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 The CRISPR/Cas9 system has been a game-changer in genetics and biotechnology. This 
study aimed to investigate the existing in vivo uses and its potential in gene function 
and biological processes using animal models. With its remarkable precision and 
accuracy, researchers can now easily edit specific genes within cells and organisms. 
This technology has opened up new avenues for studying genetic diseases and 
developing therapies to treat them. One of the most significant advantages of the 
CRISPR/Cas9 system is its ability to create precise cellular and animal models of 
human diseases. This allows researchers to investigate the role of genetics in disease 
development and to develop more effective therapies. For example, the system can 
correct genetic mutations that cause cystic fibrosis or sickle cell anemia. The 
therapeutic potential of CRISPR/Cas9 is enormous, especially in gene therapy. By 
correcting specific genetic mutations, the system can potentially treat human diseases 
that are currently untreatable with conventional therapies. However, some challenges 
still need to be addressed before this technology can be used in clinical settings. 
Despite these challenges, the potential of CRISPR/Cas9 to revolutionize the field of 
genetics and biotechnology cannot be overstated. Ultimately, this technology has the 
potential to transform medicine by providing new therapies for a wide range of 
genetic diseases. 
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1. Introduction

Genome editing is a type of genetic modification that 
involves manipulating DNA at the level of individual bases1. 
It has revolutionized biomedical research by holding great 
potential for treating and preventing various human 
genetic disorders. However, the most effective genome-
editing tool needs to be highly specific in modifying 
genomic sequences while minimizing off-target effects2. 
Initially, genome-editing techniques involves replacing 
small genome sections with external donor DNA sequences 
using the homologous recombination repair pathway in 
yeast and mammalian cells3. Similarly, mouse embryonic 
stem cells were also used to create mice with specific 
genotypes4. However, these techniques have limitations, 
such as low editing efficiency and unwanted genome 

modifications that occur at random sites rather than at the 
intended location 5. 

To overcome these limitations, scientists have 
developed Meganucleases, which are endonucleases that 
cut specific DNA sequences to stimulate homology-directed 
repair (HDR)6. This approach introduces site-specific 
double-stranded breaks (DSBs) into the genomic locus of 
interest. The DNA donor template with homologous ends is 
delivered to copy information along the break site using 
polymerase7. However, DSBs can also result in non-
homologous end-joining (NHEJ) repair mechanisms, 
leading to inserting or deleting random nucleotides 
(indels)8. Although NHEJ can effectively generate functional 
gene knockouts, the creation of indels is an unwanted side 
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effect9. Therefore, developing site-specific DSBs that trigger 
HDR while reducing NHEJ activity remains a challenge. 

A new approach to editing genomes involves the use of 
zinc finger nucleases (ZFNs) and transcription-activator-
like effector nucleases (TALENs), which follow DNA-
protein recognition principles10. These are fusion proteins 
that combine an engineered DNA binding domain with a 
non-specific nuclease domain from the FokI restriction 
enzyme11. The ZFNs and TALENs can be customized to cut 
almost any target sequence in the genome with high 
specificity, which is an advantage over DNA-binding 
proteins12. However, the design, synthesis, and validation 
of these proteins are challenging in the laboratory. 

In contrast, the discovery of the CRISPR/Cas9 system 
has revolutionized gene editing, making it more accessible. 
CRISPR/Cas9 employs a small RNA to create a site-specific 
double-stranded break (DSB), unlike ZFNs and TALENs13. 
The Cas9 endonuclease only requires a 20-nucleotide guide 
RNA (sgRNA) that attaches to the target DNA and a DNA 
protospacer-adjacent motif (PAM), a short DNA sequence 
next to the complementary region that varies depending on 
the bacterial species of the Cas9 protein used14,15. This two-
pronged strategy, where the sgRNA guides Cas9 to target 
any DNA sequence of interest, has replaced the 
complicated protein design process required by ZFNs and 
TALENs16. The simplicity of the CRISPR/Cas9 technology, 
along with its unique DNA cleaving mechanism, ability to 
target multiple regions, and the existence of different type 
II CRISPR-Cas system variants, has allowed for significant 
progress using this cost-effective and user-friendly 
technology to precisely and efficiently modify the genomic 
DNA of various cells17,18. 
 

2. CRISPR/CAS9: History and Mechanism 
 
In 1987, Ishino and colleagues were studying 

Escherichia coli when they observed the presence of a 
cluster of DNA sequences that were repetitive and 
separated by variable spacer regions19. The significance of 
these sequences was unknown at the time. Mojica et al. 
identified similar sequences in many other bacteria and 
archaea and named them Clustered Regularly Interspaced 
Palindromic Repeats or CRISPR20. 

