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PROJECT SPECIFICATION

TMVA provides a fast inference system that takes an ONNX model as input and produces compilation-
ready standalone C-+ scripts as output which can be compiled and executed on CPU architectures.
The idea of this project is to extend this capability to generate from the TMVA SOFIE model repre-
sentation code that can be run also on Intel GPUs using both SYCL and Intel OneAPI libraries. These
will allow for a more efficient evaluation of these models on Intel accelerator hardware.
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ABSTRACT

ROOT|2] is an open-source framework, born in CERN;, used for high-scale data processing and analysis
in High Energy Physics and beyond. ROOT provides a powerful and versatile toolkit that enables
researchers to manipulate, visualize, and extract valuable insights from complex data generated by
experiments and simulations.

Recently, machine learning has established itself as a valuable tool for researchers to analyze their
data and draw conclusions in various scientific fields as well as HEP. ROOT offers native support for
supervised learning techniques, such as multivariate classification and regression through the TMVA[13]
ROOQT library. Among others, the package includes neural networks, deep networks and multilayer
perceptrons. TMVA also allows interoperability with commonly used machine learning libraries, such
as Keras and Pytorch. Even though the above libraries provide functionality for inference, they only
support their own models and are constrained by heavy dependencies. ONNXRuntime by Microsoft,
which is based on the ONNX standard for describing deep learning models, can combat the issue of
interopability, but its large dependencies constitute its use in HEP infeasible.

SOFIE[1], which stands for System for Optimized Fast Inference code Emit, is an extension of
the TMVA module and was proposed as the inference engine that could tackle the issues described
above. SOFIE can take as input a trained ML model in a Pytorch, Keras or ONNX format and create
standalone C++ inference code, which is directly invokable from other C++ projects and has minimal
dependencies (only on BLAS libraries). In addition, it allows full control over the inference code and
can be compiled on the fly using Cling JIT.

The purpose of this project was to extend the SOFIE functionality, so that it would be able produce
inference code in SYCL[11]| that could run on Intel GPUs using Intel oneAPI libraries. Work has also
been done in benchmarking the performance of multiple models on GPUs, as well as enhancing the
test suit that verifies the correctness of the produced SOFIE code.
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Figure 1: ONNX format allows for framework interoperability by providing a uniform format that acts as an
intermediate between machine learning frameworks. This interoperability allows trained models to be easily
deployed in different software/hardware platforms.

1 INTRODUCTION

ONNX]3], or Open Neural Network Exchange, is an open-source standard for representing deep learning
models, developed by Facebook and Microsoft in order to make it easier for researchers and engineers to
move models between different deep-learning frameworks and hardware platforms. Its main advantage
is that it allows models to be easily exported from one framework, such as PyTorch|[10], and imported
into another framework, such as TensorFlow[8] (see fig. 1).

ONNX defines a common set of operators - the building blocks of machine learning and deep learning
models - and a common file format (.onnx) to enable Al developers to use models with a variety of
frameworks, tools, runtimes, and compilers. An ONNX graph, as shown in fig. 2, is a directed graph,
where the edges that connect the different operators represent the flow of data.

Before going into detail about our project, it is essential that the reader understands how SOFIE works.
As seen in fig. 3, SOFIE takes as input a trained Machine Learning model in one of those 3 popular
machine learning library formats: ONNX (. onnx), PyTorch, (.pt) or Keras (.h5). Then, the appropri-
ate parser should be called by the user to parse the input model into an object of the SOFIE: :RModel
class. Internally, all input models are converted into their equivalent ONNX representation before they
are transformed to an RModel. The RModel class is capable of storing the internal structure of the input
model along with its learnable parameters.

The RModel class represents the input model as vector of ROperators. Those operators come in
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Figure 2: ONNX model visualization using Netron|9]

many flavors and have a 1-1 correspondence with the respective ONNX operators. Currently, about 30
out of the total ONNX Operators are supported by SOFIE.

After the RModel has been constructed, the code generation step takes place. The Generate function
that is called on the model, internally calls the Generate functions of the operators that make up the
model, as shown in fig. 4.

This step produces 2 outputs: a weight file in .dat file format (or in .root format, a functionality
that has been added recently) that holds the model weights and parameters and a C++ header file
(.hxx) that hardcodes the inference function. This header file can then be included in a plug-and-play
fashion into any C++ project and has minimal dependencies. An example of this process can be seen
in fig. 5.

i. Whatis SYCL

SYCL is a single-source, high-level, C++ programming model that can target a wide range of hetero-
geneous platforms (CPUs, GPUs and FPGAs).

e Single-source: Unlike its predecessor, OpenCL, SYCL allows the code for the kernels that is
going to be offloaded to a device to reside in the same source file as the host code. To produce the
final executable, we need two compiler passes, one for the host and one for the device compiler.
Both of them see the same SYCL API but interpret it differently. The device compiler (or SYCL
compiler) identifies the kernel functions and creates a device IR for the requested ISA. The host
compiler compiles the host code into a CPU object file, which is later linked with the device IR to
form a single executable with both the CPU and GPU code (multi-compiler compilation model).
The host and SYCL compiler can also be invoked by the same compiler driver (single-compiler
compilation model). Both of these approaches are shown in fig. 6

e High-level: SYCL provides a number of high-level abstractions over boilerplate code, including

platform/device selection, dependency management and much more.
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Figure 3: SOFIE Code Generation Flow
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Figure 4: The RModel class holds a vector of ROperators. Each ONNX Operator corresponds to a different
class that inherits from the ROperator interface.
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model. hxx
// Parser namespace TMVA_SOFIE _model {
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser; struct Session {
RModel model = parser.Parse(“model.onnx”);
Session(std::string = “") {
// Generate Code Internally -
model.Generate();
// hardcoded inference function
// Write Output Header File and Data Weight File std: :vector<float> infer(float *input) {
model.OutputGenerated(); :
. }
infer.cpp ¥

#include “model.hxx”
// Create Session Class
TMVA_SOFIE_model: :Session s();

// Event Loop

{

auto result = s.infer(input);

. [> - .
- CH+
object
source
CPU ISA

CPU ISA
Linker [:> (embedded [:> Combined CPU & SYCL device compiler [:> (embedded
device IR) CH+

device IR)
svcL device
[:> device E‘> Device IR [:> [i> code [:>
compiler 7

Figure 6: Multi-compiler compilation model (left), Single-compiler compilation model (right) for SYCL

C+
source

CH+
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e C++ programming model: Perhaps the most important advantage of SYCL is that it allows
programmers to write in standard C++ and doesn’t rely on language extensions, pragmas or
keywords like other languages do.

e Targets: SYCL can target a number of different backends, as shown in fig. 7. All SYCL imple-
mentations provide the same SYCL interface for both the host and the device code, as well as
the SYCL runtime. The SYCL runtime is a library that schedules and executes work and calls
down into a back-end interface in order to execute on a particular device. For our project, we
used the Intel® oneAPI DPC++/C++ Compiler|7], since our primary target was Intel GPUs.

ii. SYCL Application Structure

In order to write a SYCL application similar to the one in 1, one must follow the steps below:

1. Include the SYCL header
Including the SYCL header gives us access to the SYCL namespace.

2. Setup host storage

This step includes setting up the vectors/arrays for the data we want to operate on.

