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Abstract

In this article we develop a high order accurate method to solve the incompressible boundary
layer equations in a provably stable manner. We first derive continuous energy estimates, and
then proceed to the discrete setting. We formulate the discrete approximation using high-order
finite difference methods on summation-by-parts form and implement the boundary conditions
weakly using the simultaneous approximation term method. By applying the discrete energy
method and imitating the continuous analysis, the discrete estimate that resembles the continu-
ous counterpart is obtained proving stability. We also show that these newly derived boundary
conditions removes the singularities associated with the null-space of the nonlinear discrete
spatial operator. Numerical experiments that verifies the high-order accuracy of the scheme
and coincides with the theoretical results are presented. The numerical results are compared
with the well-known Blasius similarity solution as well as that resulting from the solution of
the incompressible Navier Stokes equations.

Keywords: Incompressible Navier-Stokes equations, Boundary layer equations, High order
methods, Summation-by-parts, Boundary conditions, Simultaneous approximation terms.

1. Introduction

Conservation laws describing fluid dynamics mathematically take the form of space-time
partial differential equations (PDEs). One such example is the unsteady incompressible Navier-
Stokes (INS) equations. In the recent years, numerical simulations of incompressible flows have
gained attraction due to their numerous applications. These include biomedical engineering
[1, 2, 3], aircraft design [4, 5, 6], and atmospheric-ocean modeling [7, 8]. Traditional second
order numerical schemes have been widely used to analyze and predict flow parameters such
as velocities and pressure [9, 10]. These second order accurate approaches however numeri-
cally damp flow vortexes [11] while requiring excessive element numbers in the boundary lay-
ers. Further, mainstream incompressible flow solution schemes augment the incompressible mass
conservation equation ∇ · u to avoid the resulting singular coefficient matrix. The two main
augmentation approaches are the so-called pressure-based (projection scheme) [12] and density-
based (artificial compressibility) methods [13]. These approaches introduce the need for more
boundary conditions which place additional constraints on pressure gradients at boundaries
[14, 15]. Finally, the ubiquitous practice of upwinding convective terms when solving incom-
pressible flows [16] adds both complexity and nonphysical dissipation to the flow solution.
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The key contributions of this article address these concerns. For this purpose we employ
the celebrated incompressible boundary layer equations as a model problem and endeavour to
prove the existence of a stable and high order accurate solution without any need for additional
augmented pressure/density based equations and without the use of upwinding. The discretiza-
tion method is finite difference on summation-by-parts (SBP) form [17, 18, 19]. Key however
to numerical stability is the correct boundary condition imposition, for which we employ a
penalty-like method called simultaneous approximation term (SAT) [20]. The augmentation of
the SBP operators with the SAT technique allows the proofs of stability to be straightforwardly
attainable. The stability of the numerical approximations ties back to the well-posedness of the
continuous mathematical model which fundamentally depends on the choice of boundary con-
ditions [18, 19, 21]. To guarantee a bounded and stable numerical solution of a linear problem, a
minimal number [22, 23] and appropriate form of boundary conditions must be known. Well-
posedness of nonlinear PDEs is unclear and incomplete, however, the linear theory can to some
extent be extended to nonlinear problems using linearization principles. We will follow the
detailed guideline in [24] and its application to the INS equations [25, 26], the shallow water
equations [27, 28], and Euler equations [29, 30] to derive a provably stable and high-order ac-
curate approximation scheme for the boundary layer equations. The energy method [18, 24]
which is based on the principle of integration-by-parts is used as a basic tool to derive the de-
sired boundary conditions that yields an estimate. Furthermore, the stable imposition of these
boundary conditions using SAT eliminates the saddle point problem typically associated with
the spatial operator of the incompressible flow equations leading to unique solutions [31, 32, 33].

To set up the continuous problem, we consider a laminar incompressible flow aligned with
a thin plate of length l. We model the problem using the laminar incompressible boundary
layer (IBL) equations which are derived from the INS equations at high Reynolds number
(Re) using dimensional analysis (see [34] for details). Of note is that the continuity equation
contains no explicit relationship between the pressure and the velocity gradients. As noted
above, popular 2nd order methods deal with this by creating such a relationship artificially
i.e. by using artificial compressibility [13, 14, 35], the pressure projection scheme [36, 37] or a
combination of the two [15, 38]. Staggering grids is another popular method used to enforce
divergence and damp spurious oscillations in the solution domain [39, 40, 41]. In this work we
will only use the fundamental equations, and demonstrate that the resulting scheme is both
stable and accurate, by using the SBP-SAT technique. Importantly, this is without the use of
so-called upwinding for discretization. Note that though this work employs high-order finite
difference approximations, the analysis also holds for any numerical approximations that can
be written on SBP form. Examples include discontinuous Galerkin method [42, 43], spectral
element method [44], finite element method [45], and finite volume method [46, 47].

The rest of the paper is organized as follows; we present the continuous analysis in Section
2 and derive the energy-stable boundary conditions. In Section 3, we impose these boundary
conditions and deduce the penalty coefficients such that we get a bounded energy estimate. We
formulate the SBP-SAT semi-discrete approximation in Section 4 and mimic the continuous
analysis to derive the discrete energy estimate that resemble the continuous one. Moreover, we
study the null-space of the discrete spatial operator and investigate the effect of SAT boundary
conditions on the positive definiteness of the resulting coefficient matrix. Temporal discretiza-
tion is considered in Section 5. The computational results that verifies the high-order accuracy
of the approximation scheme are presented in Section 6 and the Blasius boundary layer is con-
sidered as a validation model. We also make comparison with the full INS equations and draw
conclusion in Section 7.
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Figure 1: Viscous fluid flowing over a thin plate of length l leading to the formation of boundary layer.

2. The continuous problem

We consider a viscous fluid flowing past a thin plate of length l with a uniform speed
U∞ > 0. The flow is laminar and incompressible with Reynolds number ≫ 1, leading to the
development of boundary layer of thickness δ as depicted in Figure 1. Let Ω ⊂ R

2 be the compu-
tational domain with Cartesian coordinates x = (x, y) and boundary Γ. We position the plate
along the x-axis such that the leading edge is at the origin. Further, we denote the components
of the velocity in the x-, y-directions with u and v, respectively and the static pressure with
p. We start our analysis from the two-dimensional (2D) INS equations for Newtonian fluids
under isothermal conditions

ut + uux + vuy = −1

ρ
px +

µ

ρ
(uxx + uyy),

vt + uvx + vvy = −1

ρ
py +

µ

ρ
(vxx + vyy), (1)

ux + vy = 0.

Here, ρ > 0 is the constant density and will be set to one in the subsequent analysis while
µ > 0 denotes the constant dynamical viscosity. The subscripts in (1) denote the temporal and
spatial partial derivatives. At large Reynolds number (defined as Re = ρU∞l

µ
), it can be shown

using dimensionless scaling [34] that (1) reduces to the IBL equations

ut + uux + vuy = −px + µuyy,

0 = −py, (2)

ux + vy = 0.

We begin the continuous analysis by writing (2) as an initial-boundary value problem. In
matrix-vector form, the system (2) with boundary and initial conditions included can be written
as

IUt +D(U)U = 0, x ∈ Ω, t > 0,

BU = g(x, t), x ∈ Γ, t > 0, (3)

IU = f(x, t), x ∈ Ω, t = 0,

where U = [u, v, p]T contain the dependent variables. The continuous vector functions g, f
are known and specifies boundary and initial data to the problem (we assume that they are
compatible such that the solution is smooth). Furthermore, the exact form of the boundary
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operator B will be determined later. Lastly, in (3), D is the spatial nonlinear operator and is
expressed as

D(U) = A(U)
∂

∂x
+B(U)

∂

∂y
− µI ∂2

∂y2
,

where

I =





1 0 0
0 0 0
0 0 0



 , A =





u 0 1
0 0 0
1 0 0



 , B =





v 0 0
0 0 1
0 1 0



 .

Furthermore, we split the convective terms in terms of the conservative and non-conservative
components using the flux splitting technique [26, 48]

AUx =
1

2
[AUx + (AU)x − AxU ] , BUy =

1

2
[BUy + (BU)y − ByU ] . (4)

Remark 1. The flux splitting (4) is crucial for the upcoming discrete analysis.

Noting that Ax + By = I(ux + vy) = 0, the skew-symmetric form of the governing system in
(3) becomes

IUt +
1

2

[

AUx + (AU)x +BUy + (BU)y
]

− µIUyy = 0, (5)

i.e. D(U)U =
1

2

[

AUx + (AU)x +BUy + (BU)y
]

− µIUyy.
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Figure 2: Two-dimensional computational domain Ω showing outwards pointing normal vectors along the
boundary Γ.

2.1. Boundedness

Next, we employ the energy method to derive the appropriate form of boundary conditions
in (3) that leads to an energy estimate. The energy method (which involves multiplying (5)
with the 2UT and integrating over the computational domain Ω) applied to (5) yields

2

∫

Ω

UTIUtdV +

∫

Ω

UT
[

AUx + (AU)x +BUy + (BU)y
]

dV = 2µ

∫

Ω

UTIUyydV, (6)
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where dV = dxdy is the volume element. Let ||U||2I =
∫

Ω

UTIUdV denote the L2 semi-

norm. Then, by using integration by parts (IBP) and the Divergence theorem
∫

Ω

Uxi
dV =

∮

Γ

Unxi
ds to simplify (6), we obtain

d

dt
||U||2I +

∫

Ω

(UTAUx − UT
x AU)dV +

∫

Ω

(UTBUy − UT
y BU)dV + 2µ

∫

Ω

(UT
y IUy)dV (7)

= −
∮

Γ

[

UT (Anx +Bny)U− 2µUTIUyny

]

ds.

