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Abstract
Software correctness properties are essential to maintain quality by continuous and regressive inte-
gration testing, as well as runtime monitoring the program after customer deployment. This paper
presents an effective and lightweight C++ program verification framework: YR_DB_RUNTIME_VERIF,
to check SQL (Structure Query Language) [1] software correctness properties specified as temporal
safety properties [2]. A temporal safety property specifies what behavior shall not occur, in a software,
as sequence of program events. YR_DB_RUNTIME_VERIF allows specification of a SQL temporal safety
property by means of a very small state diagram mealy machine [3]. In YR_DB_RUNTIME_VERIF, a spec-
ification characterizes effects of program events (via SQL statements) on database table columns by
means of set interface operations (∈, /∈), and, enable to check these characteristics hold or not at
runtime. Integration testing is achieved for instance by expressing a state diagram that encompasses
both Graphical User Interface (GUI) states and MySQL [4] databases queries that glue them. For
example, a simple specification would encompass states between ’Department administration’ and
’Stock listing’ GUI interfaces, and transitions between them by means of MySQL databases oper-
ations. YR_DB_RUNTIME_VERIF doesn’t generate false warnings; YR_DB_RUNTIME_VERIF specifications
are not desirable (forbidden) specifications (fail traces). This paper focuses its examples on MySQL
database specifications, labeled as states diagrams events, for the newly developed and FOSS (Free
and Open Source Software) Enterprise Resource Planing Software YEROTH–ERP–3.0 [5].

Keywords: model-based testing, reactive system analysis, computer software program analysis, computer
software dynamic program analysis, software integration testing with SQL and GUI, runtime monitoring
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Fig. 1: YR_DB_RUNTIME_VERIF WORKFLOW (diagram inspired from operation diagram in [6]).
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1 Introduction

Table 1: YEROTH–ERP–3.0 RELEVANT
SOFTWARE SYSTEM METRICS

Software System Metric Value

User Interface (windows, dialog) number 60

MariaDB SQL table number 38

MariaDB SQL table column number 320

Source lines of code (SLOC) 300, 000

1.1 Motivations
This paper describes an effective dynamic analysis
framework, based on runtime monitors specified
in C++ programs (implemented in the software
library yr_sd_runtime_verif), to perform soft-
ware temporal safety property checking of GUI
(Graphical User Interface) based software.

GUI based software are very comfortable and
handy to use. However, tools to perform tempo-
ral safety property verification of GUI software

are allmost not available as FOSS. The testing of
combinations between GUI windows and database
queries that glue them to make sense to the user, is
allmost unavailable as FOSS, or at all to the best
of the knowledge of the author of this paper. The
FOSS C++ library libfsmtest [7] provides test
suite generation support for source code behav-
ior specifications as mealy automata. However,
libfsmtest only allows for desirable correctness
properties, and doesn’t provide GUI (interaction)
support or as plugin-based.

Unit or integration testing for GUI widgets is
available by use of "NUnit" testing frameworks
like e.g. Qt�Test [8], CppUnit [9], etc.. Software
testing across GUI widgets (and MySQL queries)
is however limited in support by these "NUnit"
framework. To the best of the knowledge of the
author of this paper, DejaVu [10] provides some
support for Java’record and replay’ testing while
FROGLOGIC [11] provides support for C++ GUI
software ’record and replay’ testing technology.
’Record and replay’ testing means a user performs
a sequence of events that are recorded by test-
ing infrastructure and automatically replay later
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on to see if expected events thereof occur. How-
ever, none of this ’record and replay’ technology
tool enable temporal safety property specification
as FOSS, with SQL as plugin.

As we will see in the related work, section 7,
of this paper, most of software correctness prop-
erty checking frameworks don’t put an emphasis
on checking temporal safety property of GUI
software. Characterizing the effects of program
statements (via SQL statements) on database
table columns, and to check that these character-
istics hold or not, is of predominant importance
for large software systems with an impressive
number of database tables. Table 1 illustrates
for instance FOSS YEROTH–ERP–3.0 relevant
software system metrics.

It means it can be very difficult for developers
to keep application related logical requirements
between the tables without appropriate software
testing or analysis tools.

A large amount of former work on runtime
monitoring assumes for a sequential program, or
an abstraction of the program as one single source
code, on which program analysis is performed [12–
16].

The program analysis technique the author of
this paper presents here abstract SQL events, GUI
events, or sequences of them, as a state diagram,
and enables developers to run them sequentially
against a runtime monitor specified as a C++
program. In particular, the example presented in
Section 2 specifies results of GUI windows events
as SQL database pre-conditions on state diagram
transitions; SQL events are specified as state dia-
gram transition events. Figure 1 shows a high level
overview of YR_DB_RUNTIME_VERIF workflow.

