step 1) and for
the single leaks scenarios (Step 2), producing DS1 whose vectors
are dependent on leak flow rates. However, because the leak mag-
nitude is unknown, it is convenient to make the signatures inde-
pendent from the flow rate by aggregating them (Step 3), so that
it is possible to locate a leak regardless its leak magnitude. Three
strategies to make this aggregation were assessed, namely by leak
flow rate [Eq. (2)], by summing up pressure residuals within the
vector [Eq. (3)], and by considering residual vector’s range
[Eq. (4)]. Their application to DS1 yielded time-averaged aggrega-
tion scores AS [Eq. (5)] of 2.71, 29.87, and 88.96, respectively.
For this reason, the aggregation by leak flow rate was adopted to
generate the clusters.

The clustering methods were initially performed on the whole
DS1. KM and agglomerative hierarchical clustering (AH) algo-
rithms were evaluated using the silhouette coefficient and the elbow
method measuring distortion. For KM, the elbow test pointed to
seven clusters as the optimal value, and the maximum silhouette
score corresponded to 11 clusters. For AH using CD, the optimal
number of clusters was 4 and 11 for each method, respectively;
however, the silhouette coefficients reached negative values. Scores
below zero imply that some nodes might have been incorrectly as-
signed to a cluster.

Because low silhouette scores were expected given the multi-
dimensionality of the data (Muller and Guido 2016), the resulting
clusters were graphed in the DMA’s map to analyze the results in
light of the network’s connectivity. Fig. 4 lists the findings for 7
and 11 clusters built by KM, AH using ED, and AH using CD.
Even though the results were better for a higher number of clus-
ters, the performance was inferior to expected. For instance, the
algorithms failed to isolate the undetectable nodes. CD revealed
better results than ED for all cases because the latter resulted in
clusters occupying two separate areas, which is a nonadvisable
situation.

To execute the proposed improved clustering process, the five
undetectable nodes (located in proximity to inlets and at dead-ends)
were set apart together with six elements whose correlation coef-
ficients for all nodes in DS1 were below 0.95. Because AH can
employ PCC, ED, and CD, the results with the three metrics are
compared through Eq. (7); PCC obtained the best results and was
adopted to run AH.

The clustering score was calculated for K between 2 and 20.
From two to six clusters there was a clear improvement in the
score; above that value of K, CS grew asymptotically to 1.0. The
selected value of K was 13 as it reached CS ¼ 0.95. The need to
maintain small clusters for the case study was supported by the
finding of significant variations between the signatures, despite
the initial belief that clusters with two or three nodes should
be avoided because they may decrease the effectiveness of the
search.

Fig. 5(a) depicts the resulting clusters created by the proposed
methodology using PCC as a metric for AH and K equal to 13.
The polygons differentiate the clusters, and the open nodes

represent undetectable nodes or those with a low correlation with
the rest of the nodes. Once the clusters were determined, a
representative node from each was selected (Step 5). The node
with the strongest correlation to the cluster’s average signature
was chosen as the cluster’s representative. Fig. 5(b) displays the
cluster’s representative nodes. Multiple leaks were simulated in
the representative nodes of each cluster (Step 6), resulting in
DS2. A similar process was followed, although this time consid-
ering all noes in the model (Step 7), resulting in DS3.

Phase 2: Location of Multiple Leaks

At this point, all data required to locate the leaks are available. The
95th percentile criterion for node selection was introduced in
the single-leak experiments previously presented by Corzo et al.
(unpublished data, 2022) to compare the accuracy of the location
of the leak with that obtained when a fixed number of nodes is used.
In all cases, higher accuracy values were obtained using this thresh-
old; consequently, this criterion was selected to be implemented in
the multiple leaks’ experiment.

Fig. 6(a) presents the results of applying Steps 8 and 9. It shows
how accurately the leaking areas and nodes were located for each
leak flow rate interval using ED and CD. Two aspects are to be
remarked upon regarding these results. First, there is a direct rela-
tionship between the leak magnitude and the location accuracy.
For the case study, the accuracy in identifying the leaking areas
that respond to the previously formed clusters soared from 0.2 to
3.0 L=. It then continued growing at a lower rate, maintaining val-
ues over 80%. Accordingly, for this specific case, there was a clear
threshold around 3.0 L=s, which that makes the difference for the
water operator when identifying the leaking areas once a leak has
been detected.

