

Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

A mobile application based on machine

learning and music therapy principles for

post-stroke upper-limb motor recovery

Mireia de Gracia Forés

Supervisor: Rafael Ramírez

July 2023

Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

A mobile application based on machine

learning and music therapy principles for

post-stroke upper-limb motor recovery

Mireia de Gracia Forés

Supervisor: Rafael Ramírez

July 2023

Table of Contents

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Objectives .. 2

2. State of the art ... 3

2.1 Stroke .. 3

2.1.1 Stroke motor recovery evaluation .. 4

2.2 Music Therapy .. 4

2.2.1 Music Therapy for stroke recovery .. 5

2.3 Technology-enhanced stroke rehabilitation .. 6

2.3.1 Machine Learning Models in Mobile Applications ... 8

2.4. MoveNet .. 10

3. Methods and material .. 11

3.1.1. Fugl-Meyer Assessment (FMA) ... 11

3.1.2. XCode ... 12

3.1.3. Create ML – Activity Classifier ... 12

3.2. Selection of the posture detection framework ... 14

3.3. Data collection: Creating the Dataset .. 17

3.4. Training CoreML ... 19

3.5. FuglMeyerApp – the result app ... 20

3.5.1. Structure.. 21

3.5.2. Capturing data... 22

3.5.3. Predictor.. 22

3.5.4. Adding sound .. 23

3.5.5. Accessibility and landing screen .. 24

3.7. Usability Questionnaire ... 26

4. Results ... 27

4.1. CoreML .. 27

4.2. FuglMeyerApp ... 28

4.3. Questionnaire results .. 30

5. Discussion ... 32

7. List of figures .. 36

8. List of tables .. 37

9. Bibliography .. 38

A. Appendices .. 41

a. README file .. 41

b. Appendix – Usability questionnaire .. 44

c. Appendix – Usability Questionnaire Results... 45

d. Appendix – MoveNet screen captures code ... 46

e. Appendix – Main APP Code Parts .. 50

f. Appendix – Action Classifier CoreML trained model structure 66

Dedication

A la meva estimada família, tant la de naixement com la que he escollit amb el cor,

Per la vostra presència constant i el suport incessant que m’heu ofert amb generositat. Per

estimar-me incondicionalment, en els moments de llum i en els de foscor, i per exercir

una paciència que sembla no tenir límits.

Gràcies per encoratjar-me sempre, fins i tot quan el camí davant meu es torna difús.

Amb profunda gratitud.

Abstract

A stroke is a medical condition caused by a disruption in blood flow to the brain. This

can lead to difficulties with everyday activities and movement. Music therapy is a

promising new alternative to traditional rehabilitation methods. This therapy uses sound’s

natural properties to enhance stroke recovery, improve motor skills and stimulate neural

plasticity. This approach motivates people on both a physical and emotional level.

Software tools developed to date to aid in motor recovery after stroke rely mainly on

external mechanisms and specific hardware components. This limitation restricts the

potential scope of these tools. This study aims to examine the effectiveness and

mechanisms of using a mobile application with machine learning algorithms and music

therapy principles as a complementary intervention for post-stroke motor recovery. This

research project has resulted in the development of a mobile app, based on the widely

used Fugl Meyer Assessment. The application uses Vision Framework from Apple and a

custom Activity Classification CoreML machine learning model to detect an individual's

position in a seated posture. It has also been integrated with XCode. The application

generates an audio cue when a user successfully completes one of the Fugl-Meyer

Assessment activities. To train the model, 340 clips of a variety of exercises have been

created. The research sheds light on how this technology can be used to transform

neurorehabilitation while also helping to develop accessible and convenient tools that

promote stroke motor recovery.

Keywords: music therapy; stroke; machine learning; CoreML; Fugl-Meyer

1

1. Introduction

A stroke is a condition that happens when the blood flow to the brain gets disrupted. It

can cause serious issues that have a substantial impact on how someone lives their life

and how they feel. Traditional rehabilitation methods have been widely used to support

motor recovery. However, recent advancements have unveiled a promising approach

known as music therapy. This innovative therapeutic technique harnesses the powerful

influence of music on the brain, stimulating the brain's ability to adapt (neural plasticity),

facilitating the reacquisition of motor skills, and improving overall stroke motor recovery.

Music therapy offers a comprehensive rehabilitation approach that actively engages and

motivates individuals on both physical and emotional levels. This thesis aims to

investigate the underlying mechanisms and effectiveness of utilizing a mobile app as a

supplementary intervention in music therapy for stroke motor recovery. By shedding light

on the potentially transformative nature of this technology within the field of

neurorehabilitation practices, the study endeavours to contribute to the development of

accessible and convenient tools for promoting stroke motor recovery.

1.1. Motivation

The motivation behind this thesis lies in the recognition of the pressing need for

innovative and accessible approaches to stroke motor recovery. While music therapy has

shown promising results, traditional methods often require specialized resources, specific

hardware and trained professionals, limiting their widespread implementation. This study

intends to solve these issues and provide stroke survivors with a practical, affordable, and

easily accessible solution by suggesting a mobile app as an alternative to traditional music

therapy. Utilizing mobile technology for neurorehabilitation holds significant potential to

reach a bigger population and offer individualized treatment because of the rising

prevalence of smartphones and their incorporation into daily life. This thesis seeks to

advance neurorehabilitation techniques by examining the potential and efficacy of a

mobile app as an additional intervention in stroke motor recovery, ensuring that survivors

of stroke have access to cutting-edge and effective tools for their recovery process.

2

1.2. Objectives

The objectives of this thesis are outlined as follows:

- To develop an easy-to-use mobile app that can be utilized by stroke survivors,

allowing independent practice of motor exercises and therapeutic activities.

- To explore in which ways music therapy fundamentals can be applied to this new

technology and include it.

- To investigate the feasibility and effectiveness of a mobile app as a supplement in

stroke motor recovery, which facilitates motor improvement without the need for

additional hardware or special equipment.

- To include a machine learning model in the app for seated poses and exercises

detection.

- To gather feedback and insights regarding the acceptability, usability, and

perceived benefits of the mobile app in comparison to conventional music therapy

methods.

By achieving these objectives, this thesis aims to provide valuable evidence and insights

into the practicality of a mobile app as an alternative approach for stroke motor recovery.

Additionally, it hopes to enhance teletherapy possibilities, which would improve stroke

survivors' access to neurorehabilitation treatments in the long run.

3

2. State of the art

2.1 Stroke

Strokes are one of the most serious forms of cerebrovascular disease that occur when

blood flow to a part of the brain is interrupted or reduced, depriving brain cells of oxygen

and nutrients. As a result, brain cells begin to degenerate in a matter of minutes, which

causes a high mortality rate, a high rate of morbidity, and a considerable degree of

disability, all of which have a significant influence on the lives of the survivors. Patients

may develop aphasia, dysphagia, cognitive impairment, motor dysfunction, mood issues,

and other consequences as a result of the stroke. Damage to the parts of the brain that

control language results in language disorders such as aphasia. Aphasia can make it

challenging for people to find words, form sentences, understand spoken or written

language, read, and write. The medical term dysphagia refers to the difficulty swallowing

liquids and food which can lead to dehydration, malnutrition and aspiration pneumonia.

Cognitive recovery includes memory and learning ability, sensory and perceptual

disorders, and attention. According to the degree of affectation on the patient, motor

dysfunction can range from numbness or weakness of the limbs to paralysis or spasms.

This thesis will focus primarily on motor dysfunction. The damage to the nervous system

in many cases is not completely recoverable and cannot be completely reversed. That’s

why early intervention and rehabilitation is fundamental to restoring impaired

neurological function, which depends on the brain's plasticity and functional

reorganization (Huang et al., 2021).

4

2.1.1 Stroke motor recovery evaluation

There are 5 stages to stroke recovery. The first two weeks are defined as the acute stage

of stroke. From 3 to 11 weeks, sub-acute stage. From 12 to 24 weeks is the early chronic

stage and, finally, more than 24 weeks is the chronic stage of the stroke.

The evaluation possibilities for stroke recovery are wide as it depends on what is to be

assessed. For the evaluation of motor recovery, which will be the focus of this thesis, an

examination of the patient’s physical abilities and functional status is needed. Some

common tests used for this purpose are Fugl-Meyer Assessment (FMA), Motor

Assessment Scale (MAS), Action Research Arm Test (ARAT), Barthel Index… All these

tests provide valuable information about the patient’s motor recovery state after a stroke

and can help with the creation and development of an effective rehabilitation program. In

this thesis Fugl-Meyer Assessment (FMA) will be considered the standard as it is

currently what is being used at Hospital Forum Mar by the music therapy professionals.

2.2 Music Therapy

The practice of using music to treat conditions like depression, pain, anxiety, and

cognitive function is known as music therapy. The fundamental idea behind this therapy

is that because music involves so many different neuronal connections and functions, it

has a perceptible effect on the brain. For instance, the left part of the brain is responsible

for lyric comprehension and rhythm distinction, while the right part is focused on melody

analysis. During a session, a trained music therapist assesses the individual’s needs and

develops a personalized treatment plan. This plan may include passive activities, such as

listening to the music of the user’s liking, making them feel comfortable and safe. Or

alternatively, active activities, such as singing, playing with instruments, and moving

along with the music. Studies have shown that music therapy is a potential strategy for

stroke patients' rehabilitation since it can help to lessen the stroke's numerous side effects.