Since A, B in (7) are symmetric, the non-conservative convective terms on the left-hand side
(LHS) of (7) vanishes and the energy rate becomes

d

dt
||U||2I + 2µ||Uy||2I = −

∮

Γ

[

UT (Anx +Bny)U− 2µUTIUyny

]

ds (8)

= −
∮

Γ

(unu
2 + 2unp− 2µuuyny)ds.

In (7),
∮

Γ

(·)ds is the boundary line integral with the infinitesimal line element ds =
√

dx2 + dy2

along boundary Γ. Furthermore, un = unx + vny is the boundary normal velocity and n =
(nx, ny) is the normal outward pointing unit vector as depicted in Figure 2. Let BT denote the
boundary terms in (8), then

BT = −
∮

Γ

(unu
2 + 2unp− 2µuuyny)ds. (9)

A bounded energy estimate is guaranteed if BT is non-positive. This can be achieved by impos-
ing appropriate boundary conditions. That is, we need to establish the correct minimal number
and form of boundary conditions [22, 24]. To do that, we rewrite the boundary terms (9) in a
matrix-vector form

BT = −
∮

Γ

qTMqds = −
∮

Γ









u
v
p
µuy









T 







un 0 nx −ny

0 0 ny 0
nx ny 0 0
−ny 0 0 0

















u
v
p
µuy









ds. (10)

Proposition 1. The number of boundary conditions required to bound (8) coincide with the
number of negative eigenvalues of M.

Proof. See [22].

The eigenvalues of M are obtained by solving for the roots of the characteristic polynomial

det(M− λI4) = (λ2 − n2
y)(λ

2 − unλ− 1) = 0,

where I4 is a unit matrix of size 4. We will consider each boundary separately, starting with
the north and south boundaries. Noting that (nx, ny) = (0,±1), the eigenvalues λi and the
associated eigenvectors xi are

λ1 =
un
2

−
√

(un
2

)2

+ 1, λ2 = −1, λ3 = +1, λ4 =
un
2

+

√

(un
2

)2

+ 1, (11)

x1 =









λ1
0
0

−ny









, x2 =









0
1

−ny

0









, x3 =









0
1
ny

0









, x4 =









λ4
0
0

−ny









.
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For the east and west boundaries, (nx, ny) = (±1, 0), we have

λ1 =
un
2

−
√

(un
2

)2

+ 1, λ2 = 0, λ3 = 0, λ4 =
un
2

+

√

(un
2

)2

+ 1, (12)

x1 =









λ1
0
nx

0









, x2 =









0
nx

0
0









, x3 =









0
0
0
nx









, x4 =









λ4
0
nx

0









.

Remark 2. We assume outflow (un > 0) at the north and east boundaries, and inflow (un ≤ 0)
at the west and south boundaries.

Remark 3. In (11) and (12), λ1 < 0 and λ4 > 0 for all un.

Therefore, there are two negative eigenvalues λ1, λ2 and two positive eigenvalues λ3, λ4 in (11)
at the north and south boundaries. This infers that precisely two boundary conditions must be
prescribed at both the north and south boundaries (this is due to the presence of µuyy in the
equations). At the east and west boundaries, there is only one negative eigenvalue λ1 in (12)
inferring that only one boundary condition must be imposed at each boundary.

To determine the form of the boundary conditions that will lead to a finite energy esti-
mate, we return to (10) and consider the eigenvalue decomposition of M

M = X̄ΛMX̄
T
, (13)

where ΛM = diag(λ1, λ2, λ3, λ4) and X̄ = XN are the scaled eigenvector matrices X whose
columns are eigenvectors in (11) and (12) for respective boundaries. The columns of X are scaled
with the normalizing matrix N. We further rearrange M as M = XΛXT where Λ = NTΛMN is
the scaled version of ΛM. For the north and south boundaries, X and N are

X =









λ1 0 0 λ4
0 1 1 0
0 −ny ny 0

−ny 0 0 −ny









, N = diag

(

√

λ21 + 1,
√
2,
√
2,
√

λ24 + 1

)−1

,

and similarly for the east and west boundaries, they are

X =









λ1 0 0 λ4
0 nx 0 0
nx 0 0 nx

0 0 nx 0









, N = diag

(

√

λ21 + 1, 1, 1,
√

λ24 + 1

)−1

.

Therefore, by substituting (13) into (10), BT can be rewritten as

BT = −
∮

Γ

W TΛWds, (14)

where W = XTq. For the north and south boundaries, W is

W =









λ1u− µuyny

v − pny

v + pnu

λ4u− µuyny









,
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and for the east and west boundaries, W is

W =









λ1u+ pnx

vnx

µuynx

λ4u+ pnx









.

Following [26], we partition Λ in terms of the positive, zero, and negative components i.e Λ =
diag(Λ+,Λ0,Λ−). Similarly, we write the corresponding variables as W = [W+,W0,W−]

T where
W+,W− are called the incoming and outgoing characteristics, respectively. The variable W0

which is associated with Λ0 is not interesting since W T
0 Λ0W0 = 0 and it will be omitted in

the subsequent derivations. Noting that λ1, λ2 < 0 and λ3, λ4 > 0 at the north and south
boundaries, the positive and negative components of the matrix decomposition in (14) are

W+ =

[

v + pny

λ4u− µuyny

]

, W− =

[

λ1u− µuyny

v − pny

]

, (15)

Λ+ =







λ3
2

0

0
λ4

λ24 + 1






, Λ− =







λ1
λ21 + 1

0

0
λ2
2






.

Similarly, noting that λ1 < 0 and λ4 > 0 in (12) for the east and west boundaries, we have

W+ =
[

λ4u+ pnx

]

, W− =
[

λ1u+ pnx

]

, Λ+ =

[

λ4
λ24 + 1

]

, Λ− =

[

λ1
λ21 + 1

]

. (16)

Equation (14) with the partition above then becomes

BT = −
∮

Γ

[

W+

W−

]T [

Λ+ 0
0 Λ−

] [

W+

W−

]

ds. (17)

We overcome the energy growth due the negative eigenvalues by specifying the boundary con-
dition [24]

W− = SW+ + g, (18)

i.e. specifying the incoming characteristics in terms of the outgoing ones and data. Here, S is a
matrix with the number of rows equal to the number of negative eigenvalues and the number
of columns equal to the number of positive eigenvalues.

Remark 4. The general form of the relation (18) is R
(

W− − SW+

)

= g [49] where R is an
invertible matrix that combines the variables in W− and RS combines the variables in W+ to
implement the desired boundary conditions. In this work, we however choose R to be an identity
matrix.

Substituting (18) into (17) leads to

BT = −
∮

Γ

[

W+

g

]T [

Λ+ + STΛ−S STΛ−

Λ−S Λ−

] [

W+

g

]

ds. (19)

By assuming a homogeneous form of the boundary condition in (3) i.e. g = 0 such that W− =
SW+, BT further simplifies to

BT = −
∮

Γ

W T
+

(

Λ+ + STΛ−S
)

W+ds, (20)
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which is non-positive if we can choose S such that

Λ+ + STΛ−S ≥ 0. (21)

The non-homogeneous case is considered in [26, 24] and that analysis will be omitted herein. Based
on (19),(20), we observe that (18) defines the general form that the boundary conditions in (3)
must have in order for BT in (9) to be non-positive

BU =W− − SW+ = g, (22)

where S satisfies (21).

2.2. The energy stable boundary conditions

Although the general form of boundary conditions (22) yields a bounded energy norm for
the continuous equation, we need specific boundary conditions that are aligned with the physics
of the original problem i.e. we prescribe them according to the available boundary data. By
returning to (9), we propose a new set of energy stable boundary conditions satisfying (21) and
further show that they can be written in the general form (22).

Starting at the south boundary which is aligned with the solid surface as depicted in Fig-
ure 1, we eliminate the contribution of the south boundary in BT by prescribing a no-slip
velocity condition i.e. u = v = 0. The north boundary is considered next, at which we should
impose two boundary conditions. It is important to note that at this boundary, un > 0. Next, we
turn to the vertical boundaries. Since we assumed inflow (un < 0) at the west boundary and
outflow (un > 0) at the east boundary, we prescribe the following boundary condition; velocity
at the west boundary and pressure at the east boundary. In summary, the proposed boundary
conditions are

u = 0, v = 0, south boundary,
α

2
vu− µuy = 0, p = p∞, north boundary, (23)

u = U∞, west boundary,

p = p∞, east boundary,

where α ∈ [0, 1] is a constant that gives us the flexibility to impose either the Robin boundary
condition (α = 1) or the Neumann boundary condition (α = 1) depending on the available
data. The above can be written in the form BU = g as

BeU =
[

0 0 1
]





u
v
p



 =
[

p∞
]

, BnU =

[α

2
v − µ∂y 0 0

0 0 1

]





u
v
p



 =

[

0
p∞

]

, (24)

BwU =
[

1 0 0
]





u
v
p



 =
[

U∞

]

, BsU =

[

1 0 0
0 1 0

]





u
v
p



 =

[

0
0

]

.

Here, the subscripts e, n, w, s denotes the east, north, west and south boundaries respectively
as shown in Figure 2 and p∞ is the freestream pressure.