In 2007, Barrangou and colleagues experimented with a 
well-characterized phage-sensitive S. thermophilus strain 
and two bacteriophages, showing experimentally that 
CRISPR provides adaptive immunity, confirming the 
hypothesis that CRISPR might be an adaptive immunity 
system21. In 2008, it was discovered that CRISPR RNAs 
(crRNAs) serve as guides in a complex with Cas proteins to 
promote phage resistance22. Additionally, it was observed 
that the CRISPR/Cas system could be repurposed as a 
programmable restriction enzyme to target DNA. This 
finding was significant because it suggested that CRISPR 
could potentially be used for genome editing in 
heterologous systems. In the same year, Marraffini and 
Sontheimer explicitly predicted that CRISPR might be 
repurposed for genome editing in heterologous systems, 
opening up new possibilities for applying CRISPR23. In 

recent years, researchers from various groups have 
identified the components of the recombinant 
CRISPR/Cas9 system and have demonstrated its 
functionality in mammalian cells24-26. This work has paved 
the way for the development of CRISPR as a powerful tool 
for genome editing, opening up new possibilities for 
research and innovation in biotechnology and medicine. 
Extensive research has been conducted on the CRISPR 
mechanism, which is categorized into different types and 
subtypes27. There are two primary categories: class 1 and 
class 2, which have different effector protein complex 
organizations. Class 1 comprises 15 subtypes, further 
subdivided into three types (I, III, and IV), while class 2 is 
defined by a single-protein effector module and is divided 
into types II, V, and VI28. The type II CRISPR mechanism is 
unique in that it uses only one Cas protein (Cas9) for gene 
silencing29. 

The CRISPR mechanism involves the integration of DNA 
from past viral or plasmid infections into a CRISPR locus 
with short repetitive sequences separated by spacer 
sequences30. The locus is transcribed, and precursor 
CRISPR RNAs (pre-crRNAs) are processed to generate 
small crRNAs with the help of trans-activating CRISPR RNA 
(tracrRNA) that complements the CRISPR repeat 
sequence31,32. The mature crRNAs serve as guides for Cas 
nucleases to recognize and cut invading DNA based on 
sequence complementarity. The Cas9 protein has two 
nuclease domains that cleave both DNA strands matching 
the 20-nucleotide target sequence, resulting in double-
stranded breaks (DSBs)33. To produce precise gene editing 
in a therapeutic context, Cas9 requires a short-conserved 
sequence (2-5 nucleotides) called protospacer adjacent 
motif (PAM) immediately downstream of the 3´ crRNA 34. 
Cas9 can cut the non-complementary DNA strand and 
produce DSBs within 3 bp to 8 bp upstream of the PAM. 

The CRISPR/Cas9 system is a straightforward and 
adaptable technology that requires only a customized 
single guide RNA (sgRNA) to generate DSBs at nearly any 
DNA target site, making it widely used for genome editing 
in various cell types and organisms 35. In 2012, a simplified 
two-component CRISPR/Cas9 system was developed by 
combining tracRNA and crRNA into a single guide RNA, 
which is as effective as Cas9 programmed with separate 
tracRNA and crRNA in guiding targeted gene alterations36. 
 

3. CRISPR/CAS9 as an efficient tool for 
genome editing in mammalian cells 
 
3.1. Application of the CRISPR/Cas9 system in the rapid 
generation of animal models 

 
The CRISPR/Cas9 technology is a revolutionary tool in 

genetic engineering, providing researchers with a powerful 
method for generating genetically modified animal models 
with incredible efficiency and speed37. CRISPR/Cas9 has 
eliminated many of the time-consuming and laborious 
steps previously required to create animal models with 
specific genetic mutations38. Before the development of this 
technology, researchers would need to manipulate 
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embryonic stem cells, which were difficult to grow and 
maintain, and then screen offspring for germline 
transmission of the desired mutation. This process was 
often inefficient, labor-intensive, and expensive, presenting 
a significant hurdle in developing genetically engineered 
animal models39,40. 

