

ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

A. Marconi ${ }^{1,2}$, on behalf of the ANDES Consortium: M. Abreu ${ }^{3}$, V. Adibekyan ${ }^{4,5}$, V. Alberti ${ }^{6}$, S. Albrecht ${ }^{7}$, J. Alcaniz ${ }^{8}$, M. Aliverti ${ }^{9}$, C. Allende Prieto ${ }^{10,11}$, J. D. Alvarado Gómez ${ }^{12}$, P. J. Amado ${ }^{13}$, M. Amate ${ }^{10}$, M. I. Andersen ${ }^{14,15}$, E. Artigau ${ }^{16,17}$, C. Baker ${ }^{18}$, V. Baldini ${ }^{6}$, A
Balestra 19, S. A. Barnes ${ }^{12,20}$, F. Baron ${ }^{16,21,17}$, S. C. C. Barros ${ }^{4,5}$, S. M. Bauer ${ }^{12}$, M. Beaulieu ${ }^{22}$, O. Bellido-Tirado ${ }^{12}$, B. Benneke ${ }^{16,17}$, T. Bensby ${ }^{23}$, E. A. Bergin ${ }^{24}$, K. Biazzo ${ }^{25}$, A. Bik ${ }^{26}$, J. L. Birkby 27, N. Blind ${ }^{28}$, I. Boisse ${ }^{29}$, E. Bolmont ${ }^{28,30}$, M. Bonaglia ${ }^{2}$, X. Bonfils ${ }^{31}$, F. Borsa ${ }^{9}$, A. Brandeker ${ }^{26}$, W. Brandner ${ }^{32}$, C. H. Broeg ${ }^{33,34}$, M. Brogi ${ }^{35,36,37}$, D. Brousseau ${ }^{38}$, A. Brucalassi ${ }^{2}$,
J. Brynnel ${ }^{12}$, L. A. Buchhave ${ }^{39}$, D. F. Buscher ${ }^{18}$, A. Cabral ${ }^{3}$, G. Calderone ${ }^{6}$, R.

Calvo-Ortega ${ }^{13}$, F. Cantalloube ${ }^{29}$, B. L. Canto Martins ${ }^{40}$, L. Carbonaro ${ }^{2}$, G. Chauvin ${ }^{22}$, B. Chazelas 28, A.-L. Cheffot ${ }^{2}$, Y. S. Cheng ${ }^{41}$, A. Chiavassa ${ }^{22}$, L. Christensen ${ }^{15,14}$, R. Cirami ${ }^{6}$, N. J. Cook ${ }^{16,17}$, R. J. Cooke ${ }^{42}$, I. Coretti ${ }^{6}$, S. Covino ${ }^{9}$, N. Cowan ${ }^{43}$, G. Cresci ${ }^{2}$, S. Cristiani ${ }^{6,44,45}$, V. Cunha Parro ${ }^{46}$, G. Cupani ${ }^{6,45}$, V. D'Odorico ${ }^{6,47,45}$, I. de Castro Leão ${ }^{40}$, A. De Cia ${ }^{28}$, J. R.' De Medeiros ${ }^{40}$, F. Debras ${ }^{48}$, M. Debus ${ }^{63}$, O. Demangeon ${ }^{4,5}$, M. Dessauges-Zavadsky ${ }^{28}$, P. Di Marcantonio ${ }^{6}$, F. Dionies ${ }^{12}$, R. Doyon ${ }^{16,17,21}$, J. Dunn ${ }^{50}$, D. Ehrenreich 28,30 , J. P. Faria ${ }^{4,5}$, C. Feruglio ${ }^{6}$, M. Fisher ${ }^{18}$, A. Fontana ${ }^{25}$, M. Fumagalli ${ }^{51,6}$, T. Fusco ${ }^{52,29}$, J. Fynbo ${ }^{14,15}$, O.
Gabella ${ }^{53,54,55}$, W. Gaessler ${ }^{32}$, E. Gallo ${ }^{24}$, X. Gao ${ }^{56}$, L. Genolet ${ }^{28}$, M. Genoni ${ }^{9}$, P. Giacobbe ${ }^{36}$, E. Giro ${ }^{19,57}$, R. S. Gonçalves ${ }^{58,8}$, O. A. Gonzalez ${ }^{56}$, J. I. González Hernández ${ }^{10,11}$, F. Gracia Témich 10, M.G. Haehnelt ${ }^{59}$, C. Hanif ${ }^{18}$, A. Hatzes ${ }^{60}$, R. Helled ${ }^{61}$, H.J. Hoeijmakers ${ }^{23}$, P.
Huke 62,63, A. S. Järvinen ${ }^{12}$, S. P. Järvinen ${ }^{12}$, A. Kaminski ${ }^{64}$, A. J. Korn ${ }^{65}$, D. Kouach ${ }^{66}$, G. Kowzan 67, L. Kreidberg ${ }^{32}$, M. Landoni ${ }^{9}$, A. Lanotte ${ }^{28}$, A. Lavail ${ }^{65}$, J. Li ${ }^{24}$, J. Liske ${ }^{68}$, C.
Lovis 28, S. Lucatello ${ }^{19}$, D. Lunney ${ }^{56}$, M. J. MacIntosh ${ }^{56}$, N. Madhusudhan ${ }^{69}$, L. Magrini ${ }^{2}$, R. Maiolino ${ }^{18,59,70}$, L. Malo ${ }^{16}$, A. W. S. Man ${ }^{71}$, T. Marquart ${ }^{65}$, E. L. Marques ${ }^{46}$, C. J. A. P.