It is a reliable, affordable, practical, and simple-to-apply solution. This, together with its

high patient acceptance, explains why this therapy is becoming more and more popular

5

among staff members in hospitals, rehabilitation centers, and nursing homes. (Braun

Janzen et al., 2022).

2.2.1 Music Therapy for stroke recovery

Music therapy has various applications for stroke recovery due to music’s inherent

properties and its connectivity with the brain. Early music intervention may promote

long-term neuroplasticity changes in sensory and perceptual processes that facilitate

cognitive function recovery. For example, vocal music can be helpful to improve memory

recovery whereas mindful music might assist with relaxation and concentration. In the

same way that vocal and singing exercises are advised for speech recovery in dysphagia,

rebuilding cortical and subcortical structural networks in the dominant hemisphere of

language is the main objective in aphasia treatment. The brain regions that are engaged

while speech and singing activities overlap, according to neuroimaging research. Melodic

Intonation Therapy (MIT), which involves singing words and phrases while engaging in

daily tasks and using a musical tune, was born as a result of this. Patients who are unable

to talk may be able to sing words.

Regarding the thesis's primary focus on motor function recovery, a range of techniques

can be implemented, among which is Rhythmic Auditory Stimulation (RAS) for path

cadence. An auditory rhythmic cue is utilized here in the form of repetitive isochronous

pulses (e.g., a metronome) or metrically accentuated music matching the individual's

cadence. As the cues are gradually increased or decreased by 5-10%, they provide

anticipatory time cues that allow movements to be planned and prepared, helping

therefore to regulate timing and pace. Additionally, Music-Based Interventions (MBI)

have been shown to improve upper extremity motor function recovery. These iMBI

techniques include Music-Supported Therapy (MST), a standard rehabilitation technique

that employs a keyboard or electronic drum to enhance both movement kinematics and

motor function in the subacute stage of a stroke. This is an enjoyable activity for patients

and helps with movement coordination, auditory-motor coupling and integration. Music

therapists also use Patterned Sensory Enhancement (PSE) to improve timing, duration,

direction, and force of movements by playing musical instruments. With the creation of

6

musical patterns for different movements, actions that would not be rhythmical by nature,

for instance getting dressed, are structured and regulated.

Instead, in Therapeutic Instrumental Music Performance (TIMP), which will be of great

importance for this thesis, musical instruments are simply feedback, either tactile, visual

or auditory. Individuals' bodies are strategically arranged with instruments at strategic

locations. With this, various movements can be trained.

The impact of music therapy on stroke rehabilitation has been gradually substantiated in

clinical practice (Xu et al., 2022).

2.3 Technology-enhanced stroke rehabilitation

The goal of this chapter is to give a general review of the cutting-edge technology utilized

in stroke therapy while highlighting both its advantages and disadvantages.

Robotic-assisted therapy has garnered significant attention in stroke rehabilitation.

Robotic devices offer high-intensity, repetitive movements that can facilitate motor

recovery. These devices provide precise control, allowing therapists to target specific

muscle groups and customize interventions according to individual needs. Examples of

robotic-assisted therapy devices include robotic exoskeletons, end-effector devices, and

robotic-assisted gait training systems. Studies have shown promising results in improving

upper and lower limb function, reducing muscle tone, and enhancing overall motor

recovery (Hesse et al., 2003; Mehrholz et al., 2015).

Virtual Reality (VR) and Augmented Reality (AR) provide experiences that facilitate

motor learning and neuroplasticity while performing rehabilitation exercises in virtual

environments, increasing users’ engagement and adherence to therapy. VR generates

computer-generated 3D simulations, while AR overlays virtual elements in the real world.

Additionally, this method can provide real-time feedback, assessment tools, and data

analytics to track progress and customize interventions (Laver et al., 2017; Saposnik et

al., 2016).

Brain-Computer Interfaces (BCIs) establish a direct communication pathway between the

brain and external devices, bypassing impaired motor pathways. With this, stroke

survivors control robotic devices or computer programs using their brain activity,

promoting motor recovery and enhancing functional independence (Ang et al., 2014;

7

Cervera et al., 2018). Electroencephalography (EEG) and functional near-infrared

spectroscopy (fNIRS) are commonly used to detect and monitor brain signals.

Wearable sensors like accelerometers and gyroscopes provide home-based therapy and

continuous monitoring. These tools offer precise movement measurements, allowing

therapists to evaluate motor function from a distance. For example, machine learning

algorithms can be used to analyse the acquired data and provide individualized feedback

and improve treatment plans. Through remote monitoring and telerehabilitation, this

technology removes geographic restrictions and improves access to care. (Porciuncula et

al., 2018).

Games have also been used to transform traditional rehabilitation exercises into

interactive and enjoyable activities. This motivates stroke survivors and enhances their

engagement in therapy. By incorporating elements like rewards, competition, and

progression, games promote repetitive practice and motor learning. They can be

combined with other technologies such as VR and motion sensors to create immersive

and challenging rehabilitation experiences (Lohse et al., 2014; Saposnik et al., 2016).

Lastly, Telerehabilitation and Mobile Health (mHealth) solutions enable remote

rehabilitation services, improving access to care and supporting home-based

rehabilitation. Telecommunication technologies, video conferencing, and mobile apps

allow therapists to provide guidance, monitor progress, and offer remote interventions.

Stroke survivors can perform exercises at home while receiving real-time feedback and

support from healthcare professionals. These technologies have the potential to reduce

healthcare costs, increase patient autonomy, and improve long-term outcomes (Dodakian

et al., 2017; Tchero et al., 2018) . Several software apps for stroke recovery are accessible

on the internet, catering to both patients and professionals. While some programs provide

informative resources for stroke patients and their families, like Codigo Ictus and

Essential Anatomy 3, others are developed to support recovery treatment, such as

Constant Therapy for speech therapy and CPA for image-based communication.

The primary focus of this thesis is to examine applications that target the motor recovery

of the upper limb, for instance, Dexteria and CloudRehab. Dexteria (Sawant et al., 2020)

is an app with several game-like exercises that require the user to use their hand to

improve pencil grip, work with both hands and follow lines. It does not include arm

8

exercises, focusing only on hand and finger strength. CloudRehab (Rodriguez-Prunotto

& Cano-de-la-Cuerda, 2018) facilitates patients to review their recorded rehabilitation

session, while simultaneously observing themselves doing the same exercise on the other

half of the screen. The recorded session is then transmitted to the designated doctor or

therapist for analysis, who subsequently provides feedback to the patient. But again, there

is no feedback from the app to the patient, just a mirroring service.

When it comes to music therapy apps for stroke recovery, most are for relaxation,

meditation, and music selection. There are other options available, all of which require

external hardware to be used, such as a piano, sensors (GotRhythm, Jintronix,

MedRhythms) or specifically built an instrument for the application such as the one

developed in (Segura et al., 2021)

The key point here is that, currently, there is no app for motor recovery after a stroke that

makes use of music therapy techniques and requires no external hardware or specific

materials.

2.3.1 Machine Learning Models in Mobile Applications

The incorporation of Machine Learning and Artificial Intelligence in mobile applications

has given cell phones the ability to convert text to speech, interpret gestures, and identify

objects and people in images. All of these new possibilities have piqued the interest of

developers in many domains, including healthcare.

Machine Learning methodologies can be grouped into four main categories. Supervised

Learning entails training the algorithm with labelled inputs and outputs, followed by

predicting the output with the test dataset. Some examples of Supervised Learning include

Decision Trees, Random Forests, K-Nearest Neighbours, Linear Regression, Logistic

Regression, Neural Networks, and Deep Learning. On the other hand, Unsupervised

Learning involves the algorithm learning similarities, patterns, or differences to classify

unlabelled data. Examples of this are k-Means clustering and Mean-shift. There is also

something in between, Semi-supervised learning, where labelled and unlabelled data are

combined throughout the training phase to produce either a category or numerical output

9

(regression). Another different approach can be Reinforcement Learning, in which the

algorithm learns from its environment. This methodology learns from its experiences in

the environment and once it has encountered the entire range of possible states, it can

make decisions based on its acquired knowledge.

In order to incorporate Machine Learning in mobile applications, there are two main

architectures. Server-side architecture, where everything is done on to the server through

a web service in which the information is sent to be analysed. The deployment of the

model on the server endows all clients with instantaneous updates on the model, which

may have occurred through reinforcement learning during the evaluation on the server.

This approach is ideal for applications that demand a precise model while utilizing the

device’s minimum amount of space and CPU power. Contrary, on client-side architecture,

a copy of the trained model exists on the device and it is executed locally to calculate the

result, enabling its use even in the absence of internet connectivity. This approach is

particularly advantageous for image processing, as the evaluation is more direct due to

the absence of network latency (Ganesan, 2022).

For the purposes of the present thesis, a client-side architecture will be employed. This

approach guarantees that the patients' images will not be transmitted to any online server,

which is a crucial factor in secure medical data treatment. It is crucial to acknowledge

that the models accessible for implementation in mobile applications are subject to

constraints in terms of space and processing power. Hence, even though there might be

several models available online for the purpose of this thesis, specific models designed

explicitly for a mobile environment must be selected.

