
Don’t Let Me Down!
Offloading Robot VFs Up to the Cloud

Khasa Gillani∗†, Jorge Martı́n-Pérez∗, Milan Groshev∗, Antonio de la Oliva∗ and Robert Gazda‡
∗Universidad Carlos III de Madrid, †IMDEA Networks Institute, ‡Interdigital Inc.

Abstract—Recent trends in robotic services propose offloading
robot functionalities to the Edge to meet the strict latency
requirements of networked robotics. However, the Edge is typi-
cally an expensive resource and sometimes the Cloud is also an
option, thus, decreasing the cost. Following this idea, we propose
Don’t Let Me Down! (DLMD), an algorithm that promotes
offloading robot functions to the Cloud when possible to minimize
the consumption of Edge resources. Additionally, DLMD takes
the appropriate migration, traffic steering, and radio handover
decisions to meet robotic service requirements as strict latency
constraints. In the paper, we formulate the optimization problem
that DLMD aims to solve, compare DLMD performance against
the state of the art, and perform stress tests to assess DLMD
performance in small & large networks. Results show that DLMD
(i) always finds solutions in less than 30ms; (ii) is optimal in a
local warehousing use case; and (iii) consumes only 5% of the
Edge resources upon network stress.

Index Terms—robotic, optimization, offloading, Edge

I. INTRODUCTION

NETWORKED robotic services are being adopted to en-
hance operational automation and performance in some

uses cases, e.g., assembly robots in Industry 4.0. Networked
robotic services split the functionality [1], [2] in Virtual
Functions (VFs) running in servers and robots. For example, a
robot driving service runs the robot drivers VF (v1) in the robot
and the driving VF (v2) in a Cloud/Edge server – see Fig. 1 (a).
Thus, it is necessary to decide which server will host VF v2
and the traffic steering between the robot and the server.

Deciding the VF deployment and traffic steering relates to
solving the VF embedding problem. The literature tackles the
VF embedding problem using artificial intelligence [3] and
bin packing-alike heuristics [4]. The solutions guarantee that
resources – e.g. bandwidth and CPUs – are not exhausted,
and typically minimize the latency of the embedded service.
Hence, traditional solutions foster deploying VFs at the Edge
despite they are expensive or not.

Recent works about VF embedding of robotic services –
see [1], [2], [5] – fail to consider some service requirements
as the latency [1]; radio signal quality [2], [5]; or robot
mobility [2]. Consequently, the robotic service may not fulfill
strict [6] service latency requirements – see Fig. 1 (b)–, suffer
from small bitrates, or service disruption due to bad radio
connectivity/coverage – see Fig. 1 (c).

This work has been partly funded by the Spanish Ministry of Economic Af-
fairs and Digital Transformation and the European Union-NextGenerationEU
through the UNICO 5G I+D 6G-EDGEDT and 6G-DATADRIVEN.

far Edge

Cloud

near Edge

service

v1 v2

(a)

Cloud

100ms!

(b)

coverage

(c)

Fig. 1: Don’t Let Me Down! fosters offloading the robot
service VFs up to the cloud (a), yet preventing the cloud large
latencies (b) and running out of coverage (c).

To address these challenges, in this paper we propose Don’t
Let Me Down! (DLMD). DLMD minimizes the deployment
cost fostering the offload of VFs to the cheap Cloud. Ad-
ditionally, DLMD considers (i) the robotic service latency
constraints; (ii) the wireless connectivity; and (iii) robot
mobility. In particular, DLMD takes VF migration and radio
handover decisions that prevent large latencies, and out of
coverage situations – see Fig. 1 (b)-(c).

II. DON’T LET ME DOWN! PROBLEM FORMULATION

In this section we formulate the VF embedding problem that
DLMD solves to take adequate offloading, migration and radio
handover decisions for robotic services. We consider a hard-
ware graph G whose vertices V (G) correspond to switches
and servers. Specifically, we consider the three tiers of servers
illustrated in Fig. 1a: Cloud, far Edge, and near Edge; each
with decreasing latency towards the robot, respectively.