Maiolino ${ }^{18,59,70}$, L. Malo ${ }^{16}$, A. W. S. Man ${ }^{71}$, T. Marquart ${ }^{65}$, E. L. Marques ${ }^{46}$, C. J. A. P. Martins ${ }^{4,72}$, A. M. Martins ${ }^{73}$, P. Maslowski ${ }^{67}$, E. Mason ${ }^{6}$, C. A. Mason ${ }^{15,14}$, R. A. McCracken ${ }^{41}$, P. Mergo ${ }^{74}$, G. Micela ${ }^{75}$, T. Mitchell ${ }^{41}$, P. Mollière ${ }^{32}$, M. A. Monteiro ${ }^{4}$, D. Montgomery ${ }^{56}$, C. Mordasini ${ }^{34,33}$, J. Morin ${ }^{53}$, A. Mucciarelli ${ }^{76,77}$, M. T. Murphy ${ }^{78}$, M. N N'Diaye ${ }^{22}$, B. Neichel ${ }^{29}$,
A.T. Niedzielski ${ }^{79}$, E. Niemczura ${ }^{80}$, L. Nortmann ${ }^{63}$, P. Noterdaeme ${ }^{81,82}$, N. J. Nunes ${ }^{3}$, L.

Oggioni 9, E. Oliva ${ }^{2}$, H. Önel ${ }^{12}$, L. Origlia ${ }^{77}$, G. Östlin ${ }^{26}$, E. Palle ${ }^{10,11}$, P. Papaderos ${ }^{4,3}$, G.
Pariani ${ }^{9}$, J. Peñate Castro ${ }^{10}$, F. Pepe ${ }^{28}$, L. Perreault Levasseur ${ }^{16,83}$, P. Petit ${ }^{48}$, L. Pino ${ }^{2}$, J.
Piqueras ${ }^{84}$, A. Pollo ${ }^{85,86}$, K. Poppenhaeger ${ }^{12,87}$, A. Quirrenbach ${ }^{64}$, E. Rauscher ${ }^{24}$, R.
Rebolo ${ }^{10,88,11}$, E. M. A. Redaelli ${ }^{9}$, S. Reffert ${ }^{64}$, D. T. Reid ${ }^{41}$, A. Reiners ${ }^{63}$, P. Richter ${ }^{87}$, M. Riva 9, S. Rivoire ${ }^{53,54,55}$, C. Rodríguez-López ${ }^{13}$, I. U. Roederer ${ }^{24,89}$, D. Romano ${ }^{77}$, S. Rousseau ${ }^{22}$, J. Rowe ${ }^{90}$, S. Salvadori ${ }^{1,2}$, N. Sanna ${ }^{2}$, N. C. Santos ${ }^{4,5}$, P. Santos Diaz ${ }^{28}$, J. Sanz-Forcada ${ }^{91}$, M Sarajlic ${ }^{34}$, J.-F. Sauvage ${ }^{52,29}$, S. Schäfer ${ }^{63}$, R. P. Schiavon ${ }^{92}$, T. M. Schmidt ${ }^{28}$, C. Selmi ${ }^{2}$, S.
Sivanandam 93,94, M. Sordet ${ }^{28}$, R. Sordo ${ }^{19}$, F. Sortino ${ }^{9}$, D. Sosnowska ${ }^{28}$, S. G. Sousa ${ }^{4}$, E.
Stempels 65, K. G. Strassmeier ${ }^{12,87}$, A. Suárez Mascareño ${ }^{10,11}$, A. Sulich ${ }^{6}$, X. Sun ${ }^{18}$, N. R.
Tanvir 95, F. Tenegi-Sanginés ${ }^{10}$, S. Thibault ${ }^{38}$, S. J. Thompson ${ }^{18}$, A. Tozzi ${ }^{2}$, M. Turbet ${ }^{96}$, P. Vallée ${ }^{16,17,21}$, R. Varas 13, K. A. Venn ${ }^{97}$, J.-P. Véran ${ }^{50}$, A. Verma ${ }^{27}$, M. Viel ${ }^{98,45,6,6}$, G. Wade ${ }^{99}$, C. Waring ${ }^{56}$, M. Weber ${ }^{12}$, J. Weder ${ }^{34}$, B. Wehbe ${ }^{3}$, J. Weingrill ${ }^{12}$, M. Woche ${ }^{12}$, M. Xompero ${ }^{2}$,
E. Zackrisson ${ }^{65}$, A. Zanutta ${ }^{9}$, M. R. Zapatero Osorio ${ }^{84}$, M. Zechmeister ${ }^{63}$, and J. Zimara ${ }^{63}$

ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

A. Marconi ${ }^{1,2}$, on behalf of the ANDES Consortium: M. Abreu ${ }^{3}$, V. Adibekyan ${ }^{4,5}$, V. Alberti ${ }^{6}$, S. Albrecht ${ }^{7}$, J. Alcaniz ${ }^{8}$, M. Aliverti ${ }^{9}$, C. Allende Prieto ${ }^{10,11}$, J. D. Alvarado Gómez ${ }^{12}$, P. J. Amado 13, M. Amate ${ }^{10}$, M. I. Andersen ${ }^{14,15}$, E. Artigau ${ }^{16,17}$, C. Baker ${ }^{18}$, V. Baldini ${ }^{6}$, A.
Balestra 19, S. A. Barnes ${ }^{12,20}$, F. Baron ${ }^{16,21,17}$, S. C. C. Barros ${ }^{4,5}$, S. M. Bauer ${ }^{12}$, M. Beaulieu ${ }^{22}$, O. Bellido-Tirado ${ }^{12}$, B. Benneke ${ }^{16,17}$, T. Bensby ${ }^{23}$, E. A. Bergin ${ }^{24}$, K. Biazzo ${ }^{25}$, A. Bik ${ }^{26}$, J. L. Birkby 27, N. Blind ${ }^{28}$, I. Boisse ${ }^{29}$, E. Bolmont ${ }^{28,30}$, M. Bonaglia ${ }^{2}$, X. Bonfils ${ }^{31}$, F. Borsa ${ }^{9}$, A Brandeker ${ }^{26}$, W. Brandner ${ }^{32}$, C. H. Broeg ${ }^{33,34}$, M. Brogi ${ }^{35,36,37}$, D. Brousseau ${ }^{38}$, A. Brucalassi ${ }^{2}$,
J. Brynnel ${ }^{12}$, L. A. Buchhave ${ }^{39}$, D. F. Buscher ${ }^{18}$, A. Cabral ${ }^{3}$, G. Calderone ${ }^{6}$, R.