From all the frameworks available such as TensorFlow, Keras, Scikit and ML Kit. Core

ML (with the use of the Vision framework from Apple) and XCode offer the

infrastructure to develop and implement an app with a machine learning model for iOS

platforms.

10

2.4. MoveNet

MoveNet is a state-of-the-art model evolved by Google AI, designed for real-time human

pose estimation. Pose estimation refers to the procedure of detecting the position and

orientation of 17 key body parts (key points) in an image or video. This model architecture

prioritizes velocity and performance without compromising accuracy, contrary to

traditional pose estimation models that frequently require powerful computing hardware.

MoveNet comes in two variants: Movenet Lightning, designed for ultra-fast inference

and suitable for applications that require actual-time feedback, and Movenet Thunder, a

bigger version designed for programs where higher accuracy is preferred and some

computational overhead is acceptable.

The output of the model in both cases is a tensor with 17 xy coordinates of the body points

and the confidence scores for the key point.

11

3. Methods and material

3.1. Materials

Name Comment

iPhone 12 iOS 16.5.1, 68GB

Macbook Pro 2020 MacOS Ventura 13.3.1, Apple M1, 16GB RAM

Due to the availability of this material and the impossibility to use app simulators for a

live camera application, the platform for which the application has been coded is iOS.

3.1.1. Fugl-Meyer Assessment (FMA)

In the Fugl-Meyer Assessment (FMA), motor recovery after stroke can be quantitatively

measured. Its scale, Fugl-Meyer scale, was the first developed quantitative evaluation for

sensorimotor recovery measurement in stroke. It consists of 100 points based on different

exercises that involve mobility for the upper and lower extremities (Gladstone et al.,

2002).

A score from 0 to 2 is assigned to each of these tasks. Patients with a score of 0 cannot

perform the exercise, whereas those with a maximum score are able to perform the task

completely. The scores of all sections are then added together to obtain a total score.

In this thesis, the Upper Extremity exercises (66 points if done perfectly, 33 tasks)

proposed by FMA are used as an inspiration for the development of the exercises in the

mobile application. Mentioned exercises are listed below for the reader’s comprehension.

12

Figure 1: Exercises for Fugl-Meyer evaluation

3.1.2. XCode

XCode is an Apple-developed integrated development environment (IDE) that provides

a visual interface where developers can design the user interface, write code, and debug

applications. It includes a simulator to test and preview the app's behavior with different

iOS hardware (iPhone, iPad, iPod, Mac, all different generations). Any CoreML model

can also be integrated into the project. Once integrated, the model can be utilized to make

real-time predictions within the iOS app. Among the programming languages that this

software offers, the app has been coded in Swift.

3.1.3. Create ML – Activity Classifier

Create ML is the MacOS software that has all Apple CoreML algorithms available. The

Action Classifier Model in Create ML is a valuable tool for developing accurate machine

13

learning models that can recognize activities effectively. This model employs Apple

Vision framework to detect 19 body landmarks, which are essential points or features

within an activity that help differentiate and categorize actions. After detecting these

landmarks, a neural network is used for classification of the different activities.

The output of the model in terms of data includes all possible categories or movements

that have been detected (labels), as well as the confidence or probability of each of them,

selecting the one with highest confidence as the predicted action.

Figure 2: Simplified diagram of Action Classifier from CoreML

For each of these landmarks, both x and y coordinates are computed. For example, in

Fugl-Meyer activities, landmarks can include the hand, arm, or shoulder positions during

movement. By tracking these landmarks, the model learns to associate specific patterns

with different activities.

14

Figure 3: Vision framework body landmarks detection.

3.2. Selection of the posture detection framework

It is worth noting that existing machine learning models for posture recognition are

primarily designed for a full-body perspective, specifically focusing on individuals in a

standing position. That can be due to the dataset chosen for the pretraining of these

models. However, stroke survivors and individuals undergoing Fugl Meyer assessment

activities are typically seated. The existing models for seated positions aim at cameras

located laterally to the participants, thus are not fitting for the context of the app in this

thesis.

One of the main tasks of this thesis has been to decide which framework to use to obtain

the landmarks due to this limitation.

As MoveNet is one of the state-of-the-art models for body landmarks detection, the first

approach was to use this framework for this purpose. The idea was to first obtain these

points and then use different classifiers for activity classification. The code for obtaining

these captures is available in Appendix – MoveNet screen captures code.

15

Figure 4: Body landmarks detected with MoveNet Thunder

Figure 5: Body landmarks detected with MoveNet Lightning

16

Given these results, MoveNet cannot be used for the purpose of this application, as body

landmarks are not well detected, probably because of the seated position. A classifier is

highly dependent on the input data. In this case, the input data would not be representative

of the different actions.

Otherwise, landmark detection in CoreML is more accurate for the required task because

of the use of Vision, thus the final classification would be more precise. Therefore, the

justification for the use of this framework for the development of the app.

Figure 6: Body landmarks detected with CoreML using Vision

17

3.3. Data collection: Creating the Dataset

The development of an activity detection model for Fugl Meyer activities needs of the

creation of a video dataset showcasing the specific target activities. As there is no dataset

available online for such a purpose, this section delineates the primary steps involved in

constructing the dataset.

As the scope of this thesis is to provide a proof of concept for an app utilizing music

therapy in motor stroke recovery, it is important to note that not all exercises encompassed

by the Fugl Meyer assessment will be available in the dataset. Rather, the focus will be

on two specific exercises: the movement of the hand from the knee to the ear, as well as

shoulder lateral flexion spanning the range of 0 to 90 degrees. Both are done with both

hands.

Figure 7: Ear exercise example

18

Figure 8: 90lateral exercise example

Regarding the video recording setup, the camera's positioning should allow for a complete

view of the participant's body in the frontal camera frame. Video samples should be

recorded at a frame rate of 30 frames per second (fps), as this aligns with the configuration

of the developed app's camera input. If recorded at any other frame rate, this info would

need to be updated both in the model configuration and in the corresponding parts of the

code regarding data input.

Videos have been recorded using the frontal camera of an iPhone 12 set to 30fps, then

cropped with Adobe Premiere to 1 second duration clips, manually labelled and organized

in a directory structure categorizing the activities performed. Independently of how many

exercises are to be detected, an extra “negative” category with examples of no-movements

(i.e. resting position) needs to be added for the proper function of CreateML classifier.

19

Figure 9: Database folder distribution for training and testing

The resulting dataset consists of 340 clips:

Table 1: Dataset clips and classes distribution

Activity label Total clips

Ear left 68

Ear right 69

90lateral left 67

90lateral right 68

Other (resting) 68

Total 340

3.4. Training CoreML

The Action Classifier Model undergoes a training process where it learns from a labelled

dataset, where each example is associated with a specific activity category. Once trained,

it can be used to predict the activity category of new, unseen examples. By feeding the

input data, such as an image or video frame, into the model's neural network, the model

analyses the input and generates a prediction indicating the most likely activity category.

CreateML automatically divides data for training and validation. Optionally, a set of clips

can also be selected for testing evaluation. The number of iterations, the prediction

window size and the framerate of the input data can be selected. Data augmentation is

20

also possible thanks to the horizontal flip feature that it offers, training then the same

action for both sides.

The accuracy of the trained model can be measured using metrics like precision, recall,

and F1 score. This helps determine the effectiveness of the model in recognizing and

classifying activities. A preview of the model behaviour is also available in the same

program for quick testing, either with pre-recorded videos or live camera input.

The dataset has been automatically split for training and validation. For testing evaluation,

around 20% of the dataset has been separated.

3.5. FuglMeyerApp – the result app

The resulting app from this thesis, FuglMeyerApp, is an iOS app coded in Swift using

XCode 14.3.

What the app essentially does is described in the following diagram. First, a live video

feed from the frontal camera of the user is sent to the app. This input feed is then analysed

within a defined prediction window. For every frame in this window, with the use of

Vision framework, body landmarks are detected. With said landmarks, then the trained

model can predict which activity the user is doing. If the confidence for such prediction

is higher than a threshold, the prediction is considered valid, and a sound is played as

feedback. The sound varies according to the activity that is being completed. As a help

for the user to understand with the app functioning, a preview layer is added as a unique

output in the user’s screen, in which the user can see on top of themselves in real-time the

body landmarks that have been detected.

21

Figure 10: Proposed application scheme

The dependencies used for this purpose are Vision, AVFoundation and CoreML.

The code for the main parts of the app can be found in Appendix – Main APP Code Parts.

Also in Appendix, a README file is included. The following documentation serves as a

comprehensive guide to understanding the app's structure and behaviour.

3.5.1.Structure

The modular structure and organized codebase ensure scalability and maintainability,

allowing for further enhancements and customization. The app is now functioning for

five classes (ear right, ear left, 90 lateral right, 90 lateral left and others). But more

activities could be easily added to the app with no issue due to its structure. The main

parts of the app:

- View Components: These components handle how the app looks and how users

interact with it. They include the main view controller, storyboard files, and

various UI elements like buttons, labels, and video preview layers.

