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Abstract

In this paper we attempt to apply foundational models in computer vision to the

problem of audio source separation. Focusing on separating a foreground sound from

a mixture, we attempt to leverage the strong feature learning capabilities of these

models to perform image segmentation on audio spectrograms. Using an augmented

version of the FSD50k dataset, we first asses the new models DINOv2 and the SAM

(Segment Anything Model) in a zero-shot transfer learning scenario, then under

different fine-tuning methods. We hope to find state-of-the-art performance.

Keywords: Audio Source Separation; Transfer Learning; Foundational Models; Im-

age Segmentation; Deep Learning





Chapter 1

Introduction

The aim of this thesis is to explore the possibilities of new foundation models in

computer vision applied to the domain of audio source separation.

In the earlier days of machine learning, models were typically trained from scratch for

each new task, which requires large amounts of task-specific data and computational

resources. This began to change in the late 2010s when transfer learning, the act

of applying a model trained for one task to a distinct but related task, started to

become possible.[1][2][3]

Around the same time, models began to grow significantly in size as researchers

found that model performance often improved with increasing the amount of train-

ing data, model depth (number of layers), and/or width (number of channels, or

neurons). [4][5][6] The latest manifestation of this progression is that certain models

are being trained with a more general purpose on datasets which are equally gen-

eral, and as a result, vast. We call these new types of models Foundational Models.

The term can be applied generally to any number of AI systems which are trained

on a very large amount of data, usually using self-supervision at scale, and often

boasting creative training data pipelines as their main innovation, rather than a

model architectural improvement. Further discussion of the topic will be found in

the State of the Art chapter.

1
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1.1 Motivation

Deep learning is a very cross-disciplinary field, where discoveries in one field of

study can often have implications in many others. Case in point, the original U-Net

architecture[7] was originally developed for the specific task of biomedical image

segmentation, but was quickly adapted by the research community to tackle satel-

lite and aerial image segmentation [8], super resolution imaging[9], image-to-image

translation[9], denoising and image restoration[10], and of course music source sep-

aration with Open-Unmix[11] and Wave-U-Net[12].

The models which we adapt in this work also have shown cutting edge performance

in image segmentation, and so the idea was born to follow in the same vein as the

above research to apply them toward source separation.

Intuitively, the task of image segmentation is bears similarities to audio source sep-

aration - in the sense that the task can be reduced to differentiating one "thing"

from another "thing" which is represented in some data. That data can be visual

or sonic or otherwise, but as long as they can be represented digitally, then we can

turn to Deep Learning to find complex patterns therein, specifically in this work we

deal with Vision Transformers.

1.2 Objectives

The objective of this thesis is to assess the performance of some of these new foun-

dation models in computer vision in a zero-shot, few-shot, and more-shot transfer

learning scenario for audio source separation.

1.3 Structure of the Report

First, we will provide an overview of the field of audio source separation in the State

of the Art chapter, including an introduction to the models DINOv2 and SAM that

will be the backbone that this work attempts to add to. This is followed by a

detailed discussion of how these models are adapted to an audio source separation
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task in the Architecture chapter. The data we will use to train, test, and verify the

resulting source separation models is then discussed in the Datasets chapter. The

training and verification procedure is detailed in the Experiment Setup chapter, the

results are then presented in the following chapter, and the paper is finished off by

a discussion of the whole work.



Chapter 2

State of the Art

This section is to give an overview of the field of source separation, emphasizing

its application to audio, as well as touching upon the emerging area of foundation

models.

As it is a very rich field of research, this is necessarily an incomplete summary of it,

as to do a more exhaustive one would require a book length review. The structure

of it reflects my own personal study path - starting in ignorance, and hopefully

ending in some sort of mastery. In that vein, it contains perhaps more historical

and introductory material than is usual for a State of the Art, but I’ve tried to

not make it too silly. I’ve tried to keep the structure of this work narrative in a

conceptual level so that one part follows from the preceding. Often, this means

chronological with the emerging research, but sometimes not.

2.1 A brief overview of source separation

A familiar way to introduce the problem of source separation is in the context of

speech. The “cocktail party effect,” first described by Cherry in 1953[13], is the

ability of the audio cognitive system to focus on a single conversation out of many,

as would often happen during a 1950s cocktail party. Extend this idea to general

audio environments, and you have defined Audio Source Separation. A. S. Bregman

4
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described the psychoacoustic function of taking sensory input and deriving a use-

ful representation of reality from it in his 1990 book Auditory Scene Analysis[14].