3. Initialize Device Selector

In order to operate on a device, we need to have some representation of it. A SYCL device
selector is a function object, which describes a heuristic for scoring devices based on a custom
configuration. The selector goes through all devices in the system and returns the one that scored

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 7
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Figure 7: SYCL Implementations: compilers and backends

the highest depending on that heuristic. In the example, we use the gpu_selector, which selects
a device of type GPU. One can define a function object that scores the devices with custom
criteria, like platform or vendor.

4. Initialize Queue

Each queue is associated with a chosen device and is used by the host CPU to communicate with
the device, i.e. issue kernels and data transfers to and from the device.

5. Setup Device Storage

In most systems, the host and the device do not share physical memory. The runtime needs to
know which memory items are going to be shared between host and device. SYCL buffers exist
for this purpose. To create a SYCL buffer, one must specify an element type and a dimensionality
and initialize them with a pointer to the data and a range, which denotes the number of elements
in the buffer. When passed a raw pointer, the buffer constructor takes full ownership of the
memory it has been passed, which essentially means that we cannot use this memory as long as
the buffer exists. Therefore, we declare the buffers in a new scope and after we exit this scope, the
buffers are destroyed and the memory is returned to the user. Buffers are not associated with any
particular queue, so they are capable of handling data transparently between multiple devices.

6. Execute Kernel

In SYCL there are two models for managing data:

e The buffer/accessor model
e The USM (unified shared memory model)

The chosen model affects how kernel functions are enqueued. In our project, we opted for the
buffer /accessor model for reasons explained in section 2

In the buffer/accessor model, commands must be enqueued via command groups. A command
group represents a series of commands to be executed by a device, such as invoking kernel
functions on a device, copying data to and from the device and waiting on other commands to

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 8
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complete. A command group can be composed by calling the submit function on a queue. A
handler is created and passed to the command group function and subsequently, the handler
composes the command group. In our command group, we first setup accessors. In general, these
objects define the inputs and outputs of a device-side operation. The accessors also provide
access to various forms of memory. In this case, they allow us to access the memory owned by
the buffers created earlier. An accessor is initialized with the buffer that points to the data we
want to operate on, the associated command group handler and an accessor mode, which is used
by the handler to handle the dependencies between kernels, as well as any additional properties
we wish to add. In this case, the accessor mode for the input is read_only and for the output
is write_only, with the additional property of no_init, which discards the original data of the
buffer. We refer the reader to a. for a short description of the USM SYCL model.

In SYCL, kernel functions are executed by work items, which can be thought of as a thread of
execution. Work items are collected together into work groups. SYCL kernels are invoked within
an nd-range. An nd-range has a number of work groups and subsequently a number of work items.
Kernel functions can be enqueued to execute over a range of work items using parallel_for.
The parallel_for clause takes at a parameter a range which represents the iteration space, over
which the kernel, which is described by a function object (in our case a lambda function), has
to be executed over. With parallel_for you must also specify the id of the current-work item,
which is essentially its position within the iteration space. See b. for more details.

#include <iostream>

// 1. Include SYCL Header
#include <CL/sycl.hpp>
namespace sycl = cl::sycl;

int main(int, charx*x*) {
// 2. Setup host storage
std: :vector<float> a = {1.0, 2.0, 3.0, 4.0
std: :vector<float> b = {0.0, 0.0, 0.0, 0.0};
auto length = a.size();

B

};
}

// 3. Initialize device selector
sycl::gpu_selector device_selector;

// 4. Initialize queue
sycl::queue queue(device_selector);

{ // begin scope
// 5. Setup device storage
sycl::buffer<float, 1> a_buf(a.data(), sycl::range<i>(length);
sycl: :buffer<float, 1> b_buf(b.data(), sycl::range<i>(length);

// 6. Ezecute Kernel

queue.submit ([&] (sycl::handler& cgh) {
// command group function
auto a_acc = sycl::accessor(a_buf, cgh, sycl::write_only, sycl::no_init);
auto b_acc = sycl::accessor(b_buf, cgh, sycl::read_only);

cgh.parallel_for<class op>(sycl::range<i>(length), [=] (sycl::id<1> id) {
// kernel code

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 9
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Figure 8: Modification of the RModel and ROperator classes for SYCL Inference Code Generation

a_acc[id] = b_accl[id] * 2;
B
19N
}

return O;

Listing 1: An example of a SYCL application

2 IMPLEMENTATION

The process of adding to SOFIE the functionality to generate GPU SYCL code was pretty straight-
forward: the RModel class, as well as each operator class the inherited from ROperator, should be
enhanced with a new GenerateGPU function that creates SYCL code instead of C-++ code as shown
in 8. The GenerateGPU member function of the RModel class is responsible for generating the code
that handles device selection, queue initialization and setting up host and device storage, whereas
the respective function of the ROperator interface produces SYCL code instead of C++ code as the
Generate function did. An example of the latter is shown in 2.

// C++ Generated Code for ReLU activation
for (int id = 0; id < length ; id++){
tensor_out[id] = ((temsor_in[id] > 0 )7 tensor_in[id] : 0);

}

// SYCL Generated Kernel Code for ReLU activation
q.submit ([&] (cl::sycl::handler &cgh){
auto acc_tensor_in = cl::sycl::accessor{buf_tensor_in, cgh, cl::sycl::read_onlyl};

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 10
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model.hxx

/7 Parser namespace TMVA_SOFIE_model {
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;

RModel model = parser.Parse(“model.onnx”);

// Generate SYCL Code Internally -
model.GenerateGPu();

// Write Output Header File and Data Weight File
model.OutputGeneratedGPU();

struct Session {
Session(std::string = “”) {
// hardcoded inference function

std: :vector<float> infer(std::vector
*input) {

infer.cpp }i

#include “model.hxx” E
// Create Session Class i
TMVA_SOFIE_model: :Session s(); H

// Event Loop i
{ i

auto result = s.infer(input);

Figure 9: SOFIE Sycl Code Generation Flow

auto acc_tensor_out = cl::sycl::accessor{buf_tensor_out, cgh, cl::sycl::write_only,
cl::sycl::no_init};
cgh.parallel_for<class op_relu>(cl::sycl::range<l>(length), [=](cl::sycl::id<1> id){
acc_tensor_out[id] = cl::sycl::max(acc_tensor_in[id], 0.0f);
s
I9N

Listing 2: C++ (top) and SYCL (bottom) generated code for ReLU activation.
The new code generation process is shown in fig. 9 and is practically the same as the one in fig. 5.
The only change is in the infer function, which now takes as input an std: :vector<T> instead of a
pointer to <T> for implementation purposes.

