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Abstract

Multisite replication studies aim to repeat an original study in order to assess

whether similar results can be obtained with new data across different study sites.

While a variety of statistical methods have been proposed for the analysis of single-

site replication studies, fewer methods are available for the multisite setting. Here

we discuss several extensions of singlesite methods that have not yet been general-

ized to the multisite setting, both frequentist (the two-trials rule) and Bayesian (the

sceptical p-value, the replication Bayes factor, and the sceptical Bayes factor). A key

challenge is to account for between-replication heterogeneity, and we present differ-

ent approaches for doing so. These generalizations provide analysts with a suite of

methods for assessing different aspects of replicability. We illustrate their properties

using data from several multisite replication projects.

Keywords: Bayes factor, heterogeneity, multivariate, sceptical p-value, two-trials rule

1 Introduction

A fundamental aspect of the credibility of a research finding is whether it is replicable, that is, whether
a similar finding can be obtained when a study is repeated with new subjects (National Academies
of Sciences, Engineering, and Medicine, 2019). The “replication crisis” in the social and life sciences
led to an increase in the conduct of replication studies, and several journals and funders now ac-
tively promote such studies (NWO, 2016; NSF, 2018; Nature Communications, 2022). While many
replication projects have focused on one-to-one or singlesite replication studies – conducting a single
replication study for a single original study (e.g., Open Science Collaboration, 2015; Camerer et al.,
2016, 2018; Errington et al., 2021) – there has also been an increasing interest in many-to-one or multisite
replication studies – conducting multiple replication studies for a single original study (for example,
Klein et al., 2014; Ebersole et al., 2016; Klein et al., 2018; Wagenmakers et al., 2016; Protzko et al., 2020;
Arroyo-Araujo et al., 2022). This study design allows not only to assess replicability of a finding, but
also potential between-replication heterogeneity.

There is no universally agreed definition of “replicability” or “replication success”. However,
while in the case of singlesite replications, methodologists have proposed diverse approaches to
quantify replicability (Verhagen and Wagenmakers, 2014; Simonsohn, 2015; Anderson and Maxwell,
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2016; Patil et al., 2016; Bonett, 2020; Held, 2020; Pawel and Held, 2022, among others), fewer ap-
proaches have been proposed in the case of multisite replications. In practice, researchers have often
used meta-analytic approaches to pool results from different replication studies and quantify their
heterogeneity, but also “vote-counting” approaches have been used, e.g., counting how many of the
individual replication p-values are smaller than some threshold. Most of the methodological con-
tributions to date have focused on the extension of meta-analytic methods to the replication setting,
mostly from a frequentist perspective. For example, Hedges and Schauer (2019) have proposed var-
ious tests for (non-)replicability based on testing for the absence/presence of between-replication
heterogeneity, or Mathur and VanderWeele (2020) have proposed measures of consistency between
original and replication effect sizes. The aim of our article is therefore to extend other measures of
replicability that fall outside the meta-analytic realm considered previously and that have not yet
been adapted to the multisite setting. In particular, we consider different generalizations of the two-
trials rule (Section 4), the sceptical p-values (Section 5), and various Bayes factor methods (Section 6).

2 Running examples

Throughout this article, we will apply the developed methodology to data from the three multisite
replication studies, some of them shown in Figure 1. Table 1 shows different measures of replicability
applied to them, we will develop and discuss these measures throughout the article.

Facial feedback replications This multisite replication study by Wagenmakers et al. (2016) at-
tempted to replicate the original study from Strack et al. (1988) which tested the facial feedback
hypothesis. The original study found that participant gave higher funniness ratings to cartoons if
they were smiling as opposed to showing discontent (estimated mean difference of 0.82 units on
a 10-point Likert scale, with 95% confidence interval from −0.05 to 1.69). On the other hand, the
pooled replication mean difference was very close to zero (estimated mean difference of −0.03 with
95% confidence interval from −0.11 to 0.16). In addition, the individual replication mean differences
hardly showed any heterogeneity (pQ = 0.91).

Moral credentials replications This multisite replication study by Ebersole et al. (2016) attempted
to replicate the original study by Monin and Miller (2001) on “moral credentialling”. The original
study found that participants were more likely to indicate preference for hiring male candidates in
an imagined hiring scenario if they were assigned to a credentialling condition where they had to in-
dicate (dis)agreement with a sexist statement as opposed to a control condition (Fisher z-transformed
correlation of 0.21 with 95% confidence interval from 0.1 to 0.32). The replication pooled effect esti-
mate was slightly smaller (0.07 with 95% confidence interval from 0.03 to 0.11) and there was some
heterogeneity among the individual replication effect estimates (pQ = 0.10).

Prospective replication project Protzko et al. (2020) conducted a prospective replication project.
Each of the four participating laboratories conducted original studies as well as replication studies of
their own and the other original studies. Figure 1 shows original and replication studies from one of
the 16 experiments, Table 1 shows summary statistics for all of them. The fast social desirability (FSD)
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Figure 1: Forest plots of effect estimates from facial feedback studies (Wagenmakers et al., 2016), moral credentials studies (Ebersole et al., 2016) and fast
social desirability (FSD) studies (Protzko et al., 2020).
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Table 1: Replicability assessment of facial feedback replications (Wagenmakers et al., 2016), moral credentials replications (Ebersole et al., 2016), and replica-
tions from prospective replication project (Protzko et al., 2020). Shown are one-sided original p-value po, original and pooled replication effect estimates θ̂o
and θ̂r, REML estimated between-replication standard deviation τ̂, p-value from Q-test for between-replication heterogeneity pQ, meta-analytic replication
p-value pr, sceptical p-value pS (multivariate and pooling approach versions), default Bayes factors BF01 (using one-sided standard normal priors under the
alternative), replication Bayes factor BFR, and sceptical Bayes factor BFS.