Calvo-Ortega ${ }^{13}$, F. Cantalloube ${ }^{29}$, B. L. Canto Martins ${ }^{40}$, L. Carbonaro ${ }^{2}$, G. Chauvin ${ }^{22}$, B. Chazelas 28, A.-L. Cheffot ${ }^{2}$, Y. S. Cheng ${ }^{41}$, A. Chiavassa ${ }^{22}$, L. Christensen ${ }^{15,14}$, R. Cirami ${ }^{6}$, N. J. Cook ${ }^{16,17}$, R. J. Cooke ${ }^{42}$, I. Coretti ${ }^{6}$, S. Covino ${ }^{9}$, N. Cowan ${ }^{43}$, G. Cresci ${ }^{2}$, S. Cristiani ${ }^{6,44,45}$,
V. Cunha Parro ${ }^{46}$, G. Cupani ${ }^{6,45}$, V. D'Odorico ${ }^{6,47,45}$, I. de Castro Leão ${ }^{40}$, A. De Cia ${ }^{28}$, J. R.'

De Medeiros ${ }^{40}$, F. Debras ${ }^{48}$, M. Debus ${ }^{63}$, O. Demangeon ${ }^{4,5}$, M. Dessauges-Zavadsky ${ }^{28}$, P. Di Marcantonio ${ }^{6}$, F. Dionies ${ }^{12}$, R. Doyon ${ }^{16,17,21}$, J. Dunn ${ }^{50}$, D. Ehrenreich 28,30 , J. P. Faria ${ }^{4,5}$, C. Feruglio ${ }^{6}$, M. Fisher ${ }^{18}$, A. Fontana ${ }^{25}$, M. Fumagalli ${ }^{51,6}$, T. Fusco ${ }^{52,29}$, J. Fynbo ${ }^{14,15}$, O.
Gabella ${ }^{53,54,55}$, W. Gaessler ${ }^{32}$, E. Gallo ${ }^{24}$, X. Ga ${ }^{56}$, L. Genolet ${ }^{28}$, M. Genoni ${ }^{9}$, P. Giacobbe ${ }^{36}$, E. Giro ${ }^{19,57}$, R. S. Gonçalves ${ }^{58,8}$, O. A. Gonzalez ${ }^{56}$, J. I. González Hernández ${ }^{10,11}$, F. Gracia Témich ${ }^{10}$, M.G. Haehnelt ${ }^{59}$, C. Haniff ${ }^{18}$, A. Hatzes ${ }^{60}$, R. Helled ${ }^{61}$, H.J. Hoeijmakers ${ }^{23}$, P.
Huke 62,63, A. S. Järvinen ${ }^{12}$, S. P. Järvinen ${ }^{12}$, A. Kaminski ${ }^{64}$, A. J. Korn ${ }^{65}$, D. Kouach ${ }^{66}$, G. Kowzan ${ }^{67}$, L. Kreidberg ${ }^{32}$, M. Landoni ${ }^{9}$, A. Lanotte ${ }^{28}$, A. Lavai ${ }^{65}$, J. Li 24, J. Liske ${ }^{68}$, C.
Lovis 28, S. Lucatello ${ }^{19}$, D. Lunney ${ }^{56}$, M. J. MacIntosh ${ }^{56}$, N. Madhusudhan ${ }^{69}$, L. Magrini ${ }^{2}$, R. Maiolino ${ }^{18,59,70}$, L. Malo ${ }^{16}$, A. W. S. Man ${ }^{71}$, T. Marquart ${ }^{65}$, E. L. Marques ${ }^{46}$, C. J. A. P.
Maiolino ${ }^{18,59,70}$, L. Malo ${ }^{16}$, A. W. S. Man ${ }^{71}$, T. Marquart ${ }^{65}$, E. L. Marques ${ }^{46}$, C. J. A. P.
Martins ${ }^{4,72}$, A. M. Martins ${ }^{73}$, P. Maslowski ${ }^{67}$, E. Mason ${ }^{6}$, C. A. Mason ${ }^{15,14}$, R. A. McCracken ${ }^{41}$
P. Mergo ${ }^{74}$, G. Micela ${ }^{75}$, T. Mitchell ${ }^{41}$, P. Molliè̀ ${ }^{32}$, M. A. Monteiro ${ }^{4}$, D. Montgomery ${ }^{56}$, C.
Mordasini ${ }^{34,33}$, J. Morin ${ }^{53}$, A. Mucciarelli ${ }^{76,77}$, M. T. Murphy ${ }^{78}$, M. N ${ }^{\prime}$ Diaye 22, B. Neichel ${ }^{29}$,
A.T. Niedzielski ${ }^{79}$, E. Niemczura ${ }^{80}$, L. Nortmann ${ }^{63}$, P. Noterdaeme ${ }^{81,82}$, N. J. Nunes ${ }^{3}$, L.
Oggioni 9, E. Oliva ${ }^{2}$, H. Önel ${ }^{12}$, L. Origlia ${ }^{77}$, G. Östlin ${ }^{26}$, E. Palle ${ }^{10,11}$, P. Papaderos ${ }^{4,3}$, G.
Pariani ${ }^{9}$, J. Peñate Castro ${ }^{10}$, F. Pepe ${ }^{28}$, L. Perreault Levasseur ${ }^{16,83}$, P. Petit ${ }^{48}$, L. Pino 2, J
Piqueras ${ }^{84}$, A. Pollo ${ }^{85,86}$, K. Poppenhaeger ${ }^{12,87}$, A. Quirrenbach ${ }^{64}$, E. Rauscher ${ }^{24}$, R.
Rebolo ${ }^{10,88,11}$, E. M. A. Redaelli ${ }^{9}$, S. Reffert ${ }^{64}$, D. T. Reid ${ }^{41}$, A. Reiners ${ }^{63}$, P. Richter ${ }^{87}$, M
Riva 9, S. Rivoire ${ }^{53,54,55}$, C. Rodríguez-López ${ }^{13}$, I. U. Roederer ${ }^{24,89}$, D. Romano ${ }^{77}$, S. Rousseau ${ }^{22}$,
J. Rowe ${ }^{90}$, S. Salvadori ${ }^{1,2}$, N. Sanna ${ }^{2}$, N. C. Santos ${ }^{4,5}$, P. Santos Diaz ${ }^{28}$, J. Sanz-Forcada ${ }^{91}$, M.
Sarajlic 34, J.-F. Sauvage ${ }^{52,29}$, S. Schäfer ${ }^{63}$, R. P. Schiavon ${ }^{92}$, T. M. Schmidt ${ }^{28}$, C. Selmi ${ }^{2}$, S.
Sivanandam 93,94, M. Sordet ${ }^{28}$, R. Sordo ${ }^{19}$, F. Sortino ${ }^{9}$, D. Sosnowska ${ }^{28}$, S. G. Sousa ${ }^{4}$, E.
Stempels ${ }^{65}$, K. G. Strassmeier ${ }^{12,87}$, A. Suárez Mascareño ${ }^{10,11}$, A. Sulich ${ }^{6}$, X. Sun ${ }^{18}$, N. R.
Tanvir ${ }^{95}$, F. Tenegi-Sanginés ${ }^{10}$, S. Thibault ${ }^{38}$, S. J. Thompson ${ }^{18}$, A. Tozzi ${ }^{2}$, M. Turbet ${ }^{96}$, P.
Vallée ${ }^{16,17,21}$, R. Varas 13, K. A. Venn ${ }^{97}$, J.-P. Véran ${ }^{50}$, A. Verma ${ }^{27}$, M. Viel ${ }^{98,45,6,6}$, G. Wade ${ }^{99}$,
C. Waring ${ }^{56}$, M. Weber ${ }^{12}$, J. Weder ${ }^{34}$, B. Wehbe ${ }^{3}$, J. Weingrill ${ }^{12}$, M. Woche ${ }^{12}$, M. Xompero ${ }^{2}$,
E. Zackrisson ${ }^{65}$, A. Zanutta ${ }^{9}$, M. R. Zapatero Osorio ${ }^{84}$, M. Zechmeister ${ }^{63}$, and J. Zimara ${ }^{63}$

