
Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

Automatic score-to-score music
generation

Quốc Dương Nguyễn

Supervisor: Pedro Ramoneda

Co-Supervisor: Carlos Hernández Oliván

August 2023

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Structure of the Report . 3

2 State of the art 4

2.1 Encodings . 4

2.1.1 Note-level representation . 4

2.1.2 Notation-level representation . 7

2.2 Neural network architectures . 10

2.2.1 Variational Autoencoder . 11

2.2.2 Generative Adversarial Networks . 11

2.2.3 Diffusion models . 11

2.2.4 Transformers . 12

3 Methods 14

3.1 Dataset . 14

3.1.1 Data cleaning with the MuseScore metadata 15

3.1.2 Cleaning with music21 . 16

3.1.3 Similarity computation . 17

3.2 Model . 20

3.2.1 Transformers . 20

3.2.2 Training . 21

3.2.3 Generation . 23

3.3 Evaluation . 23

3.3.1 Objective evaluation . 23

4 Results 25

4.1 Dataset . 25

4.1.1 Difficulty classification . 25

4.1.2 Dataset for score-to-score music generation 26

4.2 Training . 26

4.3 Objective evaluation . 27

4.4 Generation . 27

5 Discussion 29

5.1 Available score data . 29

5.2 Score token representation . 29

5.3 Use of the dataset . 30

5.4 Conclusion . 30

List of Figures 32

Bibliography 33

A Generated score 37

Acknowledgement

I would like to express my sincere gratitude to my supervisors, Pedro and Carlos, for

their invaluable guidance and support throughout my master’s thesis. Their deep

expertise and encouragement helped me to complete this research and write this

thesis. They steered me in the right direction whenever I needed it.

In addition, I extend my heartfelt appreciation to my parents and my sister, whose

unconditional support has been a cornerstone throughout every phase of my life.

I would also like to extend my gratitude to my SMC master classmates, whose

camaraderie and shared journey have significantly enriched my academic experience.

Last but certainly not least, I wish to express my deep appreciation for the wonderful

friends I have had the privilege of making over the past year.

Thanks everyone,

Quốc Dương

Abstract

Music generation is the task of generating music using a model or algorithm. There

are multiple ways of achieving this task as there are multiple types of data to rep-

resent music. Music generation can be audio-based or with symbolic music such as

MIDI data. Approaches with symbolic music have been successful, especially using

note-level representation such as the MIDI format. However, there is an absence of

a baseline dataset tailored specifically for music scores generation using notation-

level representations. In this thesis, we first construct a dataset specifically for the

training and the evaluation of music generation models, then we build an automatic

score-to-score generation model to generate scores. This research not only expands

the horizons of music score generation but also establishes a solid foundation for

future innovations in the field with a dataset made for score-to-score music genera-

tion.

Keywords: symbolic music representation; musical score generation; notation-level

Chapter 1

Introduction

Music is a universal language in human culture and expression that has been essential

throughout history. Music composition is the process of creating original music

through the succession of many musical elements such as melody, rhythm, timbre.

Music generation, on the other hand, is the task of generating music from a model

or algorithm. It is a growing research area with a strong emphasis on deep learning

in recent years.

1.1 Motivation

Music generation has appeared with the first music generated by a computer in

1957 and its author, Newman Guttman, with a sound synthesis software called

Music I developed at Bell Laboratories. During that same year, Lejaren A. Hiller

and Leonard M. Isaacson made use of stochastic models, specifically Markov chains,

making the first score composed by a computer [1]. Iannis Xenakis explored stochas-

tic composition[2] in the context of algorithmic composition. The idea is to use a

computer to quickly calculate various musical possibilities based on probabilities set

by the composer. This generates sample pieces of music that can be chosen. An-

other approach using grammars and rules were used to steer the style of a piece. An

example of that approach is Experiments in Musical Intelligence[3] (EMI) by David

Cope. These techniques can be grouped in the field of Algorithmic Music Com-

1

2 Chapter 1. Introduction

position, a way of composing music using formal methods, such as mathematical

instructions. This type of composing follows a controlled procedure and uses differ-

ent techniques like Markov Models, Generative Grammars, Cellular Automata, etc.

These techniques can be combined with Neural Networks to better model music, as

seen in DeepBach[4].

Symbolic music is in some aspects very similar to text as they are both sequential

and thus can be processed with NLP techniques. There has been a lot of interest in

music generation in recent years[5, 6, 7]. However, research in that field is focused

on MIDI generation, not score generation. Scores contain various musical symbols

such as dynamic markings, slurs, etc. that are not present in the MIDI format.

Scores are also made to be human readable.

Although some studies have used symbolic representations at a notation-level, such

as in studies[8, 9, 10], there has been limited exploration of the use of complete mu-

sical scores containing diverse musical symbols and attributes with sequence models.

Thus, it remains unclear whether sequence models can effectively generate compre-

hensive musical notations, and how musical scores can be represented in a manner

that is suitable for feeding such models.

Automatic score-to-score music generation takes existing symbolic music score rep-

resentations as input and creates new music scores.

The approach of the thesis is to take a more educational point of view, closer to the

point of view of a music student or a music professor instead of a music listener.

There are multiples possibilities of applications for score-to-score music generation,

such as learning to play a score with different levels of difficulty, help artists in terms

of inspiration as well as to make music composition more accessible to people.

Most importantly, scores are readable by musicians, people who play instruments

can sight-read, learn and play off of music scores.