Oppositely, for the case study, there was no clear threshold
regarding the location of the leaking nodes. Without such a stark
divergence at the lower leak magnitudes, the accuracy of locating
the nodes has a logarithmic trend. Accuracy values over 50% were
obtained only when the sum of the individual leaks reached
4.0 L=s. Despite this, identifying the leaking area is still a valid
step for the water operator to efficiently plan and execute the field
pinpointing activities.

The second aspect refers to the differences in the results
when different similarity metrics are used. In most cases using
CD derives in better location accuracy values compared with
ED, especially when low magnitude leaks are located. This is
a crucial aspect to consider because leak location is more
strongly needed for low flows, which are less likely to become
visible.

Fig. 6(b) shows the change of the pressure residuals with the
leak flow rate for a given leak location. Each leak or combination
of leaks produces a specific set of curves. They are closer to each
other for low leak flow rates, and they spread out as the leak mag-
nitude increases. In consequence, the closeness of the curves at low
flows makes it challenging to differentiate one set of curves from
another, resulting in a higher number of nodes being selected and
negatively impacting the accuracy. Oppositely, the more wide-
spread the curves are, the better the distinguishability of the set
of curves. It explains why higher leak magnitudes are related to
better location accuracy values.

Nearly 70% of the leaking areas distinguished by the clusters
(9 out of 13) were properly detected over 90% of the time for
leaks above 3.0 L=s. Two more leaking areas crossed that line
when the leaks’ combined magnitudes were roughly 9.0 L=s.
The inflexion point noted in Fig. 6(a) was maintained in all cases
because the location accuracy variation for combined leaks over
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3.0 L=s was mostly stable. Nevertheless, the two remaining leak-
ing areas did not reach 90% location accuracy even when large
leaks were simulated. This poor response is directly related to
their closeness to an inlet; any leak that develops in the inlet’s
vicinity is immediately balanced and is not always detected by
the pressure sensors.

Discussion

Factors Influencing Leak Location Accuracy

Three factors influencing the location accuracy were observed.
First is the leak flow rate, where the larger the leak magnitude,

Fig. 4. Cluster comparison for K ¼ 7 (above) and 11 (below) using all elements in DS1.
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the better the results. On the one hand, low leak magnitudes may
produce pressure drops smaller than the sensors’ sensitivity. On the
other hand, the closeness of the residual curves at low flows chal-
lenges the differentiation of one set of curves from another, result-
ing in a higher number of nodes being selected and affecting the
accuracy. Second is the spatial location of the leak; in our case,
the number of undetectable nodes decreases from 26 (18% of the
DMA) for leaks below 0.5 L=s to five when leaks above 16 L=s
were considered, showing that even for large leaks, some locations
do not respond to pressure sensitivity.

The third,factor is the simulation period selected for the analy-
sis. The more time steps that considered, the lower the number of
false negatives obtained. Including multiple time steps is crucial
for accurate leak detection because methods relying on a single
time step may produce false negatives with zero-filled residual
vectors, which are common to small leaks that, in low-flow sce-
narios, may not be able to produce enough friction losses to
cause a detectable pressure drop. Therefore, a longer simulation
period improves pressure sensitivity, enhancing the accuracy of
leak detection.

Impact of the Similarity Criteria Used in the
Methodology

Assuming that the pressure residuals vary linearly with leak flow
rate, the proportions between the components of a residual vector
tended to be constant for different leak magnitudes. It means that
two residual vectors caused by two different leaks in a certain node
will have different magnitudes but the same direction. The fact
that ED considers the proximity of two multidimensional points
whereas CD computes the angle between them explains why CD
obtained better location accuracy in all experiments than ED, de-
spite being more computationally demanding.

High-Performance Computing

The size and number of computations implied in the experiments
required high-performance computing to allow for executing multi-
ple parallel jobs. The initial action in this matter is to recognize
what tasks can be parallelized and what computational resources
are required to execute the processes and gain efficiency. In this
paper, HPC was used for two main reasons. First, the size of

Fig. 6. (a) Leak location performance for leak magnitude intervals; and (b) residual curves for a given leak location.