Largest optical/infrared telescope in the world

- 39-m segmented primary mirror
- fully AO assisted telescope

On Cerro Armazones, integral part of the Paranal system

COMPETITORS OF ELT

Type of Instrument	GMT	TMT	ELT
Near-IR, AO-assisted Imager + IFU	$\underline{\text { GMTIFS }}$	$\underline{\text { IRIS }}$	$\underline{\text { HARMONI }}$
Wide-Field, Optical Multi-Object Spectrometer	$\underline{\text { GMACS }}$	$\underline{\text { WFOS }}$	MOSAIC-HMM
Near-IR Multislit Spectrometer	NIRMOS	$\underline{\text { IRMS }}$	MOSAIC-HMM
Deployable, Multi-IFU Imaging Spectrometer		IRMOS	MOSAIC-HDM
Mid-IR, AO-assisted Echelle Spectrometer	MIRES	$\underline{\text { METIS }}$	
High-Contrast Exoplanet Imager	TIGER	PFI	ELT-PCS
Near-IR, AO-assisted Echelle	GMTNIRS	NIRES	ANDES
Spectrometer	High-Resolution Optical Spectrometer	G-CLEF	HROS
"Wide"-Field AO-assisted Imager		IRIS	MICADO

COMPETITORS OF ELT

Type of Instrument	GMT	TMT	ELT
Near-IR, AO-assisted Imager + IFU	$\underline{\text { GMTIFS }}$	$\underline{\text { IRIS }}$	$\underline{\text { HARMONI }}$
Wide-Field, Optical Multi-Object Spectrometer	$\underline{\text { GMACS }}$	$\underline{\text { WFOS }}$	MOSAIC-HMM
Near-IR Multislit Spectrometer	NIRMOS	$\underline{\text { IRMS }}$	MOSAIC-HMM
Deployable, Multi-IFU Imaging Spectrometer		IRMOS	MOSAIC-HDM
Mid-IR, AO-assisted Echelle Spectrometer		MIRES	METIS
High-Contrast Exoplanet Imager	TIGER	PFI	ELT-PCS
Near-IR, AO-assisted Echelle	GMTNIRS	NIRES	ANDES
Spectrometer	High-Resolution Optical Spectrometer	G-CLEF	HROS
"Wide"-Field AO-assisted Imager		IRIS	MICADO