1.2. Objectives 3

1.2 Objectives

The main objective of this thesis is to explore symbolic music generation, more

specifically music score generation, focusing on the role of deep learning in this

task and to do an overview of the most used encoding methods. We will build a

dataset of scores that can be used to evaluate score music generation systems as

there does not exist any dataset for music generation with a significant amount of

data. Relevant representations at the notation-level are reviewed for the task of

music score generation.

1.3 Structure of the Report

This thesis will be structured as follows. We will first delve into how symbolic music

has been represented through the many encodings that have been created, then talk

about the different architectures and techniques that have been developed in the last

few years using deep learning. We will then show the methodology for the dataset

creation using notation-level representation and the score-to-score generation model

that we built.

Chapter 2

State of the art

In this chapter, relevant research works related to this thesis are reviewed. We will

present the different representations of music information that we can divide into two

categories, note-level representation (MIDI) that corresponds to a symbolic format

to convey information mainly about pitch, duration, and notation-level representa-

tion that corresponds to a musical score. The different architectures and models

used for the generation of symbolic music will be described.

2.1 Encodings

Deep learning models can extract significant features from how music is represented

and the way music is encoded is significant as the quality of the generation. Recently,

research in symbolic music generation has taken an interest in how important music

is represented in different types of encodings[11].

2.1.1 Note-level representation

REMI

REMI, for Revamped MIDI, has been introduced in the Pop Music Transformer [12]

paper. It is a tokenization that aimed to overcome the limitations of MIDI (Musical

Instrument Digital Interface) such as the lack of support for pitch bends, vibrato,

4

2.1. Encodings 5

etc.

The REMI representation uses:

• Bar events to indicate the beginning of a bar.

• Position events to point specific locations in a Bar.

• Tempo events for local tempo changes.

• Chord events to make harmonic structure more explicit.

This representation tries to represent MIDI data by following the way humans read

them. The combination of Bar and Position events provides an explicit metrical

grid to model the music. This allows for models to know that there is a hierchical

structure for a better rhythmic regularity, that is especially relevant in the case of

Pop music, a genre that is dealt with in the paper[12].

They introduced the Tempo event for a higher level of freedom in rhythm expres-

siveness. It allows, as an example, the ability to do tempo rubato which means a

slight speeding up and slowing down of the tempo of a piece.

Last but not least, the Chord events to make the harmonic structure explicit.

REMI+

REMI+ is the extended REMI representation for multi-track and multi-signature

music, and has been introduced in the FIGARO paper [13].

The REMI+ representation adds or modifies the following elements over REMI:

• Bar tokens

• Time signature

• Instrument information

6 Chapter 2. State of the art

• Order of events

• Quantization

Figure 1: Visual representation of REMI+ [11]

The Bar tokens now include the index of a bar, which is an additional piece of

information to give more context to provide to the model.

The time signature is a new token that appears at the beginning of each bar, which

is the case in written music.

For each note event, there is now the instrument information that is played as an

additional token.

The order of events has been defined and sorted events by (Bar, Position, EventType,

Instrument, Pitch) in ascending order. Using that order of events, the modelling

task is easier.

Lastly, they use a 12 note onset positions per quarter note instead of 4 in the original

REMI presentation. This allows triplet and sixteenth to be quantized accurately and

to represent a wider range of music.

MIDI-Like

This tokenization simply converts MIDI events as tokens. It was introduced in [14]

and was later used for the Music Transformer [15].

TSD

TSD (Time Shift Duration) is very similar to the MIDI-like representation. The

difference is that TSD uses Duration tokens to represent the duration of a note

instead of using NoteOff tokens to represent the end of a note being played.

2.1. Encodings 7

Structured

The Structured representation was introduced by the Piano Inpainting Application,

which is a generative model focused on inpainting piano performances. This repre-

sentation is similar to TSD but is based on consistent token-type successions. The

tokens are always represented in the same pattern of tokens of the following types:

Pitch => Velocity => Duration => Timeshift.

CPWord

The CPWord representation [16] is similar to the REMI representation, but reduces

the sequence length of the representation by using embedding pooling operations.

Octuple

The Octuple representation also uses embedding pooling but so that each pooled

embedding represents one note. It reduces the length of a sequence, but also handles

multitracks.

2.1.2 Notation-level representation

There have been various formats developed for symbolic score representations such

as tree-structured representation like MusicXML [17] and MEI [18] and text rep-

resentations such as the ABC notation, LilyPond and Humdrum. They were not

designed with the use of machine learning applications in mind, but text represen-

tations can be handled as token sequences.

MusicXML

MusicXML is an XML-based format that is designed to be easy to read and write. It

allows for a very detailed representation of music notation such as the pitch, rhythm,

dynamics of notes, as well as the structure of a musical composition. It is widely

used in the music industry and has been adopted by some of the most popular music

notation software such as Sibelius or MuseScore.

8 Chapter 2. State of the art

Figure 2: Notes/pitches using the ABC notation

MEI (Music Encoding Initiative)

MEI, on the other hand, is an XML-based format specifically designed for encoding

music notation. It was developed by a community of musicologists, librarians, and

technologists to support the encoding of scholarly musical editions and other music-

related documents. MEI can represent a wide variety of musical elements, such as

notes, rests, dynamics, and articulations, as well as more complex structures, such

as musical forms and polyphonic music.

Compared to its MusicXML counterpart, MEI was developed for the encoding of

musicological research and primarily to capture semantics.