Study po θ̂o [95% CI] θ̂r [95% CI] τ̂ [95% CI] pQ pr pS (multi) pS (pool) BF01(θ̂o) BF01(θ̂r) BFR BFS

Facial feedback 0.032 0.82 [−0.05, 1.69] 0.03 [−0.11, 0.16] 0.00 [0.00, 0.16] 0.91 0.35 0.47 0.39 1/3.2 10 38 nonexistent

Moral credentials 0.0001 0.21 [0.10, 0.32] 0.07 [0.03, 0.11] 0.04 [0.00, 0.13] 0.10 0.0004 0.072 0.034 1/94 1/11 1/7 1/1.5

Redemption 0.074 −0.08 [−0.18, 0.03] 0.09 [−0.01, 0.20] 0.10 [0.04, 0.40] 0.003 0.96 0.84 0.87 3.7 50 8.3 nonexistent

Misreporting 0.35 0.02 [−0.08, 0.12] 0.03 [−0.03, 0.09] 0.04 [0.00, 0.23] 0.21 0.20 0.35 0.38 14 14 1.1 nonexistent

Prediction 0.064 0.08 [−0.02, 0.18] 0.15 [0.10, 0.20] 0.00 [0.00, 0.07] 0.89 < 0.0001 0.12 0.086 3.2 < 1/1000 < 1/1000 1/1.3

FSD 0.013 0.12 [0.01, 0.22] 0.16 [0.06, 0.25] 0.08 [0.01, 0.35] 0.017 0.0004 0.052 0.035 1/1.2 1/24 1/150 1/3.2

Minimal Groups 0.0008 0.15 [0.06, 0.25] 0.10 [0.06, 0.15] 0.00 [0.00, 0.07] 0.88 < 0.0001 0.049 0.018 1/15 1/310 < 1/1000 1/6.1

Labels < 0.0001 0.20 [0.11, 0.30] 0.23 [0.09, 0.38] 0.14 [0.07, 0.54] < 0.0001 0.0008 0.013 0.004 1/353 1/20 1/111 1/32

Referrals < 0.0001 0.20 [0.11, 0.30] 0.22 [0.18, 0.26] 0.02 [0.00, 0.11] 0.46 < 0.0001 0.001 0.0005 1/435 < 1/1000 < 1/1000 1/154

Ads < 0.0001 0.22 [0.11, 0.32] 0.22 [0.14, 0.30] 0.06 [0.00, 0.30] 0.061 < 0.0001 0.002 0.0009 1/576 < 1/1000 < 1/1000 1/102

Cookies < 0.0001 0.24 [0.14, 0.33] 0.26 [0.21, 0.31] 0.00 [0.00, 0.12] 0.68 < 0.0001 0.0002 < 0.0001 < 1/1000 < 1/1000 < 1/1000 1/948

Tumor < 0.0001 0.32 [0.21, 0.42] 0.34 [0.29, 0.40] 0.03 [0.00, 0.20] 0.20 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000

Ostracism < 0.0001 0.35 [0.25, 0.46] 0.35 [0.28, 0.42] 0.05 [0.00, 0.26] 0.11 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000

Self-Control < 0.0001 0.36 [0.26, 0.47] 0.28 [0.23, 0.32] 0.00 [0.00, 0.02] 0.97 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000

Misattribution < 0.0001 0.46 [0.36, 0.56] 0.34 [0.29, 0.39] 0.00 [0.00, 0.17] 0.44 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000

Fairness < 0.0001 0.47 [0.37, 0.56] 0.43 [0.36, 0.50] 0.06 [0.00, 0.29] 0.051 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000

Orientation < 0.0001 0.51 [0.42, 0.60] 0.55 [0.49, 0.60] 0.01 [0.00, 0.18] 0.39 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000

Worse < 0.0001 0.61 [0.51, 0.71] 0.39 [0.24, 0.53] 0.14 [0.07, 0.54] < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 1/1000 < 1/1000 < 1/1000 < 1/1000
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experiment found that forcing people to answer questions quickly made them give more socially de-
sirable answers (estimated standardized mean difference of 0.12 with 95% confidence interval from
0.01 to 0.22). The replication found an even larger pooled effect estimate (estimated standardized
mean difference of 0.16 with 95% confidence interval from 0.06 to 0.25). However, there was consid-
erable heterogeneity across the four replications (pQ = 0.017).

3 Notation and assumptions

Denote by θ̂o and σo the effect estimate of the unknown effect size θo and its standard error obtained
from the original study. Similarly, denote by θ̂r = (θ̂r1, . . . , θ̂rn)⊤ and σr = (σr1, . . . , σrn)⊤ the effect
estimates of the unknown effect sizes θr = (θr1, . . . , θrn)⊤ and their standard errors obtained from
n replication studies. Throughout, we will assume that effect estimates are normally distributed
around their unknown effect size with variance equal to their squared standard error, i.e.,

θ̂o | θo ∼ N1(θo, σ2
o ) and θ̂r | θr ∼ Nn{θr, diag(σ2

r )} (1)

with σ2
r = (σ2

r1, . . . , σ2
rn)

⊤ and Np(µ, Σ) denoting the p-variate normal distribution with mean µ and
covariance matrix Σ. For some effect size types a transformation may be required to make the nor-
mality assumption more accurate (for example, a log transformation for an odds ratio effect size). In
addition, denote by

θ̂r =
∑n

i=1 wri θ̂ri

∑n
i=1 wri

and σr =
1√

∑n
i=1 wri

(2)

the pooled replication effect estimate and standard error with weights wr = (wr1, . . . , wrn)⊤. There
are three typical cases for the weights: first, wri = σ−2

ri , which arises from a common-effect model

θr = θr1 = · · · = θrn, (3)

second, wri = (τ2 + σ2
ri)

−1, which arises from an additive heterogeneity model

θr | θr ∼ Nn{θr1n, τ2 diag(1n)} (4)

with 1n a vector of n ones and heterogeneity variance τ2 ≥ 0, and third, wri = (ϕσ2
ri)

−1, which arises
from a multiplicative heterogeneity model

θr | θr ∼ Nn{θr1n, (ϕ − 1)diag(σ2
r )} (5)

with heterogeneity multiplier ϕ > 0. For all three models, the likelihood of the replication effect
estimates (potentially marginalized over the study-specific effect sizes) can be written as

θ̂r | θr ∼ Nn{θr1n, diag(w−1
r )} (6)

with w−1
r = (w−1

r1 , . . . , w−1
rn )⊤, which is often the most useful form for derivations and computations.
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An important question is what value to choose for the heterogeneity parameters τ2 and ϕ. Fre-
quentist approaches typically plug in an estimate based on the data (see Veroniki et al., 2015; Baker
and Jackson, 2012, for an overview of available estimators), while full Bayes approaches specify a
prior for the respective parameter (Röver et al., 2021). Here, we will only consider the plug-in ap-
proach and outline generalizations to full Bayes approaches in the discussion.