- European Extremely Large Telescope (ELT) will be the largest ground-based telescope at visible and infrared wavelengths
- Flagship science cases: the detection of life signatures in Earth-like exoplanets and the direct detection of the cosmic expansion re-acceleration (both require high resolution spectroscopy)
- High resolution spectroscopy (HRS)
- Interdisciplinary (from Exoplanets to Cosmology and Fundamental Physics)
- Successful ESO tradition (UVES, FLAMES, CRIRES, X-shooter, HARPS; ESPRESSO)
- More than 30\% of ESO publications can be attributed to its high-resolution spectrographs.
- HRS At 8m-class telescope entered into photon starved regime
- Merging of CODEX and SIMPLE concepts into HIRES (ANDES) with R~100.000 in 0.37-2.4 $\mu \mathrm{m}$
- HIRES (ANDES) Phase A study started March 2016, completed March 2018

A SUBSET OF ANDES SCIENCE CASES

ANDES

* Exoplanets (characterisation of Exoplanets Atmospheres: detection of signatures of life)
* Protoplanetary Disks (dynamics, chemistry and physical conditions of the inner regions)
* Stellar Astrophysics (abundances of solar type and cooler dwarfs in galactic disk bulge, halo and nearby dwarfs: tracing chemical enrichment of Pop III stars in nearby universe)
\$ Stellar Populations (metal enrichment and dynamics of extragalactic star clusters and resolved stellar populations)
* Intergalactic Medium (Signatures of reionization and early enrichment of ISM \& IGM observed in high-z quasar spectra)
* Galaxy Evolution (massive early type galaxies during epochs of formation and assembly)
* Supermassive Black Holes (the low mass end)
\& Fundamental Physics (variation of fundamental constants $-\alpha, m_{p} / m_{e}$ Sandage Test)

Community White Paper: Maiolino et al. 2013, ArXiV:1310.3163

A SUBSET OF ANDES SCIENCE CASES

ANDES

* Exoplanets (characterisation of Exoplanets Atmospheres: detection of signatures of life)
* Protoplanetary Disks (dynamics, chemistry and physical conditions of the inner regions)
\% Stellar Astrophysics (abundances of solar type and cooler dwarfs in galactic disk bulge, halo and nearby dwarfs: tracing chemical enrichment of Pop III stars in nearby universe)
\$ Stellar Populations (metal enrichment and dynamics of extragalactic star clusters and resolved stellar populations)
* Intergalactic Medium (Signatures of reionization and early enrichment of ISM \& IGM observed in high-z quasar spectra)
* Galaxy Evolution (massive early type galaxies during epochs of formation and assembly)
* Supermassive Black Holes (the low mass end)
\% Fundamental Physics (variation of fundamental constants $-\alpha, m_{p} / m_{e}$ Sandage Test)

Community White Paper: Maiolino et al. 2013, ArXiV:1310.3163

EXOPLANET ATMOSPHERES

Use high-resolution spectroscopy to disentangle the planetary and stellar spectra by comparing the combined spectrum to a star-only reference spectrum aided by the radial velocity offset (e.g. Snellen+15)

EXOPLANET ATMOSPHERES

Use high-resolution spectroscopy to disentangle the planetary and stellar spectra by comparing the combined spectrum to a star-only reference spectrum aided by the radial velocity offset (e.g. Snellen+15)

* In transmitted light

Example: Trappist 1 planets ANDES cat detect:

- $\mathrm{H}_{2} \mathrm{O}(1.3-1.7 \mu \mathrm{~m})$ in 2 transits
- $\mathrm{H}_{2} \mathrm{O}(0.9-1.1 \mu \mathrm{~m})$ in 4 transits
- CO_{2} in 4 transits
- O_{2} in 25 transits

EXOPLANET ATMOSPHERES

Use high-resolution spectroscopy to disentangle the planetary and stellar spectra by comparing the combined spectrum to a star-only reference spectrum aided by the radial velocity offset (e.g. Snellen+15)

* In reflected light

Example: Proxima b ANDES cat detect planet in 7 nights at 8 sigma level

\% In transmitted light

Example: Trappist 1 planets ANDES cat detect:

- $\mathrm{H}_{2} \mathrm{O}(1.3-1.7 \mu \mathrm{~m})$ in 2 transits
- $\mathrm{H}_{2} \mathrm{O}(0.9-1.1 \mu \mathrm{~m})$ in 4 transits
- CO_{2} in 4 transits
- O_{2} in 25 transits

EXOPLANET ATMOSPHERES

ANDES
Use high-resolution spectroscopy to disentangle the planetary and stellar spectra by comparing the combined spectrum to a star-only reference spectrum aided by the radial velocity offset (e.g. Snellen+15)

The Inter-Galactic Medium:
tracing the chemical enrichment of the universe (e.g. Pop III SNe) High spectral resolution ($\mathrm{R}>50-100 \times 10^{3}$) and broad spec. cov. (opt+NIR)

Chemicâk êrichment imprint of primordial supernovae: the signofelre of Pop.l|f stars

CHEMICAL ENRICHMENT IMPRINT OF PRIMORDIAL SUPERNOVAE:

PROBING THE EARLY CHEMICAL ENRICHMENT

$L y \alpha$ and $L y \beta$ coeval forest of $\mathrm{Z}=6.1$ quasar during the age of reionization (completed by $\mathrm{z} \sim 5.7$)

PROBING THE EARLY CHEMICAL ENRICHMENT

$L y \alpha$ and $L y \beta$ coeval forest of $\mathrm{Z}=6.1$ quasar during the age of reionization (completed by $\mathrm{z} \sim 5.7$)

FUNDAMENTAL PHYSICS: VARIATION OF THE FUNDAMENTAL CONSTANTS

- Variation of α causes shift of quasar absorption lines
- $\Delta \lambda$ between lines changes in characteristic way
- relative velocities change as

$$
\Delta v_{i} \sim Q_{i} \Delta \alpha / \alpha
$$

- need accuracy of $<1 \mathrm{~m} / \mathrm{s}$ improve on systematic errors wrt UVES \& ESPRESSO