The premise of SOFIE SYCL is that it would be able to support any type of Machine Learning Model.
The buffer/accessor model guarantees consistency and avoids errors. The USM model gives us more
fine grained control over data movement, but we have to manually establish the dependencies, which
might lead to hidden bugs and wrong results. Therefore, we opted for the buffer/accessor model.

We implemented the kernels in a way that no synchronization among the work-items is needed, so we
did not need to explicitly specify the number of work-items in a work-group or the work-groups in an
nd-range. Therefore, we just let the runtime choose those parameters for us.

3 PERFORMANCE CONSIDERATIONS

Although the transition to SYCL was a straightforward process, there were still details we had to
consider in order to achieve the best possible performance[5]. This section highlights the most important
ones.

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 11
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Figure 10: Abstract computation graph of an ML model for our implementation

1. Avoid moving data back and forth between host and device

The cost of moving data between host and device is quite high, so it is very important to
avoid data transfers between host and device whenever possible. Machine learning models are
structured as layers of computation, where the output of one layer is input to the next one.
Instead of transferring the data back for certain computations, we decided that it would be best
that all layers are implemented on the GPU and that data is transferred from host to device
only once in the beginning and from device to host only at the end of computation as shown
in fig. 10. Keep in mind that those transfers in the buffer/accessor model are not explicit and
are handled by the SYCL runtime, so it needs to be informed via accessor modes and buffer
properties (explained below) of the data dependencies, so it can schedule transfers optimally.

2. Buffer Accessor Modes and Properties

Accessor modes describe how we intend to use the memory associated with the accessor in the
program. This information is used by the runtime to create an execution order for the kernels
and perform data movement. It is therefore imperative that we specify the accessor modes in a
way that coincides precisely with how the kernel actually uses this data. The available accessor
modes are: read_only, write_only and read_write.

e The read_only access mode informs the runtime that the data needs to be available on
the device before the kernel can begin executing, but the data need not be copied from the
device to the host at the end of the computation (when the associated buffer goes out of
scope).

e The write_only and read_write access modes inform the runtime that the data must be
copied from the device to the host when the buffer goes out of scope.

As explained before, moving data back and forth between host and device is costly. The accessor
mode for the output of each layer has to be set to write_only (or read_write in some cases, such
as accumulation). To avoid data transfers, we declare all the necessary buffers at the beginning
of the scope and we don’t close the scope until all kernels have been launched. In this way, we
don’t trigger copies back to the host in-between layers.

In addition, we take advantage of the set_final_data buffer function. This function changes the
destination the buffer will synchronize on destruction. Typically, the output that is inferred by
the infer function is a different memory location than the output of the machine learning model,
due to SOFIE semantics (see 3). In order to avoid the copy from the buffer to the temporary
output memory location and then from that location to the result buffer, we instruct the runtime
to directly copy the contents of the buffer to the result buffer on destruction (see 4). Furthermore,

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 12
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for the input, initialized and intermediate tensors, we specify that the final data destination is
nullptr which ensures that the data will remain on the device on destruction and will not be
copied back to the host, since they are not needed.

namespace TMVA_SOFIE_Add{

struct Session {

std: :vector<float> fTensor_2 = std::vector<float>(2);
float * tensor_2 = fTensor_2.data();

Session(std: :string = "") {

}

std: :vector<float> infer(float* tensor_onnxAddO,float* tensor_onnxAddl){

//------ Add
for (size_t id = 0; id < 2 ; id++){
tensor_2[id] = tensor_onnxAddO[id] + tensor_onnxAddi[id] ;
}
std: :vector<float> ret (temnsor_2, tensor_2 + 2);
return ret;

b

//TMVA_SOFIE_Add

[T

Listing 3: C++ Generated code for vector addition. Notice that the contents of tensor_2 that is the output
of the add "kernel" are copied to vector ret which is the returned result of the infer function

// Create Queue

auto q = cl::sycl::queue{custom_gpu_selector, [=](cl::sycl::exception_list eL){
for (auto e:el) {std::rethrow_exception(e);}}};

const sycl::property_list props = {sycl::property: :buffer: :use_host_ptr()};
{

auto buf_tensor_onnxAddO = cl::sycl::buffer{fTensor_onnxAddO.data(),
cl::sycl: :range{fTensor_onnxAdd0.size()}, propsl};
buf_tensor_onnxAdd0.set_final_data(nullptr);

auto buf_tensor_onnxAddl = cl::sycl::buffer{fTensor_onnxAddl.data(),
cl::sycl: :range{fTensor_onnxAddl.size()}, props};
buf_tensor_onnxAddl.set_final_data(nullptr);

auto buf_tensor_2 = cl::sycl::buffer{fTensor_2.data(),
cl::sycl: :range{fTensor_2.size()}, props};

// change the final destination of the data held by buf_tensor_2
buf_tensor_2.set_final_data(ret.data());
buf_tensor_2.set_write_back(true);

q.submit ([&] (cl::sycl: :handler& cgh){
auto acc_tensor_onnxAddO = cl::sycl::accessor{buf_tensor_onnxAdd0O, cgh,
cl::sycl::read_only};

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE 13
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auto acc_tensor_onnxAddl = cl::sycl::accessor{buf_tensor_onnxAddl, cgh,

cl::sycl::read_only};

auto acc_tensor_2 = cl::sycl::accessor{buf_tensor_2, cgh,

cl::sycl::write_only, cl::sycl::no_init};

cgh.parallel_for<class op_0>(cl::sycl::range<i1>(2), [=](cl::sycl::id<1> id){
acc_tensor_2[id] = acc_tensor_onnxAddO[id] + acc_tensor_onnxAddl[id];

s

s

q.wait_and_throw();

}

}

catch (const cl::sycl::exception& e) {
std::cout << "Exception caught: " << e.what() << "with OpenCL error code: "
<< e.code() << std::endl;

}

return ret;

}

3

} //TMVA_SOFIE_Add

Listing 4: SYCL Generated code for vector addition. If we hadn’t altered the final destination of the data held
by buf_tensor_2, then they would be copied to vector tensor_2 and then we would have to copy them to
ret, but now they are directly coped to ret.