The ABC music standard

The ABC notation [19] is a text-based music notation system developed in the 1980s

for folk and traditional music.

Here is an example of the ABC notation for notes and pitches 2.

X:1

T:Notes / pitches

M:C

L:1/4

K:C treble

C, D, E, F, | G, A, B, C | D E F G | A B c d | e f g a | b c’ d’ e’ | f’ g’ a’ b’ |]

2.1. Encodings 9

Figure 3: Notes/pitches in the LilyPond notation

Humdrum (**kern)

Humdrum[20] is a software toolkit that contains programs for music analysis created

by David Huron in 1994.

The **kern representation is the most popular in Humdrum. It can be used to

represent basic or core information for common Western music and focuses on the

function information conveyed by the score rather than its appearance. The notation

is encoded vertically rather than horizontally.

LilyPond

LilyPond [21] is a free and open-source music engraving software that allows to

create music score using text.

The output of the following text is Figure 3

\relative { g’1 e1 \bar "||" c2. c’4 \bar "|." }

Score Transformers

The Score Transformer[10] uses a score token representation that was designed to

address the various visual elements that are present in a score. The proposed rep-

resentation follows these principles:

• One token per symbol/attribute: A token corresponds to a score symbol or a

note attribute

• Compatible with music21[22]: the use of the music21 toolkit is possible to

create MusicXML scores from the score token representation

10 Chapter 2. State of the art

Figure 4: Score token representation [10]

• Concatenated sequences of staves: Sequences of staves are concatenated to

form a single sequence which allows a model to refer to generated tokens while

making inferences.

• Only essential musical symbols tokenized: it has some limitations, additional

expression symbols such as articulations, dynamics, and ornaments are not

handled

2.2 Neural network architectures

In this section, we explore the various factors that can influence the choice of deep

learning architecture when applied to music generation tasks.

One crucial aspect to consider is the task-specific requirements. For instance, some

music generation tasks may require handling polyphony, where multiple simulta-

neous voices or instruments need to be modeled and generated. Additionally, it

may be essential for the chosen architecture to capture long-range dependencies in

the music, such as recurring motifs or themes, and to accommodate variable-length

sequences that are common in music compositions.

Another factor to consider is the availability and quality of training data. The

amount of data available can influence the choice of model architecture. For example,

some architectures might perform better with smaller datasets, while others require

2.2. Neural network architectures 11

big amounts of data to achieve satisfactory results. The choice of representation,

such as MIDI, piano rolls, or other notation-level representations, can also have an

impact on the compatibility and effectiveness of a particular architecture.

2.2.1 Variational Autoencoder

Variational Autoencoder[23] (VAE) is a type of generative model that has been suc-

cessfully applied to various domains, including music generation. The VAE architec-

ture consists of two main components: an encoder and a decoder, both of which are

typically implemented as neural networks. The encoder learns to map input data

(in this case, music) to a lower-dimensional latent space, while the decoder learns

to reconstruct the original data from this latent representation. MusicVAE[24] is an

implementation of the VAE developed by Google Magenta for music generation.

2.2.2 Generative Adversarial Networks

Generative Adversarial Networks[25] (GANs) are generative models that consist of

two neural networks, a generator and a discriminator, that are trained simultane-

ously in a game-theoretic setting. The generator creates synthetic data, while the

discriminator tries to distinguish between real and generated data. Over time, the

generator becomes better at creating realistic data, and the discriminator becomes

better at identifying the differences. MuseGAN[26] is an implementation of the

GAN architecture for generating multi-track polyphonic music.

2.2.3 Diffusion models

Diffusion models[27], also known as denoising score matching or denoising diffusion

probabilistic models, are a class of generative models that have recently gained at-

tention. The main idea behind diffusion models is to simulate a continuous-time

Markov process, where the data is gradually transformed from a simple noise distri-

bution to the target distribution of interest (e.g., images or music). This is done by

iteratively adding noise to the data and then denoising it, which corresponds to fol-

lowing the gradient of the log probability of the target distribution. One use case can

12 Chapter 2. State of the art

be found in the paper Symbolic Music Generation with Diffusion Models[28]. The

approach is based on the idea of generating music by simulating a continuous-time

Markov process, where noise is gradually added and removed.

2.2.4 Transformers

The Transformer architecture, introduced in the paper Attention is All You Need [29],

is a highly expressive and powerful model that has achieved state-of-the-art perfor-

mance in various natural language processing (NLP) tasks. The key innovation in

the Transformer is the self-attention mechanism, which allows the model to weigh

and focus on different parts of the input sequence, effectively capturing long-range

dependencies and complex patterns. In the context of music generation, the Trans-

former architecture can be applied to generate music in a variety of formats, such

as piano rolls, note sequences, or MIDI events. Due to its ability to handle long

sequences and capture intricate patterns, the Transformer is well suited for music

generation tasks.

We can differentiate two types of language modeling, such as masked language mod-

els and causal language models. Causal language models are frequently used for text

generation. It predicts the next token in a sequence of tokens, and the model can

only use previous tokens on the left. GPT-2[30] is an example of a causal language

model. On the other hand, masked language models can use tokens bidirection-

ally. It is great for tasks that need good contextual understanding. BERT [31] is an

example of a masked language model.

The Music Transformer[15] model is an adaptation of the Transformer for the task

of music generation, and is a causal language model. It is equipped with relative

attention and is very well suited for generative modeling of symbolic music with its

ability to capture periodicity in various time scales.