1.2 Main Contributions
This paper presents 3 original main contributions:

• an industrial level quality frame-
work (YR_DB_RUNTIME_VERIF: https:
//github.com/yerothd/yr-db-runtime-verif),
that solves temporal property verifi-
cation by dynamic program analysis.
YR_DB_RUNTIME_VERIF makes use of the C++
Qt�Dbus library, to input a runtime mon-
itor specification (yr_sd_runtime_verif)
as C++ program code, that also enables
software–library–plugin checks;

• a C++ library: yr_sd_runtime_verif
(https://github.com/yerothd/yr_sd_
runtime_verif); modeling a state diagram
runtime monitoring interface using only set
algebra inclusion operations (∈, /∈) for state
diagram program state specification as pre-
and post-conditions.

yr_sd_runtime_verif only enables the
specification of states diagrams specifica-
tions as not desirable (forbidden) behav-
ior specifications (fail traces). Thus,
YR_DB_RUNTIME_VERIF doesn’t generate any
false warning. A violation of a safety rule has
been found whenever a final state could be
reached. On the other hand, not reaching a
final state doesn’t mean that there is not a
test case (or test input) that cannot reach
this final state.

• An application of YR_DB_RUNTIME_VERIF to
check 1 temporal safety property error, found
in the ERP FOSS YEROTH–ERP–3.0.

Previous version of this paper
This paper extends a previous version [17],
currently in conference proceedings SPLASH–
ICTSS 2023 submission, with state diagram with
more than 2 states, guarded conditions specifica-
tions, 2 new keywords for state diagram transition
trace specification (”in_sql_event_log”,
”not_in_sql_event_log”), and
YR_DB_RUNTIME_VERIF binaries with more than 1
runtime monitor.

1.3 Overview
This paper is organized as follows: Section 2
presents a motivating example that will be used
throughout this paper to explain the presented
concepts of this paper. Section 3 presents for-
mal definitions of the principal concepts used
in this paper. Section 4 presents the software
architecture of YR_DB_RUNTIME_VERIF, our GUI
dynamic analysis framework. Section 5 introduces
the C++ software library yr_sd_runtime_verif
to model states diagrams, and reused by
YR_DB_RUNTIME_VERIF. We evaluate our dynamic
runtime analysis in Section 6. Section 7 compares
this paper with other papers that achieve similar
work or endeavors. Section 8 concludes this paper.
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Fig. 2: A motivating example, as current bug in YEROTH–ERP–3.0.
Q0 := NOT_IN_PRE(YR_ASSET, department.department_name).
Q1 := IN_POST(YR_ASSET, stocks.department_name).

D
Q0

start E
Q1

False / φ

[in_set_trace(’DELETE.department.YR_ASSET’, STATE(d))] / ’SELECT.department’

Fig. 3: YEROTH–ERP–3.0 administration
section displaying departments (¬Q0).

Fig. 4: YEROTH–ERP–3.0
stock asset window listing some
assets (Q1).

2 Motivating Example: missing
department definition

2.1 The Enterprise Resource
Planing Software
YEROTH–ERP–3.0

YEROTH–ERP–3.0 is a fast, yet very simple
in terms of usage, installation, and configuration
Enterprise Resource Planing Software developed
by Noundou et al. [5] for very small, small,
medium, and large enterprises. YEROTH–ERP–
3.0 is developed using C++ by means of the Qt
development library. YEROTH–ERP–3.0 is a
large software with around 300 000 (three hun-
dred thousands) of physical source lines of code.
YR_DB_RUNTIME_VERIF could be used for integration

testing of YEROTH–ERP–3.0, among different
software modules.

2.2 Example Temporal Safety
Property

The motivating example of this paper con-
sists of the temporal safety property stipulat-
ing that ”A DEPARTMENT SHALL NOT
BE DELETED WHENEVER STOCKS
ASSET STILL EXISTS UNDER THIS
DEPARTMENT” . This statement means that
a user shall be denied the removal of depart-
ment ’YR_ASSET’ in Figure 3 because there
are still a stock asset listed within department
’YR_ASSET’, as illustrated in Figure 4. Figure 2
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Fig. 5: YR_DB_RUNTIME_VERIF command line shell output demonstrating that a final state has been reached
(Section 6 analyzes these results).

illustrates the above temporal safety property as
a simple state diagram.

2.2.1 State Diagram Explanation

’D’ is a start state as illustrated by an arrow end-
ing on its state shape. ’E’ is a final (error, or
accepting) state as illustrated by a double circle
as state shape.

The pre-condition Q0 (as a predicate) in state
’D’:
"NOT_IN_PRE(YR_ASSET, depart-
ment.department_name)" means:

• a department named ’YR_ASSET’
is not in column ’department_name’
of MariaDB SQL database table
’department’. This might happen whenever

button ’Delete’ in Figure 3 is pressed when
item ’YR_ASSET’ is selected.

Similarly, the post-condition Q1 (as
a predicate) "IN_POST(YR_ASSET,
stocks.department_name)", in accepting state
’E’, means:

• a department named ’YR_ASSET’ is in
column ”department_name’’ of MariaDB
SQL database table ’stocks’.

The state diagram event transition in
Figure 2: ’SELECT.department’ denotes that
when in ’D’, a SQL ’select’ on database table
”department’’ has occurred; ’E’ is then reached as
an accepting state .
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Guarded Condition Expression

The guarded condition expression
"[in_set_trace (’DELETE.department.YR_ASSET’,

STATE(D))]"means a SQL ’DELETE’ event remov-
ing a department named ’YR_ASSET’ from
MariaDB SQL table ’department’ must have
occurred in the trace leading to state ’D’.

Yr_sd_runtime_verif Specification Code

The source code specified in Listing 2 also illus-
trates a specification in C++ using software
library yr_sd_runtime_verif of the state dia-
gram specification above.