The goal of the VF embedding problem is to offload robot
VFs minimizing the resource consumption at the Edge, and
satisfying the robotic service constraints. In the following Sec-
tions II-A to II-D we specify the robotic service constraints,
and in Section II-E we formulate the associated VF embedding
problem statement, and prove its NP-hard complexity.

A. Robot computational constraints

The VF embedding problem must ensure that the robot
VFs do not exhaust the computational resources C(n) of each
server n ∈ V (G):∑

v∈a(n)

C(v) ≤ C(n), ∀n ∈ V (G) (1)

That is, the computational requirements of all VFs v assigned
to a computing node a(n) = {v1, v2, . . .} must be lower than
its available computational resources C(n). On top, it must

ensure that all VFs V (Si) = {v1, v2, . . .} of a robotic service
Si are offloaded at some computing node n:∑

n∈V (G)

P (v, n) ≥ 1, ∀Si ∈ S, v ∈ V (Si) (2)

with P (v, n) = 1 if VF v is offloaded at the computing node
v ∈ a(n), and 0 otherwise. Note that we do not prevent
a VF to be “replicated” – or offloaded in multiple nodes –
since load-balancing may be required by some robotic services
coordinating multiple robots.

B. Network constraints

For VFs are offloaded to the Cloud or Edge servers, the
robotic service traffic has to be steered across the network.
The steering cannot exhaust the bandwidth λ(n1, n2) over the
hardware links – i.e., edges E(G) of the hardware graph:∑
(v1,v2)

∈a(n1,n2)

λ(v1, v2) ≤ (1−δ(n1, n2))λ(n1, n2),∀(n1, n2) ∈ E(G)

(3)
with δ(n1, n2) ∈ [0, 1] the packet drop rate present at the
link (n1, n2) ∈ E(G). Specifically, all virtual links (VL) of
the service Si ∈ S should not use all the link bandwidth
λ(n1, n2). In (3), a(n1, n2) = {(v1, v2), (v2, v3), . . .} denotes
the VLs assigned/traversing the link (n1, n2).

Also – inline with (2) – all the VLs E(Si) traffic must be
processed at the server(s) where the VFs are offloaded, i.e.:∑
(n1,n2)∈E(G)

P (v1, v2, n1, n2) ≥ 1, ∀Si ∈ S, (v1, v2) ∈ E(Si)

(4)
with P (v1, v2, n1, n2) = 1 if the VL (v1, v2) is assigned to a
link (v1, v2) ∈ a(n1, n2), and P (v1, v2, n1, n2) = 0 otherwise.
Note that constraint (4) also ensures that every VL of a robotic
service E(Si) traverses at least one physical link (n1, n2).

Upon the VF offloading, the VLs steering must satisfy the
flow constraint [7]. That is, every switch wi and Point of
Access (PoA) Ri ingresses and egresses the same amount of
traffic:∑
(v1,v2)∈a(n1,n):
(n1,n)∈E(G)

λ(v1, v2) =
∑

(v1,v2)∈a(n,n2):
(n,n2)∈E(G)

λ(v1, v2), ∀n ∈ {wi} ∪ {Ri} (5)

It is also important that every server ∀n2 ∈ {si}i processing
VF v2 should receive the corresponding VL traffic:∑
(n1,n2)
∈E(G)

P (v1, v2, n1, n2) = P (v2, n2) ∀(v1, v2) ∈ V (Si) (6)

otherwise, a solution of the problem may mistakenly steer the
traffic to a server without VF v2 offloaded there.

C. Robot delay constraints

To meet the latency constraints of a robotic service, it is
necessary to consider both the propagation and processing
delay perceived by the robot when consuming the service.