- Capture and Processing Components: These components are responsible for

capturing video data from the device's camera and processing it to estimate body

22

positions and predict actions. The VideoCapture class handles video capturing,

while the Predictor class processes the data and makes predictions.

- Machine Learning Model: At the heart of the action prediction functionality lies

a trained machine learning model. In this app, the FMClassifier (Fugl-

MeyerClassifier) model is used, which analyzes body pose observations to label

detected actions.

- Audio Feedback Components: These components provide real-time auditory cues

to the user based on the detected actions. To accomplish this, we use

AVAudioPlayer instances to play sound files that deliver ear and lateral cues.

3.5.2. Capturing data

The VideoCapture class is responsible for capturing video data from the device's frontal

camera and passing it to the predictor for further processing. It utilizes the AVFoundation

framework to set up an AVCaptureSession, which manages the input (camera) and output

(video data). The main behavior of this class includes:

- Initialization: Upon initialization, the VideoCapture class sets up the capture

session and adds the AVCaptureVideoDataOutput, which is responsible for

receiving video frames.

- Capture session Start: The startCaptureSession() method is called to start the

capture session and activate the video capture.

- Sample Buffer Delegate: The class conforms to the

AVCaptureVideoDataOutputSampleBufferDelegate protocol, allowing it to

receive sample buffers containing video frames. The output capture method is

triggered whenever a new sample buffer is available. In this method, the predictor

instance is invoked to estimate body poses based on the received sample buffer.

3.5.3. Predictor

The Predictor class is responsible for analyzing the body pose observations received from

the video capture and making predictions about the detected actions. It utilizes a trained

machine learning model (*FMClassifier*) to label the actions and calculates the

23

confidence level for each prediction. It also delegates the recognized points to the

ViewController for visualization. The key behaviors of this class include:

- Body Pose Estimation: The estimation method is called when a new sample buffer

is received. It uses Vision and a human body pose request to process the sample

buffer and obtain human body observation instances representing body poses.

- Recognized Points Processing: For each received human body observation, the

recognized body points are extracted and transformed to display coordinates. The

transformed points are then sent to the delegate through

the didFindNewRecognizedPoints() method for visualization purposes.

- Action Labeling: The stored human body observation instances are used as input

to the FMClassifier model to predict the actions. The labeled action and its

confidence level are sent to the delegate through the didLabelAction() method.

- Observation Storage: The class maintains a window of human body observation

instances to ensure a continuous stream of data for action prediction. When a new

observation is received, it is stored in the window. If the window exceeds the

defined prediction window size, the oldest observation is removed.

The recognized points are superposed to the input camera information, showing the points

on top of the user’s body. This is done so the user can be certain that their extremities are

being properly captured by the app and to notice situations such as lag, delays or points

out of position which could occur in case of error.

3.5.4. Adding sound

The audio feedback functionality is implemented using AVAudioPlayer instances. Based

on the labelled actions and their confidence levels, the app provides real-time auditory

cues to the user upon action completion. The specific audio files and playback logic can

be customized and extended according to the specific requirements of the rehabilitation

program. This means, if more activities were added in the future, more sounds could also

be introduced easily in the code.

24

3.5.5. Accessibility and landing screen

As the target for this application is people who are recovering from a stroke, some

considerations are needed regarding the layout of the application. The app itself should

be as easy as possible to use. Because of this, no registration is needed, and the idea is to

have an app that is “plug and play”. As soon as the app is started, after granting access to

the camera, the frontal camera is enabled and body key points are displayed on top of the

user’s view. From that moment, the app can detect the exercises. This is the easiest

scenario that could be implemented. Even if users do not have others nearby to help them

set up the app, the app should be easy enough to use. Exercises demanded on the app

should also be easy to do and the app behavior should be understandable by the user.

A landing screen showing how to setup properly the camera should suffice for using the

application.

Figure 11: Example of landing screen

25

3.6. Music Therapy principles in the app

One of the key motivations of building this kind of application was to incorporate music

therapy principles into it, with the idea to come up with a solution that does not require

external hardware. For this, different music therapy techniques were studied, deciding

how it could be included in an app of this nature to help with post-stroke motor recovery.

The approach that seemed more convenient was Therapeutic Instrumental Music

Performance (TIMP), in which instruments are used as auditory, tactile or visual

feedback. TIMP emphasizes the therapeutic benefits of actively engaging with musical

instruments, such as promoting coordination and motor control. In this app, users interact

with the “virtual instrument” of their body through their motor movements, creating a

dynamic and interactive musical experience. The app leverages the inherent rhythmic

elements of music to facilitate motor learning, enhance motivation, and provide a sense

of enjoyment and accomplishment.

Upon completion of an action, auditory feedback is generated, akin to the production of

sound when playing a percussive musical instrument, which typically requires physical

movement. The sounds selected for this demo are drums and percussion clips from

Freesound, so that the body of the user feels like a drum set themselves. This decision has

been made taking into consideration that not every user might be able to differentiate the

pitch or different notes of the same instrument, thus it would be easier to have a variety

of instruments that are not precisely melodic for this purpose. This selection also enables

users to engage in drumming while participating in music therapy sessions at the hospital,

where music therapists commonly utilize the piano or guitar. Furthermore, users can play

the drums along with their preferred music at home, or alternatively, practice exercises

aimed at creating rhythmic patterns.

26

3.7. Usability Questionnaire

When designing a therapeutic application, usability is a must. Users should find some

benefit in using it and doing the exercises. Also, it should not be difficult to understand

what is happening. Otherwise, the contribution of this thesis would be only technical and

not practical.

The ideal situation would have been to conduct a clinic study with stroke survivors during

some months, a control group who would have been using the app several times a week

as a supplement to their normal therapy sessions, and another group who just had the

music therapy sessions at the hospital with no extra practice. Progress for patients in both

groups could have been tracked with Fugl-Meyer Assessment evaluation. But due to time

constraints, this escapes the scope of this thesis and is encouraged to do in the future.

As an alternative, testing sessions have been conducted with volunteers from their 20s to

people in their 80s, focusing more on people older than 40 years. In each of these

individual sessions, individuals have been given contextual information on what is stroke,

the inconveniences and difficulties that stroke survivors might deal with, what is music

therapy and how it is used for stroke recovery, specially TIMP. After that, they were

asked to use the application for a few minutes and to complete the usability questionnaire

that can be found in Appendix – Usability questionnaire. Examples of questions include

a rating on how intuitive to use the app is, how easy to do the exercises are, and app’s

overall behaviour, among others.

27

4. Results

4.1. CoreML

The Activity classifier model used in the application has been trained as follows:

- Number of iterations: 60

- Augmentation (Horizontal flip): no

- Frame rate: 30 fps

- Action duration: 1 second (30-frame prediction window)

Table 2: Testing evaluation FMClassifier iteration 20

Class Count Precision Recall F1 Score

Ear right (4) 26 100% 81% 0.89

Ear left (3) 26 100% 73% 0.84

90lateral right (2) 21 100% 71% 0.83

90lateral left (1) 26 100% 65% 0.79

Other (0) 15 36% 100% 0.53

Here are some examples of the model live output using the camera from the Macbook

Pro with the labels predictions and confidence levels. Labels are 3 (ear left, meaning the

exercise is done with the left hand) and 2 (90lateral right).

Figure 12: Live Output predictions of the trained CoreML model

28

4.2. FuglMeyerApp

The outcome of this thesis work culminates in the development of an iOS application that

enables the generation of sounds upon successful completion of specific exercises from

the Fugl Meyer assessment. Through the utilization of this app, the participant's body

assumes the role of a percussive musical instrument. The aim of this app is to help post-

stroke survivors with their upper-limb motor recovery.

Figure 13: FuglMeyerApp with custom logo

In order to test the app, an iPhone is connected via cable to a MacbookPro where the

XCode project with the application is stored. Then, in XCode with the run option, the

iPhone is selected and the app is built into it. All tests regarding the app show real results

in terms of timings and processing, because even though the original code is in XCode,

the app runs the version that has been built into the iPhone. Posting the app on AppStore

would be possible after following some requirements. Still, this would require revision

and approval from people at Apple, so this was the faster way to test the application. On

the other hand, there is no app hosting fee per se, but an annual fee of 99€ for the Apple

Developer Program is needed to publish the app, which is also another constraint.

29

Figure 14: Screenshot of the iPhone while the app is being used

The app’s code as well as other code used in this thesis for results is available in

https://github.com/mireiadg/fuglmeyer_recovery.git

https://github.com/mireiadg/fuglmeyer_recovery.git

30

4.3. Questionnaire results

The complete results chart can be found in Appendix – Usability Questionnaire Results.

- Demographics:

The age of the volunteers ranged from 24 to 85 years, with a fairly wide distribution.

There are 8 males and 13 females in the sample.

4 out of 21 volunteers reported having an upper-limb movement limitation, which is

roughly 19% of the sample.

- Usability Evaluation

All questions in this section were marked with a score from 1 to 5.

Table 3: Usability questions average score (out of 5)

Question Average

U1 (Overall Usability): 4,84

U2 (Ease of Exercises): 4,69

U3 (Technical Issues): 3,99

U4 (Intuitiveness): 4,36

U5 (Configuration Information Clarity): 3,86

U6 (Response Time): 4,21

U1 (Overall Usability): The average rating for overall usability is 4.81 (out of 5). This

suggests that users generally found the app to be very easy to use.