By strongly imposing the homogeneous form of (24) in (8), most of the boundary terms
vanishes and only the contribution from the north and east boundaries remains which carries
appropriate signs since un > 0 at the outflow boundaries. The energy rate (8) becomes

d

dt
||U||2I + 2µ||Uy||2I = −

∫

Γn

(1− α)vu2dx−
∫

Γe

u3dy ≤ 0. (25)
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Notice that α = 0, which prescribes the Neumann boundary condition in (23), leads to a
more dissipative energy rate. Finally, temporal integration over a finite time domain [0, T ] and
imposing the initial condition leads to the energy estimate

||U||2I + 2µ

T
∫

0

||Uy||2Idt ≤ ||f||2I . (26)

Remark 5. The bound is imposed only on the horizontal component of the velocity since it is
the only flow variable in (2) with the temporal derivative. This is different compared to the fully
INS equations where also the vertical velocity is bounded [26]. In both models, there is no bound
on the pressure and it was shown in the cited work that we don’t need one for boundedness.

The estimate (26) shows that the new boundary conditions (23) are energy stable. Next, we
compute S for each boundary satisfying (21) and show that the boundary conditions (23) can be
written in the general form (18). We begin with the north and south boundaries. By proposing
S with the form

S =

[

0 s1
s2 0

]

,

and substituting it together with the variables W+, W− in (15) into (18), we get

W− − SW+ =

[

λ1u− µuyny

v − pny

]

−
[

0 s1
s2 0

] [

v + pny

λ4u− µuyny

]

(27)

=

[

(λ1 − s1λ4)u+ (s1 − 1)µuyny

(1− s2)v − (1 + s2)pny

]

=

[

g1
g2

]

.

Here, g1, g2 denotes boundary data. To write the no-slip condition at the south boundary in
the form (18), we seek S that transforms (27) into

W− − SW+ = R

[

u
v

]

=

[

0
0

]

,

where R is a non-singular matrix. Setting s1 = 1 and s2 = −1 yields the desired results and
consequently, satisfies (21) since

Λ+ + STΛ−S =







λ3
2

0

0
λ4

λ24 + 1






+

[

0 1
−1 0

]T







λ1
λ21 + 1

0

0
λ2
2







[

0 1
−1 0

]

=

[

0 0
0 0

]

. (28)

and R = diag(λ1 − λ4, 2).
To show that the Robin velocity (α = 1) and the Dirichlet pressure conditions at the north

boundary can be written in the form (18), we set s1 = 0 and s2 = 1 in (27) which leads to

W− − SW+ =

[

λ1u− µuyny

−2pny

]

=

[

1 0
0 −2

] [

λ1(v)u− µuy
p

]

=

[

g1
g2

]

.

Moreover, (21) is satisfied by this choice since

Λ+ + STΛ−S =







λ3
2

0

0
λ4

λ24 + 1






+

[

0 0
1 0

]T







λ1
λ21 + 1

0

0
λ2
2







[

0 0
1 0

]

=





0 0

0
λ4

λ24 + 1



 ≥ 0.

(29)
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Next, we turn to the east and west boundaries. Similar to the horizontal boundaries, we
want to show that the west and east boundary conditions can be written in the form (18). We
begin by substituting W+, W− in (16) into (18) to obtain

W− − SW+ =
[

λ1u+ pnx

]

− S
[

λ4u+ pnx

]

= (λ1 − Sλ4)u+ (1− S)pnx = g. (30)

where g denotes data as before. Starting with the west boundary, we want to determine S such
that it removes the pressure term from (30) and only the velocity remains. The obvious choice
S = 1 leads to

W− − SW+ = (λ1 − λ4)u = g.

Consequently, this choice satisfies (21) since

Λ+ + STΛ−S =
λ4

λ24 + 1
+

λ1
λ21 + 1

= 0, (31)

where Λ+, Λ− are given in (16).
Similarly, to write the pressure condition at the east boundary in the form (18), we need

appropriate S satisfying (21) to remove the velocity contribution in (30). Setting S = λ1

λ4
yields

W− − SW+ =

(

1− λ1
λ4

)

p = g,

which also satisfies (21)

Λ+ + STΛ−S =
λ4

λ24 + 1
+

(

λ1
λ4

)2
λ1

λ21 + 1
=

un(u
2
n
+ 1)

(λ24 + 1)(λ21 + 1)λ4
≥ 0, (32)

since un > 0 at the east boundary.
To recap what we did, we rotated the boundary matrix M in (10) into the diagonal form

using the matrix eigenvalue decomposition (13). This led us to establish the minimal number of
boundary conditions required to bound an energy estimate which coincides with the number of
negative eigenvalues of M. We further defined the general form of boundary conditions (18) in
terms of the incoming and outgoing characteristics, which results in an energy bound provided
that (21) holds. By returning to the boundary term (9), we proposed a set of commonly used
boundary conditions which cancels or limits the terms that add growth to the energy rate
(8). Moreover, we constructed S (27)−(31) for each boundary satisfying (21) and demonstrated
that they can be written on the form (18). In the next Section, we implement these derived
boundary conditions weakly such that a stable scheme results.

3. The weak imposition of the boundary conditions

In this section, we implement the boundary conditions (24) weakly and show that they
lead to the energy estimate (26). For this purpose, we will mimic the continuous analysis
above. Let’s consider a weak formulation of (3) which will also lay foundation for the upcoming
discrete analysis

IUt +D(U)U = L (Σ(BU− g)) , x ∈ Ω, t > 0, (33)

IU = f, x ∈ Ω, t = 0.

Here, Σ is a penalty coefficient matrix yet to be determined such that we get the energy estimate
and BU is the boundary operator given in (24). The operator L(·) is called the lifting operator
[50, 51] and it is defined for any two continuous vector functions ψ, φ as

∫

Ω

ψTL(φ)dxdy =

∮

Γ

ψTφds. (34)
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By applying the energy method, (33) becomes

d

dt
||U||2I + 2µ||Uy||2I = −

∮

Γ

(unu
2 + 2unp− 2µuuyny)ds+ 2

∮

Γ

UTΣ(BU− g)ds, (35)

which is identical to (8) with an additional boundary term. As before, let BT denote the first
boundary integral in (35). Similarly, let the penalty boundary terms in (35) be denoted by
PT. Our ambition is to deduce Σ such that the weakly imposed boundary conditions (23) are
dissipative. We propose the following penalty coefficients for each boundary

Σs =







−v
2
+ µ∂Ty 0

0 0
0 −1






, Σn =





1 0
0 1
0 0



 , (36)

Σw =







−u
2
0
−1






, Σe =





1
0
0



 ,

where ∂Ty is the y−partial derivative operating in the left direction. The penalty terms in (35)
with the coefficients (36) simplifies to

PT = +

∫

Γe

2updy −
∫

Γw

(u3 + 2up)dy +

∫

Γn

[u(αvu− 2µuy) + 2vp]dx (37)

−
∫

Γs

(vu2 − 2µuuy + 2vp)dx

Therefore, by substituting (37) into (35), most of the boundary terms vanish and only the
dissipative terms remain. The energy rate (35) then becomes

d

dt
||U||2I + 2µ||Uy||2I = −

∫

Γn

(1− α)vu2dx−
∫

Γe

u3dy ≤ 0, (38)

which is identical to (25) and temporal integration leads to the estimate (26).
Next, we return to (35) and rewrite BT in form (17). Moreover, we rewrite BU in the general

form (22) and set g = 0. Equation (35) with this notation becomes

d

dt
||U||2I + 2µ||Uy||2I =−

∮

Γ

(

W T
+Λ+W+ +W T

−Λ−W−

)

ds (39)

+

∮

Γ

[

UTΣ(W T
− − SW+) + (W T

− − SW+)
TΣTU

]

ds.

The choice UTΣ = W T
−Λ [24] transforms (39) to

d

dt
||U||2I + 2µ||Uy||2I =−

∮

Γ

[

W+

W−

]T [

Λ+ ΛS

STΛ− −Λ−

] [

W+

W−

]

ds. (40)
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Adding and subtracting
∮

Γ

W T
+STΛ−SW+ds leads to the simplification

d

dt
||U||2I + 2µ||Uy||2I =−

∮

Γ

W T
+ (Λ+ + STΛ−S)W+ds

+

∮

Γ

[

W+

W−

]T [STΛ−S −Λ−S
−STΛ− Λ−

] [

W+

W−

]

ds, (41)

=−
∮

Γ

W T
+ (Λ+ + STΛ−S)W+ds

+

∮

Γ

(W− − SW+)
TΛ−(W− − SW+)ds,

which is identical to (20) plus an additional dissipative term. The right-hand side (RHS) of
(41) is non-positive since we computed S that satisfies (21) in (28) − (32). The estimate (41)
will be the target for the upcoming semi-discrete SBP-SAT approximation.

4. The semi-discrete SBP-SAT formulation

In this section, we derive a stable numerical approximation of (3). We approximate the
spatial derivatives using finite difference operators on SBP form while keeping the temporal
derivative continuous leading to a semi-discrete formulation. The boundary conditions (23)
are imposed weakly using SAT methods which imitates the boundary imposition in (33) dis-
cretely. By mimicking the continuous analysis, we will show that the newly formulated SBP-
SAT approximation is stable. We begin by discretizing the domain Ω using N ×M equidistant
grid points (xi, yj) where i = 1, 2, . . . , N , j = 1, 2, . . . ,M . Let U = (uT ,vT ,pT )T be an ap-
proximation of the solution for (3) where u,v,p respectively contains the discrete version of
u, v, and p, projected on the Cartesian grid. They are packaged as NM × 1 vectors, for ex-
ample, u = (u11, . . . , u1M , . . . , uN,1, . . . , uNM)T where uij = u(xi, yj). Let E1 and EN,M be zero
matrices with one only at the top-left and right-bottom corner, respectively.