The network delay experienced by the robotic service Si is
the sum of the delay of links d(n1, n2) traversed by the VLs
(v1, v2), and the queuing delay ψ(n1, n2) that may be present
in network:

dnet(Si) =
∑

(v1,v2)∈E(Si)

∑
(n1,n2)∈E(G) :
(v1,v2)∈a(n1,n2)

d(n1, n2) + ψ(n1, n2),∀Si ∈ S

(7)
To compute the processing delay we resort to the M/G/1-PS
expression for the average delay as it’s a common practice
in the existing literature [8]–[10]. Therefore, we obtain the
processing delay of a VF v as:

dpro(v) =
∑

(v1,v)∈E(Si)

1

C(v)µ− λ(v1, v)
, ∀Si ∈ S, v ∈ V (Si)

(8)
where µ is the processing rate of a CPU. That is, we have an
M/G/1-PS system with an aggregate processing rate C(v)µ
and an arrival rate λ(v1, v), i.e., the incoming traffic to the
VF v. Hence, any offloading solution must ensure that the
network and processing delay remain below the requirement
of the robotic service D(Si):

dnet(Si) +
∑

v∈V (Si)

dpro(v) ≤ D(Si), ∀Si ∈ S (9)

D. Robot radio constraints

Since robotic services leverage wireless technologies to con-
nect with the offloaded VFs, the offloading must prevent using
radio links that cannot meet the robotic service requirements.

The first constraint to impose is that a VL (v1, v2) cannot
traverse the link connecting the robot with the PoA (ri, Ri)
unless the robot wireless interface is attached to the PoA:

P (v1, v2, ri, Ri) ≤ ϕ(ri, Ri), ∀(v1, v2), ri, Ri (10)

with ϕ(ri, Ri) = 1 if the offloading solution tells the robot
ri to attach to the PoA Ri, and zero otherwise. Note that
ϕ(ri, Ri) also represents the robot handover across PoAs as it
moves. Any offloading solution must ensure that the robot
ri network interface is attached to one PoA Ri to have
connectivity: ∑

Ri

ϕ(ri, Ri) = 1, ∀ri ∈ {ri}, i (11)

otherwise, any robotic service Si will not have connection to
the remote server where the VF(s) are offloaded.

Since the wireless connectivity suffers from background
noise N and heavily depends on the signal strength σRi(ri),
it is necessary to account for the effective bandwidth capacity
over the wireless link from the robot to the PoA (ri, Ri). Inline
with recent works as [11], we model the wireless transmission
capacity as:

T(ri, Ri) = (1− δ(ri, Ri))λ(ri, Ri) log2

(
1 +

σRi(ri)

N

)
(12)

with (1 − δ(ri, Ri))λ(ri, Ri) being the perfect conditions
bandwidth over the wireless link (ri, Ri), considering the

r1 R1

s1

s∞

...

. . .

vr,3 v2,3

S3

P (vr,·, r1) = 1

P (v2,3, s∞) =?

vr,2 v2,2

S2

P (v2,2, s1) =?
vr,1 v2,1

S1

P (v2,1, s1) =?

Fig. 2: VF embedding in a network with one robot r1, one
PoA R1, and an infinite pool of servers {si}∞i to decide which
server we offload the second VFs P (v2,·, si) is the bin-packing
problem, thus, it is NP-hard.

packet loss δ(ri, Ri); and the log2(1 + σRi
(ri)/N) being the

attenuation term under the presence of noise given a certain
signal strength. Note that we assume N is additive Gaussian
white noise.

Knowing the bandwidth constraint discussed in (3), if one
accounts for the wireless transmission capacity T (ri, Ri) of
the link in between the robot ri and the PoA Ri, the following
must hold:∑

(v1,v2)∈a(ri,Ri)

λ(v1, v2) ≤ T(ri, Ri), ∀(v1, v2) ∈ a(ri, Ri) (13)

so all VLs (v1, v2) traversing the robot-to-PoA wireless con-
nection do not exceed the transmission capacity.