FUNDAMENTAL PHYSICS: VARIATION OF THE FUNDAMENTAL CONSTANTS

- Variation of α causes shift of quasar absorption lines
- $\Delta \lambda$ between lines changes in characteristic way
- relative velocities change as

$$
\Delta v_{i} \sim Q_{i} \Delta \alpha / \alpha
$$

- need accuracy of $<1 \mathrm{~m} / \mathrm{s}$ improve on systematic errors wrt UVES \& ESPRESSO

$$
\frac{\Delta \alpha}{\alpha}=\mathbf{a}_{\mathbf{1}} *\left(\frac{z}{z+1}\right)+\frac{1}{2} * \mathbf{a}_{\mathbf{2}} *\left(\frac{z}{z+1}\right)^{2}
$$

FUNDAMENTAL PHYSICS: VARIATION OF THE FUNDAMENTAL CONSTANTS

- Variation of α causes shift of quasar absorption lin ϵ
- $\Delta \lambda$ betwee characteri
- relative \qquad
 $\Delta \alpha / \alpha=+5.00 \mathrm{ppm} \times 10^{5}$

$$
\Delta v_{i} \sim Q_{i} \Delta \alpha / \alpha
$$

- need accuracy of $<1 \mathrm{~m} / \mathrm{s}$ impro on systematic errors wrt UVES \& ESPRESSO

$$
\frac{\Delta \alpha}{\alpha}=\mathbf{a}_{\mathbf{1}} *\left(\frac{z}{z+1}\right)+\frac{1}{2} * \mathbf{a}_{\mathbf{2}} *\left(\frac{z}{z+1}\right)^{2}
$$

REDSHIFT DRIFTS "SANDAGE TEST"

ANDES

- Expansion of the Universe causes the redshift of distant objects to drift slowly with time
- Direct non-geometric, model-independent measurement of expansion history of the universe
- alternative to all other geometrical methods, exploring potential new physics
- expect signal of $\sim \mathrm{cm} / \mathrm{s} / \mathrm{yr}$

REDSHIFT DRIFTS "SANDAGE TEST"

ANDES

Liske et al. 2008

REDSHIFT DRIFTS "SANDAGE TEST"

- New Golden Sample of 'superbright' high-redshift quasars significantly reduces observation time for the same experiment time (Cristiani et al. 2023)

REDSHIFT DRIFTS "SANDAGE TEST"

- New Golden Sample of 'superbright' high-redshift quasars significantly reduces observation time for the same experiment time (Cristiani et al. 2023)

SCIENCE PRIORITISATION

* Combination of science cases requires:
$R \sim 100,000,0.33<\lambda<2.4 \mu \mathrm{~m}$ and many different observing modes
* Achievable with a fibre-fed modular system

SCIENCE PRIORITISATION

* Combination of science cases requires:
$R \sim 100,000,0.33<\lambda<2.4 \mu \mathrm{~m}$ and many different observing modes
* Achievable with a fibre-fed modular system

Fiber Link
Spectral Arms

old architecture
(Phase A)

SCIENCE PRIORITISATION

* Combination of science cases requires:
$R \sim 100,000,0.33<\lambda<2.4 \mu \mathrm{~m}$ and many different observing modes
* Achievable with a fibre-fed modular system

Fiber Link
Spectral Arms

>50 MEUR modular instrument (hardware only): prioritisation of science requirements mandatory
old architecture
(Phase A)

ANDES

* Priority 1: Exoplanet atmospheres via transmission spectroscopy (potential detection of bio-signatures)
* TLR 1: R > 100,000, 0.5-1.8 $\mu \mathrm{m}$, et alia; drive the ANDES baseline design
* Enables: reionization of Universe; characterization of Cool stars
*Doable: detection and investigation of near pristine gas; 3D reconstruction of the CGM; Extragalactic transients

ANDES

* Priority 1: Exoplanet atmospheres via transmission spectroscopy (potential detection of bio-signatures)
* TLR 1: R > 100,000, 0.5-1.8 $\mu \mathrm{m}$, et alia; drive the ANDES baseline design
* Enables: reionization of Universe; characterization of Cool stars
*Doable: detection and investigation of near pristine gas; 3D reconstruction of the CGM; Extragalactic transients
* Priority 2: Variation of the fundamental constants of Physics
*TLR 2: blue extension to $0.37 \mu \mathrm{~m}$
*Enables: Cosmic variation of the CMB temperature, Determination of the deuterium abundance; investigation and characterization of primitive stars

SCIENCE PRIORITIES

* Priority 1: Exoplanet atmospheres via transmission spectroscopy (potential detection of bio-signatures)
* TLR 1: R > 100,000, 0.5-1.8 $\mu \mathrm{m}$, et alia; drive the ANDES baseline design
* Enables: reionization of Universe; characterization of Cool stars
*Doable: detection and investigation of near pristine gas; 3D reconstruction of the CGM; Extragalactic transients
* Priority 2: Variation of the fundamental constants of Physics
*TLR 2: blue extension to $0.37 \mu \mathrm{~m}$
*Enables: Cosmic variation of the CMB temperature, Determination of the deuterium abundance; investigation and characterization of primitive stars
* Priority 3: Exoplanet atmospheres via reflection spectroscopy (potential detection of bio-signatures)
*TLR 3: SCAO+IFU
* Enables: Planet formation in protoplanetary disks; characterization of stellar atmospheres; Search of low mass Black Holes
*Doable: characterization of the physics of protoplanetary disks