2.3 YR_DB_RUNTIME_VERIF Analysis Report
The motivating example automaton in Figure 2 is
analyzed by YR_DB_RUNTIME_VERIF as follows:

• whenever department ’YR_ASSET’ is
deleted in YEROTH–ERP–3.0, as done in
Figure 3, the runtime monitor state ’D’ with
a state condition Q0 is entered

• when MySQL library (plugin) event
’SELECT.department’ occurs, in Figure 3
because of YEROTH–ERP–3.0 display-
ing the remaining product departments,
the guarded condition for edge event
’SELECT.department’ is automatically
evaluated to ’True’ by C++ library
yr_sd_runtime_verif, because no other
guarded condition was specified by the
developer

• yr_sd_runtime_verif enters the
runtime monitor state to ’E’ and
state condition Q1 via method
YR_trigger_an_edge_event(QString
an_edge_event) because there are still
assets (yeroth_asset_3) left within prod-
uct department ’YR_ASSET’, as illustrated
in Figure 4. ’E’ is then an accepting (or final
or error) state.

Figure 5 illustrates an analysis result of the
afore described process, which gets evaluated and
described in Evaluation Section 6.
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3 Formal Definitions
yr_sd_runtime_verif’s formal description of
the state diagram formalism follows Mealy
machine [3] added with accepting states
(final or erroneous state), and state dia-
gram transition pre- and post-conditions.
Another excellent, detailed with proofs and
theory presentation of mealy automata [18]
is available. In comparison to statechart [19],
which is a visual formalism for states dia-
grams, yr_sd_runtime_verif doesn’t support for
instance the following features: hierarchical states
(composite state, submachine state), timing con-
ditions.

Definition 1.

A state diagram is a 8–tuple (S, S0, C,Σ,Λ, δ, T,Γ)
where:

• S: a finite set of states
• S0 ∈ S: a start state (or initial state)
• C: a set of predicate conditions; pre-
conditions are underlined (e.g.: Q0), and
post-conditions are overlined (e.g.: Q1). A
pre-condition is comparable to a Harel-
statechart guarded condition.

• Σ: an input alphabet, Σ:= {False, True}.
′False′ means no input from SUT into

YR_DB_RUNTIME_VERIF.
′True′ means any input could come from

SUT.
• Λ: an output alphabet (of program events
en(n ∈ N)), φ the no program event. A
program event generally corresponds to a
function or method call at a SUT source code
statement (or program point).

• δ : S × C: a 2-ary relation that maps a
state s to a state-condition c as either a state
diagram transition pre-condition (c), or as a
state diagram transition post-condition (c).

• T : S×Σ→ S×Λ: a transition function that
maps an input symbol to an output symbol
and the next state.

• : a 2−ary relation that maps a state diagram
transition to a guarded condition expression.

• Γ: a set of accepting states; Γ ∈ S.

For instance, for the motivating example
described in Figure 2 we have:

• S = {D,E};
• S0 = D;
• C = {Q0, Q1};
• Σ = {False, True};
• Λ = {φ, ’SELECT.department’};
• δ = {(D, Q0), (E, Q1)};
• T = {((D, False), (D, φ)), ((D, T rue), (E, ’SELECT.department’))};
• Γ = {E}

Definition 2.

A pre-condition of a state diagram transition is a
predicate that must be true before the transition
can be triggered. A pre-condition Q0 could have
2 forms:

• Q0 := IN_PRE(X, Y) that means value "X"
is in (∈) database column value set "Y ".

• Q0 := NOT_IN_PRE(X, Y) that means
value "X" is not in (/∈) database column
value set "Y ".

Definition 3.

A post-condition of a state diagram transition is
a predicate that must be true after the transition
was triggered. A post-condition Q1 could have 2
forms:

• Q1 := IN_POST(A, B) that means value
"A" is in (∈) database column value set "B".

• Q1 := NOT_IN_POST(A, B) that means
value "A" is not in (/∈) database column value
set "B".

For state diagram mealy machines with
more than 2 states, only the first transi-
tion has a pre-condition specification (IN_PRE,
or NOT_IN_PRE). Each other transition only
has a post-condition specification (IN_POST,
or NOT_IN_POST). Since each state only has
1 outgoing (edge) state transition, the post-
condition of the previous (incoming) state transi-
tion acts as the pre-condition of the next transi-
tion.

Definition 4.

A trace Tn =< e0, e1, .., en > is a sequence of
SUT events (or SUT program points) ei,i∈{0,..,n}

of length n. trace(D) is the trace of SUT events up
to state D. For instance, for the motivating exam-
ple described in Figure 2 we have: trace(E) =
trace(D), < ’SELECT.department’ >.
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Proposition 1: NO FALSE
WARNINGS.

yr_sd_runtime_verif only allows 1 outgoing
edge or transition for a state in its specifications,
and for not desirable (forbidden) behavior, as
illustrated in Figure 2. There is no need to spec-
ify the red colored edge in Figure 2 because it
represents runtime cases where no input events
arrive from SUT into YR_DB_RUNTIME_VERIF.
These 2 properties, together with algo-
rithm ’YR_trigger_an_edge_event(QString
an_edge_event)’ (Listing 3) of
yr_sd_runtime_verif, ensures that there are
no false warnings during YR_DB_RUNTIME_VERIF
analyses. For example, the runtime monitoring
or verification systems [12–16] may give false
warnings.