We also utilize the sycl: :no_init property when creating the accessors that typically correspond
to layer outputs, which lets the runtime know that the previous contents of the buffer can be
discarded (usually accompanied by the write_only mode), so that no time is spent on initializing
memory with "garbage" data.

Finally, when creating the buffers, we use the use_host_ptr property (see 4). This informs the
runtime that if possible, the host memory should be directly used by the buffer instead of a copy.
This avoids the need to copy the content of the buffer back and forth between the host memory
and the buffer memory, potentially saving time during buffer creation and destruction.

3. Using Libraries for GPU OffHoading

Machine learning operators typically consist of standard math operations, such as matrix multi-
plication. Albeit simple, there is no need to write custom kernels for those operations, since they
are well studied and very optimized libraries exist. For those, we made use of the oneAPT MKL]|6]
(Math Kernel Library) and more specifically BLAS routines, such as copy, gemm, axpy and scal
(multiplication of a matrix with a scalar). The only downside is that we introduced additional
library dependencies, which is a solid trade-off for performance.

4. Reduction

Reduction is a common operation in parallel programming, where an operator is applied to all
elements of an array and a single result is produced. A naive way to parallelize a reduction is to
introduce a global variable and have all threads update it using an atomic operation. However, all
threads then would access a single memory location, which would result in significant contention
and poor performance. A better approach would be to split the array into chunks, let each
thread compute part of the reduction and at the end have one thread do the final reduction in
a sequential manner. This is a common and well studied approach in parallel computing. SYCL
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Library Supported GPU devices
Intel oneAPI Math Kernel Library Intel GPU
portBLAS Intel GPU, NVIDIA GPU, AMD GPU

Table 1: BLAS Library and Supported GPU devices

2020 introduced reduction variables, so we no longer need to write code by hand to handle a
parallel reduction; SYCL handles it for use transparently. We refer the reader to [12] to learn
more about this new feature.

5. Kernel Fusion

For some subsequent operations, like clipping and activation, SOFIE C++ generated code used
two subsequent loops. In our case, we fused the two subsequent loops into one kernel launch,
potentially reducing execution time.

6. Replacing Conditional Checks with Relational Functions

In GPUs, multiple work-items are packed into sub-groups. The work-items that belong to the
same sub-group execute simultaneously on a SIMD processor. Given a SIMD width, maximizing
SIMD lane utilization gives optimal instruction performance. If one or more lanes (work items)
diverge, the thread executes both branch paths before the paths merge later, increasing the
dynamic instruction count, which negatively affects performance and is widely known as branch
divergence problem. To mitigate this problem, we replaced conditional checks with relational
function wherever possible, to ensure that work-items do not execute different paths.

4 EXTENDING GPU MODEL SUPPORT

Although the initial target for our project was Intel GPUs with Intel oneAPI libraries, with minimal
changes to our code, we can now support Intel, NVIDIA and AMD GPUs using portBLAS library for
the BLAS routines. (see table 1)

5 BENCHMARKS

The ROOTBench repository contains a set of benchmarks based on ghenchmark micro benchmarking
infrastructure built on top of ROOT. Their primary goal is to provide stable performance metrics
which can be monitored over time. An extension for benchmarking SOFIE models is also available.
There is a number of .onnx models for which the header files with the inference function are generated
during building the ROOTBench project. Then, we can run the SOFIEInference executable to derive
the execution time per event in ms for each model. Table 2 provides a short description of each model.
Visualizations for the more complex models are provided in c..

We added a new file SOFIEGPUInference.cxx, which is the same as the SOFIEInference. cxx file,
but instantiates the SYCL versions of the models. The results of all benchmarks are listed in d.. The
device specifications are listed in e..

We tested 3 different configurations: Intel GPU using MKL blas, Intel GPU using portBLAS and
NVIDIA GPU using port BLAS. Figure 11 shows the time per event in milliseconds for a representative
sample of benchmarks for each of those configurations.
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Model

Description

Linear {16, 32, 64}.onnx

10 FC layers followed by ReLU activation with hidden
size = 50, input size = 100 and batch size = 16, 32, 64
respectively

Linear event.onnx

10 FC layers followed by ReLU activation with hidden
size = 50, input size = 100 and batch size = 1

Generator {1, 64}.onnx

5 FC layers followed by Batch Normalization and ReLLU
activation with hidden sizes = {14, 20, 100, 500, 40500}
and batch size = 1, 64 respectively

higgs model dense.onnx

6 FC layers followed by ReLLU activation with hidden
sizes = {7, 100, 100, 100, 100, 100} and batch size = 1

SimpleNN Alice.onnx

3 FC layers followed by Leaky ReLU activation with
hidden sizes = {16, 100, 50} and batch size = 1

SimpleNN _Alice.onnx

3 FC layers followed by Leaky ReLU activation with
hidden sizes = {16, 100, 50} and batch size = 1

Conv_d100_L14 B{l, 32}.onnx

14 CONV2d layers followed by ReLLU activation. Inputs
dimensions = {B, 1, 100, 100}, Kernel dimensions = {D,
5, 5}, where B stands for batch size = {1, 32} depending
on model, D is the kernel depth and for each layer it has
a value of {2, 4, 8, 16, ..., 128, 64, ..., 2}. Padding for
both height and width = 2 for every layer, so input
height and width are preserved

Conv_d100_L14 Bl.onnx

1 CONV2d layer followed by ReLLU activation with input
dimensions = {1, 1, 100, 100}, Kernel dimensions = {2,
5, 5} and Padding = {2, 2}

Conv3d d32 L4 Bl.onnx

5 CONV3d layers followed by ReLLU activation. Inputs
dimensions = {1, 1, 32, 32}, Kernel dimensions for the
first 4 convolutions = {D, 5, 5, 5}, where D = {32, 8, 8,
8} and {4, 6, 6, 6} for the last layer. Padding = {1, 1, 1}
for all layers

Table 2: Description of SOFIE ROOT benchmarks
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Time/event in ms for different benchmarks per platform and BLAS library
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Figure 11: Time/event in ms for different benchmarks per GPU and BLAS library
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Figure 12: Time/event in ms for different benchmarks per platform and BLAS library

Since the Intel GPU and NVIDIA GPU are different devices with different specs (number of cores,
memory bandwidth), there is no clear conclusion one could come to looking at the results. We could,
however, say that the MKLBLAS library is better optimized compared to portBLAS, at least for
Intel GPU devices. Even though at some cases, the performance with the portBLAS lib is better
(Conv2DTranspose Relu Sigmoid and Linear 64), those networks have a small number of neurons
and less layers, so they don’t make much use of the BLAS libraries anyways and, hence, we cannot
judge the performance difference of the BLAS libraries on them.