U2 (Ease of Exercises): The average rating is 4.69. Users generally found the exercises

easy to do.

U3 (Technical Issues): The average rating is 3,99. Most users did not encounter

significant technical issues, though a few reported some problems. There is room for

improvement here.

U4 (Intuitiveness): The average rating is 4,36. This suggests that the app is generally

perceived as intuitive to use.

31

U5 (Configuration Information Clarity): The average rating is 3,86. This is relatively

lower compared to other usability metrics, suggesting that the clarity of the configuration

information might be an area for improvement.

U6 (Response Time): The average rating is 4,32 This suggests that most users found the

app’s response time to be fast.

- Musical Instrument Substitution

MI1 (Potential to Substitute a Traditional Instrument): Most of the volunteers (18 out of

21) either ‘Agree’ or ‘Slightly Agree’ that the app has the potential to substitute a

traditional musical instrument in the context of music therapy for stroke recovery.

MI2 (Comparison to Playing a Traditional Percussive Instrument): The majority of

volunteers (18 out of 21) either ‘Agree’ or ‘Slightly Agree’ that the use of the app is

comparable to playing a traditional musical instrument. However, three volunteers

‘Slightly Disagree’ with this statement.

MI3 (Easier with a Musical Instrument): All volunteers (21 out of 21) answered ‘NO’ to

whether they think the exercises would be easier to do with a musical instrument. This

suggest that the users don’t see a traditional instrument as necessary for the exercises.

32

5. Discussion

In this thesis, a significant consideration has been the selection of an appropriate machine

learning framework for body landmark detection, critical for the accurate classification

of post-stroke upper-limb motor activities. The majority of existing models for posture

recognition, such as MoveNet, are designed with a focus on full-body perspectives and

are typically trained on datasets of individuals in standing positions or doing full-body

movements. This paradigm presents a limitation for applications like the one in this thesis,

which targets populations that are typically in a seated position.

When experimenting with MoveNet, the body landmarks detected were misaligned,

probably due to the seated position of the users. A classifier’s effectiveness is intrinsically

tied to the quality of its input data, and in this context, MoveNet was not sufficient. In

contrast, with CoreML and Vision from Apple, body landmarks were more accurate for

seated individuals. Contrary to MoveNet which shares the datasets used for this training,

Vision does not specify which database has been used for its training as it is a commercial

model. By seeing the results, it is more than likely that the database that they are using

includes more seated examples. The decision of using CoreML models for this thesis

enabled the development of the classification for the Fugl-Meyer Assessment activities

in the resulting app.

This work, therefore, not only contributes a potential solution for post-stroke motor

recovery with music therapy but also sheds light on the significant gap in existing

machine learning models regarding accurate assessment of seated individuals, a common

scenario in clinical evaluations.

Regarding the evaluation of the app, the results predominantly indicate a positive user

experience. The usability questions indicate that users found the exercises easy to perform

(4,69/5) and the app to be intuitive (4,36/5) with a satisfactory response time (4,21/5).

There are two areas that received a lower score. The clarity of the configuration

information (3,86/5) indicates that users may benefit from more explicit instructions or

guidance within the app. On the other hand, some users experienced technical issues

33

(3,99/5) with the detection of exercises. Users who were wearing flowing clothing

reduced the model’s accuracy when trying to detect their body key points, this is stated

as a model limitation in Apple developer’s Vision framework official webpage. The

generated model for this thesis is also not perfect and might mistake an action for another

in some cases.

A majority of the participants felt the app has the potential to substitute a traditional

musical instrument, aligning with the goal of the application. Furthermore, all

participants, regardless of their upper-limb mobility status, did not perceive the need for

conventional instruments to facilitate the exercises and emphasized the independent value

of the app.

There were certain inherent limitations when the topic of this work was decided. First,

obviously, the constraints of using a model that can be deployed in a mobile application,

as the app was the final goal. Also due to materials availability and that it is not possible

to use an app simulator on the computer to test and debug an app that is using live video

feed, the app was developed for an iOS environment. This study assumes that patients

have access to and familiarity with the necessary technology, which could be a significant

limitation among older adults. In order to prevent this issue, the app design is as simple

as possible, assuming the user will be able to locate their mobile phone accordingly to the

instructions. Also, due to time limitations, the study did not evaluate the long-term effects

and retention of motor skills developed through the use of the app, which would help

assess the sustained impact of this intervention.

If found to be effective, this research suggests that the app could be integrated into

standard post-stroke rehabilitation protocols, thereby offering a novel, cost-effective, and

engaging method for patients to improve their upper-limb motor function. The app’s

potential to make rehabilitation exercises more accessible could be transformative,

especially for individuals who are unable to attend frequent in-person therapy sessions

due to geographical, financial, or health-related constraints. This study also opens the

door to more personalized, patient-centred care. The app’s exercises could be adapted on

each patient’s progress and preferences. By integrating music therapy principles into

34

digital health interventions, this app could contribute to expanding the scope and

acceptance of music therapy techniques in various clinical settings.

Future work in this field should consider a wider participant sample size, with a diverse

demographic representation of the stroke survivor population. Participants with varying

degrees of upper-limb motor impairment should be involved to assess the app’s

effectiveness across different stages of recovery, long-term. In addition to this, the

integration with alternative machine learning models for detecting body landmarks in

seated individuals should be investigated. As the current study uses CoreML and Vision

from Apple, it may be beneficial to explore the development of platform-independent

models that are accessible for various operation systems and devices.

35

6. Conclusions

This thesis demonstrates the potential for a mobile application, grounded in music therapy

principles and utilizing machine learning techniques, to play a meaningful role in the

upper-limb motor recovery of stroke survivors. The study found that participants

generally rated the app as highly usable, with particularly positive feedback regarding its

intuitive design and ease of exercises. Users also agree that the app has the potential to

substitute a traditional percussive instrument in the context of music therapy for post-

stroke rehabilitation. The chosen machine learning framework for body landmark

detection and pose estimation is CoreML, combined with Vision from Apple, which

proved to be more accurate for seated positions compared to other tested frameworks such

as MoveNet. This work also sheds light on the gap that there is in machine learning

models regarding proper assessment of body pose detection in seated individuals.

This research adds valuable insights to the field that merges music therapy, digital health

technologies, and stroke recovery interventions. The results indicate that an application

like the one developed in this thesis could be of great value to assist in the post-stroke

recovery process, making rehabilitation more accessible and engaging for patients.

36

7. List of figures

Figure 1: Exercises for Fugl-Meyer evaluation .. 12

Figure 2: Simplified diagram of Action Classifier from CoreML.................................. 13

Figure 3: Vision framework body landmarks detection. .. 14

Figure 4: Body landmarks detected with MoveNet Thunder ... 15

Figure 5: Body landmarks detected with MoveNet Lightning 15

Figure 6: Body landmarks detected with CoreML using Vision 16

Figure 7: Ear exercise example .. 17

Figure 8: 90lateral exercise example .. 18

Figure 9: Database folder distribution for training and testing 19

Figure 10: Proposed application scheme .. 21

Figure 11: Example of landing screen .. 24

Figure 12: Live Output predictions of the trained CoreML model 27

Figure 13: FuglMeyerApp with custom logo ... 28

Figure 14: Screenshot of the iPhone while the app is being used 29

37

8. List of tables

Table 1: Dataset clips and classes distribution ... 19

Table 2: Testing evaluation FMClassifier iteration 20 ... 27

Table 3: Usability questions average score (out of 5) .. 30

Table 4: Questionnaire Results Table ... 45

file://///Users/mireiadegracia/Documents/UNI/A%20mobile%20application%20with%20machine%20learning%20and%20music%20therapy%20principles%20for%20post-stroke%20upper-limb%20motor%20recovery%20-%20Mireia%20de%20Gracia%20Fores%20TFM.docx%23_Toc143110374

38

9. Bibliography

Ang, K. K., Guan, C., Phua, K. S., Wang, C., Zhou, L., Tang, K. Y., Ephraim Joseph, G.

J., Kuah, C. W. K., & Chua, K. S. G. (2014). Brain-computer interface-based robotic end

effector system for wrist and hand rehabilitation: Results of a three-armed randomized

controlled trial for chronic stroke. Frontiers in Neuroengineering, 7, 30.

https://doi.org/10.3389/fneng.2014.00030

Braun Janzen, T., Koshimori, Y., Richard, N. M., & Thaut, M. H. (2022). Rhythm and

Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future

Perspectives. Frontiers in Human Neuroscience, 15.

https://www.frontiersin.org/articles/10.3389/fnhum.2021.789467

Cervera, M. A., Soekadar, S. R., Ushiba, J., Millán, J. D. R., Liu, M., Birbaumer, N., &

Garipelli, G. (2018). Brain-computer interfaces for post-stroke motor rehabilitation: A

meta-analysis. Annals of Clinical and Translational Neurology, 5(5), 651–663.

https://doi.org/10.1002/acn3.544

Dodakian, L., McKenzie, A. L., Le, V., See, J., Pearson-Fuhrhop, K., Burke Quinlan, E.,

Zhou, R. J., Augsberger, R., Tran, X. A., Friedman, N., Reinkensmeyer, D. J., & Cramer,

S. C. (2017). A Home-Based Telerehabilitation Program for Patients With Stroke.

Neurorehabilitation and Neural Repair, 31(10–11), 923–933.

https://doi.org/10.1177/1545968317733818

Ganesan, V. (2022). Machine Learning in Mobile Applications. International Journal of

Computer Science and Mobile Computing, 11(2), 110–118.

https://doi.org/10.47760/ijcsmc.2022.v11i02.013

Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer Assessment of

Motor Recovery after Stroke: A Critical Review of Its Measurement Properties.