3.1 Guarded Condition Expression
Specification in
yr_sd_runtime_verif

Guarded conditions expressions can be speci-
fied using one of the yr_create_monitor_edge
method and a boolean expression of type
YR_CPP_BOOLEAN_expression. An edge without
an explicit guarded condition has an implicit
’[True]’ guarded condition on it. The implicit
guarded condition ’[True]’ mustn’t be identified
as an implicit input event ’True’, as specified in
Definition 1.

Guarded conditions are meant to be trace
set specification on program events. For
instance in Figure 2 (motivating example):
"[in_set_trace (’DELETE.department.YR_ASSET’,

STATE(D))]"means that a SQL ’DELETE’ event
removing a department named ’YR_ASSET’
from MariaDB SQL table ’department’ must have
occurred in the trace leading to state ’D’, before
event ’SELECT.department’ can be triggered. A
guarded condition could have two practical forms:

• "[in_set_trace (’event’, STATE(D))]" is
equivalent to: ’event’ ∈ trace(D).

• "[not_in_set_trace (’event’,
STATE(D))]" is equivalent to:
’event’ /∈ trace(D).

where ’event’ is an input event (event ∈ Σ)
and ’D’ a state diagram state (D ∈ S).
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Fig. 6: YR_DB_RUNTIME_VERIF: simplified soft-
ware system architecture.

OPERATING SYSTEM (OS)
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yr−db−runtime−verif

SUT source code instrumented
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Fig. 7: YR_DB_RUNTIME_VERIF and
SUT socket communication (dia-
gram inspired from Jan Peleska
diagram–work).

YR_DB_RUNTIME_VERIF

I/O I/O

SUT

SUT source code emits events as they occur.

4 The Software Architecture
of YR-DB-RUNTIME-VERIF

4.1 Dynamic Analysis

4.1.1 SUT Source Code
Instrumentation.

YR_DB_RUNTIME_VERIF runs as a separate Debian
Linux process from the application to dynami-
cally analyze (YEROTH–ERP–3.0 in this case).
Figure 6 illustrates a software system archi-
tecture layer of a software system that uses
YR_DB_RUNTIME_VERIF. Figure 6 and Figure 7 illus-
trate how YEROTH–ERP–3.0 is instrumented
to send MySQL database events, as they occur on
due to the GUI of YEROTH–ERP–3.0, to pro-
cess YR_DB_RUNTIME_VERIF, so it can perform run-
time analysis of the monitor implemented within
it.

4.1.2 Debugging Information.

Each GUI manipulation of YEROTH–ERP–3.0
in its instrumented source code part could gener-
ate a state transition within the analyzed runtime
monitor state diagram in YR_DB_RUNTIME_VERIF.
Visualize "line 35" of Figure 5 to observe that a
specific analysis message is sent to the console of
YR_DB_RUNTIME_VERIF in cases where a final state
has been reached; the message at "line 33" is for an
accepting (final) state of the state diagram spec-
ification of the motivating example presented in
Figure 2.

4.2 SQL Events
YR_DB_RUNTIME_VERIF currently only analyzes the 4
SQL events in Table 2.

4.3 A Runtime Monitor (An
Analysis Client)

Listing 1: "XML file adaptor for YEROTH–
ERP–3.0 test cases (reduced from 4 to only
1 SQL event for paper)."
<!DOCTYPE node PUBLIC "−//freedesktop//

DTD D−BUS Object Introspection 1.0//EN"
"http://www.freedesktop.org/standards/

dbus/1.0/introspect.dtd">
<node name="/YRruntimeverification">
<interface name="com.yeroth.rd.

IYRruntimeverification">
<method name="

YR_slot_refresh_SELECT_DB_MYSQL
">

<annotation name="org.qtproject.QtDBus.
QtTypeName.In0" value="QString"/>

<annotation name="org.qtproject.QtDBus.
QtTypeName.In1" value="uint"/>

<annotation name="org.qtproject.QtDBus.
QtTypeName.In2" value="bool"/>

<arg type="QString" direction="in"/>
<arg type="uint" direction="in"/>
<arg type="bool" direction="out"/>

</method>
</interface>

</node>

An user (an analysis client) of
YR_DB_RUNTIME_VERIF needs to subclass class
YR_DB_RUNTIME_VERIF_Monitor. The UML class
diagram in Figure 8 displays the class structure
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Table 2: SQL Event Dbus Method Interface

SQL Event Dbus Method Interface

DELETE YR_slot_refresh_DELETE_DB_MYSQL(QString, uint)

INSERT YR_slot_refresh_INSERT_DB_MYSQL(QString, uint)

UPDATE YR_slot_refresh_UPDATE_DB_MYSQL(QString, uint)

SELECT YR_slot_refresh_SELECT_DB_MYSQL(QString, uint)

Fig. 8: YR_DB_RUNTIME_VERIF: simplified class diagram in UML [20].

of YR_DB_RUNTIME_VERIF. Qt�Dbus communica-
tion adaptor IYRruntimeverificationAdaptor
shall be generated by the user of this library (on
YR_DB_RUNTIME_VERIF side) using Qt�Dbus com-
mand qdbusxml2cpp and an XML file, similar to
the one displayed in Listing 1:

An analysis client must first override method
’DO_VERIFY_AND_or_CHECK_ltl_PROPERTY’
of class ’YR_DB_RUNTIME_VERIF_Monitor’ so
to implement a checking algorithm for each
event received from SUT, as for instance the
events illustrated in Figure 2 of the motivat-
ing example. The analysis client then calls
method ’YR_trigger_an_edge_event(QString
an_edge_event)’ (Listing 3) of class
’YR_CPP_RUNTIME_MONITOR’ of C++ library
yr_sd_runtime_verif for each corresponding
state diagram transition event.
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Fig. 9: Class diagram in UML [20] to model a
State Transition Diagram.