We define the finite difference operators on SBP form, next.

Definition 1. The matrix D is a first derivative SBP operator of order s if

Du = ux +O(h)s and D = P−1Q

where P is a positive definite and symmetric matrix while Q is almost skew-symmetric and
satisfies Q+QT = −E1 + EN .

Here, P is diagonal and it approximates the continuous integral

1TPu ≈
∫

Ω

udx

where 1T = (1, . . . , 1)T . The operator D satisfies the principle of the integration-by-parts dis-
cretely since

uTP (Dv) = uTQv = uT
(

(EN − E1)−QT
)

v = uT (EN −E1)v− uTQTP−1Pv

= (uv)N − (uv)1 − (Du)TPv.

Moreover, it is 2s-order accurate in the interior stencil and s accurate near the boundaries
where s is the order of the truncation error. We approximate the second-order derivative by
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applying first derivative operator twice resulting in a wider stencil and the excepted global
order of accuracy of the scheme is s+ 1 [52, 53].

We extend the SBP operators to 2D domain using the Kronecker product [54]. The follow-
ing Kronecker product’s properties are essential and will be used frequently in the upcoming
analysis: (A⊗B)(C⊗D) = AC⊗BD, (A⊗B)−1 = A−1⊗B−1, and (A⊗B)T = AT ⊗BT where
A,B,C,D are matrices of appropriate sizes and A, B are nonsingular. By using subscripts x, y
to differentiate the operators operating in the x, y−directions, the 2D SBP operators becomes

Dx = P−1
x Qx ⊗ IM , Dy = IN ⊗ P−1

y Qy. (42)

Here, IN and IM are unit matrices of size N×N andM×M , respectively. We further introduce
the following notation to keep the derivations neater

P = I3 ⊗ Px ⊗ Py, Dx = I3 ⊗Dx, Dy = I3 ⊗Dy,

Qx = I3 ⊗Qx ⊗ Py, Qy = I3 ⊗ Px ⊗Qy,

and the last two block-matrices satisfies the SBP property

Qx +QT
x = I3 ⊗ (EN −E1)⊗ Py and Qy +QT

y = I3 ⊗ Px ⊗ (EM − E1). (43)

Furthermore, P defines the discrete L2 semi-norm ||V||2
IP

= VT
IPV for a 3NM × 1 vector V

and I is a discrete analogue of I in (3).
The SBP-SAT formulation approximating (33) is

IUt +D(U)U =
∑

k∈{n,e,s,w}

P−1Σk(Ij ⊗ Pk)(BkU−G), j =

{

1 for k ∈ {e, w}
2 for k ∈ {n, s}

.

(44)

IU(0) = F.

Here, D is the discrete version of the spatial operator in (3) with the splitting (4) and it is
given by

D(U) =
1

2

[

ADx +DxA+BDy +DyB
]

− µID2
y, (45)

where

A =





diag(u) 0 I

0 0 0

I 0 0



 , B =





diag(v) 0 0

0 0 I

0 I 0



 ,

and I, 0 are unit and zero matrices of size NM ×NM . The RHS of the governing equation in
(44) denotes the weakly imposed boundary conditions using the SAT method and is analogue
to the RHS of (33). The discrete boundary operator and penalty coefficients along the kth
boundary mimicking their continuous counterparts (24), (36) are respectively denoted by Bk

and Σk. They are explicitly defined as

Bn =

[α

2
diag(v)− µDy 0 0

0 0 I

]

, Bs =

[

I 0 0

0 I 0

]

, Be =
[

0 0 I
]

, Bw =
[

I 0 0
]

,

and

Σn =





I 0

0 I

0 0



 , Σs =







−1

2
diag(v) + µDT

y 0

0 0

0 −I






, Σe =





I

0

0



 , Σw =







−1

2
d(u)

0

−I






.
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Furthermore, the vectors Gk and F respectively contains the pointwise boundary and initial
data. Note that we only require initial data for the horizontal velocity since it is the only term
containing temporal derivative. Therefore, F has the form F = [~f,~0,~0]T where the elements of
~f are given by data f in (3) projected on the grid points. Lastly, in (44), the diagonal matrices
Pk are the quadrature rules approximating the boundary line integral in (8) and are explicitly
given by

Pk =



















Px ⊗E1 south boundary,

EN ⊗ Py east boundary,

Px ⊗EM north boundary,

E1 ⊗ Py west boundary.

With the notation above, the SBP properties (43) can now be written asQx+QT
x = I3⊗(Pe−Pw)

and Qy +QT
y = I3 ⊗ (Pn − Ps).

Remark 6. Index j in (44) must be chosen such that the matrix multiplication is possible
and it is equal to the number of boundary conditions prescribed per boundary. In the case of
vertical boundaries, j = 1 since we are imposing exactly one boundary condition at the inflow
and outflow boundaries. Meanwhile, for the north and south boundaries, j = 2 since we are
prescribing two boundary conditions at each boundary.

4.1. Stability

To derive the discrete energy estimate that resembles the continuous counterpart (26), we
employ the discrete energy method. By multiplying (44) with 2UTP, we obtain

2UTPIUt +UT
(

PADx +QxA
)

U+UT
(

PBDy +QyB
)

U− 2µUT
IQyDyU = PT,

(46)

where

PT =
∑

k∈{s,e,n,w}

2UTΣk(Ij ⊗ Pk)(BkU−Gk).

Next, we simplify the terms in (46) separately. Starting with the nonlinear advection term
in the x-direction and applying property (43) on its conservative term, we rewrite it as

UTPA(DxU) +UTQxAU = UTPA(DxU) +UT (I3 ⊗ (Pe − Pw))AU

−UTQT
xP

−1PAU (47)

= UTPA(DxU) +UT (I3 ⊗ (Pe − Pw))AU− (DxU)TPAU

= UT (I3 ⊗ (Pe − Pw))AU.

Notice that the non-conservative indefinite terms above cancels owing to the flux splitting
(4), and only the boundary terms remains. Similarly, the advection terms in the y-direction
simplifies to

UTPB(DyU) +UTQyBU = UT (I3 ⊗ (Pn − Ps))BU. (48)

Next, by using the SBP property (43), we simplify the viscous term in (46) as

2µUT
IQy(DyU) = 2µUT (I3 ⊗ (Pn − Ps))I(DyU)− 2µUTQT

yP
−1PI(DyU) (49)

= 2µUT (I3 ⊗ (Pn − Ps))I(DyU)− 2µ(DyU)TPI(DyU).
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In (49), we get both the boundary and the dissipative volume term. By substituting (47), (48),
(49) into (46), the discrete energy rate become

d

dt
||U||2

IP
+ 2µ||DyU||2

IP
= BT+PT, (50)

where

BT =−UT
[

(I3 ⊗ (Pe − Pw))A+ (I3 ⊗ (Pn − Ps))B
]

U+ 2µUT (I3 ⊗ (Pn − Ps))I(DyU)

=−
[

uT (Pe − Pw)d(u)u+ uT (Pn − Ps)d(v)u+ 2uT (Pe − Pw)p+ 2vT (Pn − Ps)p
(51)

− 2µuT (Pn − Ps)Dyu
]

which is the discrete version of (35). We will mimic the continuous analysis here to ensure the
RHS of (51) have an appropriate sign such that we obtain a discrete estimate.

To proceed, we first rewriteBT in (51) in the form that resembles (10). Let the pair (Nk
x , N

k
y )

be the discrete boundary normals as defined below.

Definition 2. The discrete outward pointing boundary normals are given by the pair Nk =
(Nk

x , N
k
y )

(N s
x, N

s
y ) = (0, IN ⊗−E1), (52)

(N e
x, N

e
y ) = (EN ⊗ IM , 0),

(Nn
x , N

n
y ) = (0, IN ⊗ EM),

(Nw
x , N

w
y ) = (−E1 ⊗ IM , 0)

Using (52), BT (51) can now be written such that it discretely imitates (10)

BT = −
∑

k∈{s,e,n,w}

QT (I4 ⊗ Pk)MkQ. (53)

where

Mk =









diag(uk
n
) 0 Nk

x −Nk
y

0 0 Nk
y 0

Nk
x Nk

y 0 0

−Nk
y 0 0 0









, Q =









u

v

p

µDyu,









and uk
n
= Nk

xu+N
k
y v is the discrete boundary normal velocity. Since all the matrices in (53) are

diagonal then there are NM decoupled nonlinear equations. However, the number of nonzero
entries is equal to the number of boundary grid points due to the normals (52). By noting the
similarity in the structures of M in (10) and M in (53), we adopt the similar matrix eigenvalue
decomposition (13) in the discrete sense

Mk = XkΛkX
T
k . (54)

Here, Λk = d
(

λ
k
1,λ

k
2,λ

k
3,λ

k
4

)

is a 4NM × 4NM diagonal matrix containing the eigenvalues of
Mk andXk is the associated eigenvector block-matrix on the kth boundary. Vectors λk

i contains
pointwise eigenvalues of Mk which are obtained by projecting (11) and (12) on the north, south
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and east, west boundary grid points, respectively. For the north and south boundaries, λk
i and

X
k are

λ
k
1 =

uk
n

2
−

√

(

uk
n

2

)2

+ 1, λ
k
2 = −~1, λ

k
3 = ~1, λ

k
4 =

uk
n

2
+

√

(

uk
n

2

)2

+ 1, k ∈ {n, s},

(55)

Xk =









diag(λk
1) 0 0 diag(λk

4)
0 I I 0

0 Nk
y Nk

y 0

−Nk
y 0 0 −Nk

y









.