4 Multisite generalization of the two-trials rule

The most commonly used criterion for replication success in the singlesite setting is to require that
both the original and the replication p-values (two-sided) are smaller than some threshold α, typically
α = 0.05, and that their effect estimates go in the same direction. Consistency of effect direction can
alternatively be accounted for by using one-sided p-values and halving the threshold, conventionally
α = 0.025. This criterion is also known as the two-trials rule in drug regulation and is typically
required for a new drug to be approved for sale on the market (Senn, 2007, Section 12.2.8).

Replication researchers have adapted the criterion to the multisite setting in two ways: (i) a meta-
analytic significance criterion, i.e., pooling the replications with meta-analysis and then computing a
meta-analytic p-value from the pooled estimate and standard error, typically assuming an additive
heterogeneity model, (ii) a vote counting criterion, i.e., computing the proportion of individual repli-
cation p-values that are significant in the same direction as the original one. While both approaches
seem intuitive, they are not the only possible way for generalizing the two-trials rule and come with
their own shortcomings. In particular, the vote counting approach has been criticized for being too
stringent since its power may decrease as the number of studies increases (Mathur and VanderWeele,
2020).

Rosenkranz (2022) and Held (2023) discussed various generalizations of the two-trials rule to
more than two studies in drug regulation, and these are equally applicable to the replication settings.
The idea is that a generalized method should not become more stringent as more studies are added,
as would be the case, for example, if the same level α were used to threshold each p-value. To achieve
this, Rosenkranz (2022) suggested that the type I error rate of the procedure should be controlled at
the same level as the two-trials rule for two studies, typically α2 = 0.0252 = 0.0625% for one-sided
p-values, even if there are more than two studies. Assuming that the original study was significant at
level α and that n replication studies are conducted, this can be achieved by using a level α1/n for the
thresholding of the replication p-values. An equivalent but perhaps easier to interpret approach is to
take the maximum of the n replication p-values raised to the power of n (pr = max{pr1, . . . , prn}n)
and compare it to the ordinary level α, since pr is a valid p-value with a uniform distribution under
the null hypothesis of no effect in all studies. Held (2023) called this approach the n-trials rule, and
he noted that it is only one of several possible methods for combining the p-values from replication
studies. There is a large literature on p-value combination methods (see, for example, Hedges and
Olkin, 1985, Chapter 3), and Table 2 gives several other methods. The p-value combination perspec-
tive also highlights that the commonly used meta-analytic criterion significance is only one possible
way of doing this, as it corresponds to Stouffer’s method using common-effect weights wri = 1/σ2

ri.
The obvious question to ask is which method is the most useful in the replication setting? This

depends on what properties the combined p-value should have. Mathematical texts have focused
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Table 2: Different methods for combining p-values pr = (pr1, . . . , prn)⊤ from n replication studies into an
overall replication p-value pr. The first example combines the one-sided p-values pr = (10−4, 2 × 10−4, 0.003,
0.005, 0.02, 0.05, 0.098, 0.17, 0.18, 0.2, 0.21, 0.23, 0.24, 0.27, 0.3, 0.39, 0.45, 0.49, 0.7, 0.79, 0.85, 0.95)⊤ from the
facial feedback replications (Wagenmakers et al., 2016), the second example combines the one-sided p-values
pr = (0.032, 0.096, 0.098, 0.24, 0.24, 0.3, 0.3, 0.33, 0.47, 0.48, 0.53, 0.57, 0.65, 0.66, 0.75, 0.77, 0.82, 0.91)⊤ from the
moral credentialling replications (Ebersole et al., 2016), and the third example combines the one-sided p-values
pr = (6.2 × 10−9, 0.0034, 0.014, 0.043)⊤ from the FSD replications (Protzko et al., 2020).

Method Combined replication p-value Ex. 1 Ex. 2 Ex. 3

n-trials rule pr = max{pr1, . . . , prn}n 0.21 0.32 7.7 × 10−5

Held pr = Pr(χ2
1 > h) with h = ∑n

i=1 n2/Φ−1(1 − pri)
2 0.16 0.22 5.9 × 10−6

Pearson pr = Pr(χ2
2n ≤ k) with k = −2 ∑n

i=1 log(1 − pri) 0.23 0.009 3.1 × 10−5

Edgington pr = 1 − 1
n! ∑⌊s⌋

k=0(−1)k(n
k)(s − k)n with s = ∑n

i=1 pri 0.41 0.001 3 × 10−5

Tippet pr = 1 − (1 − min{pr1, . . . , prn})n 0.82 0.004 1.9 × 10−8

Stouffer pr = 1 − Φ(zr) with zr =
∑n

i=1 Φ−1(1 − pri)
√

wri√
∑n

i=1 wri
0.7 3.7 × 10−5 4.1 × 10−8

Fisher pr = Pr(χ2
2n > f ) with f = −2 ∑n

i=1 log(pri) 0.62 3.4 × 10−5 1.4 × 10−9

on the optimality properties of admissibility and efficiency. A combination method is admissible if it
provides a most powerful test of a null hypothesis against some alternative (there may be multiple
most powerful tests), while efficiency quantifies how fast the evidence against the null hypothesis
grows with sample size. Based on these criteria, Stouffer’s, Tippet’s, and Fisher’s methods have
often been recommended, while Pearson’s and Edgington’s methods have been dismissed (Hedges
and Olkin, 1985; Hartung et al., 2008).