Fig. 5. (a) Final result for K ¼ 13 clusters; and (b) representative nodes of each cluster.
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the training and test data sets for multiple leaks involved large com-
putational time. Rough estimations projected that the total compu-
tation time without parallelization would be above 110 days for
Experiment B when cosine distance was used. Each parallel task
was performed in about 24 h contemplating the whole test data
set, on average. Second, even if time would not have been a limi-
tation, loading and managing the training data for double leaks re-
quired higher RAM than available with other hardware resources.
Whereas only 142 MB of RAM were required for this purpose
when simulating single leaks, 47 GB were needed for double leaks.
This may be a reason why comprehensive experiments were not
attempted in previous studies.

Conclusions

This article presented a model-based data-driven approach to locate
multiple leaks in water distribution networks using pressure resid-
uals. It involved two phases, one to produce data sets to train the
classification model and perform clustering, and the other to esti-
mate the location of the leaks. Both phases form a methodology for
detecting multiple simultaneous leaks considering previously over-
looked variables such as the leak flow magnitudes and the simu-
lation period considered in the analysis. The hydraulic model was
used to generate data sets and adapt the data-driven model’s algo-
rithms to the physics of the system, forming a hybrid model, which
can be seen as the physics-aware data-driven model. This is a first
step toward multiple leaks’ locations, which initiates with locating
double leaks. This step is important because it considers the more
realistic issue of multiple leaks occurring, instead of single leaks
like any of the existing approaches.

We concluded that the accuracy of the leak location estimation
is influenced by three main factors: (1) the magnitude of the leak,
being directly related to the accuracy of the location estimation,
(2) the spatial location of the leak, because it can be seen how some
nodes remained undetectable even when large leaks, close to half
the average demand of the DMA, were modeled, and (3) the length
of the simulation period considered in the analysis, where the larger
it is, the better results will be, because fewer false negatives are
expected.

For the case study, we discovered a threshold for the sum of
individual leaks of around 3.0 L=s, above which the accuracy of
the leaking area location was greater than 80%, which is a good
indicator for canalizing resources in the field. The specific condi-
tions of a water distribution network may have an impact on the
mentioned threshold.

Parallelization and HPC reduced computational time by 99%.
Considering the length of the test set, instead of taking 110 days
on a conventional computer, each partition only required an average
of 24 h on HPC. This means that locating a leak in a network with
similar conditions to the case study can be done within about half a
minute for a single test instance. These results highlight the signifi-
cant advantages of using HPC for analyzing multiple leaks.

Future research is advised on several fronts. First, further re-
search is required in placing more simultaneous leaks, and compar-
ing results with recent attempts involving deep learning methods.
For this, HPC is crucial. Second, the accuracy of the location of the
leaks may be influenced by the placement of sensors. It is important
to evaluate to what extent they affect the estimations and confirm
that undetected areas may arise from inconvenient sensor place-
ment. Third, two other aspects are important to explore, namely,
the duration and timing of the leak, and the addition of noise to
demand or pressure sensor readings to reflect a more realistic
situation.

Finally, the proposed approach proved to be applicable to the
present case study, a WDN fed by multiple inlets. This is remark-
able because the system is redundant, implying that pressure drops
can be smaller than for single-sourced networks. This means that
our methodology has the potential to have more accurate results for
single-inlet systems. This is another avenue for future research.
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Quiñones-Grueiro, M., J. M. De Lázaro, C. Verde, A. Moreno, and
O. Santiago. 2018. “Comparison of classifiers for leak location in water
distribution networks.” IFAC-PapersOnLine 51 (24): 407–413. https://
doi.org/10.1016/j.ifacol.2018.09.609.

Rossman, L., H. Woo, M. Tryby, F. Shang, R. Janke, and T. Haxton.
2020. EPANET 2.2 users manual. EPA/600/R-20/133. Washington,
DC: USEPA.

Salguero, F. J., R. Cobacho, and M. Pardo. 2018. “Unreported leaks loca-
tion using pressure and flow sensitivity in water distribution networks.”
Water Supply 19 (1): 2018048. https://doi.org/10.2166/ws.2018.048.

Soldevila, A., J. Blesa, S. Tornil-Sin, E. Duviella, R. M. Fernandez-Canti,
and V. Puig. 2016. “Leak localization in water distribution networks
using a mixed model-based/data-driven approach.” Control Eng. Pract.
55 (Oct): 162–173. https://doi.org/10.1016/j.conengprac.2016.07.006.