For our next set of experiments, we compared our SOFIE SYCL implementation against the already
existing SOFIE C++ Inference code, using both Netlib and MKLBLAS libraries (the version available
for CPUs) on our available Intel CPU. From fig. 12, it is evident that for the convolutional models
pictured and, in general, models with a lot of layers and computation, our SYCL GPU implementation is
superior to the plain SOFIE C+-+ code. Also, performance significantly improves using the MKLBLAS
lib compared with the Netlib for BLAS on the CPU. Lastly, for small models, such as Linear 64, GPU
performance is much worse for all GPU configurations, which hints at the fact that the model is not
large enough to take advantage of the GPU resources and that the overhead induced by data transfers
cannot be compensated for by the computational power of the GPU.

ONNX also comes with its own runtime inference and training environment, called ONNXRUN-
TIME|4], which is well optimized for a number of different platforms, also called execution providers in
ONNXRUNTIME terms. For our execution provider, we chose the Intel CPU we had at our disposal.
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Figure 13: Time/event in ms using ONNXRUNTIME vs Number of intra-op threads
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ONNXRUNTIME with a CPU provider can be configured to run with more that 1 threads. There is
an option to increase the number of intra-op and inter-op threads. The intra-op threads are used to
parallelize computation inside each operator and the inter-op threads are used for parallelism between
operators. In both cases, a thread per physical core up to the number of user-specified threads will
be created. Since most of our benchmarks are strictly sequential and there is no inter-op parallelism
(except for some layers of the resnet), we didn’t experiment with the number of inter-op threads, only
with the number of intra-op threads from 1 to the maximum number of threads (96 in our case). The
results of our experiments are shown in fig. 13.

Typically, multiple threads work better than just one thread, but increasing them beyond a certain
point creates contention if there is not enough work to be done in parallel. In general, for our setup, a
number of 16 intra-op thread works well for most benchmarks. Only exception is the Linear 64 model.
As established in the previous section, the model is not large enough to take advantage of all the
resources of a parallel GPU device and when it comes to CPU thread parallelism, it is no exception.
In fact, it is much slower when deployed with more than 1 thread. So, a model like Linear 64, whose
performance does not improve when running in parallel on a CPU, will probably be an unsuitable
candidate for GPU offloading, as well.

Figure 14 gathers all results presented above in one plot, so it easy to compare between all the different
inference engines. On average, every GPU implementation is faster than the SOFIE C++ code on the
Intel GPU using Netlib and in some cases faster than the same code when using the MKL BLAS
libraries. Again, that is not the case for Linear 64, where we can see that GPU devices perform very
poorly. For Conv_d100 L14 B32 the Intel GPU-MKLBLAS library configuration beats all the other
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configurations apart from the highly optimized ONNXRuntime engine with multiple threads.

Since our work comes as an extension to the existing SOFIE code, a comparison between them
is necessary. Figure 15 shows the GPU speedup obtained from the (baseline) SOFIE C-++ code.
Numbers lower than 1 indicate worse performance. In almost all cases, again, except from Linear 64,
GPU surpasses by far SOFIE C++ inference with Netlib and for large networks MKLBLAS. Keep in
mind that SOFIE C++ inference uses only a single core and perhaps would benefit from exploiting
parallelism (using OpenMP directives).

6 CONTRIBUTIONS

In this section, I will list some of the contributions I made to the public ROOT repository. At the
time of writing this report, my pull requests have not been merged to the master branch, but work is
currently being done to do so in the near future.

My contribution to TMVA-SOFIE was three-fold. During my 2-month internship:

1. I added to SOFIE all the necessary functions needed to generate SYCL code in almost the
exact same way that a user could generate C++ code before. This involved implementing the
GenerateGPU function of the RModel and the GenerateGPU function for each of the operators that
were already supported by SYCL. As an extension, I also provide to the user the option to use
multiple BLAS libraries that target different GPUs.
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Figure 15: Speedup from existing SOFIE C++ Implementation

2. I added the implementation of the ConvTranspose3d Operator that was missing for both C++
and SYCL code generation.

3. I added tests that verify that the results of both C++ and SYCL SOFIE generated code are
correct for the missing operators BatchNormalization, Transpose, Slice and ConvTranpose3d.

My contribution to ROOTBench was that, based on the existing SOFIE benchmarking template, I
added one for GPU Benchmarking and setup the whole project to work with the new SOFIE function-
ality.

7 FUTURE WORK

This project is still in an experimental stage, and, as shown from the benchmarking section, there is
definitely room for optimization. Some of my proposed optimizations include:

e Batch Normalization Folding: A CONV/FC and a subsequent Batch Normalization layer
could easily be merged into one layer by absorbing the BN parameters into the convolution /fully-
connected network weights/biases, which would only require some preprocessing during code
generation.

e USM model: In our current implementation, the runtime is responsible for data transfers
and kernel scheduling taking into account the hints we have provided with the buffer accessor
modes. Perhaps using the USM model could yield a better performance, since we would have
fine-grained control over data transfers and kernel execution and could take decisions that the
runtime wouldn’t.
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IntelDNN libraries: In a next version of the project, someone could take advantage of the
IntelDNN libraries, which are specialized for deep neural networks.

Manual control of work-group size and number of work groups: Our implementation
did not require work-item synchronization, so we didn’t need to manually set the number of work
groups and work-items per work group and just trusted the runtime to pick the optimal value.
Potentially, manually setting the above parameters could lead to better performance.

In-place operations instead of intermediate buffers SOFIE code uses intermediate buffers,
when an operation (such as ReLU activation) could just be done in place, which unnecessarily
wastes GPU memory.

Loop Unrolling: Unrolling loops with pragmas or manually can limit the amount of control-
instructions and loop variable increments/decrements and allow the compiler to move operations
around in an optimal way thus potentially yielding better performance.
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8 APPENDIX

The USM model allows a program to use C/C++ pointers for memory access. There are three ways
to allocate memory in SYCL:

1. Host: The data is allocated on the host machine and stays there the whole time, but can be
accessed from the device remotely through PCle. High data access cost from the device.

2. Device: The data is allocated on the device and can only be accessed by that device only.
Explicit data transfers are needed for the data to be accessible on the host or other devices.
Fastest choice for kernel execution.

3. Shared: The allocated data can be accessed from both the host and the device. The runtime
decides when the data migrates between host and device. No explicit copy is needed for the host
and device associated with that memory allocation.

An example of the SYCL application in 1 in the USM model is shown below.