Neurorehabilitation and Neural Repair, 16(3), 232–240.

https://doi.org/10.1177/154596802401105171

Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity

robotic devices for rehabilitation and for studying motor control. Current Opinion in

Neurology, 16(6), 705–710. https://doi.org/10.1097/01.wco.0000102630.16692.38

39

Huang, W.-H., Dou, Z.-L., Jin, H.-M., Cui, Y., Li, X., & Zeng, Q. (2021). The

Effectiveness of Music Therapy on Hand Function in Patients With Stroke: A Systematic

Review of Randomized Controlled Trials. Frontiers in Neurology, 12.

https://www.frontiersin.org/articles/10.3389/fneur.2021.641023

Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017).

Virtual reality for stroke rehabilitation. The Cochrane Database of Systematic Reviews,

11(11), CD008349. https://doi.org/10.1002/14651858.CD008349.pub4

Lohse, K. R., Hilderman, C. G. E., Cheung, K. L., Tatla, S., & Van der Loos, H. F. M.

(2014). Virtual Reality Therapy for Adults Post-Stroke: A Systematic Review and Meta-

Analysis Exploring Virtual Environments and Commercial Games in Therapy. PLoS

ONE, 9(3), e93318. https://doi.org/10.1371/journal.pone.0093318

Mehrholz, J., Pohl, M., Platz, T., Kugler, J., & Elsner, B. (2015). Electromechanical and

robot-assisted arm training for improving activities of daily living, arm function, and arm

muscle strength after stroke. The Cochrane Database of Systematic Reviews, 2015(11),

CD006876. https://doi.org/10.1002/14651858.CD006876.pub4

Porciuncula, F., Roto, A. V., Kumar, D., Davis, I., Roy, S., Walsh, C. J., & Awad, L. N.

(2018). Wearable Movement Sensors for Rehabilitation: A Focused Review of

Technological and Clinical Advances. PM & R : The Journal of Injury, Function, and

Rehabilitation, 10(9 Suppl 2), S220–S232. https://doi.org/10.1016/j.pmrj.2018.06.013

Rodriguez-Prunotto, L., & Cano-de-la-Cuerda, R. (2018). [Mobile applications related to

stroke: A systematic review]. Revista De Neurologia, 66(7), 213–229.

Saposnik, G., Cohen, L. G., Mamdani, M., Pooyania, S., Ploughman, M., Cheung, D.,

Shaw, J., Hall, J., Nord, P., Dukelow, S., Nilanont, Y., De Los Rios, F., Olmos, L., Levin,

M., Teasell, R., Cohen, A., Thorpe, K., Laupacis, A., Bayley, M., & Stroke Outcomes

Research Canada. (2016). Efficacy and safety of non-immersive virtual reality exercising

in stroke rehabilitation (EVREST): A randomised, multicentre, single-blind, controlled

trial. The Lancet. Neurology, 15(10), 1019–1027. https://doi.org/10.1016/S1474-

4422(16)30121-1

Sawant, N., Bose, M., & Parab, S. (2020). Dexteria app. Therapy versus conventional

hand therapy in stroke. Journal of Enabling Technologies, 14(4), 221–231.

https://doi.org/10.1108/JET-05-2020-0023

40

Segura, E., Grau-Sánchez, J., Sanchez-Pinsach, D., De la Cruz, M., Duarte, E., Arcos, J.

L., & Rodríguez-Fornells, A. (2021). Designing an app for home-based enriched Music-

supported Therapy in the rehabilitation of patients with chronic stroke: A pilot feasibility

study. Brain Injury, 35(12–13), 1585–1597.

https://doi.org/10.1080/02699052.2021.1975819

Tchero, H., Tabue Teguo, M., Lannuzel, A., & Rusch, E. (2018). Telerehabilitation for

Stroke Survivors: Systematic Review and Meta-Analysis. Journal of Medical Internet

Research, 20(10), e10867. https://doi.org/10.2196/10867

Xu, C., He, Z., Shen, Z., & Huang, F. (2022). Potential Benefits of Music Therapy on

Stroke Rehabilitation. Oxidative Medicine and Cellular Longevity, 2022, 9386095.

https://doi.org/10.1155/2022/9386095

41

A. Appendices

a. README file

FuglMeyerApp is an iOS application that utilizes computer vision and audio playback to

detect specific body movements included in the Fugl Meyer assessment for stroke

recovery, and provide audio feedback when actions are completed. The app captures

video from the device's front camera, processes it to estimate body positions, and plays

corresponding audio sounds based on the detected movements.

The codebase consists of three main components:

1. **ViewController.swift**: This file contains the main view controller class

responsible for managing the app's user interface and coordinating interactions

with the video capture and prediction components.

2. 2. **Predictor.swift**: The Predictor class is responsible for analyzing the body

pose observations received from the video capture and making predictions about

the detected actions. It utilizes a trained machine learning model (*FMClassifier*)

to label the actions and calculates the confidence level for each prediction. It also

delegates the recognized points to the ViewController for visualization.

3. 3. **VideoCapture.swift**: The VideoCapture class handles the capture of video

data from the device's front camera. It configures an AVCaptureSession to

manage the input (camera) and output (video data) and sets up an

AVCaptureVideoDataOutput to receive the video frames. It also delegates the

received sample buffers to the Predictor for pose estimation.

##Dependencies

- AVFoundation: Used for capturing video data, audio playback, and managing

AVAudioPlayer instances.

- Vision: Provides support for body pose estimation using

VNHumanBodyPoseObservation.

- CoreML: Enables the integration and utilization of a trained machine learning model

(FMClassifier) for action prediction.

42

##Getting Started

To run the FuglMeyerApp, follow these steps:

1. Clone the repository to your local machine.

2. Open the project in Xcode.

3. Build and run the app on your iOS device or simulator.

4. Grant permission for the app to access the camera.

##Behavior

1. When the app is launched, the ViewController's `viewDidLoad()`method is called,

triggering the setup of the video preview and audio file preloading. The

AVCaptureVideoPreviewLayer is added as a sublayer to the view, allowing real-time

video display. Audio files for ear and lateral sounds are preloaded using AVAudioPlayer.

2. The `setupVideoPreview()`method initializes the video capture by starting the capture

session and setting up the AVCaptureVideoPreviewLayer for previewing the captured

video.

3. The `preloadAudioFiles()`method loads the ear and lateral sound files into

AVAudioPlayer instances to be played later during action detection.

4. The ViewController conforms to the PredictorDelegate protocol, implementing the

delegate methods `didFindNewRecognizedPoints()`and `didLabelAction()`. These

methods are called by the Predictor when new recognized body points or labeled actions

are available.

5. The Predictor class estimates body poses by receiving CMSampleBuffer objects

through the `estimation(sampleBuffer:)`method. It uses Vision and Core ML to process

the video frames and extract VNHumanBodyPoseObservation instances.

43

6. For each received VNHumanBodyPoseObservation, the recognized body points are

extracted and transformed to display coordinates. The transformed points are then passed

to the ViewController using the delegate method `didFindNewRecognizedPoints()`.

7. The Predictor maintains a window of VNHumanBodyPoseObservations for prediction

purposes. When a new observation is received, it is added to the window, and the oldest

observation is removed if the window reaches its maximum size

(predictionWindowSize).

8. The Predictor uses a trained machine learning model (FMClassifier) to label the actions

based on the stored observations in the window. The labeled action and its confidence

level are sent to the ViewController using the delegate method `didLabelAction()`.

9. When an action is labeled and its confidence level exceeds the specified threshold, the

ViewController triggers the corresponding behavior. If the action is "ear," the ear sound

is played using the AVAudioPlayer for auditory feedback. If the action is "90lateral," the

lateral sound is played.

10. A delay of 3 seconds is introduced after an action is detected to prevent rapid and

repeated action triggering. The corresponding flag (isClapDetected or isArmDetected) is

reset after the delay to allow the detection of subsequent actions.

44

b. Appendix – Usability questionnaire

1. General information:

Age:

Gender:

Upper-limb restrained mobility (yes/no):

2. Usability Evaluation:

U1: On a scale of 1 to 5, rate the overall usability of the app, with 1 being very difficult

to use and 5 very easy to use.

U2: On a scale of 1 to 5, rate how easy to do were the exercises, with 1 being very difficult

and 5 very easy.

U3: On a scale of 1 to 5, rate the behaviour of the app, with 1 being that there were a lot

of technical issues or bugs and 5 no technical issues or bugs.