Similarly, at the east and west boundaries, they are

λ
k
1 =

uk
n

2
−

√

(

uk
n

2

)2

+ 1, λ
k
2 = ~0, λ

k
3 = ~0, λ

k
4 =

uk
n

2
+

√

(

uk
n

2

)2

+ 1, k ∈ {e, w},

(56)

Xk =









diag(λk
1) 0 0 diag(λk

4)
0 Nk

x 0 0

Nk
x 0 0 Nk

x

0 0 Nk
x 0









,

where ~1, ~0 respectively denote vector of ones and zeros.

Remark 7. The square-roots and multiplications in (55) and (56) should be interpreted element-
wise. For subsequent analysis, all operations involving λi should also be interpreted element-
wise.

By substituting (54) into (53) and defining the discrete characteristic variablesWk = XkQ
T , (53)

becomes

BT =
∑

k∈{s,e,n,w}

Wk,T (I4 ⊗ Pk)ΛkW
k, (57)

which mimics (14) discretely. We further divide it in terms of the positive and negative com-
ponents as before in (17)

BT = −
∑

k∈{s,e,n,w}

[

Wk
+

Wk
−

]T

(I2j ⊗ Pk)

[

Λk
+ 0

0 Λk
−

] [

Wk
+

Wk
−

]

. (58)

The variables in (58) are the discrete analogues of (15) and (16). For the north and south
boundaries, they are defined as

Wk
+ =

[

v+Nk
yp

λ
k
4u− µNk

yDyu

]

, Wk
− =

[

λ
k
1u− µNk

yDyu

v−Nk
yp

]

, (59)

Λk
+ =

[

diag
(

λ
k
3/2
)

0

0 diag
(

λ
k
4/((λ

k
4)

2 + 2)
)

]

, Λk
− =

[

diag
(

λ
k
1/((λ

k
1)

2 + 2)
)

0

0 diag
(

λ
k
2/2
)

]

,

For the east and west boundaries, we have

Wk
+ =

[

λ
k
4u+Nk

xp
]

, Wk
− =

[

λ
k
1u+Nk

xp
]

, Λk
+ =

[

diag
(

λ
k
4/((λ

k
4)

2 + 2)
)]

, (60)

Λk
− =

[

diag
(

λ
k
1/((λ

k
1)

2 + 2)
)]

.
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Note that in (58), we adjusted the dimensions of the unit matrix to 2j since W = [W+,W−]
T

has two vectors and index j is defined as before in Remark 6. Next, we define the discrete
version of (22)

BU = W− − SW+,

and rewrite PT in (46) as

PT =
∑

k∈{s,e,n,w}

[

UTΣk(Ij ⊗ Pk)
(

Wk
− − SkW

k
+ −Gk) (61)

+
(

UTΣk(Ij ⊗ Pk)
(

Wk
− − SkW

k
+ −Gk)

)T
]

.

Equation (61) is the discrete version of the penalty term in (39). Therefore, we make a similar
choice UTΣk = (Wk

−)
TΛk

− and rewrite the rhs of (50) as

d

dt
||U||2

IP
+ 2µ||DyU||2

IP
= −

[

Wk
+

Wk
−

]T

(I2j ⊗ Pk)

[

Λk
+ Λk

−S

S
TΛk

− −Λk
−

] [

Wk
+

Wk
−

]

. (62)

Adding and subtracting (Wk
+)

T (Ij ⊗ Pk)[S
T
kΛ

k
−Sk]W

k
+ on the RHS of (62) transforms the

energy rate to

d

dt
||U||2

IP
+ 2µ||DyU||2

IP
=− (Wk

+)
T (Ij ⊗ Pk)

[

Λk
+ + S

T
kΛkSk

]

Wk
+ (63)

+

[

Wk
+

Wk
−

]T

(I2j ⊗ Pk)

[

S
T
kΛ

k
−Sk −Λk

−S

−S
TΛk

− Λk
−

] [

Wk
+

Wk
−

]

=− (Wk
+)

T (Ij ⊗ Pk)
[

Λk
+ + S

T
kΛkSk

]

Wk
+

+ (Wk
− − SkW

k
+)

T (Ij ⊗ Pk)Λ
k
−(W

k
− − SkW

k
+).

which is similar to (41). The first term on the RHS of (63) is negative if we can find Sk such
that

Λk
+ + S

T
kΛkSk ≥ 0 (64)

which imitates (21) discretely. In (27) − (32), we computed the continuous analogue of Sk at
each boundary satisfying the continuous version of (64). Without loss of generality, we assume
that they also hold in the discrete setting as well. The last term in (63) is clearly negative and
hence the energy rate is bounded. Therefore, time integration lead to the energy estimate that
resembles (26)

||U||2
IP

+ 2µ

T
∫

0

||DyU||2
IP
dt ≤ ||F ||2

IP
. (65)

Lastly, we digress and consider the penalty terms in (46). Using the penalty coefficients
given in (44), we show that the boundary conditions (23) also lead to stability in the discrete
setting. The penalty coefficients and boundary operators in (46) leads to

PT =+
[

uT (−Pw)diag(u)u+ uT (αPn − Ps)diag(v)u+ 2uT (Pe − Pw)p+ 2vT (Pn − Ps)p
(66)

− 2µuT (Pn − Ps)Dyu
]

,

which is analogue to (37). Therefore, substituting (51) and (66) into (50) leads to cancellation
of several boundary terms and the energy rate becomes

d

dt
||U||2

IP
+ 2µ||DyU||2

IP
=− (1− α)uT

Pndiag(v)u− uT
Pediag(u)u, (67)

which is discretely identical to (38) and here, α ∈ {0, 1} as before. We recall that d(u) > 0 and
d(v) > 0 at the east and west boundaries respectively, and therefore time integration leads to
the estimate (65) which proves that the approximation (44) is stable.
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4.2. Null-space of the discrete spatial operator

We revisit the spatial operator D (45) in this section. Without the inclusion of the bound-
ary conditions, D is singular and leads to non-unique or spurious solutions. This is the reason
for the majority of incompressible flow schemes create augmented equations as listed in the
introduction. However, in this work we avoid this via the imposition of weak boundary condi-
tions. We therefore now prove the effect of the energy stable boundary conditions in removing
the null-space of D. This would be the case if all eigenvalues of D were positive. Following
what was done for INS in [32], we first show that we expect the real parts of all eigenvalues to
be positive in the case of the BL equations. Following this, we will also demonstrate this clearly
by computing the eigenvalues of D with and with-out the developed boundary conditions. We
begin by formulating the generalized nonlinear eigenvalue problem

D(U)U = λU, (68)

where λ denote the complex eigenvalues of spatial operator D and are independent of the
solution. Here, D is the same as (45) but with the SAT homogeneous boundary conditions
included. It is given by

D(U) =
1

2
(ADx +DxA+BDy +DyB)− µID2

y −
∑

k∈{n,e,s,w}

P−1Σk(Ij ⊗ Pk)Bk

=































1

2

[

diag(u)Dx +Dxdiag(u) + diag(v)Dy

+Dydiag(v)
]

− µD2
y +

α

2
P−1

Pndiag(v)

−µP−1
PnDy −

1

2
P−1

Pwdiag(u)

−1

2
P−1

Psdiag(v) + µP−1DT
y Ps)

0 Dx + P−1
Pe

0 0 Dy + P−1
Pn

Dx − P−1
Pw Dy −P−1

Ps 0































.

To determine the sign of λ, we employ the discrete energy method. By multiplying (68) with
U∗P from the left and adding to its complex transpose, we obtain

U∗
[

PD + (PD)T ]U = (λ+ λ̄)U∗PU = 2Re(λ)||U||2
P
, (69)

where U∗ is the complex conjugate transpose of U. For stability, the left-hand side (LHS) of
(69) must be nonnegative or equivalently, Re(λ) > 0. In Section 4, we considered the energy
analysis of the semi-discrete problem which includes the LHS of (69) and therefore, we will
drop the temporal term and reuse the results for the spatial terms. The LHS of (69) becomes

U∗
[

PD + (PD)T ]U = 2µ||DyU||2
IP

−BT−PT (70)

= 2µ||DyU||2
IP

+ (1− α)uT
Pndiag(v)u+ uT

Pediag(u)u > 0.

where BT and PT are given in (51) and (66), respectively. Moreover, they are preceded by
the negative signs here because initially, they were sitting on the RHS of the energy rate
(50). Equation (70) implies that Re(λ) > 0 in (69) i.e. all the eigenvalues of D are on the right
side of the complex plane for all U 6= 0. Furthermore, their sign is independent of the order of
accuracy of the SBP operators and the number of computational grid points.