Fig. 10: Class diagram in
UML [20] to model state dia-
gram transition trace conditions in
yr_sd_runtime_verif code.

Listing 2: yr_sd_runtime_verif C++ code modeling a current bug in YEROTH–ERP–3.0 (Figure 2).
1 YR_CPP_MONITOR_EDGE ∗a_last_edge_0 = create_yr_monitor_edge("D",
2 "E",
3 "select.departements_produits");
4
5 a_last_edge_0−>get_SOURCE_STATE()−>set_START_STATE(true);
6
7 a_last_edge_0−>get_TARGET_STATE()−>set_FINAL_STATE(true);
8
9 a_last_edge_0−>set_PRE_CONDITION_notIN("YR_ASSET",

10 "departements_produits.nom_departement_produit");
11
12 a_last_edge_0−>set_POST_CONDITION_IN("YR_ASSET",
13 "stocks.nom_departement_produit");
14
15 YR_register_set_final_state_CALLBACK_FUNCTION(&YR_CALL_BACK_final_state);

5 yr_sd_runtime_verif: A C++
Library to Model States
Diagrams

5.1 Structure Of
yr_sd_runtime_verif

yr_sd_runtime_verif is a state diagram
C++ library the author of this paper created
to work with the dynamic analysis program
YR_DB_RUNTIME_VERIF. Figure 9 and Figure 10
represent the class structure, in UML, of
yr_sd_runtime_verif. Listing 2 shows the C++
code that models the motivating example in

Figure 2, and that uses runtime monitoring C++
state diagram library yr_sd_runtime_verif.

There is no need to write C++ code for
the red specified edge of Figure 2; this rep-
resents runtime cases where no input event
arrives from SUT into YR_DB_RUNTIME_VERIF.

Table 3 specifies which class is in
yr_sd_runtime_verif code for each runtime
monitor/state diagram element.

5.2 Methods for Pre- and
Post-Condition Specifications

Table 4 illustrates methods for specifying pre–
and post–conditions of a runtime monitor
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Table 3: Runtime Monitor Specification Classes

State Diagram Feature Class

State YR_CPP_MONITOR_STATE

Transition YR_CPP_MONITOR_EDGE

Event YR_CPP_MONITOR_EVENT

Trace at state level YR_CPP_MONITOR_TRACE_EVENT

Guard Condition YR_CPP_BOOLEAN_expression

Set Trace Inclusion at edges YR_CPP_in_SET_TRACE_expression

Set Trace non Inclusion at edges YR_CPP_not_in_SET_TRACE_expression

Runtime Monitor YR_CPP_MONITOR

Table 4: yr_sd_runtime_verif Methods for Pre-/Post-Condition Specification

Class YR_CPP_MONITOR_EDGE Methods Utility

set_PRE_CONDITION_notIN(QString, QString) sets a NOT IN DATABASE pre–condition

set_PRE_CONDITION_IN(QString, QString) sets an IN DATABASE pre–condition

set_POST_CONDITION_notIN(QString, QString) sets a NOT IN DATABASE post–condition

set_POST_CONDITION_IN(QString, QString) sets an IN DATABASE pre–condition

state diagram transition. Each method takes
in 2 arguments of string (’QString’) type:
’DB_VARIABLE’, ’db_TABLE__db_COLUMN’.

The first method argument: ’DB_VARIABLE’,
specifies which variable is to be expected as
value for the specification of the second variable
argument ’db_TABLE__db_COLUMN’. The second
variable gives in a string to be specified in for-
mat "DB_table_name.DB_table_column"; and
its supposed value is the returned value of the first
variable argument ’DB_VARIABLE’.

These 4 pre- and post-conditions meth-
ods make assumptions that a program
variable value ’DB_VARIABLE’ is in set
"DB_table_name.DB_table_column" or not; if
the value of ’DB_VARIABLE’ is in the database
table column, it means it is in the set (∈) of
values "DB_table_name.DB_table_column";
and not being in the table column means it is
not in the set (/∈).

Example from the motivating example in
Section 2
Listing 2 of the runtime monitoring specification
stipulates for instance in its "line 12", as post-
condition:
a_last_edge_0->

set_POST_CONDITION_IN("YR_ASSET",
"stocks.nom_departement_produit");

that ’YR_ASSET’ shall be a value in the
value set (∈) of SQL table ’stocks’ column
’nom_departement_produit’.