E. Problem statement and complexity

With the prior constraints we formulate the optimization
problem that captures the associated VF embedding problem.
The goal is to minimize the used Edge resources, so the
substrate network is shared by multiple robotic service.

Problem 1: VF embedding for robotic services

Given the computational (1)-(2), network (3)-(6), de-
lay (9), and radio constraints (10), (11), (13) of a
robotic service S; minimize the Edge resource us-
age with adequate VF offloading P (v, n), routing
P (v1, v2, n1, n2), and attachment ϕ(ri, Ri) decisions.

min
P (·),ϕ(·)

∑
n∈V (G)

κn|a(n)|

s.t. : (1) − (6), (9) − (11), (13)

with κn ∈ N being the server cost, which takes higher
values if the server n is closer to the Edge.

We solve Problem 1 iteratively as the robot moves. Hence,
changes in ϕ(·) , and P (·) decision variables represent han-
dovers and VF migrations respectively. However, finding the
optimal solution of Problem 1 is not straight-forward. Inline
with the complexity of existing optimization problems [7],
[12], in the following Lemma 1 we prove that it is NP-hard.

Lemma 1. Solving Problem 1 is NP-hard.

Proof. We proof that our proposed problem is NP-hard show-
ing that an instance of Problem 1 is equivalent to the bin-
packing problem [13]. Let’s consider a set of “ideal” robotic
services S ′ without any delay D(Si) = ∞, ∀Si ∈ S ′

and bandwidth λ(v1, v2) = 0 requirements. On top, these
“ideal” robotic services consist of just two VFs V (Si) =
{vr,i, v2,i}, ∀Si ∈ S ′, a single VL (vr,i, v2,i) and the former
VF has to run in the robot P (vr,i, r1) = 1, ∀Si ∈ S ′ –
see (Fig. 2). Hence constraints (2) and (4) are strict equalities.

Now lets assume that all these “ideal” robot services have
to be deployed in a hardware graph consisting of one robot
r1 with infinite computational capacity C(r1) = ∞, a single
PoA R1 that covers all the geographical area with adequate
signal strength towards the robot, so σR1(r1) > N holds,
and an infinite number of servers {si}∞1 with finite capacity
C(si) < K ∈ N+ and same cost κn1

= κn2
,∀n1, n2 ∈ V (G).

All the servers have at one hop distance the PoA R1, as shown
in Fig. 2.

Hence, in the resulting scenario – depicted in Fig. 2 – the
VF embedding consists in deciding where to deploy the second
VF, i.e., P (v2,i, si), ∀Si ∈ S ′. For the VL routing decision
will be to traverse the single link connecting the PoA with
the server, i.e., P (v2,i, s) = 1 =⇒ P (vr,i, v2,i, R1, s) =
1, ∀Si ∈ S ′ with s ∈ {si}∞1 . As a result, the considered
“ideal” robot service leads to the following instance of Prob-
lem 1:

min
P (v2,i,s)

∑
s∈{si}∞

1

|a(s)| (14)

s.t. :
∑

v2,i∈a(s)

C(v2,i) ≤ C(s), ∀s ∈ {si}∞1 (15)

∑
s∈{si}∞

1

P (v2,i, s) = 1, ∀Si ∈ S ′ (16)

where the bandwidth constraints (3), (5) and (13) do not apply
given that λ(vr,i, v2,i) = 0, ∀Si ∈ S ′. Note that the radio
attachment decision is given, hence, (10) and (4) are satisfied;
and the delay constraint (9) is always satisfied for the “ideal”
robotic service. D(Si) = ∞, ∀Si ∈ S ′.

Overall, (14)-(16) is an instance of Problem 1 that is
equivalent to the bin-packing problem with servers {si}∞1 as
bins with size C(s), and the second VFs v2,i as items with
size C(v2,i). Therefore, Problem 1 is NP-hard.