Held (2023) noted that inadmissible methods, such as the n-trials rule, Pearson’s, and Held’s
methods, may have desirable properties in settings such as drug development or replication stud-
ies because they require all studies to be convincing to some degree (making them inadmissible),
whereas Stouffer’s, Tippet’s, and Fisher’s methods do not. This can be formalized by the partial type
I error rate of a method which is related to the partial or no-replicability null hypothesis where only
some studies have a true null effect (Heller et al., 2014). It turns out that the n-trials rule, Held’s
method, Pearson’s method, and Edgington’s method control the partial type I error rate to some ex-
tent whereas for Fisher’s method, Stouffer’s method, and Tippets’s method there is no non-trivial
bound on the partial type I error rate (Micheloud et al., 2023; Held, 2023). While the n-trials rule con-
trols the partial type I error rate at level α for any number of studies, the number of studies influences
the partial type I error rate of the other methods.

The behavior of the different methods is illustrated by the examples in Table 2: In the first ex-
ample, the combined p-values are of the same order of magnitude across the different methods, as
these examples do not show too much heterogeneity in their p-values. In contrast, in the second
example there are several very convincing replications with very small p-values, but also quite a few
replications with large p-values. In this case, the n-trials rule and Held’s method lead to the largest
combined p-values, followed by Pearson, Edgington, and Tippet whose p-values are one order of
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magnitude smaller, followed by Stouffer and Fisher whose p-values are two orders of magnitude
smaller. A similar difference can be seen in third example, where the p-values from the Tippet, Stouf-
fer, and Fisher are several orders of magnitude smaller than the ones from the n-trials rule, Held,
Pearson and Edgington, although all of them are substantially below the conventional threshold of
α = 0.025.

The desire to quantify and account for p-value heterogeneity may be the intention of the vote-
counting approach used in some replication projects. Methods for combining p-values that control
the partial type I error rate may be principled ways to achieve this goal, although it is still an open
question as to which of these should be used as the default. An additional advantage of the p-value
combination perspective is that the only assumption is the validity of each individual p-value. A
p-value can be computed from an exact distribution, a bootstrap, or a permutation test, which are
typically used in situations with small sample sizes or rare events where traditional meta-analysis
methods often have poor performance due to their normality assumptions. Finally, one may want
not only a combined p-value, but also a combined estimate. In this case, replication p-values can
be calculated for different null hypotheses and the combined p-value can then be visualized as a
function of the null value (a p-value function, see, for example, Fraser, 2019; Infanger and Schmidt-
Trucksäss, 2019). The function can be cut at some level α and the null values with larger p-values
form a (1 − α) confidence set. Similarly, the null value(s) at which the curve peaks can be taken as
the point estimate(s). We will report on the details of this approach in future work.

5 Multisite generalization of the sceptical p-value

The sceptical p-value was introduced by Held (2020) as a replicability measure based on a reverse-
Bayes approach. The idea is to assume a common effect size θ underlying the original and replication
studies, and then to determine the variance of a zero-mean normal prior distribution for θ such
that the resulting posterior credible interval includes zero, thereby indicating no longer evidence
for an effect. This “sceptical” prior represents the position of a sceptic who does not believe in the
presence of a genuine effect. The aim of the replication study is then to prove the sceptic wrong
by showing that there is conflict between the replication data and the sceptical prior. The sceptical
p-value is a summary measure that quantifies the degree of conflict. In the following, we describe two
possible generalizations of the procedure when there is more than one replication study – a pooling
approach that first synthesizes the replication studies and then employs the singlesite procedure,
and a multivariate approach that takes into account the multivariate structure of the data. Both
approaches are illustrated in Figure 2.

5.1 Pooling approach

A first approach to generalizing the sceptical p-value is to pool the replication estimates and their
standard errors, and then apply the singlesite procedure. This “pooling” approach was suggested
by Held (2020) in the discussion of his article, and we will now describe it in more detail: Assume
that there is an effect size underlying both studies (θ = θo = θr) and determine the variance λ2 of
a zero-mean normal prior θ ∼ N1(0, λ2) such that the posterior of θ based on the original data no
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Figure 2: Shown are point estimates/means with 95% confidence/credible intervals. The original effect esti-
mate from the FSD experiment (Protzko et al., 2020) is challenged with a sceptical prior such that the resulting
posterior is no longer credible at level α = 5% (two-sided). The prior-predictive tail probability pBox quantifies
the conflict between the sceptical prior and the replication data. Replication success at level α is achieved if
pBox ≤ α. The smallest level at which replication success can be achieved defines the sceptical p-value pS. The
pooling approach (orange) assesses conflict between the pooled replication estimate and the sceptical prior,
whereas the multivariate approach (black) uses the joint distribution of the replication estimates.

longer provides evidence against a non-zero effect. That is, the variance is determined such that the
(1 − α) posterior credible interval just includes the value of zero, which can be derived to be

λ2
α =


σ2

o

z2
o/z2

α/2 − 1
if z2

o > z2
α/2

undefined else
(7)

where zo = θ̂o/σo and zα/2 is the (1 − α/2) quantile of the standard normal distribution. The pre-
dictive distribution of the pooled replication estimate under this sceptical prior is then θ̂r | λ2

α ∼
N1(0, σ2

r + λ2
α). A prior-predictive tail probability pBox is then defined as the probability of the set of

effect estimates with lower density than the observed replication effect estimate θ̂r under the prior-
predictive distribution (Box, 1980), which is given by

pBox = 2

{
1 − Φ

(
|θ̂r|√

λ2
α + σ2

r

)}
(8)

with Φ(·) the cumulative distribution function of the standard normal distribution. Held (2020) then
defined replication success at level α whenever pBox ≤ α, that is, if there is more conflict between
the sceptical prior and the replication data than there was evidence against the null hypothesis in the
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original study. Mathematically, this means we have replication success at level α when