#include <iostream>

// 1. Include SYCL Header
#include <CL/sycl.hpp>
namespace sycl = cl::sycl;

int main(int, charx*) {
// 2. Setup host storage
std: :vector<float> a = {1.0, 2.0, 3.0, 4.0%};
std: :vector<float> b = {0.0, 0.0, 0.0, 0.0%};
auto length = a.size();

// 3. Initialize device selector
sycl::gpu_selector device_selector;

// 4. Initialize queue
sycl::queue q(device_selector);

// 5. Setup device storage
auto a_dev = cl::sycl::malloc_device<float>(length, q);
auto b_dev = cl::sycl::malloc_device<float>(length, q);

// 6. Transfer input data to device
auto el = q.memcpy(b_dev, b, sizeof(float) * length);

// 7. Execute Kernel

auto e2 = g.parallel_for<class op>(sycl::range<i>(length), {el}, [=] (sycl::id<i> id)
a_acc[id] = b_acc[id] * 2;

IO

// 8. Transfer output data to device
auto e3 = q.memcpy(a.data(), a_dev, sizeof(float)+*length, e2);
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Figure 16: SYCL Thread execution model

// 9. Call wait on the last event to make sure the data has returned to the host
e3.wait();

return 0;

Listing 5: An example of a SYCL application (USM model)

We can see that for the USM model we have to explicitly specify where the data will be allocated.
Here we chose to allocate the data on the device. We no longer declare buffers that handle data
movement transparently. After that, we also need to transfer the input data to the device using the
memcpy operation. To guarantee that our data will have been transferred before executing the kernel
we use events. Every operation we submit to the queue (memcpy, kernel execution) returns an event
object, which can be used for synchronization. For example, copying vector b to the device returns an
event el that is then used in the dependency list of the kernel. This informs the runtime that event el
has to be completed before the kernel is executed.

In SYCL kernel functions are executed by work-items. A work-item can be thought of as a thread
of execution that can run on any type of processing element (PE). Work-items are collected together
in work-groups. SYCL kernel functions are invoked within an nd-range. An nd-range has a number
of work-groups and subsequently a number of work-items. A sub-group represents a short range of
consecutive work-items that are processed together as a SIMD vector of length 8, 16, 32. Both the nd-
range and the work-groups can be 1, 2 or 3-dimensional, as shown in 16. SYCL provides synchronization
mechanisms for the work-items in the same work-group, but not across the entire nd-range. If the user
does not need to synchronize the threads, then instead of specifying an nd-range, where the work-group
size must also be specified, they can just use range instead of an nd-range. The runtime will take care
of picking the (perhaps) optimal work-group size and nd-range.
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Figure 19: ConvTModel
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Platform Inference Engine | BLAS Library | Benchmark time/evt (ms)
NVIDIA GPU | SOFIE-SYCL portBLAS Conv2DTranspose Relu Sigmoid | 4.17739
NVIDIA GPU | SOFIE-SYCL portBLAS ConvTModel 4.17397
NVIDIA GPU | SOFIE-SYCL portBLAS ConvTrans2dModel 2.56897
NVIDIA GPU | SOFIE-SYCL portBLAS SimpleNN _Alice 2.1528
NVIDIA GPU | SOFIE-SYCL portBLAS Linear 16 0.162751
NVIDIA GPU | SOFIE-SYCL portBLAS Linear_ 32 0.081895
NVIDIA GPU | SOFIE-SYCL portBLAS Linear 64 0.0407422
NVIDIA GPU | SOFIE-SYCL portBLAS Linear event 2.60755
NVIDIA GPU | SOFIE-SYCL portBLAS Generator Bl 5.03211
NVIDIA GPU | SOFIE-SYCL portBLAS Generator B64 0.13425
NVIDIA GPU | SOFIE-SYCL portBLAS higgs model dense 2.34856
NVIDIA GPU | SOFIE-SYCL portBLAS Conv_d100_L14 B1 52.0865
NVIDIA GPU | SOFIE-SYCL portBLAS Conv_d100_L14 B32 6.35693
NVIDIA GPU | SOFIE-SYCL portBLAS Conv_d100_ L1 B1 2.32522
NVIDIA GPU | SOFIE-SYCL portBLAS Conv_3d d32 L4 B1 69.7217
NVIDIA GPU | SOFIE-SYCL portBLAS resnet18v1 38.5228
Platform | Inference Engine | BLAS Library | Benchmark time/evt (ms)
Intel GPU | SOFIE-SYCL MKLBLAS Conv2DTranspose Relu Sigmoid | 21.1021
Intel GPU | SOFIE-SYCL MKLBLAS ConvTModel 13.1495
Intel GPU | SOFIE-SYCL MKLBLAS ConvTrans2dModel 11.5645
Intel GPU | SOFIE-SYCL MKLBLAS SimpleNN _Alice 4.33779
Intel GPU | SOFIE-SYCL MKLBLAS Linear 16 0.559951
Intel GPU | SOFIE-SYCL MKLBLAS Linear_ 32 0.294952
Intel GPU | SOFIE-SYCL MKLBLAS Linear 64 0.156017
Intel GPU | SOFIE-SYCL MKLBLAS Linear event 8.12663
Intel GPU | SOFIE-SYCL MKLBLAS Generator Bl 14.6668
Intel GPU | SOFIE-SYCL MKLBLAS Generator B64 0.337062
Intel GPU | SOFIE-SYCL MKLBLAS higgs model dense 5.37862
Intel GPU | SOFIE-SYCL MKLBLAS Conv_d100_L14 B1 80.6941
Intel GPU | SOFIE-SYCL MKLBLAS Conv_d100_L14 B32 4.7924

Intel GPU | SOFIE-SYCL MKLBLAS Conv_d100 L1 B1 5.26741
Intel GPU | SOFIE-SYCL MKLBLAS Conv_3d d32 L4 B1 47.0783
Intel GPU | SOFIE-SYCL MKLBLAS resnet18vl 135.485
Platform | Inference Engine | BLAS Library | Benchmark time/evt (ms)
Intel GPU | SOFIE-SYCL portBLAS Conv2DTranspose Relu Sigmoid | 9.84564
Intel GPU | SOFIE-SYCL portBLAS ConvTModel 9.98284
Intel GPU | SOFIE-SYCL portBLAS ConvTrans2dModel 7.33748
Intel GPU | SOFIE-SYCL portBLAS SimpleNN _Alice 4.29335
Intel GPU | SOFIE-SYCL portBLAS Linear 16 0.572602
Intel GPU | SOFIE-SYCL portBLAS Linear 32 0.281836
Intel GPU | SOFIE-SYCL portBLAS Linear 64 0.151426
Intel GPU | SOFIE-SYCL portBLAS Linear event 8.3133