III. DON’T LET ME DOWN!: THE ALGORITHM

DLMD solves Problem 1 by offloading the VFs up to the
Cloud if its delay is not too large. First, DLMD selects which
are the PoAs covering the robot, and offering enough wireless
capacity for the first VL (v1, v2) – see line 1 in Algorithm 1.
Second, DLMD decides to which server it should offload every
VF. To do that, DLMD keeps a metric τ representing the
trade-off between the server cost κn, the free bandwidth of
links to reach the server 1

λ(n1,n2)
, and the delay of such links

d(n1, n2). Specifically, τ is derived using Dijkstra with weight

Cloudfar Edgenear Edge

se
rv

ic
e

R6

R5

R4

R2R1

r1

R3

v1

v2

(a)

PoA Cloud fEdge nEdge

R1, R3 9 ms 4 ms 3 ms
R2, R4 18 ms 8 ms 9 ms
R5, R6 27 ms 12 ms 9 ms

(b)

 0
 10
 20
 30

 0 50 100 150 200

limit

de
la

y [
2]

 [m
s]

time [sec]

(c)

 0
 5

 10
 15

 0 50 100 150 200

connection
lost

de
la

y [
6]

 [m
s]

time [sec]

(d)

 0
 5

 10
 15

 0 50 100 150 200

de
la

y D
LM

D
 [m

s]

time [sec]

migration

(e)

Fig. 3: Delay experienced by the robot as it drives in a
warehousing scenario (a). (b) shows latencies due to queue
congestion and (c)-(e) indicate the delay contribution of PoAs
(blue fill) and servers (red fill) using [1], [5] and DLMD.

1/λ(·) + d(·) towards the candidate servers where VF are
offloaded – see line 5 of Algorithm 1.

Third, DLMD offloads the VF to the server with best τ
metric, and steers the traffic over the path found by the 1

λ +d-
weighted Dijkstra. Lastly, DLMD selects the PoA with highest
bandwidth available and small delay to the robot – see line 12
of Algoritm 1.

Algorithm 1 Don’t Let Me Down! (DLMD)

Input: G,Si, ri, {Ri}i, {κn}n∈V (G)

Output: {ϕ(r,Ri)}i, {P (vi, ni)}i, {P (vi, vj , ni, nj)}i,j
1: {R̂i} = {Ri : λ(v1, v2) ≤ T (ri, Ri)}i
2: for v ∈ V (Si) do
3: τmin = ∞
4: for n ∈ V (G) do
5: τ, p = κn+ Dijkstra(n, n−1, weight= 1

λ + d)
6: if τ < τmin then
7: τmin = τ
8: P (v, n) = 1
9: {P (v−1, v, n1, n2) = 1}(n1,n2)∈p

10: end if
11: end for
12: ϕ

(
r, argminR̂i

1
λ(ri,R̂i)

+ d(ri, R̂i))
)
= 1

13: end for

Thanks to its trade-off metric τ , DLMD will always try to
offload the VFs to the Cloud unless there are Edge servers
with significantly smaller latency and leaves as much free
resources in the Edge as possible – thus, minimizing Problem 1
objective – and steer the traffic over non-congested links.
DLMD is invoked iteratively to update the offloading P (·)
and attachment/handover ϕ(·) decisions as robot moves.

IV. EXPERIMENTAL RESULTS

In this section we assess DLMD performance in two sce-
narios: (i) a small warehousing scenario taking VF offloading,
migration, and handover decisions; and (ii) a stress test in
small and large graphs with real-world PoA locations.