5.3 SUT Event Processing Method
YR_trigger_an_edge_event

Listing 3 illustrates the pseudo–code of
yr_sd_runtime_verif SUT event processing
method YR_trigger_an_edge_event(QString
an_edge_event). ’YR_trigger_an_edge_event(QString
an_edge_event)’ is responsible for interpreting
a monitor at runtime, based on its current state,
and on the current event received from SUT. Each
state in yr_sd_runtime_verif states diagrams
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Listing 3: C++ Pseudo-code for YR_trigger_an_edge_event(QString an_edge_event):
yr_sd_runtime_verif method for triggering state diagram events (edges or transitions).

1 bool MONITOR::YR_trigger_an_edge_event(QString an_edge_event)
2 {
3 MONITOR_EDGE cur_OUTGOING_EDGE = _cur_STATE.outgoing_edge();
4
5 if (cur_OUTGOING_EDGE.evaluate_GUARDED_CONDITION_expression() &&
6 (an_edge_event == cur_OUTGOING_EDGE.edge_event_token()))
7 {
8 bool precondition_IS_TRUE = cur_OUTGOING_EDGE
9 .CHECK_SOURCE_STATE_PRE_CONDITION(_cur_STATE);

10
11 if (precondition_IS_TRUE)
12 {
13 set_current_triggered_EDGE(cur_OUTGOING_EDGE);
14
15 MONITOR_STATE a_potential_accepting_state =
16 cur_OUTGOING_EDGE.get_TARGET_STATE();
17
18 if (CHECK_whether__STATE__is__Final(a_potential_accepting_state))
19 {
20 CALL_BACK_final_state_FUNCTION(a_potential_accepting_state);
21 }
22 return true;
23 }
24 }
25 return false;
26 }

shall have only 1 outgoing edge (transition), by
specification and construction, as explained in
Proposition 3 in Section 3.

The algorithm in Listing 3 demonstrates
that, given correct trace and event information
from SUT, yr_sd_runtime_verif always exactly
matches the user specification. Thus never giving
false warnings.

13



Table 5: SUT (YEROTH–ERP–3.0) Trace Output (Figure 5).

CONSOLE OUTPUT LINE SQL EVENT SUT PROGRAM POINT (TRACE)

21 "DELETE.department.YR_ASSET" "src/admin/lister/yeroth-erp-admin-lister-window.cpp:1603"

22 "DELETE.merchandise.YR_ASSET" "src/admin/lister/yeroth-erp-admin-lister-window.cpp:1626"

23 "SELECT.department" "src/yeroth-erp-windows.cpp:967"

6 Evaluation
The main experimental results in this paper
demonstrate the efficacy of our tool to find errors
in the SUT (YEROTH–ERP–3.0), presented in
Subsection 2.2.

Qualitative Results.

SUT (YEROTH–ERP–3.0) TRACING.
Table 5 illustrates SUT source code trace informa-
tion as presented in YR_DB_RUNTIME_VERIF console
output in Figure 5. We have translated from
French to English the MariaDB SQL table names.

SQL EVENT CALL SEQUENCE.
A careful observation of the output in Figure 5
illustrates the following sequence:

• line 23: at state D, execution of the state
diagram event "’SELECT.department’ " (SUT
button ’Delete’ has been pressed at line 21)
:
select * from departements_produits WHERE nom_departement_produit = ’YR_ASSET’;

• line 28, line 29: evaluation of the pre–
condition Q0 of state D stating that prod-
uct department ’YR_ASSET’ is not exis-
tent evaluates to ’TRUE’ (triggering of event
"’DELETE.department.YR_ASSET’ " by press-
ing of SUT button ’Delete’ at line 21
has removed any asset department name
’YR_ASSET’).
*[YR_CPP_MONITOR::CHECK_PRE_CONDITION_notIN:] precondition_IS_TRUE: True **

• line 31, line 32: checking post–condition
Q1 in state E (there are still stocks in
stock department ’YR_ASSET’) evaluates
to ’TRUE’, thus state E is reached as an
accepting state, because department name
’YR_ASSET’ still exists in SUT SQL table
"stocks", as illustrated in Figure 4 of the
motivating example:
"execQuery: select * from stocks WHERE nom_departement_produit = ’YR_ASSET’;"
*[YR_CPP_MONITOR::CHECK_post_condition_IN:] postcondition_IS_TRUE: True **

Runtime Performance.

YR_DB_RUNTIME_VERIF and yr_sd_runtime_verif
don’t incur a runtime supplemental overhead
to the SUT, apart from emitting SQL events
from SUT to YR_DB_RUNTIME_VERIF as they
occur, since no hand–shaking mechanism is
used between YR_DB_RUNTIME_VERIF and the SUT.
The emission of an SQL event from SUT to
YR_DB_RUNTIME_VERIF doesn’t cost more than 2
statements execution time (getting a pointer
to the DBUS server, and calling a method
’YR_slot_refresh_SELECT_DB_MYSQL’ or other
similar 3 methods (for INSERT, UPDATE, and,
DELETE) on it).
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7 Related Work
• SUT source code instrumentation
with runtime monitor specification.
"Clara" [12] enables to express software
correctness properties using AspectJ and
dependency state machines, both as instances
of the typestate formalism, a formalism that
is merely used for checking correctness of
programs by a static compilation (analysis)
technique called typestate checking . The
Clara framework weaves (instruments), and
annotates a program with runtime moni-
tors using AspectJ, then tries to optimize
the weaved program by static analysis. The
”residual program”, meaning the weaved
statically optimized program is then exe-
cuted and runtime monitored by developers
to detect runtime errors. Runtime monitor-
ing tools [13–16] work as similar as the Clara
framework does.