However, with the CRISPR/Cas9 system, researchers 
can now introduce mutations directly into the genome of a 
zygote by injecting the Cas9 protein and a guide RNA 
(gRNA) into the fertilized egg41. This approach has 
eliminated the need to manipulate embryonic stem cells, 
streamlining the process of introducing mutations into the 
genome. Moreover, the CRISPR/Cas9 system is highly 
efficient, enabling researchers to generate mice with 
mutations in multiple genes in a single editing step42,43. 
This capability has opened up the possibility of creating 
animal models with complex genetic mutations that are 
more representative of human diseases like cancer, which 
often involve multiple genes and pathways44. In addition, 
the CRISPR/Cas9 technology allows researchers to 
introduce additional mutations in pre-existing animal 
models of disease without the need for embryonic stem cell 
derivation or complex genetic crosses45. This capability 
makes it easier to create animal models of diseases that 
accurately reflect the genetic heterogeneity of human 
diseases, which can facilitate the development of novel 
treatments and therapies. With the CRISPR/Cas9 system, 
researchers can now create animal models that are more 
complex and accurately represent human disease, 
accelerating the development of new treatments and 
therapies for various diseases 46. 

Overall, the CRISPR/Cas9 technology has significantly 
reduced the time and cost required to generate genetically 
modified animal disease models, making it more accessible 
to researchers. This technology has the potential to 
accelerate the development of new treatments and 
therapies for various diseases, representing a significant 
breakthrough in genetic engineering. The use of 
CRISPR/Cas9 has opened up new avenues for research in 
fields such as oncology, immunology, and neuroscience, 
offering the potential to unlock new insights into complex 
diseases and their treatment. 

 
3.2. Application of the CRISPR/Cas9 system in animal 
models for the treatment of human diseases 

 
The CRISPR/Cas9 technology has transformed the field 

of genetics research by providing a revolutionary gene-
editing approach that offers new possibilities for 
developing effective therapies for once-incurable genetic 
conditions. This technology has been extensively used to 
evaluate the efficacy of treatments for genetic disorders 
through genetically modified animal models. 

In 2013, Wu et al. conducted one of the first studies to 
use the CRISPR/Cas9 system to efficiently correct a genetic 
disease in mice47. The study demonstrated how the 
CRISPR/Cas9 system could correct a dominant cataract-
causing mutation in the Crygc gene. This breakthrough 
paved the way for further research exploring the 

therapeutic potential of this technology. Another study 
used the mdx mouse model of Duchenne muscular 
dystrophy, a rare disorder caused by mutations in the gene 
that encodes dystrophin48. The study demonstrated that 
the CRISPR/Cas9 system could potentially provide an 
effective treatment for this debilitating genetic disease by 
generating genetically mosaic progeny with varying 
degrees of muscle phenotypic rescue. In 2014, a 
groundbreaking study demonstrated that the CRISPR/Cas9 
system could successfully correct a mutation in post-natal 
animals49. The study corrected the fumarylacetoacetate 
hydrolase (Fah) gene’s homozygous point mutation in the 
Fah59815B mouse model, leading to severe liver damage49. 
This breakthrough demonstrated that the CRISPR/Cas9 
system could be used to develop gene therapies for genetic 
diseases. Other studies have shown that the CRISPR/Cas9 
technology can be used to treat genetic disorders in adult 
mice by delivering CRISPR/Cas9 machinery to the mdx 
mouse model of Duchenne muscular dystrophy to restore 
dystrophin expression in skeletal and cardiac muscle 
cells50,51. 

These groundbreaking in vivo studies have made 
significant progress toward developing new therapies for 
genetic diseases. Human genetic disorders are currently 
incurable, significantly impacting patients’ quality of life 
and life expectancy. The significant progress made in the 
CRISPR/Cas9 technology highlights the potential of this 
gene therapy approach to cure human genetic diseases, 
offering a promising outlook for the future of medicine. 

 

4. Conclusion 
 
The revolutionary CRISPR/Cas9 system, which utilizes 

RNA to guide DNA editing, has significantly impacted 
genome editing and research. The latest advancements in 
CRISPR/Cas9 tools have made it more accessible for 
researchers worldwide to study human diseases, with 
increased selectivity, high DNA specificity, and minimal by-
product formation. Using in vivo animal models, 
researchers can generate disease models in just a few 
weeks, paving the way for the potential treatment of 
genetic disorders using CRISPR/Cas9 technology. However, 
the technology’s efficiency, specificity, and delivery still 
require improvement to make it widely available in clinical 
settings. The potential for misuse of CRISPR/Cas9 is also a 
major concern, with significant implications for medical 
practice. The discovery of the CRISPR/Cas9 mechanism 
offers new possibilities for medical treatments that have 
the potential to revolutionize the approach to genetic 
disorders. 
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