SURF. 2022. “SURF is the collaborative organisation for IT in Dutch edu-
cation and research.” Accessed July 12, 2022. http://www.surf.nl/en.

UN (United Nations). 2019. World population prospects 2019: Data
booklet. ST/ESA/SER.A/424. New York: UN.

UN (United Nations). 2021. “The United Nations world water development
report 2021.” United Nations, 2021 Edition. Accessed June 18, 2022.
https://www.un-ilibrary.org/content/books/9789214030140.

Valizadeh, S., B. Moshiri, and K. Salahshoor. 2009. “Leak detection in
transportation pipelines using feature extraction and KNN classifica-
tion.” In Vol. 360 of Pipelines 2009: Infrastructure’s Hidden Assets,
580–589. Reston, VA: ASCE.

Van Der Walt, J., S. Heyns, and D. Wilke. 2019. “Pipe network leak
detection: Comparison between statistical and machine learning tech-
niques.” Urban Water J. 15 (10): 953–960. https://doi.org/10.1080
/1573062X.2019.1597375.

Virtanen, P., et al. 2020. “SciPy 1.0: Fundamental algorithms for scientific
computing in Python.” Nat. Methods 17 (3): 261–272. https://doi.org/10
.1038/s41592-019-0686-2.

Wang, X., J. Li, S. Liu, X. Yu, and Z. Ma. 2022. “Multiple leakage detec-
tion and isolation in district metering areas using a multistage ap-
proach.” J. Water Resour. Plann. Manage. 148 (6): 04022021. https://
doi.org/10.1061/(ASCE)WR.1943-5452.0001558.

Wu, Y., and S. Liu. 2017. “A review of data-driven approaches for burst
detection in water distribution systems.” Urban Water J. 14 (9):
972–983. https://doi.org/10.1080/1573062X.2017.1279191.

Zhang, Q., Z. Wu, M. Zhao, J. Qi, Y. Huang, and H. Zhao. 2016. “Leakage
zone identification in large-scale water distribution systems using multi-
class support vector machines.” J. Water Resour. Plann. Manage.
142 (11): 04016042. https://doi.org/10.1061/(ASCE)WR.1943-5452
.0000661.

Zhou, X., Z. Tang, W. Xu, F. Meng, X. Chu, K. Xin, and G. Fu. 2019.
“Deep learning identifies accurate burst locations in water distribution
networks.” Water Res. 166 (Dec): 115058. https://doi.org/10.1016/j
.watres.2019.115058.

© ASCE 04023066-12 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(12): 04023066 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

IH
E

 D
el

ft
 I

ns
tit

ut
e 

Fo
r 

W
at

er
 E

du
ca

tio
n 

on
 0

9/
28

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1016/j.ifacol.2015.09.531
https://doi.org/10.1016/j.ifacol.2015.09.531
https://doi.org/10.1080/00221680309499993
https://doi.org/10.1080/00221680309499993
https://doi.org/10.2166/ws.2014.131
https://doi.org/10.2166/ws.2014.131
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001578
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/j.envsoft.2014.06.025
https://www.oecd-ilibrary.org/content/publication/9789264251090-en
https://www.oecd-ilibrary.org/content/publication/9789264251090-en
https://doi.org/10.1109/MCS.2014.2320336
https://doi.org/10.1109/MCS.2014.2320336
https://doi.org/10.1016/j.conengprac.2011.06.004
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1031)
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1031)
https://doi.org/10.1080/15730621003610878
https://doi.org/10.1016/j.neucom.2020.04.159
https://doi.org/10.1016/j.neucom.2020.04.159
https://doi.org/10.1016/j.ifacol.2018.09.609
https://doi.org/10.1016/j.ifacol.2018.09.609
https://doi.org/10.2166/ws.2018.048
https://doi.org/10.1016/j.conengprac.2016.07.006
http://www.surf.nl/en
https://www.un-ilibrary.org/content/books/9789214030140
https://doi.org/10.1080/1573062X.2019.1597375
https://doi.org/10.1080/1573062X.2019.1597375
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001558
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001558
https://doi.org/10.1080/1573062X.2017.1279191
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000661
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000661
https://doi.org/10.1016/j.watres.2019.115058
https://doi.org/10.1016/j.watres.2019.115058