U4: On a scale of 1 to 5, rate how intuitive was the app to use, with 1 being not intuitive

at all, 5 very intuitive.

U5: On a scale of 1 to 5, rate the configuration information presented, with 1 being very

poor information and 5 very clear information.

U6: On a scale of 1 to 5, how fast was the app’s response, with 1 being really slow and 5

very fast.

3. Musical instrument Substitution:

MI1: Agree, Slightly Agree, Slightly Disagree, Disagree. The app has the potential to

substitute a traditional musical instrument.

MI2: Agree, Slightly Agree, Slightly Disagree, Disagree. The use of the app is

comparable to playing a traditional musical instrument.

MI3: Do you think the exercises would be easier to do with a musical instrument?

45

c. Appendix – Usability Questionnaire Results

QUESTIONNAIRE

RESULTS

Volunteer Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Age 60 24 63 83 40 36 70 28 66 85 45 38 52 30 29 32 68 48 41 55 35

Gender F M M F F F F M F F M F M M M M F M F M M

Upper-limb

limitation YES NO NO NO NO NO YES NO YES NO NO YES NO NO NO NO YES NO NO NO NO

U1 5 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 4 5 5 5 5

U2 4 5 5 5 5 5 4 5 4 5 5 4 5 5 5 5 4 5 4 5 5

U3 5 4 4 5 5 1 4 5 3 5 5 3 5 5 5 5 3 5 2 5 5

U4 5 5 5 4 4 3 4 5 4 4 5 3 5 5 5 5 4 5 3 5 5

U5 4 3 3 3 5 5 3 4 3 5 3 4 5 3 4 4 3 5 4 5 5

U6 5 4 4 5 3 3 4 5 4 5 4 3 5 5 5 5 4 4 3 5 5

MI1

Slightly

Agree

Slightly

Agree Agree

Slightly

Agree Agree Agree

Slightly

Agree Agree Agree

Slightly

Agree

Slightly

Agree

Slightly

Agree Agree Agree

Slightly

Agree Agree Agree

Slightly

Agree Agree Agree Agree

MI2

Slightly

Agree

Slightly

Agree

Slightly

Disagree

Slightly

Agree Agree

Slightly

Agree

Slightly

Agree Agree

Slightly

Disagree

Slightly

Agree Agree

Slightly

Agree

Slightly

Agree Agree Agree Agree

Slightly

Disagree

Slightly

Agree

Slightly

Agree

Slightly

Agree Agree

MI3 NO

Table 4: Questionnaire Results Table

46

d. Appendix – MoveNet screen captures code

import tensorflow as tf

import tensorflow_hub as hub

import cv2

import os

Load the MoveNet "thunder" model from TensorFlow Hub

#model_url = "https://tfhub.dev/google/movenet/singlepose/thunder/1"

model_url = "https://tfhub.dev/google/movenet/singlepose/lightning/4"

model = hub.load(model_url)

def movenet(input_image):

 input_tensor = tf.image.convert_image_dtype(input_image,

dtype=tf.int32)[tf.newaxis, ...]

 keypoints_with_scores = model.signatures['serving_default'](input_tensor)

 return keypoints_with_scores['output_0']

def process_video(video_path):

 cap = cv2.VideoCapture(video_path)

47

 while cap.isOpened():

 ret, frame = cap.read()

 if not ret:

 break

 # Convert the BGR image to RGB

 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 #for thunder:

 #frame_rgb = cv2.resize(frame_rgb, (256,256))

 #for lightning:

 frame_rgb = cv2.resize(frame_rgb, (192,192))

 # Predict the pose

 keypoints_with_scores = movenet(frame_rgb)

 keypoints = keypoints_with_scores[0].numpy()[0, :, :2]

 # Visualize the keypoints on the image

 for kp in keypoints:

 y, x = kp

48

 cv2.circle(frame, (int(x * frame.shape[1]), int(y * frame.shape[0])), 3, (0,

255, 0), -1)

 cv2.imshow("MoveNet Pose Estimation", frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 cap.release()

 cv2.destroyAllWindows()

Assuming your dataset is organized as "base_dir/ClassName/video_file.mp4"

base_dir = "/Users/mireiadegracia/Documents/UNI/Fugl Recovery

2/new_dataset_clips"

for class_folder in os.listdir(base_dir):

 if class_folder != '.DS_Store':

 class_path = os.path.join(base_dir, class_folder)

 for video_file in os.listdir(class_path):

 if video_file != '.DS_Store':

49

 video_path = os.path.join(class_path, video_file)

 process_video(video_path)

50

e. Appendix – Main APP Code Parts

Predictor

//

// Predictor.swift

// FuglMeyerApp

//

// Created by Mireia de Gracia on 18/5/23.

//

import Foundation

import Vision

// typealias FMClassifier = fugl_meyer_test_1

//typealias FMClassifier = MyActionClassifier_2

//typealias FMClassifier = fugl_meyer_test_12

//typealias FMClassifier = FuglMeyerActionClassifier_1_Iteration_40

typealias FMClassifier = FuglMeyerActionClassifier_3_Iteration_60

//typealias FMClassifier = Fugl_meyer_test_9_Iteration_40

// typealias FMClassifier = Fugl_meyer_classifier_2

protocol PredictorDelegate: AnyObject {

 func predictor(_ predictor: Predictor, didFindNewRecognizedPoints points:

[CGPoint])

 func predictor(_ predictor: Predictor, didLabelAction action: String, with

confidence: Double)

}

class Predictor {

51

 let predictionWindowSize = 30 // Number of observations to keep in the

posesWindow

 var posesWindow: [VNHumanBodyPoseObservation] = [] // Window of

VNHumanBodyPoseObservation objects

 init() {

 posesWindow.reserveCapacity(predictionWindowSize) // Reserve capacity

for the posesWindow array

 }

 weak var delegate: PredictorDelegate? // Delegate to notify about recognized

points and labeled actions

 func estimation(sampleBuffer: CMSampleBuffer) {

 let requestHandler = VNImageRequestHandler(cmSampleBuffer:

sampleBuffer, orientation: .up)

 let request = VNDetectHumanBodyPoseRequest(completionHandler:

bodyPoseHandler)

 do {

 try requestHandler.perform([request]) // Perform the request to detect

human body pose

 } catch {

 print("Unable to perform the request with error: \(error)")

 }

 }

52

 func prepareInputWithObservations(_ observations:

[VNHumanBodyPoseObservation]) -> MLMultiArray? {

 let numAvailableFrames = observations.count

 let observationsNeeded = 30

 var multiArrayBuffer = [MLMultiArray]()

 for frameIndex in 0 ..< min(numAvailableFrames, observationsNeeded) {

 let pose = observations[frameIndex]

 do {

 let oneFrameMultiarray = try pose.keypointsMultiArray() // Get the

keypoints as a multi-array

 multiArrayBuffer.append(oneFrameMultiarray) // Append the multi-

array to the buffer

 } catch {

 continue

 }

 }

 if numAvailableFrames < observationsNeeded {

 for _ in 0 ..< (observationsNeeded - numAvailableFrames) {

 do {

 let oneFrameMultiArray = try MLMultiArray(shape: [1, 3, 18],

dataType: .double)

 multiArrayBuffer.append(oneFrameMultiArray)

 try resetMultiArray(oneFrameMultiArray)

 } catch {

 continue

 }

53

 }

 }

 return MLMultiArray(concatenating: [MLMultiArray](multiArrayBuffer), axis:

0, dataType: .float) // Concatenate the multi-arrays along axis 0

 }

 func resetMultiArray(_ predictionWindow: MLMultiArray, with value: Double =

0.0) throws {

 let pointer = try UnsafeMutableBufferPointer<Double>(predictionWindow)

 pointer.initialize(repeating: value) // Set all values in the multi-array to the

given value

 }

 func bodyPoseHandler(request: VNRequest, error: Error?) {

 guard let observations = request.results as?

[VNHumanBodyPoseObservation] else { return }

 observations.forEach {

 processObservation($0) // Process each observation and notify the

delegate about recognized points

 }

 if let result = observations.first {

 storeObservation(result) // Store the first observation in the

posesWindow

54

 labelActionType() // Label the action type based on the stored

observations

 }

 }

 func labelActionType() {

 guard let movementsClassifier = try? FMClassifier(configuration:

MLModelConfiguration()),

 let poseMultiArray = prepareInputWithObservations(posesWindow),

 let predictions = try? movementsClassifier.prediction(poses:

poseMultiArray) else {

 return

 }

 let label = predictions.label // Get the predicted action label

 let confidence = predictions.labelProbabilities[label] ?? 0 // Get the

confidence of the predicted action

 delegate?.predictor(self, didLabelAction: label, with: confidence) // Notify

the delegate about the labeled action

 }

 func storeObservation(_ observation: VNHumanBodyPoseObservation) {

 if posesWindow.count >= predictionWindowSize {

 posesWindow.removeFirst() // Remove the oldest observation if the

posesWindow is full

 }

55

 posesWindow.append(observation) // Append the new observation to the

posesWindow

 }

 func processObservation(_ observation: VNHumanBodyPoseObservation) {

 do {

 let recognizedPoints = try observation.recognizedPoints(forGroupKey:

.all) // Get the recognized points for all groups

 var displayedPoints = recognizedPoints.map {

 CGPoint(x: $0.value.x, y: 1 - $0.value.y) // Adjust the coordinates of

recognized points for display

 }

 delegate?.predictor(self, didFindNewRecognizedPoints:

displayedPoints) // Notify the delegate about the recognized points

 } catch {

 print("error finding recognizedPoints")

 }

 }

}

56

ViewController

//

// ViewController.swift

// FuglMeyerApp

//

// Created by Mireia de Gracia on 17/5/23.