Next, we inject the solution U = [1, . . . , 1]T in (68) and use 4th-order SBP operators to
numerically compute the eigenvalues of D. Further, we choose α = 1 in (68), this choice suffice
to guarantee positive spectrum of D in (70). Setting α = 0 will yield even more positive
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spectrum in (70). We consider two cases where: the developed boundary conditions are (a) not
included and (b) included in D .The eigenvalues resulting resulting from the first are depicted
in Figure 3a. As shown, these contain both negative and zero values, which will result in an
unstable solution scheme. As shown in Figure 3b however, the addition of the developed BCs
remedies the latter in full. This is a key insight and contribution of this work.
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Figure 3: Eigenvalues of the spatial operator D with (a) boundary conditions not included and (b) boundary
conditions with α = 1 are included.

5. Temporal discretization and solution

To discretize the temporal derivative and progress the approximation (44) in time, we employ
the first-order backward Euler method. Let ∆t be the time-step size and k denote the time-
level. The solution at two consecutive time-levels are denoted by Uk+1 and Uk. The fully
discrete approximation becomes

F(Uk+1) = I
Uk+1 −Uk

∆t
+D(Uk+1)Uk+1 = 0, (71)

where D is the spatial operator (with the boundary conditions included) given in (68). Equation
(71) is a system of nonlinear equations which we linearise using Newtons method

Uk+1 = Uk − J−1
F(Uk)

F(Uk), (72)
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where J−1
F

is the inverse Jacobian matrix of F. Equation (72) is solved iteratively till

||Uk+1 −Uk||2
P
< tol,

where tol is the specified tolerance. The matrix JF therefore comprises of the Jacobian matrix
of the temporal term, spatial terms, and the boundary contributions i.e.

JF =
I

∆t
+ JDΩ

− JDΓ
, (73)

where

JDΩ
=















1

2
(diag(u)Dx +Dxdiag(u))

+2Dxdiag(u) + diag(v)Dy

+Dydiag(v)− µD2
y

Dydiag(u) Dx

0 0 Dy

Dx Dy 0















JDΓ
= P−1(I3 ⊗ Pn)







α

2
diag(v)− µDy

α

2
diag(u) 0

0 0 I

0 0 0






+P−1(I3 ⊗ Pe)





0 0 I

0 0 0

0 0 0





+P−1







−1

2
diag(v) + µDT

y −1

2
diag(u) 0

0 0 0

0 −I 0






(I3 ⊗ Ps)

+P−1(I3 ⊗ Pw)





−diag(u) 0 0

0 0 0

−I 0 0



 .

6. Numerical experiments

We start by verifying the accuracy of the approximation scheme (44), and later move on to
the comparison with the Blasius and INS solutions.

6.1. Order of accuracy

To compute the convergence rates, we employ the method of manufactured solution [55] on
a compact domain Ω ∈ [0, 1]× [0, 1]. The manufactured solution we choose is

u = cosh(x) sinh(y)eµt, v = − sinh(x) cosh(y)eµt, p =
1

2
sinh2(x)e2µt, (74)

where µ = 0.01 and it satisfies (2) exactly. We impose Robin condition at the north bound-
ary. Further, the boundary and initial data are sourced from (74). For temporal discretiza-
tion, we use first-order Backward Euler with time-step size ∆t = 1e− 04 and set tol = 1e− 08
for successive Newton’s iterations. We chose this small time-step to discard any temporal er-
rors and the computations are terminated at t = 1. Spatial derivatives are discretized using
finite difference SBP (2s, s)-accurate operators where s ∈ {1, 2, 3} is the accuracy near the
boundaries. The rate of convergence is computed as

q = log10

(

||eh1||2Px⊗Py

||eh2||2Px⊗Py

)

/

log10

(

h1
h2

)
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where ||e||2Px⊗Py
is the L2-norm of pointwise errors of the numerical and analytical solutions. The

mesh-spacing corresponding to the coarse and fine meshes are denoted by h1 and h2, respec-
tively. The convergence rates for different orders of accuracy are presented in Tables 1, 2, 3, 4
and they coincide with the theoretical order of convergence.

u-velocity
N =M SBP (2,1) SBP (4,2) SBP (6,3)

||e|| q ||e|| q ||e|| q
21 0.0318 - 0.0030 - 5.9106e-04 -
41 0.0079 2.0829 3.1441e-04 3.3769 3.3657e-05 4.2834
61 0.0032 2.2951 7.3585e-05 3.6553 4.5945e-06 5.0120
81 0.0016 2.4443 2.4828e-05 3.8313 1.0355e-06 5.2543
Theoretical
order

2 3 4

Table 1: The l2 norm of errors and the global order of accuracy of the approximation (44) for the u-velocity
using the different SBP operators.

v-velocity
N =M SBP (2,1) SBP (4,2) SBP (6,3)

||e|| q ||e|| q ||e|| q
21 0.0907 - 0.0098 - 0.0028 -
41 0.0210 2.1870 0.0015 2.7727 2.0366e-04 3.9257
61 0.0092 2.0861 4.3612e-04 3.1544 3.0721e-05 4.7609
81 0.0050 2.1503 1.6813e-04 3.3613 7.6274e-06 4.9130
Theoretical
order

2 3 4

Table 2: The l2 norm of errors and the global order of accuracy of the approximation (44) for the v-velocity
using the different SBP operators.

pressure
N =M SBP (2,1) SBP (4,2) SBP (6,3)

||e|| q ||e|| q ||e|| q
21 0.0159 - 0.0021 - 5.2357e-04 -
41 0.0038 2.1549 1.9608e-04 3.5691 1.6050e-04 5.2088
61 0.0016 2.1989 4.7083e-05 3.6000 2.1108e-06 5.1061
81 8.4464e-04 2.2528 1.6355e-05 3.7287 6.9588e-07 3.9131
Theoretical
order

2 3 4

Table 3: The l2 norm of errors and the global order of accuracy of the approximation (44) for the pressure using
the different SBP operators.
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Solution vector U
N =M SBP (2,1) SBP (4,2) SBP (6,3)

||e|| q ||e|| q ||e|| q
21 0.0029 - 0.0104 - 0.0029 -
41 0.0227 2.1743 0.0016 2.8300 2.0705e-04 3.9576
61 0.0098 2.1125 4.4478e-04 3.1770 3.1134e-05 4.7688
81 0.0053 2.1676 1.7074e-04 3.3763 7.7287e-06 4.9135
Theoretical
order

2 3 4

Table 4: The l2 norm of errors and the global order of accuracy of the approximation (44) for all variables
U = [u, v, p]T using the different SBP operators.

6.2. Blasius boundary layer

Viscous flow over a flat plate as illustrated in Figure 1 is finally modelled. When encoun-
tering the plate’s leading edge, the fluid near the solid wall slows down due to the no slip
condition. Outside the boundary region, the fluid’s speed increases rapidly in the vertical di-
rection until it reach the stream velocity leading to the formation of the boundary layer. As
a result, the velocity gradients are the steepest near the leading edge and the plate’s sur-
face. The thickness of this boundary layer δ(x) grows as a function of distance from the leading
edge. To resolve it effectively, we employ nonuniform stretched meshes in the vicinity of the
solid surface. The use of SBP finite difference operators on nonuniform computational grids
requires a consistent coordinate transformation that preserves the overall accuracy of the ap-
proximation scheme [56, 57, 58]. In [59], a simplified framework which encapsulates coordinate
transformations into the SBP operators was developed. This framework bypasses the need to
first transform (44) into curvilinear coordinates and subsequently apply the traditional SBP
operators. For coordinates stretching, we use the continuous hyperbolic trigonometric functions
such that the mesh is saturated in the region where the velocity gradients are the steepest as
depicted in Figure 4. We use

x(ξ, η) = x0 + x1
sinh(βξ)

sinh(β)
, y(ξ, η) = y0 + y1

sinh(βη)

sinh(β)
,

where (ξ, η) ∈ [0, 1]2 are the coordinates of the transformed regular domain, β is the stretching
factor and we set it to β = 4. Moreover, x0, y0 and x1, y1 denotes the minimum and maximum
of the values of the physical rectangular domain such that the pairs (x0, y0) and (x0, y1) are
the coordinates of the left lower and upper corners. Similarly, the coordinates of the right lower
and upper corners are (x1, y0) and (x1, y1), respectively.
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Figure 4: Nonuniform computational mesh.

Let’s consider the steady version of (2) on the domain Ω ∈ [0, 10] × [0, 4] and the stable
approximation (44). We discretize Ω using N =M = 80 points as depicted in Figure. 4 and set
boundary data U∞ = 1, p∞ = 0. At the north boundary, we consider Neumann boundary con-
dition (i.e. set α = 0 in (44)) since we only know the u velocity gradient in the freestream. This
choice however does not affect the positive definiteness of the resulting coefficient matrix as
shown in (70). The continuous derivatives are approximated using 3rd-order accurate SBP oper-
ators. Starting with the initial guess U1 = [u1,v1,p1]T = [1, . . . , 1, 0, . . . , 0, 0 . . . , 0]T , we iterate
(72) progressively until we reach the steady state solution which is measured by

||Resk||2P ≤ 10−8||Res1||2P

where Resk is the residual (comprising of the spatial terms) at the kth time-level. There are no
restrictions on the time-step size and we set it to ∆t = 0.01. Moreover, we set µ = 0.01 such
that δ ≪ l. Figure 5 shows the velocity distribution on the entire computational domain, with
a fully developed boundary layer.