θ̂2
r

(
σ2

o

z2
o/z2

α/2 − 1
+ σ2

r

)−1

≥ z2
α/2. (9)

Clearly, pBox depends on the level α. To remove this dependence, we can determine the smallest
level α at which the success condition (9) holds. The solution is the sceptical p-value

p′S = 2 {1 − Φ(|zS|)} (10)

where

z2
S =

z2
H/2 for c = 1{[

z2
A
{

z2
A + z2

H(c − 1)
}]1/2 − z2

A

}
/(c − 1) for c ̸= 1

with arithmetic mean z2
A = (z2

o + z2
r )/2 and harmonic mean z2

H = 2/(1/z2
o + 1/z2

r ) of the squared
z-statistics zi = θ̂i/σi for i ∈ {o, r}, and variance ratio c = σ2

o /σ2
r . A sceptical p-value p′S ≤ α is then

equivalent to replication success at level α.
Defined in this way, the sceptical p-value does not take the direction of the effect estimates into

account, and replication success may hence be achieved even if original and replication estimates go
in opposite direction. Held (2020) therefore defined a one-sided version through

pS =

1 − Φ(|zS|) if sign(θ̂o) = sign(θ̂r)

Φ(|zS|) if sign(θ̂o) ̸= sign(θ̂r),
(11)

which ensures that such a “replication paradox” (Ly et al., 2018) cannot occur.
The sceptical p-value in the form (11), called the nominal sceptical p-value, is not a proper p-value

with uniform distribution under a null hypothesis, and its interpretation can be challenging. To
address this, two calibrations have been developed, and both can also be applied to the pooling
version of the sceptical p-value: First, the golden sceptical p-value

pSg = 1 − Φ{Φ−1(1 − pS)
√

ϕ}

with ϕ = (1 +
√

5)/2 ≈ 1.62 the golden ratio. This calibration ensures that for an original study just
significant at level α, replication success at level α, i.e., pSg ≤ α, is only possible if the replication effect
estimate does not shrink compared to the original one, i.e., θ̂r/θ̂o ≥ 1 (Held et al., 2022). This cali-
bration hence takes into account effect shrinkage, which is often a serious concern in the replication
setting. Second, the calibrated sceptical p-value

pSc = Fc(pS)

with Fc a transformation that depends on the variance ratio c = σ2
o /σ2

r , and which ensures that pSc

has a uniform distribution under the null hypothesis H0 : θ = 0 (Micheloud et al., 2023). Calibrated
in this form, the sceptical p-value can be interpreted as an ordinary frequentist p-value.

10



Multisite generalizations of replicability measures S. Pawel, L. Held

5.2 Multivariate approach

Instead of pooling the replication effect estimates via (2) and then applying the singlesite sceptical
p-value procedure we will now generalize the procedure to use the multivariate likelihood (1) for
the replication effect estimates. As before, assume that the same effect size underlies both studies
(θ = θo = θr), and in addition one of the three replication effect size models (common-effect, additive
heterogeneity, multiplicative heterogeneity) with appropriate weights vector wr so that marginally
the likelihood is

θ̂r | θ ∼ Nn{θ1n, diag(w−1
r )}.

The prior predictive distribution of θ̂r based on the sceptical prior for θ with sufficiently sceptical
prior variance λ2

α from (7) is then given by

θ̂r | λ2
α ∼ Nn{01n, Σr = diag(w−1

r ) + λ2
αJn}

where Jn = 1n1⊤n denotes an n × n matrix of ones. The replication effect estimates are now correlated
(i.e., the off-diagonal of Σr is non-zero), because all replication effect estimates share the same prior
for θ. Box’s tail probability pBox is defined as the probability of the set of effect estimates with lower
density than the observed replication effect estimates θ̂r, i.e.,

pBox = Pr
{

Nn (01n, Σr) ≤ Nn
(
θ̂r | 01n, Σr

)}
= Pr

{
χ2

n > T(θ̂r)
}

with χ2
n a chi-squared random variable with n degrees of freedom and test-statistic

T(θ̂r) = θ̂
⊤
r Σ−1

r θ̂r (12)

=
n

∑
i=1

wri (θ̂ri − θ̂r)
2 +

θ̂2
r

λ2
α + σ2

r
(13)

and where θ̂r and σr are the pooled replication estimate and its standard error from (2), see Ap-
pendix A for a proof. We see that the test-statistic (13) consists of two terms. The first term is the
generalized Q-statistic

Q =
n

∑
i=1

wri (θ̂ri − θ̂r)
2 (14)

and it quantifies the heterogeneity among the effect estimates, reducing to the ordinary Cochrane’s Q
statistic with common-effect weights (wri = 1/σ2

ri). More heterogeneous estimates than what would
be expected under the sceptical prior lead to larger Q, and thereby increase the degree of prior-data
conflict. The second term quantifies how much the pooled replication effect estimate is different from
zero, larger values indicating more prior-data conflict.

As in the singlesite case, we define replication success at level α when

pBox ≤ α

11
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and want to find the smallest value at which replication success can be established, the sceptical
p-value

p′S = inf {α : pBox ≤ α} . (15)

Plugging the expression for the sceptical prior variance (7) into (13), we see that replication success
at level α is achieved when

T(θ̂r) = Q + θ̂2
r

(
σ2

o

z2
o/z2

α/2 − 1
+ σ2

r

)−1

≥ χ2
n(1 − α) (16)

with χ2
n(1 − α) the (1 − α) quantile of the chi-squared distribution with n degrees of freedom. Com-

paring the success condition from the pooling approach (9) with the success condition from the mul-
tivariate approach (16), we see that the latter differs through the addition of the Q-statistic and a
different reference quantile (with n rather than one degrees of freedom). When only one replication
is conducted (n = 1), we have that Q = 0 and χ2

1(1 − α) = z2
α/2, and can therefore obtain the closed-

form solution for the sceptical p-value from (10). When more than one replications are conducted
(n > 1), this is not possible anymore with the multivariate approach, but a solution can nevertheless
be obtained numerically.