YR_DB_RUNTIME_VERIF doesn’t instrument
the System Under Test (SUT) with any
specification. It runs the runtime monitor
concurrently from the analyzed SUT, but
not with hand–shaking mechanism, thus not
increasing runtime execution of the SUT.
YR_DB_RUNTIME_VERIF specifies the runtime
monitor as a state diagram mealy machine,
a subset of typestate, specified as a C++
program, and extended with accepting states
and state transition pre- and post-condition.

• SUT binary code instrumentation with
a runtime monitor. With tracerory [6,
21]", Jon Eyolfson and Patrick Lam
use runtime program binary code instru-
mentation technique in INTEL�pin [22] to
instrument running programs for purposes
of detecting unread memory. I.e., tracerory
doesn’t generate itself a runtime monitor,
it uses INTEL�pin [22] to generate a run-
time monitor for its verification purposes.
"Purify" [23] doesn’t allow for SUT user cor-
rectness property specification. It has built-in
memory access safety properties to check
offline on program execution, after instru-
mentation of the SUT, its third-party, and
vendor object-code libraries.

In contrast, with YR_DB_RUNTIME_VERIF,
the user instruments the source code

of the analyzed C++ program at com-
pile time with SQL events emitting code.
YR_DB_RUNTIME_VERIF monitors program trace
events at database level, and not at pro-
gram counter level as tracerory does.
YR_DB_RUNTIME_VERIF inputs a SUT correct-
ness property specification as a state diagram
(as a subset of LTL [2]).

• Specification as set interface opera-
tions. "Hob" [24, 25] is a program verifi-
cation framework that enables to: charac-
terize effects of program statement on data
structures by means of all (∀, ∃, etc.) alge-
bra abstract set interface operations; and to
check that these characteristics hold or not,
using static analyses.

YR_DB_RUNTIME_VERIF is a program verifi-
cation framework that enables to: character-
ize effects of program statements (via SQL [4]
(Structure Query Language) on database
table columns by means of set interface oper-
ations (∈, /∈); and to check that these charac-
teristics hold or not, using dynamic runtime
analysis.

• Concurrent Event Stream Analysis.
"DejaVu " [26] enables to check safety

temporal property expressed in first-order
past linear-time temporal logic (FO-
PLTL) for events that carry data. DejaVu
inputs a trace log (offline) and a FO-
PLTL formula, and outputs a boolean value
for each position in the inputted trace.
"LogScope" [27] checks, offline, software
systems correctness properties expressed
using a rule–based specification language
over state machines. It is not very precise
what type of state machine is created and
processed. "LogScope" translates specifica-
tions into C++ monitors (that could carry
data). "EventRaceCommander" [28] repairs in
web applications (online), event race errors,
a kind of safety error.

States diagrams specifications are
implemented as C++ program monitors
using C++ library yr_sd_runtime_verif.
YR_DB_RUNTIME_VERIF outputs a developer
given (by means of a callback function, as
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seen in ’line 15’ in Listing 2) string mes-
sage 1 in case an accepting state was entered,
and a trace event of YEROTH–ERP–
3.0 leading to it. YR_DB_RUNTIME_VERIF’s
monitors need not store data, as DejaVu
monitors must. YR_DB_RUNTIME_VERIF events
also carry data (database table and column
name, records quantity modified by current
SUT event). Runtime monitors could be
checked against programs written in any
programming language or framework, as
long as they emit necessary SQL events to
YR_DB_RUNTIME_VERIF.

1’YR_DB_RUNTIME_VERIF_Monitor_notify_SUCCESS_VERIFICATION’
in this paper motivating example in Figure 5.
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Fig. 11: A Mealy Machine State Diagram Specified Using yr_sd_runtime_verif Specification
Language.
1. yr_sd_mealy_automaton_spec yr_missing_department
2. {
3. START_STATE(d):NOT_IN_PRE(YR_ASSET,department.department_name)
4. ->[in_sql_event_log(’DELETE.departement.YR_ASSET’,STATE(d))]/’SELECT.department’->
5. ERROR_STATE(e):IN_POST(YR_ASSET,stocks.department_name).
6. }

Fig. 12: ’YR_QVGE’ model for the example specification in Figure 11.

8 Conclusion And Future
Work

This paper has presented a lightweight C++
Qt�Dbus [29] tool to check a program against a
runtime monitor using set interface operations (∈
, /∈) on program statement: YR_DB_RUNTIME_VERIF.
YR_DB_RUNTIME_VERIF doesn’t generate false warn-
ings; YR_DB_RUNTIME_VERIF specifications are not
desirable (forbidden) specifications (fail traces).
Since the concurrent communication between
YR_DB_RUNTIME_VERIF and a program occurs over
the RPC (Remote Procedure Call) instance Dbus,
a runtime monitor could be checked against pro-
grams written in any programming language or
framework, as long as they emit the necessary SQL
events to YR_DB_RUNTIME_VERIF.

Future work would be a tool-chain to validate
yr_sd_runtime_verif models as represented in
this paper.