-120 -90 -60 -30

eP
D

F

SNR [dBm]

(a)

 0 5 10 15 20 25 30 35 40

lim
it

eP
D

F

Delay [ms]

(b)

 0 0.2 0.4 0.6 0.8 1

eP
D

F

normalized cost

(c)

 0 10 20 30 40 50

eP
D

F

BW [Mbps]

(d)

Fig. 4: ePDFs for the experienced SNR, Delay, cost, and
bandwidth consumption during Fig. 3a driving. Plots illustrate
the experienced metrics using DLMD (circle), optimal (cross),
[1] (thickest), and [5] (thick)

A. Small warehousing scenario

We consider a factory floor with a warehousing robot service
S1 that offloads its remote driving VF v2 to a near/far Edge
or Cloud server – with light-, mid- and intense-red in Fig. 3a;
respectively. As the robot moves, DLMD must decide to
which PoA R1, . . . , R6 (blue color) it should attach, and make
the corresponding offloading and migration decisions for the
remote driving VF v2. Note that the robot drivers VF is
denoted as v1 and they reside in the robot in the considered
experiment. The initial offloading, migration and handover
decisions must be such that the service latency remains below
the D(S1) = 15 ms requirement of the considered warehous-
ing service. Fig. 3b reports the different average delays that
each PoA has towards the servers. Figs. 3c-3e show the delay
experienced by the warehousing robot during its trajectory
when we use [1], [5] and DLMD; respectively.

Results show that ignoring the links’ delay information – as
done in [1] – violates the 15 ms limit when the robot is half-
way to the end of its trajectory (100 sec.) because it connects
to PoAs R5, R6 with high latency towards the Cloud server
where v2 is offloaded – see Fig. 3c. When we ignore radio
signal information – as in [5] – the robot lost connectivity
during the first 125 sec. – see Fig. 3d. The reason is that [5]
neglected the bad SNR of the PoAs, and resulted into trying
to steer traffic over wireless links without enough capacity due
to the bad signal conditions.

The aforementioned problems were not experienced by
DLMD – see Fig. 3e –, for it instructs the robot to attach to
PoAs with adequate radio conditions, and migrated the remote
driving VF v2 to the far Edge when the robot attached to PoAs
with high latency towards the Cloud to meet the 15 ms limit.

For the sake of comparison, in Fig. 4 we report the ePDF
of different metrics considered in the problem. Overall, results
show that DLMD attains better SNR than [1], [5] and remains
below the 15 ms delay limit. Moreover, DLMD matches the
metrics achieved by the optimal solution – see how circle and
cross markers overlap in Fig. 4. In terms of cost and bandwidth

0.00

0.05

0.10

0.15

 40 60 80 100 120

small & dense

large & sparse

p

n

(a) (b) (c)

Fig. 5: Erdős–Rényi setups (a) for realistic network graphs (b)
that conect OpenCellid PoAs of an industrial area (c).

consumption, DLMD achieves a nice trade-off with respect
to other solutions because it only migrates resources to the
expensive Edge when needed.

B. Stress Tests

In this section we assess DLMD performance upon scarce
of network resources, i.e., when the network is stressed. To
do so, we collect the PoAs present in an industrial area of
Alcorcón, Spain; and generate a small & large random graph
that conveys the network topology – see Fig. 5.

Specifically, we derive V (G) using Erdős–Rényi G(n, p)
graphs with n = 48, 128 nodes; and find adequate p to have:
6 Cloud servers with 6; 4 far Edge servers with 4; and 2 near
Edge servers with 2 redundant links. With this information, it
is possible to find feasible (n, p) setups – see Fig. 5a gray re-
gion – knowing that P(deg(v) = k) =

(
n−1
p

)
pk(1− p)n−1−k.

Fig. 6 shows how DLMD behaves as the network us-
age/stress evenly increases from 0 to a 100% in small & dense
graphs (green), and large & sparse graphs (orange). In the
experiment we use an enriched robot service with 3 VFs being
offloaded to remote servers. As the robot moves along the
12 PoAs taken from OpenCelliD, DLMD performs migrations
and handover decisions to keep an adequate connectivity
between the robot and the offloaded VFs.

Fig. 6a evidences that DLMD meets the delay service
requirement of 15ms as long as network stress is below 40%.
In smaller and dense graphs, the delay requirement is satisfied
even with 60% stress as it has higher migration success thanks
to the graph density – see Fig. 6c.