//

import UIKit

import AVFoundation

import AudioToolbox

class ViewController: UIViewController {

 var audioPlayer: AVAudioPlayer? // Used for playing ear sound

 var lateralAudioPlayer: AVAudioPlayer? // Used for playing lateral sound

 var earSoundURL: URL! // URL of the ear sound file

 var lateralSoundURL: URL! // URL of the lateral sound file

 // to preview some actual data

 let videoCapture = VideoCapture() // VideoCapture instance for capturing

video

 var previewLayer: AVCaptureVideoPreviewLayer? // Preview layer for

displaying captured video

 var isEarDetected = false // Flag to track if an ear movement is detected

 var isArmDetected = false // Flag to track if an arm movement is detected

 var pointsLayer = CAShapeLayer() // Layer for drawing recognized points

 private func setupVideoPreview() {

57

 videoCapture.startCaptureSession() // Start the video capture session

 previewLayer = AVCaptureVideoPreviewLayer(session:

videoCapture.captureSession) // Create preview layer

 do {

 try AVAudioSession.sharedInstance().setCategory(.playback) // Set

audio session category for playback

 try AVAudioSession.sharedInstance().setActive(true) // Activate the

audio session

 } catch {

 // Handle any errors that occur during audio session configuration

 print("Failed to configure audio session: \(error.localizedDescription)")

 }

 // Ensure that the previewLayer is initialized

 guard let previewLayer = previewLayer else { return }

 view.layer.addSublayer(previewLayer) // Add preview layer to the view's

layer

 previewLayer.frame = view.frame // Set the frame of the preview layer

 view.layer.addSublayer(pointsLayer) // Add points layer to the view's layer

 pointsLayer.frame = view.frame // Set the frame of the points layer

 pointsLayer.strokeColor = UIColor.green.cgColor // Set the stroke color of

the points layer

 }

58

 private func preloadAudioFiles() {

 // Preload ear sound

 if let earSoundPath = Bundle.main.path(forResource: "sound_test_ear",

ofType: "wav") {

 earSoundURL = URL(fileURLWithPath: earSoundPath)

 do {

 audioPlayer = try AVAudioPlayer(contentsOf: earSoundURL)

 audioPlayer?.prepareToPlay()

 } catch {

 print("Failed to preload ear sound: \(error.localizedDescription)")

 }

 }

 // Preload lateral sound

 if let lateralSoundPath = Bundle.main.path(forResource: "sound_test_arm",

ofType: "wav") {

 lateralSoundURL = URL(fileURLWithPath: lateralSoundPath)

 do {

 lateralAudioPlayer = try AVAudioPlayer(contentsOf:

lateralSoundURL)

 lateralAudioPlayer?.prepareToPlay()

 } catch {

 print("Failed to preload lateral sound: \(error.localizedDescription)")

 }

 }

 }

 override func viewDidLoad() {

59

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 setupVideoPreview() // Set up the video preview

 videoCapture.predictor.delegate = self // Set the delegate for the video

capture's predictor

 preloadAudioFiles() // Preload audio files for playback

 }

}

extension ViewController: PredictorDelegate {

 func predictor(_ predictor: Predictor, didLabelAction action: String, with

confidence: Double) {

 // Action labeling delegate method

 print(confidence)

 print(action)

 if (action == "ear_right" || action == "ear_left") && confidence > 0.80 &&

!isEarDetected{

 // If the action is "ear" and the confidence level is high enough, and no

ear is currently detected

 //print("ear detected")

// print(confidence)

 isEarDetected = true // Set clap detected flag

 DispatchQueue.main.async {

60

 if let audioPlayer = self.audioPlayer {

 audioPlayer.play() // Play the ear sound asynchronously

 }

 }

 DispatchQueue.main.asyncAfter(deadline: .now() + 4) {

 self.isEarDetected = false // Reset clap detected flag after a delay

 }

 }

 else if (action == "90lateral_right" || action == "90lateral_left") &&

confidence > 0.80 && !isArmDetected{

 // If the action is "90lateral" and the confidence level is high enough, and

no arm movement is currently detected

// print("arm detected")

// print(confidence)

 isArmDetected = true // Set arm detected flag

 DispatchQueue.main.async {

 if let lateralAudioPlayer = self.lateralAudioPlayer {

 lateralAudioPlayer.play() // Play the lateral sound asynchronously

 }

 }

 DispatchQueue.main.asyncAfter(deadline: .now() + 3) {

 self.isArmDetected = false // Reset arm detected flag after a delay

 }

 }

61

 }

 func predictor(_ predictor: Predictor, didFindNewRecognizedPoints points:

[CGPoint]) {

 // Point recognition delegate method

 guard let previewLayer = previewLayer else { return }

 let convertedPoints = points.map {

 previewLayer.layerPointConverted(fromCaptureDevicePoint: $0) //

Convert points to the layer's coordinate system

 }

 let combinedPath = CGMutablePath() // Create a combined path to draw

recognized points

 for point in convertedPoints {

 let dotPath = UIBezierPath(ovalIn: CGRect(x: point.x, y: point.y, width:

5, height: 5)) // Create an oval shape for each point

 combinedPath.addPath(dotPath.cgPath) // Add the oval shape to the

combined path

 }

 pointsLayer.path = combinedPath // Set the path of the points layer to the

combined path

 DispatchQueue.main.async {

62

 self.pointsLayer.didChangeValue(for: \.path) // Update the points layer

asynchronously to reflect the changes made

 }

 }

}

63

- VideoCapture

//

// VideoCapture.swift

// FuglMeyerApp

//

// Created by Mireia de Gracia on 17/5/23.

//

import Foundation

import AVFoundation

class VideoCapture: NSObject {

 let captureSession = AVCaptureSession() // Capture session to manage input

and output

 let videoOutput = AVCaptureVideoDataOutput() // Output to capture video

data

 let predictor = Predictor() // Predictor for body position

 override init() {

 super.init()

 // Specify the capture device (change default camera to front camera!!!)

 // Create an AVCaptureDeviceInput to get data from the capture device

 guard let captureDevice =

AVCaptureDevice.DiscoverySession(deviceTypes: [.builtInWideAngleCamera],

mediaType: .video, position: .front).devices.first,

 let input = try? AVCaptureDeviceInput(device: captureDevice) else {

64

 return

 }

 // Configure the capture session

 captureSession.sessionPreset = AVCaptureSession.Preset.high // Set

data resolution to high

 captureSession.addInput(input) // Add the input to the capture session

 captureSession.addOutput(videoOutput) // Add the video output to the

capture session

 videoOutput.alwaysDiscardsLateVideoFrames = true // Discard late video

frames to reduce latency

 }

 func startCaptureSession() {

 captureSession.startRunning() // Start the capture session

 // Set the VideoCapture class as the delegate for video output

 videoOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label:

"videoDispatchQueue"))

 }

}

extension VideoCapture: AVCaptureVideoDataOutputSampleBufferDelegate {

 func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer:

CMSampleBuffer, from connection: AVCaptureConnection) {

 predictor.estimation(sampleBuffer: sampleBuffer) // Perform body position

estimation using the predictor

65

 // Additional code for processing the video data if needed

 // let videoData = sampleBuffer

 // print(videoData)

 }

}

66

f. Appendix – Action Classifier CoreML trained model

structure

67

68

69

70

71

72

73

74

75

76

77

78

	1. Introduction
	1.1. Motivation
	1.2. Objectives

	2. State of the art
	2.1 Stroke
	2.1.1 Stroke motor recovery evaluation

	2.2 Music Therapy
	2.2.1 Music Therapy for stroke recovery

	2.3 Technology-enhanced stroke rehabilitation
	2.3.1 Machine Learning Models in Mobile Applications

	2.4. MoveNet

	3. Methods and material
	3.1.1. Fugl-Meyer Assessment (FMA)
	3.1.2. XCode
	3.1.3. Create ML – Activity Classifier
	3.2. Selection of the posture detection framework
	3.3. Data collection: Creating the Dataset
	3.4. Training CoreML
	3.5. FuglMeyerApp – the result app
	3.5.1. Structure
	3.5.2. Capturing data
	3.5.3. Predictor
	3.5.4. Adding sound
	3.5.5. Accessibility and landing screen

	3.7. Usability Questionnaire

	4. Results
	4.1. CoreML
	4.2. FuglMeyerApp
	4.3. Questionnaire results

	5. Discussion
	7. List of figures
	8. List of tables
	9. Bibliography
	A. Appendices
	a. README file
	b. Appendix – Usability questionnaire
	c. Appendix – Usability Questionnaire Results
	d. Appendix – MoveNet screen captures code
	e. Appendix – Main APP Code Parts
	f. Appendix – Action Classifier CoreML trained model structure