The Multi-Track Music Machine[32] (MMM) is a generative system based on the

Transformer architecture that is capable of generating multitrack music. This model

creates a time-ordered sequence of events for each track and concatenates them into

2.2. Neural network architectures 13

one single sequence.

The MusicBERT[33] model is a masked language model. It is a discriminative model

used for tasks such as music classification, recommendation, etc.

Chapter 3

Methods

In this thesis, we are using a causal decoder-only transformer model to generate

scores. The decoder-only architecture simplifies the model and makes it more effi-

cient for certain tasks, such as language modeling. By removing the encoder, trans-

formers models can process input data more directly and generate output more

quickly. At each step, for a given token, the attention layers can only access the

words positioned before it in the sentence to predict the next token. These models

are often called auto-regressive models.

The methods consists of the following steps:

1. The retrieval, cleaning and processing of the dataset

2. Building, training and evaluating our transformer model to generate scores by

difficulty

The code for this thesis can be found on GitHub 1.

3.1 Dataset

For our experiments, we are using a dataset of piano-only scores that we retrieve

from musescore.com, the world’s largest free sheet music catalog and sheet music-

1https://github.com/quoc-duong/score2score-music-generation

14

musescore.com
https://github.com/quoc-duong/score2score-music-generation

3.1. Dataset 15

sharing social platform. The dataset contains almost two million scores in the mscz

format and anyone can upload on the musescore.com website. The dataset size

contains around 147 GB of scores that have been uploaded up to 2019. As such, an

extensive cleaning and filtering of the dataset must be done before being able to use

it and to ensure the quality of the data.

3.1.1 Data cleaning with the MuseScore metadata

The dataset came with a metadata file in the jsonl format and contains some un-

structured information for each music score such as:

• The description: it is a vague field filled by the author that sometimes contains

the name of the song and the author along with other information in free form

• The title: Usually the name of the song and the author in free form

• The instrumentsNames field that contained a list of instruments

• The duration

• and many other fields that we don’t need such as the time created, etc.

As such, we had to retrieve the files that contained only the piano instrument using

the instrumentsNames field. I obtain over 335 000 files of piano-only files.

Conversion to MusicXML

The original dataset contains files in MuseScore format (*.mscz). As such, we have

to convert the files to the MusicXML format for us to be able to do a more refined

search as well as to parse and tokenize the data. Because the MuseScore format

is a proprietary format, the MuseScore program on command line must be used to

run a batch job to convert the .mscz files into a usable .musicxml format. It was

a tedious process as there is not much control through the command line program.

However, the program can crash as soon as there is an internal error or exception.

For example, the batch job can stop simply because the current file that is being

musescore.com

16 Chapter 3. Methods

Figure 5: Example of metadata for one community-made score

processed is corrupted and does not continue with the rest of the batch job. In

order to get around this problem, the program error output was obtained, parsed to

retrieve the string containing the files that made the program crash, then another

batch job was automatically generated in order to rerun the process with that new

batch job created 2.

3.1.2 Cleaning with music21

As the given metadata file was not reliable enough and too vague, a deeper dive into

the content of the scores themselves was needed to ensure that they contained piano

scores. Once again, the dataset contains scores that anyone could upload. The files

could contain strange or unexpected content, such as images, empty sheet music,

etc.

Music21[22], a widely used Python-based toolkit for computer-aided musicology, had

to be used to analyze the MusicXML files we obtained to ensure that they contained

strictly 2 staves (Figure 6). I discarded files that were empty or corrupt. Finally, I

discarded files that were too short, which means having fewer than ten bars. After

2https://musescore.org/en/handbook/4/command-line-usage

https://musescore.org/en/handbook/4/command-line-usage

3.1. Dataset 17

Figure 6: Example of a piano with two staves

this process we obtain a dataset of over 225 000 files.

3.1.3 Similarity computation

As (another) reminder, the dataset contains files that anyone can upload on the

internet. The dataset contains files that are identical, variations of the same songs

musically speaking, files that contain the same song but with more or less the same

number of verse/chorus, or slight variations in display and arrangements; they could

also transposed, etc. The list goes on.

Computing the similarity of each possible pair of songs to see if they are similar

amounts to n(n−1)/2 possible pairs which would amount to billions of comparisons.

In order to avoid that complexity and to save a tremendous amount of time, we had

to find another way to retrieve similar files.

MinHashing

In order to remove files that are "too similar" or identical, I used MinHash, which

is a technique for estimating the similarity between two sets. It was first introduced

in information retrieval to evaluate the similarity between documents quickly. The

basic idea is to hash the elements of the sets and then take the minimum hash value

as a representation of the set. Because the minimum value is used, the technique is

called MinHash.

To reduce the computations, the pitches of each sheet music files of the right hand

only were retrieved. There is a list of midi pitches for each file in the dataset. When

18 Chapter 3. Methods

retrieving the pitch, if a Chord object in music21 is encountered, it is flattened,

meaning that we get the pitches from highest to lowest and add them to the list.

We obtain a list of similar scores for each of the scores which considerably reduces

the number of computations required for the next step.

Matching a sequence and similar ones

For each of the scores, we obtain a number of similar scores. One solution to that is

an algorithm that finds the longest contiguous matching sub-sequence (LCS) that

contains no “junk” elements. It does not yield minimal edit sequences, but does tend

to yield matches that "look right". We add some weight to the length difference of

each pair of scores so that scores that are closer in length, have a higher similarity

score and vice-versa.