Figure 5: The horizontal velocity distribution on the entire domain.
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Equation (2) with (i) px = 0, (ii) boundary conditions (23) with α = 0, and (iii) U∞ =
constant has a well-known time-independent solution called the Blasius solution. This similarity
method-based solution reduces (2) to a nonlinear ordinary differential equation which is then
solved numerically (see Appendix A). Therefore, we will use this case to validate the SBP-SAT
approximation (44). We compute (71) till we reach the steady solution and then compare the
results with the Blasius solution along particular vertical cross-sections on the domain. Figure
6a and 6b shows the velocity profile along x ≈ 5. As shown, our numerical approximation
compares very well with the Blasius solution.
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Figure 6: The SBP-SAT approximation for the IBL equations compared with Blasius solution along the line
x ≈ 5 with computations starting at the plate’s leading edge. (a) u-velocity profile and (b) v-velocity profile.
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Figure 7: The deviation errors of the (a) u-velocity and (b) v-velocity at various x position along the plate with
computations starting at the leading edge.

Next, we include more vertical cross-sections across the domain and compare the errors between
the two solution as shown in Figure 7a and 7a. The point-wise errors are computed as

error|u =
|u− uB|
|max(uB)|

× 100%. (75)

where u and uB denote the SBP-SAT approximation and the Blasius solution. Similarly, we use
(75) to compute the deviations for v-velocity. As shown on both profiles, the errors are more
dominant towards the leading edge and they dissipate downstream. This is however thought
to be due to the singularity at the leading edge of the plate i.e. gradients in u tend to infinity
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here [60]. To overcome this, we truncate Ω such that it excludes the tip of the plate and start
the computations at a point x0 on the domain as illustrated in Figure 8a. Instead of using U∞

as inflow data, we use the Blasius solution evaluated at x0 such that the gradients with respect
to x are not large. We choose x0 = 2 as shown in Figure 8b.

PSfrag replacements

y

δ(x)

x00 l

x

(a) (b)

Figure 8: The illustration of the (a) truncated domain that exclude the leading edge and (b) the u-velocity
distribution.
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Figure 9: The deviation errors of the (a) u-velocity and (b) v-velocity at various x position along the plate on
the truncated domain.

Similar to the full domain case, we compare the deviations between the two solutions at various
x−positions on the truncated domain (see Figure 9). A notable observation is the decrease
in the magnitude of the errors. Further, though small, the errors in v do not drop to zero
with increasing y but asymptote to a value. This was similarly the case for the full domain
(Figure 8b). The reason for this will be investigated as part of future work. Next, we compute
the wall shear τw along the plate and compare to that computed from the Blasius solution
(see Appendix A). Note that at the tip of the plate, the velocity gradients are infinite and
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moreover, the Blasius solution does not exist at x = 0. Therefore, we will next consider the
truncated domain. The wall shear is computed as

τw = µDyu|y=0

and an accurate solution is achieved as shown in Figure 10.
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Figure 10: The wall shear along plate computed from the SBP-SAT approximation and the Blasius solution.

As a last test case, we consider the stable INS approximation in [26, 32] on a truncated domain
and use the Blasius solution as inflow data. At large Reynolds number, we note that (1) reduced
to (2). We demonstrate this numerically by comparing the INS solution with the Blasius solution
at different Reynolds numbers. As depicted in Figure 11−12 and 13−14, the variation between
the two approximation decreases as the Reynolds number increases.
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Figure 11: The SBP-SAT approximation for the INS equations compared with Blasius solution along the line
x = 5.63 on the truncated domain at Re = 1 000 (µ = 1e − 02, ρ = 1, l = 10). (a) u-velocity profile and (b)
v-velocity profile.
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Figure 12: The deviation errors between the SBP-SAT approximation for the INS equations and the Blasius
solution at Re = 1 000 (µ = 1e− 02, ρ = 1, l = 10). We compare the (a) u-velocity and (b) v-velocity at various
x on the truncated domain.
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Figure 13: The SBP-SAT approximation for the INS equations compared with Blasius solution along the line
x = 5.63 on the truncated domain at Re = 10 000 (µ = 1e − 03, ρ = 1, l = 10). (a) u-velocity profile and (b)
v-velocity profile.
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Figure 14: The deviation errors between the SBP-SAT approximation for the INS equations and the Blasius
solution at Re = 10 000 (µ = 1e − 03, ρ = 1, l = 10). We compare the (a) u-velocity and (b) v-velocity at
various x on the truncated domain.
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7. Summary and conclusion

This study was concerned with the development of a high-order accurate and stable finite
difference approximation scheme for the incompressible laminar boundary layer equations. We
proposed a set of energy stable boundary conditions specific to the flat-plate boundary layer and
obtained the energy estimate. By mimicking the continuous analysis discretely, we formulated
SBP-SAT approximation scheme and proved stability. Thus, we obtained discrete estimates
that resembled the continuous counterparts.

Stability of the resulting numerical scheme is proven by computing the eigenvalues of the
resulting discrete spatial matrix. A numerical application study proves expected high order
spatial accuracy using an MMS. This is followed by demonstrating an accurate correlation
between our computed solution to the boundary layer equations and the celebrated Blasius
similarity solution. The study is concluded by demonstrating the Reynolds number effect on
the solution of the incompressible Navier Stokes equations as compared to the Blasius solution.
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Appendix A. Blasius similarity solution

As with many PDEs governing fluid dynamics problems, there is no known close-form solu-
tion of (2). Instead, there is a well-known approximation solution called the Blasius similarity
solution. This solution method is based on the observation that, the boundary layer model
exhibits self-similar solution across the plate. Therefore, the PDE (2) can be reduced to an
ordinary differential equations (ODE) by introducing a similarity variable

η = y

√

ρ
U∞

µx
. (A.1)
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Note that η is not defined at the plate’s leading edge (if it situated at the origin). Further, the
Blasius solution method assumes zero pressure gradient in (2).

Instead of computing the flow variables explicitly, u, v are defined by stream functions

u =
∂ψ

∂y
, v = −∂ψ

∂x
(A.2)

where ψ =
√
U∞εxf(η) and f(η) is unknown. In (A.2), u, v further simplifies to

u = U∞f
′(η), v =

1

2

√

ε
U∞

x
(ηf ′(η)− f(η)). (A.3)

Note that (A.3) satisfies the divergence relation since ψxy = ψyx. By substituting (A.3) into (2)
with px = 0, (2) transforms to a nonlinear ODE

2f ′′′(η) + f(η)f ′′(η) = 0. (A.4)

Lastly, to solve for f , we need at least one boundary condition for f , f ′, and f ′′. It follows from
the no-slip velocity condition that

u(x, 0) = U∞f
′(0) = 0 ⇒ f ′(0) = 0,

v(x, 0) =
1

2

√

ε
U∞

x
(0f ′(0)− f(0)) = 0 ⇒ f(0) = 0.

We also know that as y → ∞, u = U∞ and using (A.2), we get that u(x, y → ∞) = U∞f
′(η →

∞) = U∞. Therefore,

f ′(η ⇒ ∞) = 1.

Lastly, by using the nonlinear shooting method [61], we determine f ′′(0) = 0.332. Equation
(A.4) can now be solved numerically using the 4th-order Runge-Kutta method.

By differentiating (A.2) with respect to y, we compute the Newtonian shear stress on the
plate in terms of the Blasius variables

τw = µU∞

√

ρ
U∞

µx
f ′′(0). (A.5)

References

[1] S. Hume, J. M. I. Tshimanga, P. Geoghegan, A. G. Malan, W. H. Ho, and M. N. Ngoepe, “Effect of
Pulsatility on the Transport of Thrombin in an Idealized Cerebral Aneurysm Geometry,” Symmetry, vol. 14,
no. 1, pp. 1–18, 2022.

[2] J. Yull Park, C. Young Park, C. Mo Hwang, K. Sun, and B. Goo Min, “Pseudo-organ boundary conditions
applied to a computational fluid dynamics model of the human aorta,” Computers in Biology and Medicine,
vol. 37, no. 8, pp. 1063–1072, 2007.

[3] M. Cerrolaza, M. Herrera, R. Berrios, and W. Annichiaricco, “A comparison of the hydrodynamical be-
haviour of three heart aortic prostheses by numerical methods,” Journal of Medical Engineering and Tech-
nology, vol. 20, no. 6, pp. 219–228, 1996.

[4] M. F. Alam, D. S. Thompson, and D. K. Walters, “Hybrid Reynolds-averaged Navier-Stokes/large-eddy
simulation models for flow around an iced wing,” Journal of Aircraft, vol. 52, no. 1, pp. 244–256, 2015.

[5] V. B. Kurzin and V. A. Yudin, “Aerodynamic characteristics of a thin airfoil cascade in an ideal incom-
pressible flow with separation from the leading edges,” Fluid Dynamics, vol. 44, no. 2, pp. 178–188, 2009.

[6] H. Haddadpour, M. A. Kouchakzadeh, and F. Shadmehri, “Aeroelastic instability of aircraft composite
wings in an incompressible flow,” Composite Structures, vol. 83, no. 1, pp. 93–99, 2008.

[7] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, “A finite-volume, incompressible navier stokes
model for, studies of the ocean on parallel computers,” Journal of Geophysical Research C: Oceans, vol.
102, no. C3, pp. 5753–5766, 1997.