SCIENCE PRIORITIES

```
* Priority 1: Exoplanet atmospheres via transmission spectroscopy (potential detection of bio-signatures)
    * TLR 1: R > 100,000, 0.5-1.8 \mum, et alia; drive the ANDES baseline design
    * Enables: reionization of Universe; characterization of Cool stars
    *Doable: detection and investigation of near pristine gas; 3D reconstruction of the CGM; Extragalactic transients
* Priority 2: Variation of the fundamental constants of Physics
*TLR 2: blue extension to 0.37 \mum
*Enables: Cosmic variation of the CMB temperature, Determination of the deuterium abundance; investigation
        and characterization of primitive stars
* Priority 3: Exoplanet atmospheres via reflection spectroscopy (potential detection of bio-signatures)
    *TLR 3: SCAO+IFU
    * Enables: Planet formation in protoplanetary disks; characterization of stellar atmospheres; Search of low mass
        Black Holes
    *Doable: characterization of the physics of protoplanetary disks
* Priority 4: Redshift drift (Sandage test)
*TLR 4: }\lambda\mathrm{ accuracy }2\textrm{cm}/\textrm{s}\mathrm{ , stability }2\textrm{cm}/\textrm{s
*Enables: Mass determination of exoplanets (Earth-like objects)
*Doable: Radial velocity search for exoplanets around M-dwarf stars
```


SCIENCE PRIORITISATION

* Combination of science cases requires:
$R \sim 100,000,0.33<\lambda<2.4 \mu \mathrm{~m}$ and many different observing modes
* Achievable with a fibre-fed modular system

Fiber Link Spectral Arms

$$
\begin{aligned}
& >50 \text { MEUR modular } \\
& \text { instrument (hardware } \\
& \text { only): prioritisation of } \\
& \text { science requirements } \\
& \text { mandatory }
\end{aligned}
$$

old architecture
(Phase A)

* Modular fiber-fed cross dispersed Echelle
spectrograph
* Simultaneous range
0.4-1.8 $\mu \mathrm{m}$
(ultrastable
BLUE+RED+NIR)
Goal 0.37-2.4 $\mu \mathrm{m}$;
Resolution
~100,000
* Several interchangeable, observing modes: Seeing limited \& SCAO+IFU

OBSERVING MODES: THE FIBRE FEEDING

- Different observing modes from different fibre bundles
- No moving parts in spectrographs: stability!

ANDES Fibers-link scheme for science light

OBSERVING MODES: THE FIBRE FEEDING

	Front-end	Fiber-to-fiber interface	Light distribution along spectrometer slit
Seeing limited observing mode	PSF on single large fiber	Light distribution on fibers bundle after scrambler and slicer A B	Uniform light distribution Uniform light distribution A
IFU-SCAO observing mode	PSF on microlenses array and fibers bundle	Light distribution on fibers bundle after fiber to fiber couplers	Sliced hexagonal field

OBSERVING MODES: THE FIBRE FEEDING

	Front-end	Fiber-to-fiber interface	Light distribution along spectrometer slit
Seeing limited observing mode	PSF on single large fiber A B	Light distribution on fibers bundle after scrambler and slicer A B	Uniform light distribution Uniform light distribution \boldsymbol{A} \boldsymbol{B}
IFU-SCAO observing mode	PSF on microlenses array and fibers bundle	Light distribution on fibers bundle after fiber to fiber couplers	Sliced hexagonal field

- Many different observing modes possible (IL): both Seeing and Diffraction Limited observations possible

OBSERVING MODES: THE FIBRE FEEDING

	Front-end	Fiber-to-fiber interface	Light distribution along spectrometer slit
Seeing limited observing mode	PSF on single large fiber A B	Light distribution on fibers bundle after scrambler and slicer A B	
IFU-SCAO observing mode		Light distribution on fibers bundle after fiber to fiber couplers	Sliced hexagonal field

- Many different observing modes possible (IL): both Seeing and Diffraction Limited observations possible
- Unique IFU capability: $0.5^{\prime \prime} \times 0.5^{\prime \prime}$ or $0.04^{\prime \prime} \times 0.04^{\prime \prime}$ FOV, R~100,000 1-1.8 $\mu \mathrm{m}$ sim. range

OBSERVING MODES: THE FIBRE FEEDING

- Many different observing modes possible (IL): both Seeing and Diffraction Limited observations possible
- Unique IFU capability: $0.5^{\prime \prime} \times 0.5^{\prime \prime}$ or $0.04^{\prime \prime} \times 0.04^{\prime \prime}$ FOV, R~100,000 1-1.8 $\mu \mathrm{m}$ sim. range

THE EXTENSION TO 0.35-0.41

ANDES

- The current design allows an extension of the wavelength range as low as $0.35 \mu \mathrm{~m}$ and as high as $2.4 \mu \mathrm{~m}: ~ U$ and K band under study
- However the total transmission of the ELT drops

Warm spectrograph below $0.4 \mu \mathrm{~m}$ to the silver coating.

- An improved blue-sensitive silver coating is in

Arms λ-splitting and throughput of ELT mirrors

ANDES PERFORMANCES

ANDES

- The expected limited magnitude for seeing limited observations is $\mathrm{m}_{\mathrm{AB}}=20$ in 1 hr with $\mathrm{SNR}=10$ per resolution element.