Intel GPU | SOFIE-SYCL portBLAS Generator Bl 13.0937
Intel GPU | SOFIE-SYCL portBLAS Generator B64 0.369891
Intel GPU | SOFIE-SYCL portBLAS higgs model dense 5.41202
Intel GPU | SOFIE-SYCL portBLAS Conv_d100_L14 B1 64.5675
Intel GPU | SOFIE-SYCL portBLAS Conv_d100_L14 B32 10.6094
Intel GPU | SOFIE-SYCL portBLAS Conv_d100_L1 B1 5.58968
Intel GPU | SOFIE-SYCL portBLAS Conv_3d d32 L4 BI1 49.3109
Intel GPU | SOFIE-SYCL portBLAS resnet18v1 137.892
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Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | ONNXRUNTIME (1 thread) | - Conv2DTranspose Relu Sigmoid | 1.64355
IntelCPU | ONNXRUNTIME (1 thread) | - ConvTModel 1.69358
IntelCPU | ONNXRUNTIME (1 thread) | - ConvTrans2dModel 0.00829917
IntelCPU | ONNXRUNTIME (1 thread) | - SimpleNN _ Alice 0.000428467
IntelCPU | ONNXRUNTIME (1 thread) | - Linear 16 0.00112433
IntelCPU | ONNXRUNTIME (1 thread) | - Linear 32 0.000900946
IntelCPU | ONNXRUNTIME (1 thread) | - Linear 64 0.000766813
IntelCPU | ONNXRUNTIME (1 thread) | - Linear event 0.00829659
IntelCPU | ONNXRUNTIME (1 thread) | - Generator Bl 0.479121
IntelCPU | ONNXRUNTIME (1 thread) | - Generator _B64 0.0955
IntelCPU | ONNXRUNTIME (1 thread) | - higgs model dense 0.00723121
IntelCPU | ONNXRUNTIME (1 thread) | - Conv_d100_L14 B1 91.5335
IntelCPU | ONNXRUNTIME (1 thread) | - Conv_d100 L14 B32 45.6497
IntelCPU | ONNXRUNTIME (1 thread) | - Conv_d100_ L1 BI1 0.0837463
IntelCPU | ONNXRUNTIME (1 thread) | - Conv_3d d32 L4 Bl 71.0397
IntelCPU | ONNXRUNTIME (1 thread) | - resnet18vl 31.4954
Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | ONNXRUNTIME (8 threads) | - Conv2DTranspose Relu Sigmoid | 0.74755
IntelCPU | ONNXRUNTIME (8 threads) | - ConvTModel 0.797615
IntelCPU | ONNXRUNTIME (8 threads) | - ConvTrans2dModel 0.00858503
IntelCPU | ONNXRUNTIME (8 threads) | - SimpleNN Alice 0.000500897
IntelCPU | ONNXRUNTIME (8 threads) | - Linear 16 0.00127948
IntelCPU | ONNXRUNTIME (8 threads) | - Linear 32 0.00232777
IntelCPU | ONNXRUNTIME (8 threads) | - Linear 64 0.00140783
IntelCPU | ONNXRUNTIME (8 threads) | - Linear event 0.00825026
IntelCPU | ONNXRUNTIME (8 threads) | - Generator Bl 0.129205
IntelCPU | ONNXRUNTIME (8 threads) | - Generator B64 0.043
IntelCPU | ONNXRUNTIME (8 threads) | - higgs model dense 0.00737023
IntelCPU | ONNXRUNTIME (8 threads) | - Conv_d100_L14 B1 12.1657
IntelCPU | ONNXRUNTIME (8 threads) | - Conv_d100 L14 B32 6.33628
IntelCPU | ONNXRUNTIME (8 threads) | - Conv_d100_ L1 B1 0.0185869
IntelCPU | ONNXRUNTIME (8 threads) | - Conv_3d d32 L4 BI1 9.31684
IntelCPU | ONNXRUNTIME (8 threads) | - resnet18v1 7.37134
Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | ONNXRUNTIME (16 threads) | - Conv2DTranspose Relu Sigmoid | 0.742937
IntelCPU | ONNXRUNTIME (16 threads) | - ConvTModel 0.81772
IntelCPU | ONNXRUNTIME (16 threads) | - ConvTrans2dModel 0.00851791
IntelCPU | ONNXRUNTIME (16 threads) | - SimpleNN Alice 0.000512725
IntelCPU | ONNXRUNTIME (16 threads) | - Linear 16 0.00120839
IntelCPU | ONNXRUNTIME (16 threads) | - Linear_ 32 0.00254811
IntelCPU | ONNXRUNTIME (16 threads) | - Linear 64 0.00126199
IntelCPU | ONNXRUNTIME (16 threads) | - Linear event 0.00827918
IntelCPU | ONNXRUNTIME (16 threads) | - Generator _B1 0.0653744
IntelCPU | ONNXRUNTIME (16 threads) | - Generator B64 0.0412656
IntelCPU | ONNXRUNTIME (16 threads) | - higgs model dense 0.00742863
IntelCPU | ONNXRUNTIME (16 threads) | - Conv_d100 L14 Bl 6.97009
IntelCPU | ONNXRUNTIME (16 threads) | - Conv_d100_L14 B32 4.13627
IntelCPU | ONNXRUNTIME (16 threads) | - Conv_d100_L1 BI1 0.0180515
IntelCPU | ONNXRUNTIME (16 threads) | - Conv_3d_d32_L4 Bl 5.15327
IntelCPU | ONNXRUNTIME (16 threads) | - resnet18vl 5.47076