29



[8] P. R. Teixeira, D. P. Davyt, E. Didier, and R. Ramalhais, “Numerical simulation of an oscillating
water column device using acode based on Navier-Stokes equations,” Energy, vol. 61, pp. 513–530, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.energy.2013.08.062

[9] L. C. Malan, C. Pilloton, A. Colagrossi, and A. G. Malan, “Numerical Calculation of Slosh Dissipation,”
Applied Sciences (Switzerland), vol. 12, no. 23, pp. 1–31, 2022.

[10] A. G. Mowat, A. G. Malan, L. H. Van Zyl, and J. P. Meyer, “Hybrid finite-volume reduced-order model
method for nonlinear aeroelastic modeling,” Journal of Aircraft, vol. 51, no. 6, pp. 1805–1812, 2014.

[11] D. M. Changfoot, A. G. Malan, and J. Nordström, “Hybrid computational-fluid-dynamics platform to
investigate aircraft trailing vortices,” Journal of Aircraft, vol. 56, no. 1, pp. 344–355, 2019.

[12] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. CRC Press, oct 2018. [Online]. Available:
https://www.taylorfrancis.com/books/9781482234213

[13] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems,” Journal of Compu-
tational Physics, vol. 2, no. 1, pp. 12–26, 1967.

[14] A. G. Malan, R. W. Lewis, and P. Nithiarasu, “An improved unsteady, unstructured, artificial com-
pressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation,”
International Journal for Numerical Methods in Engineering, vol. 54, no. 5, pp. 695–714, 2002.

[15] A. G. Malan and O. F. Oxtoby, “An accelerated, fully-coupled, parallel 3D hybrid finite-volume
fluid-structure interaction scheme,” Computer Methods in Applied Mechanics and Engineering, vol. 253,
pp. 426–438, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.cma.2012.09.004

[16] D. G. Merrick, A. G. Malan, and J. A. van Rooyen, “A novel finite volume discretization method
for advection–diffusion systems on stretched meshes,” Journal of Computational Physics, vol. 362, pp.
220–242, 2018. [Online]. Available: https://doi.org/10.1016/j.jcp.2018.02.025

[17] H.-O. KREISS and G. SCHERER, “Finite Element and Finite Difference Methods
for Hyperbolic Partial Differential Equations,” in Mathematical Aspects of Finite Ele-
ments in Partial Differential Equations. Elsevier, 1974, pp. 195–212. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/B9780122083501500121

[18] B. Gustafsson, High Order Difference Methods for Time Dependent PDE, ser. Springer Series in
Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 38. [Online].
Available: http://link.springer.com/10.1007/978-3-540-74993-6

[19] B. Gustafsson, H.-O. Kreiss, and J. Oliger, Time-Dependent Problems and Difference Meth-
ods. Hoboken, NJ, USA: John Wiley & Sons, Inc., sep 2013. [Online]. Available:
http://doi.wiley.com/10.1002/9781118548448

[20] M. H. Carpenter, D. Gottlieb, and S. Abarbanel, “Time-Stable Boundary Conditions for Finite-Difference
Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes,”
Journal of Computational Physics, vol. 111, no. 2, pp. 220–236, apr 1994. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0021999184710576

[21] J. C. Strikwerda, “Initial boundary value problems for incompletely parabolic systems,” Communications
on Pure and Applied Mathematics, vol. 30, no. 6, pp. 797–822, nov 1977. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/cpa.3160300606

[22] J. Nordström and T. M. Hagstrom, “The Number of Boundary Conditions for Initial Boundary Value
Problems,” SIAM Journal on Numerical Analysis, vol. 58, no. 5, pp. 2818–2828, jan 2020. [Online].
Available: https://epubs.siam.org/doi/10.1137/20M1322571

[23] H.-O. Kreiss, “Initial boundary value problems for hyperbolic systems,” Communications on
Pure and Applied Mathematics, vol. 23, no. 3, pp. 277–298, may 1970. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/cpa.3160230304

[24] J. Nordström, “A Roadmap to Well Posed and Stable Problems in Computational Physics,” Journal of
Scientific Computing, vol. 71, no. 1, pp. 365–385, 2017.

[25] F. Laurén and J. Nordström, “Energy stable wall modeling for the Navier-Stokes equa-
tions,” Journal of Computational Physics, vol. 457, p. 111046, 2022. [Online]. Available:
https://doi.org/10.1016/j.jcp.2022.111046

[26] J. Nordström and C. La Cognata, “Energy stable boundary conditions for the nonlinear incompressible
Navier–Stokes equations,” Mathematics of Computation, vol. 88, no. 316, pp. 665–690, aug 2018. [Online].
Available: http://www.ams.org/mcom/2019-88-316/S0025-5718-2018-03375-0/

[27] J. Nordström and A. R. Winters, “A linear and nonlinear analysis of the shallow water equations and its
impact on boundary conditions,” Journal of Computational Physics, vol. 463, p. 111254, 2022. [Online].
Available: https://doi.org/10.1016/j.jcp.2022.111254

[28] J. Nordström and S. Ghader, “A new well-posed vorticity divergence formulation of the shallow water
equations,” Ocean Modelling, vol. 93, pp. 1–6, 2015.

[29] J. Nordström and F. Laurén, “A stable and conservative nonlinear interface coupling for the
incompressible Euler equations,” Applied Mathematics Letters, vol. 132, p. 108171, 2022. [Online].
Available: https://doi.org/10.1016/j.aml.2022.108171

[30] J. Nordström, “A skew-symmetric energy and entropy stable formulation of the compressible Euler

30

http://dx.doi.org/10.1016/j.energy.2013.08.062
https://www.taylorfrancis.com/books/9781482234213
http://dx.doi.org/10.1016/j.cma.2012.09.004
https://doi.org/10.1016/j.jcp.2018.02.025
https://linkinghub.elsevier.com/retrieve/pii/B9780122083501500121
http://link.springer.com/10.1007/978-3-540-74993-6
http://doi.wiley.com/10.1002/9781118548448
https://linkinghub.elsevier.com/retrieve/pii/S0021999184710576
https://onlinelibrary.wiley.com/doi/10.1002/cpa.3160300606
https://epubs.siam.org/doi/10.1137/20M1322571
https://onlinelibrary.wiley.com/doi/10.1002/cpa.3160230304
https://doi.org/10.1016/j.jcp.2022.111046
http://www.ams.org/mcom/2019-88-316/S0025-5718-2018-03375-0/
https://doi.org/10.1016/j.jcp.2022.111254
https://doi.org/10.1016/j.aml.2022.108171


equations,” Journal of Computational Physics, vol. 470, p. 111573, 2022. [Online]. Available:
https://doi.org/10.1016/j.jcp.2022.111573

[31] M. Benzi, G. H. Golubt, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica,
vol. 14, pp. 1–137, 2005.

[32] J. Nordström and F. Laurén, “The spatial operator in the incompressible Navier–Stokes, Oseen and
Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 363, p. 112857, 2020.
[Online]. Available: https://doi.org/10.1016/j.cma.2020.112857

[33] F. Laurén and J. Nordström, “Spectral properties of the incompressible Navier-Stokes equa-
tions,” Journal of Computational Physics, vol. 429, p. 110019, 2021. [Online]. Available:
https://doi.org/10.1016/j.jcp.2020.110019

[34] W. M. Frank, Viscous Fluid Flow. McGraw-Hill, 2006.
[35] M. M. Rahman and T. Siikonen, “An artificial compressibility method for incompressible flows,” Numerical

Heat Transfer, Part B: Fundamentals, vol. 40, no. 5, pp. 391–409, 2001.
[36] A. W. Vreman, “The projection method for the incompressible Navier-Stokes equations: The pressure

near a no-slip wall,” Journal of Computational Physics, vol. 263, pp. 353–374, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jcp.2014.01.035

[37] K. Matsui, “A projection method for Navier-Stokes equations with a boundary condition including the
total pressure,” pp. 1–30, 2021. [Online]. Available: http://arxiv.org/abs/2105.13014

[38] O. F. Oxtoby and A. G. Malan, “A matrix-free, implicit, incompressible fractional-step algorithm
for fluid-structure interaction applications,” Journal of Computational Physics, vol. 231, no. 16, pp.
5389–5405, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2012.04.037

[39] O. O’Reilly, T. Lundquist, E. M. Dunham, and J. Nordström, “Energy stable and high-order-accurate
finite difference methods on staggered grids,” Journal of Computational Physics, vol. 346, pp. 572–589,
2017. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2017.06.030

[40] W. Kress and J. Nilsson, “Boundary conditions and estimates for the linearized Navier-Stokes equations
on staggered grids,” Computers and Fluids, vol. 32, no. 8, pp. 1093–1112, 2003.

[41] B. Gustafsson and J. Nilsson, “Boundary conditions and estimates for the steady Stokes equations on
staggered grids,” Journal of Scientific Computing, vol. 15, no. 1, pp. 29–59, 2000.

[42] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, and E. Valero, “A free-energy stable nodal discontinuous
Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation,” Journal of
Computational Physics, vol. 1, p. 109072, 2019. [Online]. Available: http://arxiv.org/abs/1902.08089

[43] J. Chan, “On discretely entropy conservative and entropy stable discontinuous Galerkin meth-
ods,” Journal of Computational Physics, vol. 362, pp. 346–374, 2018. [Online]. Available:
https://doi.org/10.1016/j.jcp.2018.02.033

[44] N. K. Yamaleev and M. H. Carpenter, “A family of fourth-order entropy stable nonoscillatory spectral
collocation schemes for the 1-D Navier–Stokes equations,” Journal of Computational Physics, vol. 331,
pp. 90–107, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2016.11.039
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