Using a fixed threshold of similarity score, I am able to remove files that identical

and/or similar in melody. We remove files that are shorter first to speed up the

processing. As a result, we obtain around 146 808 piano scores in MusicXML format.

As a last step to further prevent scores that are problematic or too small from

appearing in the final dataset as well as to reduce the complexity of the dataset,

scores that contain at least 200 notes in the right hand and at most 300 notes on

the right hand are kept.

Difficulty classification

The goal of classifying scores by difficulty is to be able to do conditional generation

by difficulty (Figure 7). Using a piano difficulty classifier[34], we can obtain the

difficulty of each pieces, with a float value ranged from 0 to 9. Intuitively speaking,

we can reduce the complexity and the size of our dataset by only using a subset of

a low range of difficulty values from the output of the piano difficulty classifier. For

that reason, the difficulty of every piece is rounded up to the nearest integer and

retrieved files that are ranged in difficulty from 1 to 4.

We have now 4528 piano scores classified in difficulty in four different levels of

3.1. Dataset 19

Figure 7: An easy and a harder score side by side

difficulty.

Tokenization

Tokenization is way of separating a piece of text into smaller units called tokens. A

token is a distinct element, part of a sequence of tokens. In natural language, a token

can be a character, a sub-word or a word. A sentence can then be tokenized into

a sequence of tokens representing the words and punctuation. For symbolic music,

tokens can represent the values of the note attributes (pitch, velocity, duration)

or time events. These are the fundamental tokens, that can be compared to the

characters in natural language.

When training the model, there are computational limits in memory. As a conse-

quence, I had to split every piano score into chunks of 4 bars using music21 Each

chunk of four bars are now individual and independent scores in the .musicxml

format.

I am using the Score Transformers[10] intermediate representation to convert the

MusicXML files into a format that the model that we are going to use can interpret

and train on.

For each of the files that we have, we convert them to the Score Transformers

representation. They are stored in text files.

To simplify the training process, we are using index mapping to convert a score

token to their associated index.

Knowing that each file have an associated difficulty, we have to create a token for

each difficulty level: [ONE], [TWO], [THR], [FOU], respectively for the first, second,

20 Chapter 3. Methods

Figure 8: Input sequence of difficulty 3: score token representation and mapping

third and fourth difficulty, from easiest to hardest. We add the difficulty token to

the beginning of each text files for each scores. As a result, our model will capture

difficulty of piano pieces and the model will be able to conditional generation by

steering it towards a certain difficulty given a starting input.

Byte-Pair Encoding (BPE) BPE[35] is a data compression algorithm used in

natural language processing and information retrieval. It is primarily used for to-

kenization and subword encoding of text data. BPE is a statistical algorithm that

aims to find the most frequent subword units in a given corpus of text. The basic

idea behind BPE is to treat individual characters as the initial vocabulary and iter-

atively merge the most frequently occurring pairs of symbols to create new, longer

subword units. This process continues until a predefined vocabulary size or a desired

number of merge operations is reached.

In the case of symbolic music, BPE shows improvements of the performance of

Transformers [36].

We use BPE to train a tokenizer using the vocabulary contained in our dataset. The

tokenizer will take into account our new difficulty tokens that are treated as special

tokens.

3.2 Model

3.2.1 Transformers

A decoder-only Transformer model (GPT-like) is used to train on our dataset and

is coded in PyTorch.

The configuration of the decoder layers involve the following aspects:

3.2. Model 21

• The dimension parameter, set to 512, establishes the dimensionality of the

hidden states within the model. This dimension impacts the model’s ability

to capture intricate patterns and representations within the data.

• The depth, set to 12, dictates the number of decoder layers stacked on top

of each other. A greater depth allows the model to capture more complex

relationships in the data, but this also demands more computational resources.

• The heads parameter, set to 8, indicates the count of attention heads employed

within each decoder layer. Attention heads facilitate the model in focusing on

different parts of the input sequence concurrently, enabling the understanding

of various inter-dependencies.

• There is some dropout used, which corresponds to a dropout mechanism ap-

plied to the input token embeddings. Dropout is a regularization technique

utilized during training, involving the random deactivation of certain neural

network units to prevent overfitting.

Flash Attention

The model makes use of Flash Attention[37] for memory efficiency but most impor-

tantly to speed up training.

This approach involves dividing the attention matrix into smaller sections, allowing

for efficient computation of the softmax and exponentiated weighted sums. By

recalculating these values in a tiled manner during the backward pass, the memory

requirement remains linear regardless of the length of the sequence. As a result,

recent models can now incorporate longer context lengths without being hindered

by memory limitations.

3.2.2 Training

A preliminary model was trained with music scores that were split in multiple files

of four bars of music. The sequence length was small, at around 512. The model was

22 Chapter 3. Methods

Figure 9: Overview of the decoder-only Transformer model

able to generate a sequence that followed the rules of the score token representation

and generate new notes and bars of score. However, we could see very quickly that

the notes did not make compared to the input given and did not learn any musical

structure, phrasing, rhythm or melody. For that reason, we chose to increase the

maximum sequence length.

The actual model is trained on a single NVIDIA Tesla V100 (16 GB). As a result,

and with the significant improvement in memory efficiency that comes from flash

attention, the maximum sequence length is set at 2048 and the batch size is set at

4. The learning rate is set at 6e-5 and it is reduced with a learning rate scheduler

when it reaches a plateau with a patience of 2 epochs. The data loader is written in

such a way that if an input sequence is larger than the maximum sequence length,

we are randomly selecting a sub-sequence of the maximum sequence length. As for

other input sequences, we zero-pad them on the left.