INFERENCE OF ML MODELS ON INTEL GPUS WITH SYCL AND INTEL ONEAP! USING SOFIE

30




CERN openlab Report 2023

Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | ONNXRUNTIME (48 threads) | - Conv2DTranspose Relu Sigmoid | 0.769284
IntelCPU | ONNXRUNTIME (48 threads) | - ConvTModel 0.835453
IntelCPU | ONNXRUNTIME (48 threads) | - ConvTrans2dModel 0.00887564
IntelCPU | ONNXRUNTIME (48 threads) | - SimpleNN _ Alice 0.000526848
IntelCPU | ONNXRUNTIME (48 threads) | - Linear 16 0.00128761
IntelCPU | ONNXRUNTIME (48 threads) | - Linear 32 0.0025463
IntelCPU | ONNXRUNTIME (48 threads) | - Linear_ 64 0.00143907
IntelCPU | ONNXRUNTIME (48 threads) | - Linear event 0.00862842
IntelCPU | ONNXRUNTIME (48 threads) | - Generator Bl 0.0628781
IntelCPU | ONNXRUNTIME (48 threads) | - Generator _B64 0.0542969
IntelCPU | ONNXRUNTIME (48 threads) | - higgs model dense 0.00753104
IntelCPU | ONNXRUNTIME (48 threads) | - Conv_d100_L14 B1 7.02565
IntelCPU | ONNXRUNTIME (48 threads) | - Conv_d100_L14 B32 4.13327
IntelCPU | ONNXRUNTIME (48 threads) | - Conv_d100_ L1 B1 0.0178603
IntelCPU | ONNXRUNTIME (48 threads) | - Conv_3d d32 L4 BI1 5.09109
IntelCPU | ONNXRUNTIME (48 threads) | - resnet18vl 7.18406
Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | ONNXRUNTIME (96 threads) | - Conv2DTranspose Relu Sigmoid | 0.80196
IntelCPU | ONNXRUNTIME (96 threads) | - ConvTModel 0.805271
IntelCPU | ONNXRUNTIME (96 threads) | - ConvTrans2dModel 0.000879745
IntelCPU | ONNXRUNTIME (96 threads) | - SimpleNN _ Alice 0.000466415
IntelCPU | ONNXRUNTIME (96 threads) | - Linear 16 0.00122956
IntelCPU | ONNXRUNTIME (96 threads) | - Linear 32 0.00281769
IntelCPU | ONNXRUNTIME (96 threads) | - Linear 64 0.00103089
IntelCPU | ONNXRUNTIME (96 threads) | - Linear event 0.0084097
IntelCPU | ONNXRUNTIME (96 threads) | - Generator Bl 0.0621012
IntelCPU | ONNXRUNTIME (96 threads) | - Generator B64 0.05525
IntelCPU | ONNXRUNTIME (96 threads) | - higgs model dense 0.00742874
IntelCPU | ONNXRUNTIME (96 threads) | - Conv_d100_L14 B1 6.96241
IntelCPU | ONNXRUNTIME (96 threads) | - Conv_d100 L14 B32 4.14794
IntelCPU | ONNXRUNTIME (96 threads) | - Conv_d100_ L1 B1 0.0178356
IntelCPU | ONNXRUNTIME (96 threads) | - Conv_3d d32 14 Bl 5.08413
IntelCPU | ONNXRUNTIME (96 threads) | - resnet18vl 9.06752
Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | SOFIE C++ Inference | Netlib Conv2DTranspose Relu_Sigmoid | 39.788

IntelCPU | SOFIE C++ Inference | Netlib ConvTModel 39.9102

IntelCPU | SOFIE C++ Inference | Netlib ConvTrans2dModel 0.00347443
IntelCPU | SOFIE C++ Inference | Netlib SimpleNN _Alice 0.00331052
IntelCPU | SOFIE C++ Inference | Netlib Linear 16 0.0164009
IntelCPU | SOFIE C++ Inference | Netlib Linear 32 0.0163644
IntelCPU | SOFIE C++ Inference | Netlib Linear 64 0.0163313
IntelCPU | SOFIE C++ Inference | Netlib Linear event 0.0166636
IntelCPU | SOFIE C++ Inference | Netlib Generator Bl 2.27197

IntelCPU | SOFIE C++ Inference | Netlib Generator B64 2.09541

IntelCPU | SOFIE C++ Inference | Netlib higgs model dense 0.0199256
IntelCPU | SOFIE C++ Inference | Netlib Conv_d100 L14 B1 2696.81

IntelCPU | SOFIE C++ Inference | Netlib Conv_d100 L14 B32 1318.27

IntelCPU | SOFIE C++ Inference | Netlib Conv_d100_L1 B1 0.321535

IntelCPU | SOFIE C++ Inference | Netlib Conv_3d d32 L4 Bl 564.539

IntelCPU | SOFIE C++ Inference | Netlib resnet18v1 995.28
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Platform | Inference Engine BLAS Library | Benchmark time/evt (ms)
IntelCPU | SOFIE C++ Inference | MKLBLAS Conv2DTranspose Relu Sigmoid | 1.8397
IntelCPU | SOFIE C+-+ Inference | MKLBLAS ConvTModel 1.50859
IntelCPU | SOFIE C++ Inference | MKLBLAS ConvTrans2dModel 0.00142627
IntelCPU | SOFIE C++ Inference | MKLBLAS SimpleNN Alice 0.000721473
IntelCPU | SOFIE C++ Inference | MKLBLAS Linear 16 0.0012527
IntelCPU | SOFIE C++ Inference | MKLBLAS Linear 32 0.00101778
IntelCPU | SOFIE C++ Inference | MKLBLAS Linear 64 0.001431585
IntelCPU | SOFIE C++ Inference | MKLBLAS Linear event 0.00403714
IntelCPU | SOFIE C++ Inference | MKLBLAS Generator Bl 0.325892
IntelCPU | SOFIE C++ Inference | MKLBLAS Generator B64 0.337125
IntelCPU | SOFIE C++ Inference | MKLBLAS higgs model dense 0.00389043
IntelCPU | SOFIE C++ Inference | MKLBLAS Conv_d100_L14 B1 64.2373
IntelCPU | SOFIE C++ Inference | MKLBLAS Conv_d100_L14_ B32 28.0985
IntelCPU | SOFIE C++ Inference | MKLBLAS Conv_d100_ L1 B1 0.268126
IntelCPU | SOFIE C++ Inference | MKLBLAS Conv_3d d32 L4 Bl 69.9129
IntelCPU | SOFIE C++ Inference | MKLBLAS resnet18vl 26.7298

Device Intel GPU NVIDIA GPU
Device Name Intel Arctic Sound-P (2-tile) | NVIDIA GeForce RTX 3060
Subslices / Multiprocessors 30 (x2) 28
EUs per Subslice / CUDA Cores per MP 16 128
Number of Threads per EU 8 -
Total EU Count 480 (x2) -
Total number of threads / CUDA Cores 3840 (x2) 3584
GPU Max Clock rate 1.4 GHz 1.78 GHz
Memory Clock 1400 1875 MHz
Memory Type HBM?2e GDDR6
Memory Bus 2048-bit (x2) 192-bit
Memory Bandwidth 716.8GB/s (x2) 360GB/s
Global Memory 16GB (x2) 12053 MB

Table 3: NVIDIA and Intel GPU Specifications
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Device Intel CPU
Device Name Intel Xeon Gold 6336Y CPU @ 2.40GHz
Architecture x86 64
CPU(s) 96
Thread(s) per core 2
Core(s) per socket 24
Socket(s) 2
Frequency MHz 2400.00
CPU max MHz 3600.00
CPU min MHz 800.00

L1d 48KiB (x48)

L1i 32KiB (x48)
L2 Unified 1280KiB (x48)
L3 Unified 36864 KiB (x2)

Table 4: Intel CPU Specifications
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