The test-statistic T(θ̂r) does not directly take the direction of the replication effect estimates θ̂r

into account. This means that the sceptical p-value may indicate a large degree of replication success
despite that the replication effect estimates go in opposite direction of the original effect estimate.
Taking into account effect direction for computing p-values in multivariate settings is not as straight-
forward as in the univariate setting (Follmann, 1996). A pragmatic choice is to only look at the effect
direction of the pooled replication effect estimate θ̂r and define a one-sided sceptical p-value by

pS =

p′S/2 if sign(θ̂r) = θ̂o

1 − p′S/2 if sign(θ̂r) ̸= θ̂o

with p′S the non-directional sceptical p-value (15). This choice reduces to the singlesite one-sided
sceptical p-value when n = 1.

Table 1 shows the one-sided sceptical p-values for the example replications calculated using both
the pooling and multivariate approaches. For two studies, the multivariate version is slightly smaller
than the pooling version. For example, in the “Redemption” study, the multivariate sceptical p-value
(pS = 0.84) is slightly smaller than the pooling version (pS = 0.87), although both indicate hardly
any replication success. The same is also true for the “Misreporting” study. For the remaining sixteen
studies, the multivariate version is larger than the pooling version, leading to a more conservative
assessment of replicability.

Again, it may be desirable to calibrate the sceptical p-value, either to an ordinary frequentist
p-value or via the relative effect size as discussed at the end of Section 5.1. However, the fact that
the sceptical p-value under the multivariate approach is not available in closed-form complicates the
derivation of both calibrations. One brute-force way to obtain a frequentist calibration is to simulate
original and replication effect estimates under the null hypothesis of no effect (θo = θr = 0) with
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the same standard errors as the observed ones, calculate sceptical p-values from them, and then
calibrate the actually observed sceptical p-value against its simulated null distribution. In contrast,
it is conceptually less clear how to generalize the relative effect size calibration to the multivariate
setting: There is more than one replication effect estimate, so in principle there are n relative effect
sizes to consider. One approach would be to consider only the relative effect size based on the pooled
replication effect estimate θ̂r. Furthermore, the condition for replication success (16) depends not only
on the relative effect estimate(s) and standard error(s), but also on the number of studies n and the Q-
statistic. For a given n and Q, a monotone transformation of the sceptical p-value may be determined
numerically, which ensures that replication success at level γ is only possible if the pooled replication
estimate does not shrink compared to an original estimate that is just significant at the same level.
However, this transformation will be different for each n and Q, and may perhaps confuse rather
than help.

6 Multisite generalization of Bayes factor methods

Several Bayes factor based methods have been proposed to quantify replicability, for example, default
Bayes factors (Verhagen and Wagenmakers, 2014), replication Bayes factors (Verhagen and Wagen-
makers, 2014; Ly et al., 2018; Harms, 2019) or sceptical Bayes factors (Pawel and Held, 2022). Pawel
et al. (2023) illustrated how the replication Bayes factor may be generalized to the multisite setting
under an additive heterogeneity model, but neither of these methods have been extended to the
multisite setting considered here. Researchers have rather applied singlesite default and replication
Bayes factors to each replication study and then counted how many of them indicated non-anecdotal
evidence for either the null hypothesis or the alternative (Wagenmakers et al., 2016). In the fol-
lowing, we illustrate how possible generalizations may be made within the framework of normally
distributed effect estimates.

6.1 The default Bayes factor

The default Bayes factor approach is similar to the two-trials rule in the sense that the evidence for
the null hypothesis H0 : θ = 0 against the alternative H1 : θ ̸= 0 is assessed independently in the
original study and its replication(s), but using Bayes factors instead of p-values. Replication success
is established if all Bayes factors indicate convincing evidence for the alternative H1. Typically, the
classification from Jeffreys (1961) is used, e.g., a Bayes factor BF01 < 1/3 indicates substantial ev-
idence and a Bayes factor BF01 < 1/10 indicates strong evidence against the null hypothesis. The
Bayes factor is called “default” because it uses a “default prior distribution” that has certain objec-
tive Bayes properties (Bayarri et al., 2012) and is not informed by external knowledge, for example,
a standard Cauchy or a unit-information normal distribution (Kass and Wasserman, 1995). Here,
we examine default Bayes factors based on normal priors because they are intuitive to interpret and
specify, are available in closed-form, and are not too different from Bayes factors based on Cauchy
priors in typical situations.

For original (i = o) or replication data (i = r), consider the default Bayes factor for testing
H0 : θi = 0 against H1 : θi ̸= 0 with normal prior θi | H1 ∼ N1(µ, λ2) truncated to the interval a ≤ θi ≤ b
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assigned to the underlying effect size θi under the alternative H1. Two-sided alternatives are ob-
tained with (a ↓ −∞, b ↑ +∞) whereas one-sided alternatives are obtained with (a = 0, b ↑ +∞) or
(a ↓ −∞, b = 0). Using the result from Appendix B, the Bayes factor can be derived in closed-form

BF01(θ̂i) =
f (θ̂i | H0)

f (θ̂i | H1)
=
√

1 + λ2/σ2
i × exp

[
−1

2

{
θ̂2

i
σ2

i
− (θ̂i − µ)2

σ2
i + λ2

}]
×
{

Φ
( b−µ

λ

)
− Φ

( a−µ
λ

)}{
Φ
( b−µ′

λ′
)
− Φ

( a−µ′

λ′
)} (17)

with updated variance (λ′)2 = (λ−2 + σ−2
i )−1, updated mean µ′ = (θ̂σ−2

i + µλ−2)(λ′)2, and, in case
of the replication data, θ̂r and σr the pooled replication effect estimate and standard error from (2).
Remarkably, the same Bayes factor (17) is obtained regardless of whether the replication effect esti-
mates θ̂r and standard errors σr are first pooled into θ̂r and σr, or whether the full vector-valued data
are used directly to compute the Bayes factor. Thus, there is no difference between a “pooling” and a
“multivariate” approach as there is for the sceptical p-value.