3.3. Evaluation 23

3.2.3 Generation

In order to obtain better score outputs, we are using sampling, more specifically Top-

p sampling [38]. Top-p sampling chooses from the smallest possible set of tokens

whose cumulative probability exceeds the probability p. Top-p sampling allows for

more control over the diversity of generation. By adjusting the value of "p," you

can influence the randomness of the output.

Temperature is another parameter used to control the diversity of the generation.

A higher temperature increases the entropy of the distribution, making the prob-

abilities more evenly spread out and leading to more random and diverse outputs.

Conversely, a lower temperature narrows down the distribution, making the model

more confident and deterministic in its predictions.

Both top-p sampling and temperature can be adjusted based on the desired balance

between randomness and control in text generation.

3.3 Evaluation

3.3.1 Objective evaluation

In order to objectively evaluate the performance of our music score generation sys-

tem, there are two important metrics that come into play: the cross-entropy loss

and the perplexity. The cross-entropy loss serves as a guiding objective during the

training phase of our Transformer model. It quantifies the dissimilarity between

the predicted probability distribution of tokens and the ground truth distribution.

Formally, the loss for a single token is computed as the negative sum of the element-

wise multiplication between the true and predicted distributions’ logarithmic values.

This token-level loss is then averaged across all tokens in a sequence and across the

entire batch, providing a quantitative measure of the model’s training progress and

convergence towards accurate token predictions.

24 Chapter 3. Methods

Li = −
V∑
j=1

yi,j log(pi,j) (3.1)

Where:

Li = the cross-entropy loss for the ith token

yi,j = the true probability distribution for the jth token in the ith sequence

pi,j = the predicted probability distribution for the jth token in the ith sequence

V = the vocabulary size.

The other metric that we compute is the perplexity, which is a statistical measure

of how confidently a language model predicts a text sample. In other words, it

quantifies how surprised the model is when it sees new data. It is one of the most

common metrics for evaluating language models. It is defined as the exponentiated

average negative log-likelihood of a sequence, calculated with exponent base e. The

lower the perplexity, the better the model predicts the text.

PPL = exp

(
1

N · T

N∑
i=1

T∑
j=1

Li

)
(3.2)

Where:

PPL = the perplexity

N = the batch size

T = the sequence length

Li = the cross-entropy loss for the ith sequence.

Chapter 4

Results

4.1 Dataset

The dataset is composed of 146 808 pieces that are for piano, contains strictly 2

staves, in which we removed similar scores, empty scores and corrupt scores. In

order to build a first score-to-score model, we choose to use a smaller subset of the

dataset to reduce the complexity and most importantly quicker training.

4.1.1 Difficulty classification

Figure 10: Difficulty distribution

We are limiting the model to do conditional generation on 4 different levels of diffi-

25

26 Chapter 4. Results

culty (Figure 10). The subset used contains 4528 scores of difficulty 1 to 4, respec-

tively [ONE], [TWO], [THREE], [FOUR] as tokens in the input sequence.

4.1.2 Dataset for score-to-score music generation

After an extensive cleaning of the data as well conversion to MusicXML, score sim-

ilarity computation with MinHashing and difficulty classification and tokenization

to the score token representation, we obtain our final dataset.

Figure 11: Breakdown of the dataset

Given the significant size of the usable dataset, comprising of 145 808 scores, a subset

of it is chosen for our experiments and is large enough to ensure representation across

difficulties and musical elements but most importantly to reduce computational

complexity and resource requirements during the score generation process. That

subset contains 4528 music scores.

4.2 Training

The dataset we used is composed of over 4500 scores. 80% of it was used for training

and the rest was split for validation and test. The model was trained for over 34

000 steps.

4.3. Objective evaluation 27

Figure 12: Training progression

4.3 Objective evaluation

On the test set, the model gives the following metrics:

• Perplexity (PPL): 1.2859

• Loss: 0.2515

4.4 Generation

The model successfully generates new bars of music and successfully captures the

rules of the score token representation. We can then convert that representation back

to the MusicXML format with the de-tokenizer and open it with a score visualizer

software to see the results.

The model is able to generate notes for the left hand piano (See appendix A). The

generated notes are seen right towards the end, where the right hand is silent. The

model was able to understand and capture the left hand rhythm that appears in the

28 Chapter 4. Results

input sequence, as well as the notes that were played. It is able to capture some

patterns of the input successfully.

Chapter 5

Discussion

5.1 Available score data

The musescore.com website is a place where people can upload any of their creation.

As a result, the dataset contains files of varying quality, thus requiring a substantial

cleaning of the data.

The dataset contains unstructured data and is not organized by genre, instruments,

or artists. It is a limitation that comes from the fact that most of the data are

user-created and do not necessarily contain all metadata. The possibilities of score-

to-score music generation are hindered as a result. There is an effort to be made to

annotate the dataset, or to make available this metadata.