Lastly, it is worth mentioning that during the experiments
DLMD uses less than a 5% of the available Edge resources,
for it exploits the Cloud as long as it is close enough and
available – see Fig. 6b. Moreover, DLMD managed to find
solutions in less than 30 ms in both small and large graphs –
see Fig. 6d.

V. CONCLUSION

In this paper we present DLMD, an offloading algorithm for
networked robotics that fosters offloading VFs to the Cloud
to minimize the Edge usage. Additionally, DLMD assists in
the VF migration and radio handover as the robot moves.
Results demonstrate that DLMD (i) outperforms state of
the art solutions in small warehousing scenarios; (ii) takes

 0
 10
 20
 30

 0 25 50 75 100

limit

de
la

y
[m

s]

network stress [%]

(a)

 70

 75

 80

 20 22.5 25 27.5 30fr
ee

 E
dg

e
[%

]

network stress [%]

bussy

(b)

 0

 50

 100

 0 25 50 75 100m
ig

ra
tio

ns
 [%

]

network stress [%]

(c)

 0
 10
 20
 30

 0 25 50 75 100

ru
nt

im
e

[m
s]

network stress [%]

(d)

Fig. 6: DLMD stress test in Fig. 5 small (green) and large (or-
ange) networks. Tests show 90% confidence intervals (shade).

≤ 30ms to find solutions in small and large graphs with real-
world PoA locations; and (iii) achieves the goal of minimizing
resource consumption at the Edge despite the network stress.
To the best of our knowledge, this is the first work to consider
latency, radio signal, and robot mobility simultaneously to
tackle the VF embedding problem. Future work will focus on
the impact of robot mobility models and heterogeneous server
cost. Additionally, we will further investigate a weighted 1

λ+d
metric for DLMD.

REFERENCES

[1] C. Delgado et al., “OROS: Orchestrating ROS-driven Collaborative
Connected Robots in Mission-Critical Operations,” IEEE, 2022.

[2] W. Chen et al., “QoS-aware robotic streaming workflow allocation
in cloud robotics systems,” IEEE transactions on services computing,
vol. 14, no. 2, 2018.

[3] Y. Xiao et al., “NFVdeep: Adaptive Online Service Function Chain
Deployment with Deep Reinforcement Learning,” in 2019 IEEE/ACM
27th International Symposium on Quality of Service (IWQoS), 2019.

[4] Y. Mao, X. Shang, and Y. Yang, “Joint resource management and flow
scheduling for SFC deployment in hybrid edge-and-cloud network,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022.

[5] B. Németh et al., “Delay and Reliability-Constrained VNF Placement
on Mobile and Volatile 5G Infrastructure,” IEEE Transactions on Mobile
Computing, vol. 21, no. 9, 2022.

[6] 3GPP, “Service requirements for cyber-physical control applications in
vertical domains,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 22.104, 21 2021.

[7] H. Feng et al., “Approximation algorithms for the NFV service dis-
tribution problem,” in IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, 2017.

[8] R. Cohen et al., “Near optimal placement of virtual network functions,”
in IEEE INFOCOM, 2015.

[9] F.B. Jemaa, G. Pujolle, and M. Pariente, “QoS-aware VNF placement
optimization in edge-central carrier cloud architecture,” in 2016 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2016.

[10] D.B. Oljira et al., “A model for QoS-aware VNF placement and provi-
sioning,” in 2017 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). IEEE, 2017.

[11] L. Bonati et al., “CellOS: Zero-touch Softwarized Open Cellular Net-
works,” Computer Networks, vol. 180, 2020.

[12] Y. Sang et al., “Provably efficient algorithms for joint placement and
allocation of virtual network functions,” in IEEE INFOCOM, 2017.

[13] Garey, Michael R. and Johnson, David S., Computers and Intractability;
A Guide to the Theory of NP-Completeness. USA: W. H. Freeman &
Co., 1990.