6.2 The replication Bayes factor

In contrast to the default Bayes factor, the replication Bayes factor uses the posterior distribution
of θ based on the original data (assuming a common effect size underlying original and replication
studies) as prior under the alternative HA : θ ∼ f (θ | θ̂o), with the subscript A denoting advocacy, as
the prior should represent the position of an advocate of the original finding. Based on an initial flat
prior for θ, the posterior is a normal distribution θ ∼ N1(θ̂o, σ2

o ) which may similarly be truncated to
an interval a ≤ θ ≤ b as the default Bayes factor to account for effect direction. The replication Bayes
factor is hence a special case of the default Bayes factor (17) with µ = θ̂o and λ = σo, i.e.,

BFR = BF0A(θ̂r) =
√

1 + σ2
o /σ2

r × exp

[
−1

2

{
θ̂2

r
σ2

r
− (θ̂r − θ̂o)2

σ2
r + σ2

o

}]
×
{

Φ
( b−θ̂o

σo

)
− Φ

( a−θ̂o
σo

)}{
Φ
( b−µ′

λ′
)
− Φ

( a−µ′

λ′
)} (18)

with updated variance (λ′)2 = (σ−2
r + σ−2

o )−1 and updated mean µ′ = (θ̂rσ−2
r + θ̂oσ−2

o )(λ′)2. The
alternative is either two-sided (a ↓ −∞, b ↑ +∞) or one-sided in the direction of the original effect es-
timate, e.g., (a = 0, b ↑ +∞) for a positive original effect estimate. As for the default Bayes factor, the
same replication Bayes factor is obtained regardless of whether a pooling or multivariate approach
is used.

6.3 The sceptical Bayes factor

The sceptical Bayes factor was proposed by Pawel and Held (2022) as a Bayes factor analog to the
sceptical p-value. The idea is similar: first, one determines a sceptical prior such that the original
data no longer provide evidence against a null hypothesis, second, one assesses the conflict between
the sceptical prior and the replication data, the more conflict, the larger the degree of replication
success. In contrast to the sceptical p-value, however, Bayes factors instead of tail probabilities are
used for quantifying evidence and prior-data conflict. We will now outline how the procedure can
be generalized to the multisite setting.

In a first step, the original estimate θ̂o with standard error σo is used to compute the Bayes fac-

14



Multisite generalizations of replicability measures S. Pawel, L. Held

tor (17) with sceptical prior θ | H1 ∼ N1(0, λ2) under the alternative. The variance λ2
γ of the prior is

then determined such that the Bayes factor no longer indicates evidence against the null hypothesis
at level γ (i.e, such that BF01(θ̂o) = γ), which can be derived in closed-form

λ2
γ =

−σ2
o

(
z2

o
q
+ 1
)

if − z2
o

q
≥ 1

undefined else
(19)

where q = W−1

{
− z2

o
γ2 exp

(
−z2

o
)}

with W−1(·) the branch of the Lambert W function (Corless et al., 1996) that satisfies W(y) ≤ −1 for
y ∈ [−e−1, 0), see Appendix A in Pawel and Held (2022) for details.

In a second step, the replication effect estimates θ̂r and standard errors σr are used to contrast the
evidence for the sceptic’s hypothesis HS : θ ∼ N1(0, λ2

γ) to the advocate’s hypothesis HA : θ ∼ f (θ | θ̂o)

with potential truncation of the prior a ≤ θ ≤ b. Using the result from Appendix B, the Bayes factor
can be derived to be

BFSA(θ̂r) =

√
σ2

r + σ2
o

σ2
r + λ2

γ

× exp

[
−1

2

{
θ̂2

r
σ2

r + λ2
γ

− (θ̂r − θ̂o)2

σ2
r + σ2

o

}]
×
{

Φ
( b−θ̂o

σo

)
− Φ

( a−θ̂o
σo

)}{
Φ
( b−µ′

λ′
)
− Φ

( a−µ′

λ′
)} (20)

with pooled replication effect estimate θ̂r and standard error σr from (2), and updated variance
(λ′)2 = (σ−2

r + σ−2
o )−1 and mean µ′ = (θ̂rσ−2

r + θ̂oσ−2
o )(λ′)2. Replication success at level γ is then

defined as when the Bayes factor (20) is less than or equal to γ, i.e., BFSA(θ̂r) ≤ γ, since then there is
at least as much evidence for the advocate over the sceptic as there was evidence against the null hy-
pothesis. Similar to the sceptical p-value, the sceptical Bayes factor BFS is the smallest level at which
replication success can be established. Apart from the special case of equal original and replication
standard errors (σo = σr), there is no closed-form solution, but the sceptical Bayes factor must be
determined numerically. However, since both pooling and multivariate approaches lead to the same
Bayes factor (20), the singlesite implementation of the sceptical Bayes factor can be conveniently ap-
plied to the pooled replication estimates for this purpose.

6.4 Comparison of Bayes factors on running examples

Table 1 shows default, replication, and sceptical Bayes factors for the example replication studies.
We see that the default Bayes factor BF01(θ̂r) and the replication Bayes factor BFR most of them time
agree, at least qualitatively. On the other hand, the sceptical Bayes factor BFS indicates in all cases
a smaller degree of replication success, and is even nonexistent in three replication studies as these
are so unconvincing such that replication success cannot be established at any level. In this case, the
default and the replication Bayes factor indicate evidence for the null hypothesis, e.g., in the “Facial
feedback” study. Interestingly, Wagenmakers et al. (2016) also conducted a Bayes factor analysis for
the “Facial feedback” replications with the conclusion:

“16 replication Bayes factors provide evidence in favor of the null hypothesis, and 12 do
this in a nonanecdotal manner (i.e., [BFR > 3]). As before, these Bayes factors are not
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independent and hence may not be multiplied.” (Wagenmakers et al., 2016, p. 923)

Our replication Bayes factor of BFR = 38 agrees with this conclusion, indicating strong evidence for
the null hypothesis, but does so using all replication studies simultaneously.