5.2 Score token representation

Score-to-score generation is an area of research that remains mostly unexplored and

there are not many ways to represent musical notation effectively. The score token

representation [10] is a first iteration to symbolize score elements. However, it is the

only representation designed to feed sequence models. Other representations follow

a tree-structure such as MusicXML[17] and MEI (Music Encoding Initiative) [18]

and other follow a text-like representation such as the ABC notation [19], Humdrum

29

musescore.com

30 Chapter 5. Discussion

[20] and Lilypond [21] but are not designed with sequence models in mind. There

are multiple ways to improve the representation, such as the

5.3 Use of the dataset

As stated in the thesis, we are using a much smaller subset of the data to reduce

the complexity of the processing and to reduce the training time to get satisfactory

results. With more time and resources, the dataset can be used in its entirety to

capture different patterns in music, rhythms, melodies, etc.

In the field of music score generation, a domain that has thus far received limited at-

tention in research, the absence of a comprehensive and benchmark-worthy dataset

has been a glaring limitation. This research endeavor seeks to bridge this gap by

introducing a novel and expansive dataset tailored specifically for music score gener-

ation tasks. In doing so, we aim to catalyze advancements in the field by providing

researchers with a dataset from which they can develop, fine-tune, and evaluate

their models. This contribution not only addresses the current scarcity of suitable

datasets, but also strives to promote the principles of open science. By sharing

this resource, we seek to accelerate research in music score generation and facilitate

comparative evaluations, thus fostering a stronger foundation for future research in

this field. The dataset is available here 1 and the smaller version of it 2.

5.4 Conclusion

This master’s thesis has explored the field of music score generation, specifically fo-

cusing on the development and evaluation of score-to-score music generation models

employing notation-level representations. It led to the creation of a foundational

baseline dataset specially tailored for score music generation utilizing notation-level

representation. This dataset serves as an open science resource, inviting researchers

to employ it as a valuable asset in their explorations of music score generation.

1https://doi.org/10.5281/zenodo.8304135
2https://doi.org/10.5281/zenodo.8304162

https://doi.org/10.5281/zenodo.8304135
https://doi.org/10.5281/zenodo.8304162

5.4. Conclusion 31

Through the construction of this dataset, this work not only addresses a notable gap

in the current landscape of music generation research, but also establishes a tan-

gible resource that promotes collaboration, reproducibility, and innovation. Future

researchers can confidently assess and compare their advancements in the domain

of notation-based music generation.

Furthermore, this thesis demonstrates the feasibility of score token representation in

music generation. While the generated scores may not yet achieve perfection, they

exhibit the potential to capture significant musical patterns from the input data.

This successful incorporation of the score token representation reaffirms its role as

a viable avenue for encoding musical nuances and enriching the repertoire of music

generation techniques.

This research not only contributes to the academic understanding of music gener-

ation but also underscores the importance of open science principles. As the field

of music score generation advances, the groundwork laid by this thesis will be used

for researchers to build upon, leading to more sophisticated and expressive music

generation systems in the future.

List of Figures

1 Visual representation of REMI+ [11] 6

2 Notes/pitches using the ABC notation 8

3 Notes/pitches in the LilyPond notation 9

4 Score token representation [10] . 10

5 Example of metadata for one community-made score 16

6 Example of a piano with two staves 17

7 An easy and a harder score side by side 19

8 Input sequence of difficulty 3: score token representation and mapping 20

9 Overview of the decoder-only Transformer model 22

10 Difficulty distribution . 25

11 Breakdown of the dataset . 26

12 Training progression . 27

32

Bibliography

[1] Hiller, L. A. & Isaacson, L. M. Experimental Music; Composition with an

electronic computer (Greenwood Publishing Group Inc., 1979).

[2] Xenakis, I. Formalized music: thought and mathematics in composition. 6

(Pendragon Press, 1992).

[3] Cope, D. Experiments in musical intelligence (EMI): Non-linear linguistic-based

composition. Journal of New Music Research 18, 117–139 (1989).

[4] Hadjeres, G., Pachet, F. & Nielsen, F. DeepBach: a Steerable Model for

Bach Chorales Generation. In Precup, D. & Teh, Y. W. (eds.) Proceed-

ings of the 34th International Conference on Machine Learning, vol. 70 of

Proceedings of Machine Learning Research, 1362–1371 (PMLR, 2017). URL

https://proceedings.mlr.press/v70/hadjeres17a.html.

[5] Briot, J.-P., Hadjeres, G. & Pachet, F.-D. Deep Learning Techniques for Music

Generation – A Survey (2017).

[6] Ji, S., Luo, J. & Yang, X. A comprehensive survey on deep music genera-

tion: Multi-level representations, algorithms, evaluations, and future directions.

arXiv preprint arXiv:2011.06801 (2020).

[7] Hernandez-Olivan, C. & Beltran, J. R. Music Composition with Deep Learning:

A Review (2021).

[8] Carvalho, R. G. C. & Smaragdis, P. Towards end-to-end polyphonic music

transcription: Transforming music audio directly to a score. In 2017 IEEE

33

https://proceedings.mlr.press/v70/hadjeres17a.html

34 BIBLIOGRAPHY

Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-

PAA), 151–155 (IEEE, 2017).

[9] Liu, L., Morfi, V. & Benetos, E. Joint Multi-Pitch Detection and Score Tran-

scription for Polyphonic Piano Music. In ICASSP 2021 - 2021 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 281–

285 (2021).

[10] Suzuki, M. Score Transformer: Generating Musical Score from Note-level Rep-

resentation. In ACM Multimedia Asia, 1–7 (ACM, New York, NY, USA, 2021).

[11] Fradet, N., Briot, J.-P., Chhel, F., El Fallah-Seghrouchni, A. & Gutowski, N.