Also, the author of this paper has devel-
oped a graphical drawing tool (YR_QVGE) for in
Section 3 defined state diagrams. A model of
YR_QVGE is shown in Figure 12. It is an extension
of the FOSS (Free and Open Source Software) Qt
Graphviz [30] drawing tool QVGE [31]. YR_QVGE
generates, from a model, an input file for the
compiler yr_sd_runtime_verif_lang_comp.
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Listing 4: ’DO_VERIFY_AND_or_CHECK_ltl_PROPERTY’: YR_DB_RUNTIME_VERIF’s overridden
method for processing SUT event stream C++ pseudo-code.

1 bool DO_VERIFY_AND_or_CHECK_ltl_PROPERTY(
2 QString sql_table_NAME,
3 SQL_CONSTANT_IDENTIFIER cur_SQL_command)
4 {
5 switch (cur_SQL_command)
6 {
7 case SELECT:
8
9 if ("department" == sql_table_NAME))

10 {
11 return YR_trigger_an_edge_event("’select.department’");
12 }
13 break;
14
15 default:
16 break;
17 }
18
19 return false;
20 }

A Processing of SUT Event
Stream By An Analysis
Client

Listing 4 illustrates the pseudo-
code of YR_DB_RUNTIME_VERIF
SUT event processing method
’DO_VERIFY_AND_or_CHECK_ltl_PROPERTY’.
An analysis client must first override method
’DO_VERIFY_AND_or_CHECK_ltl_PROPERTY’
of class ’YR_DB_RUNTIME_VERIF_Monitor’ so to
implement a checking algorithm for each event
received from SUT, as for instance the events
illustrated in Figure 2 of the motivating example.

The analysis client then calls method
’YR_trigger_an_edge_event(QString
an_edge_event)’ of class
’YR_CPP_RUNTIME_MONITOR’ of C++ library
yr_sd_runtime_verif for each corresponding
state diagram transition event.

B YR_SD_RUNTIME_VERIF
SPECIFICATION
LANGUAGE

18



Fig. 13: Grammar in Backus–Naur Form (BNF) of yr_sd_runtime_verif Mealy Machine
State Diagram Specification Language.
〈specification〉 ::= yr_sd_mealy_automaton_spec ’{’ 〈mealy-automaton-spec〉 ’.’ ’}’

〈mealy-automaton-spec〉 ::= 〈sut-state-spec〉
| 〈sut-state-spec〉 ’→’ 〈sut-edge-state-spec〉

〈sut-edge-state-spec〉 ::= 〈sut-edge-mealy-automaton-spec〉 ’→’ 〈mealy-automaton-spec〉

〈sut-edge-mealy-automaton-spec〉 ::= 〈edge-mealy-automaton-guard-cond〉 〈event-call〉

〈edge-mealy-automaton-guard-cond〉 ::= /* empty */ ’/’ | ’[’ 〈trace-specification〉 ’]’ ’/’

〈trace-specification〉 ::= 〈in-sql-event-log〉 | 〈not-in-sql-event-log〉 | 〈in-set-trace〉 | 〈not-in-set-trace〉

〈sut-state-spec〉 ::= 〈start-state-property-spec〉
| 〈start-state-property-spec〉 ’:’ 〈algebra-set-specification〉
| 〈state-property-spec〉 ’:’ 〈algebra-set-specification〉
| 〈final-state-property-spec〉 ’:’ 〈algebra-set-specification〉

〈algebra-set-specification〉 ::= 〈in-algebra-set-spec〉 | 〈not-in-algebra-set-spec〉

〈in-algebra-set-spec〉 ::= 〈in-spec〉 ’(’ 〈prog-variable〉 ’,’ 〈db-table〉 ’.’ 〈db-column〉 ’)’

〈not-in-algebra-set-spec〉 ::= 〈not-in-spec〉 ’(’ 〈prog-variable〉 ’,’ 〈db-table〉 ’.’ 〈db-column〉 ’)’

〈in-sql-event-log〉 ::= in_sql_event_log’(’ 〈event-call〉 ’,’ 〈state-property-specification〉 ’)’

〈not-in-sql-event-log〉 ::= not_in_sql_event_log’(’ 〈event-call〉 ’,’ 〈state-property-specification〉 ’)’

〈in-set-trace〉 ::= in_set_trace’(’ 〈event-call〉 ’,’ 〈state-property-specification〉 ’)’

〈not-in-set-trace〉 ::= not_in_set_trace’(’ 〈event-call〉 ’,’ 〈state-property-specification〉 ’)’

〈in-spec〉 ::= IN_BEFORE | IN_AFTER
| IN_PRE | IN_POST

〈not-in-spec〉 ::= NOT_IN_BEFORE | NOT_IN_AFTER
| NOT_IN_PRE | NOT_IN_POST

〈start-state-property-spec〉 ::= START_STATE’(’ AlphaNum ’)’

〈state-property-spec〉 ::= STATE’(’ AlphaNum ’)’

〈final-state-property-spec〉 ::= FINAL_STATE’(’ AlphaNum ’)’ | ERROR_STATE’(’ AlphaNum ’)’

〈event-call〉 ::= String

〈prog-variable〉 ::= AlphaNum

〈db-table〉 ::= AlphaNum

〈db-column〉 ::= AlphaNum

C YEROTH–ERP–3.0
MAINTENANCE
VERIFICATION
INTERFACE
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Fig. 14: YEROTH–ERP–3.0 Maintenance Verification Interface.
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