7 Discussion

We have shown how several singlesite replicability measures – the two-trials rule, the sceptical
p-value, and the default/replication/sceptical Bayes factor – can be generalized to the multisite set-
ting. In the case of the Bayes factor methods, it turns out that it is as simple as applying the singlesite
procedure to a pooled estimate, even when the multivariate structure of the data is taken into ac-
count, whereas for the two-trials rule and the sceptical p-value this is not so straightforward.

We have not considered a full Bayesian approach with a prior on the heterogeneity parameters.
Such an approach could potentially increase the efficiency of the methods, especially in scenarios
with only few replication studies, but at the cost of losing closed-form expressions for marginal like-
lihoods, and additional complexity in specifying the prior hyperparameters.

An important aspect is the design of new replication studies, in particular their sample size de-
termination. Hedges and Schauer (2021) and Pawel et al. (2023) have developed frequentist and
Bayesian approaches, respectively, for doing so. Since the approach from Pawel et al. (2023) requires
only the “success region” of the replication effect estimate(s), it can be readily applied to the multisite
generalizations discussed in this paper.

Software and data

The three data sets used in this study were extracted from the supplementary material of Protzko
et al. (2020, https://osf.io/42ef9/), Figure 4 in Wagenmakers et al. (2016), and in the case of
the Ebersole et al. (2016) data from Mathur and VanderWeele (2020, https://osf.io/36ed5/) who
reanalyzed the same data set. All analyses were conducted in the R programming language ver-
sion 4.3.1 (R Core Team, 2020). The code and data to reproduce our analyses is openly available at
https://doi.org/10.5281/zenodo.8379956.
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Appendix A Decomposition of the test-statistic

By using the Sherman-Morrison formula, we can write the inverse of the prior predictive covariance
matrix Σr as

Σ−1
r =

{
diag(w−1

r ) + λ2
α1n1⊤n

}−1

= diag(wr)−
diag(wr)λ2

α1n1⊤n diag(wr)

1 + λ2
α1⊤n diag(wr)1n

= diag(wr)−
wrw⊤

r

λ−2
α + σ−2

r

with σr the pooled standard error from (2). Hence, the test-statistic T(θ̂r) is

T(θ̂r) = θ̂
⊤
r Σ−1

r θ̂r

= θ̂
⊤
r diag(wr)θ̂r − θ̂

⊤
r

wrw⊤
r

λ−2
α + σ−2

θ̂r

=
n

∑
i=1

wri θ̂
2
ri −

(
n

∑
i=1

wri θ̂
2
ri

)2
1

λ−2
α + σ−2

r
. (21)

Using the fact that we can decompose

n

∑
i=1

wri θ̂
2
ri =

n

∑
i=1

wri(θ̂ri − θ̂r)
2 +

θ̂2
r

σ2
r

and that

n

∑
i=1

wri θ̂ri = θ̂r

n

∑
i=1

wri =
θ̂r

σ2
r

with θ̂r the pooled estimate of the replication effect estimates from (2), the test-statistic (21) can be
written as

T(θ̂r) =
n

∑
i=1

wri(θ̂ri − θ̂r)
2 +

θ̂2
r

σ2
r

(
1 − 1

1 + σ2
r λ−2

α

)
=

n

∑
i=1

wri(θ̂ri − θ̂r)
2 +

θ̂2
r

λ2
α + σ2

r
.

Appendix B Marginal likelihood under a truncated normal prior

Assume the data are given by effect estimates θ̂ = (θ̂1, . . . , θ̂n) with variances w−1 = (w−1
1 , . . . , w−1

n )

and a likelihood θ̂ | θ ∼ Nn{θ1n, diag(w−1)}. In addition, assume a hypothesis Hk that assigns a nor-
mal prior θ | Hk ∼ N1(µ, λ2) truncated to the interval a ≤ θ ≤ b to the underlying effect size θ. Using
straightforward but tedious algebraic manipulations, the marginal likelihood of θ̂ under hypothesis
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Hk can be derived to be

f (θ̂ | Hk) =
∫

f (θ̂ | θ) f (θ | Hk)dθ

=
∫ b

a
Nn{θ̂ | θ1n, diag(w−1)}N1(θ | µ, λ2)

{
Φ
(

b − µ

λ

)
− Φ

(
a − µ

λ

)}−1

dθ

=

√
∏n

i=1 wi

(2π)n

{
Φ
(

b − µ

λ

)
− Φ

(
a − µ

λ

)}−1 ∫ b

a
exp

[
− 1

2

{ n

∑
i=1

wi(θ̂i − θ)2

︸ ︷︷ ︸
=Q+σ−2(θ̂−θ)2

}]
N1(θ | µ, λ2)dθ

=

√
∏n

i=1 wi

(2π)n exp
(
−Q

2

)√
2πσ2︸ ︷︷ ︸

=K(Q)

{
Φ
(

b − µ

λ

)
− Φ

(
a − µ

λ

)}−1 ∫ b

a
N1(θ̂ | θ, σ2)N1(θ | µ, λ2)dθ︸ ︷︷ ︸

=N1(θ̂ | µ,σ2+λ2)×
{

Φ
(

b−µ′
λ′

)
−Φ
(

a−µ′
λ′

)}
= K(Q)× N1(θ̂ | µ, σ2 + λ2)×

{
Φ
( b−µ′

λ′
)
− Φ

( a−µ′

λ′
)}{

Φ
( b−µ

λ

)
− Φ

( a−µ
λ

)}
with pooled variance σ2 = (∑n

i=1 wi)
−1, pooled estimate θ̂ = (∑n

i=1 wi θ̂i)σ
2, generalized Q-statistic

Q = ∑n
i=1 wi(θ̂i − θ̂)2, updated variance (λ′)2 = (λ−2 + σ−2)−1, and updated mean µ′ = (θ̂σ−2 +

µλ−2)(λ′)2.
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