MidiTok: A Python package for MIDI file tokenization. In 22nd International

Society for Music Information Retrieval Conference (2021).

[12] Huang, Y.-S. & Yang, Y.-H. Pop Music Transformer: Beat-based Modeling

and Generation of Expressive Pop Piano Compositions (2020).

[13] von Rütte, D., Biggio, L., Kilcher, Y. & Hofmann, T. FIGARO: Generating

Symbolic Music with Fine-Grained Artistic Control (2022).

[14] Oore, S., Simon, I., Dieleman, S., Eck, D. & Simonyan, K. This time with

feeling: Learning expressive musical performance. Neural Computing and Ap-

plications 32, 955–967 (2020).

[15] Huang, C.-Z. A. et al. Music transformer. arXiv preprint arXiv:1809.04281

(2018).

[16] Hsiao, W.-Y., Liu, J.-Y., Yeh, Y.-C. & Yang, Y.-H. Compound word trans-

former: Learning to compose full-song music over dynamic directed hyper-

graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, 178–186 (2021).

[17] Good, M. & Actor, G. Using MusicXML for file interchange. In Proceedings

Third International Conference on WEB Delivering of Music, 153 (IEEE, 2003).

BIBLIOGRAPHY 35

[18] Hankinson, A., Roland, P. & Fujinaga, I. The Music Encoding Initiative as a

Document-Encoding Framework. In ISMIR, 293–298 (2011).

[19] Walshaw, C. The ABC music standard 2.1 (2011).

[20] Huron, D. B. The humdrum toolkit: Reference manual (Center for Computer

Assisted Research in the Humanities, 1994).

[21] Nienhuys, H.-W. & Nieuwenhuizen, J. LilyPond, a system for automated music

engraving. In Proceedings of the XIV Colloquium on Musical Informatics (XIV

CIM 2003), vol. 1, 167–171 (Citeseer, 2003).

[22] Cuthbert, M. S. & Ariza, C. music21: A toolkit for computer-aided musicology

and symbolic music data (2010).

[23] Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 (2013).

[24] Roberts, A., Engel, J., Raffel, C., Hawthorne, C. & Eck, D. A hierarchical

latent vector model for learning long-term structure in music. In International

conference on machine learning, 4364–4373 (PMLR, 2018).

[25] Goodfellow, I. et al. Generative adversarial networks. Communications of the

ACM 63, 139–144 (2020).

[26] Dong, H.-W., Hsiao, W.-Y., Yang, L.-C. & Yang, Y.-H. Musegan: Multi-track

sequential generative adversarial networks for symbolic music generation and

accompaniment. In Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 32 (2018).

[27] Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Advances

in Neural Information Processing Systems 33, 6840–6851 (2020).

[28] Mittal, G., Engel, J., Hawthorne, C. & Simon, I. Symbolic music generation

with diffusion models. arXiv preprint arXiv:2103.16091 (2021).

[29] Vaswani, A. et al. Attention is all you need. Advances in neural information

processing systems 30 (2017).

36 BIBLIOGRAPHY

[30] Radford, A. et al. Language models are unsupervised multitask learners. Ope-

nAI blog 1, 9 (2019).

[31] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805 (2018).

[32] Ens, J. & Pasquier, P. MMM : Exploring Conditional Multi-Track Music Gen-

eration with the Transformer (2020).

[33] Zeng, M. et al. Musicbert: Symbolic music understanding with large-scale

pre-training. arXiv preprint arXiv:2106.05630 (2021).

[34] Ramoneda, P. et al. Combining piano performance dimensions for score diffi-

culty classification. arXiv preprint arXiv:2306.08480 (2023).

[35] Sennrich, R., Haddow, B. & Birch, A. Neural machine translation of rare words

with subword units. arXiv preprint arXiv:1508.07909 (2015).

[36] Fradet, N., Briot, J.-P., Chhel, F., Seghrouchni, A. E. F. & Gutowski, N. Byte

Pair Encoding for Symbolic Music. arXiv preprint arXiv:2301.11975 (2023).

[37] Dao, T., Fu, D., Ermon, S., Rudra, A. & Ré, C. Flashattention: Fast and

memory-efficient exact attention with io-awareness. Advances in Neural Infor-

mation Processing Systems 35, 16344–16359 (2022).

[38] Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of

neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).

Appendix A

Generated score

37

Music21	Fragment
Music21

0

0

0

0

0





 





 









 






























 



   



 





 









 



















 

 

 











 





 



















 

 







 

 



 



























 











 

 













 

















 













 







  











 













  

















  





















 







 





 





 















   













  
















 



 



  

 


 











   









 











































 

   









 





 










 







 





 

 











3

333

3

3





 

 









 

















 




      

  












0

0    
    

  



      



 





   



  











 













  













   

   



 

 


2




	Introduction
	Motivation
	Objectives
	Structure of the Report

	State of the art
	Encodings
	Note-level representation
	Notation-level representation

	Neural network architectures
	Variational Autoencoder
	Generative Adversarial Networks
	Diffusion models
	Transformers

	Methods
	Dataset
	Data cleaning with the MuseScore metadata
	Cleaning with music21
	Similarity computation

	Model
	Transformers
	Training
	Generation

	Evaluation
	Objective evaluation

	Results
	Dataset
	Difficulty classification
	Dataset for score-to-score music generation

	Training
	Objective evaluation
	Generation

	Discussion
	Available score data
	Score token representation
	Use of the dataset
	Conclusion

	List of Figures
	Bibliography
	Generated score