Wavelength ($\mu \mathrm{m}$)

- Check the ETC, always updated with the latest instrument performances:
hires.inaf.it/etc.html

END-TO-END SIMULATIONS: FLAT FIELD (RIZ)

END-TO-END SIMULATIONS: FABRY-PÈROT (RIZ)

END-TO-END SIMULATIONS: SCIENCE SPECTRUM (RIZ)

- Object: Phoenix
- Effective temperature: 3500 K
- Surface gravity: 4.0
- Magnitude: 16
- Sky:
- Airmass: 1.5
- PWV: 5 mm
- Moon FLI: 0.5

COURTESY OF A. SCAUDO

END-TO-END SIMULATIONS: SCIENCE SPECTRUM (RIZ)

- Object: Phoenix
- Effective temperature: 3500 K
- Surface gravity: 4.0
- Magnitude: 16

Figure 1: Simulated science spectrum

Figure 3: Extracted science spectrum
https://aws.amazon.com/blogs/publicsector/the-italian-national-institute-of-astrophysics-explores-the-universe-with-the-cloud/
https://www.youtube.com/watch?v=dOYrAoWIOsc

ANDES AT ELT

Telescope

Nasmyth platform A

ANDES AT ELT

Telescope

Nasmyth platform A

Nasmyth platform A

ANDES AT ELT

20. ANDES

ANDES AT ELT

20. ANDES

$20:$ andes

ANDES AT ELT

$2: A N D E S$

ANDES AT ELT: SUMMARY OF CAPABILITIES

* Modular fiber-fed cross dispersed echelle spectrograph

* Three ultra-stable spectral arms: (U)BV, RIZ , YJH (and K)
* Simultaneous spectral range 0.4-1.8 $\mu \mathrm{m}$ (0.37-2.4 $\mu \mathrm{m}$ goal)
* Spec. Resolution ~100,000
* Goal: $0.7 \mathrm{~m} / \mathrm{s}$ precision and $1 \mathrm{~m} / \mathrm{s}$ accuracy
* several, interchangeable, observing modes: Seeing limited \& SCAO+IFU module
* Sensitivity: $1 \mathrm{~h}, \mathrm{SNR}=10, \mathrm{AB}=20$
* Proposed baseline design capable of fulfilling the requirements of the 4 top science cases + of many additional science cases
* Seeing limited mode makes ANDES simple risk free instruments delivering cutting edge science

CONSORTIUM

- Brazil: Federal Univ. of Rio Grande do Norte
- Canada: Univ. De Montreal, Herzberg Astrophysics Victoria
- Denmark: Univ. Copenhagen, Univ. Aarhus, Danish Tech. Univ.
- France: LAM Marseille, LAGRANGE Nice, IPAG Grenoble,
IRAP/OMP Toulouse, LUPM Montpellier
, Germany: AIP Potsdam, Univ. Göttingen, Landessternwarte Heidelberg, MPIA Heidelberg, Thüringer Landesternwarte Tautenburg, Univ. Hamburg
- Italy: INAF Istituto Nazionale di AstroFisica (Lead) (Arcetri, Bologna, Brera, Padova, Trieste)
- Poland: Nicolaus Copernicus Univ. in Toruń
- Portugal: Inst. Astrofísica e Ciências do Espaço, CAUP Porto, Lisbon
- Spain: Inst. Astrofísica de Canarias (IAC), Inst. Astrofísica de Andalucía (IAA - CSIC), Centro de Astrobiología (CSIC-INTA) Madrid
- Sweden: Uppsala Univ., Lunds Univ., Stockholm Univ.
- Switzerland: Univ. de Genève, Univ. Bern
- United Kingdom: Univ. of Cambridge, UK Astronomy Technology Centre, Heriot-Watt Univ.
, USA: Univ. of Michigan

CONSORTIUM ORGANISATION

CONSORTIUM ORGANISATION

ANDES

COST, GTO \& SCHEDULE

Total estimated cost of baseline design is ~35 MEUR, + 650 FTEs

* more than 125 GTO nights which will be used for Consortium science programs

Schedule

* Phase A: 2016-2018 Completed!
* ANDES Construction approved by ESO Council on Dec 2021!
* Started Phase B activities in 2022
* Phase B (PDR): 2023-2024
* Phase C (FDR): 2025-2026
* Integration (PAE): 2027-2030
* Commissioning \& PAC:2031

Spectral Arms

SUMMARY OF ANDES PROJECT

* International consortium: 32+ institutes, 13 countries, >200 people * Successful Phase A study 03/2016-03/2018
* Aggressive schedule: Start Phase B ~2022, @ELT in ~2031
* Science priorities (plus many other great science cases ...):

1. biomarkers from exoplanet atmospheres in transmission
2. variation of fundamental constants of Physics
3. biomarkers from exoplanet atmospheres in reflection
4. direct detection of Cosmic acceleration through Sandage effect

* Modular fiber-fed cross dispersed echelle spectrograph
* Simultaneous range 0.4-1.8 $\mu \mathrm{m}$ (ultrastable BLUE+RED+NIR) Resolution ~100,000
* Several interchangeable, observing modes: Seeing limited \& SCAO+IFU
* Total estimated cost of baseline is 35 MEUR, + 550 FTEs
- technically "simple"
- almost pupil independent
- great science cases (fulfills top 4 priorities)
- modular, staged deployment possible

SUMMARY OF ANDES PROJECT

ANDES

* International consortium: 32+ institutes, 13 countries, >200 people
* Successful Phase A study 03/2016-03/2018
* Aggressive schedule: Start Phase B ~2022, @ELT in ~2031
* Science priorities (plus many other great science cases ...):

1. biomarkers from exoplanet atmospheres in transmission
2. variation of fundamental constants of Physics
3. biomarkers from exoplanet atmospheres in reflection
4. direct detection of Cosmic acceleration through Sandage effect

* Modular fiber-fed cross dispersed echelle spectrograph
* Simultaneous range 0.4-1.8 $\mu \mathrm{m}$ (ultrastable BLUE+RED+NIR) Resolution ~100,000
* Several interchangeable, observing modes: Seeing limited \& SCAO+IFU
* Total estimated cost of baseline is 35 MEUR, + 550 FTEs - technically "simple"
- almost pupil independent
- great science cases (fulfills top 4 priorities)
- modular, staged deployment possible

Nasmyth platform B
-12.