Attempts to perform the same with computational methods followed the deepening

understanding of these capabilities. The first attempts focused on extracting se-

mantic features from mixed sources [15], but soon extended to the general problem

of deconstructing an audio scene into its constituent waveforms.

Put mathematically, the question assumes the existence of n independent signals

s1(t), ..., sn(t) and the observation of some number mixtures x1(t), ..., xm(t) , with

these mixtures being linear and instantaneous, i.e. xi(t) =
∑m

j=1 αjsj(t) for each

i ∈ [1, ..., n], αj ∈ R. The goal of source separation is to estimate each sj(t) given

each observation xi(t), and perhaps some a priori information about the set of sj(t).

2.2 Filtering

One way of viewing the problem of source separation is to view it as an act of

filtering. Using the notation from above, a filtering operation is simply a function

Fj, which applied to a mixture signal Fj(xi(t)) = ŝj(t) produces an estimation of

a source signal. For example, a model can learn to separate vocals from a mixture

by applying a learned time varying filter. The performance of the separation can be

then quantified by comparing a known source sj(t) and its estimation ŝj(t).

2.3 Blind source separation

The problem of recovering signals from mixtures with only partial knowledge of

the original signals and of the mixing process is known as blind source separation,

or BSS. The simplest BSS model assumes the existence of n independent signals

s1(t), ..., sn(t) and the observation of as many mixtures x1(t), ..., xn(t) . The mixing

equation is then x(t) = As(t) where s(t) = [s1(t), ..., sn(t)]
T is a n×1 column vector

of the source signals. The vector x(t) collects similarly the n observed signals, and

the square n× n “mixing matrix” A contains the mixing coefficients. [16]

Independent Component Analysis (ICA) is an early example of this attempt to
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separate a multivariate signal into its components. It attempts to decompose a

mixture into statistically independent signals, according to a specific non linear

measure of independence. With only access to samples of a mixture of distributions,

there are many ways to estimate the level of independence [17][18][19]

There are different criteria for independence and various optimization algorithms

that fit within the family of ICA, but each of them require the mixture to be “over-

determined”, meaning that there are at least as many mixtures as the number of

sources it seeks to identify. The problem of separating sound sources from a single

mixed input quickly became a major focus in the field of source separation.[20], in

his paper One Microphone Source Separation, describes a method that leverages the

fact that real life audio comes from a specific distribution instead of any possible one,

and so by modeling waveforms’ distribution, one can extract a likely combination

of sources. The approach, which he calls refiltering, uses hidden markov models

(HMM) to claim ownership of each time-frequency bin of the amplitude spectrum,

creating binary masks of it for each source, which can be used to filter the mixture

to recover the sources.

2.4 Image segmentation

This leads us nicely into the realm of image segmentation, which is precisely where

we will end up later in this thesis. In Bach and Jordan’s 2005 paper Blind one-

microphone speech separation: A spectral learning approach, the researchers use fea-

tures adapted from psychoacoustics to train an image segmenter specific to speech[21].

Some of the features, for example, are “common fate” cues (“elements that exhibit

the same time variation are likely to belong to the same source”); timbre; and spec-

tral clustering. These features are, however, hard-coded instead of learned directly

from the training data, which is a limitation.

The crux of applying image segmentation in source separation is that it converts

the separation problem into one of classification: Yilmaz and Rickard noted in 2004

that if the ideal mask is known, then applying a binary mask with coefficients in
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{0, 1} to the amplitude spectrogram, followed by using the input phase to recon-

struct the waveform from each source image yields convincing results.[22] Reddy

and Raj refined this approach in 2007 by using a soft mask, using real coefficients

in the interval [0, 1], which is appropriate in many real-world cases where sources’

frequencies overlap.[23]

2.5 Matrix Decomposition

Similar to this is Non-negative Matrix Factorization (NMF), initiated by Paatero

& Tapper in the 1990s[24] but carried on by Lee and Seung in 2001, who coined

the term itself[25]. The decomposition is into two matrices: one a set of bases, and

the other of weights. The technique was applied successfully to a variety of prob-

lems, but Smaragdis pointed out that an extension of NMF applied to time series

could be useful for source separation for single channel inputs.[26] Using the fact

that power spectra are strictly non-negative, you can approximate it as a product

of two non-negative matrices: the bases effectively a dictionary of base spectral pat-

terns corresponding to sources, and the other the time weighting of the dictionary

entries. Sources with complex spectral patterns, however, end up spanning more

than one base. “In the case of music signals, each component usually represents a

musically meaningful entity or parts of it, so that different entities are represented

with different components. The entities can be for example the sounds produced by

a percussive instrument or all equal-pitched notes of a pitched musical instrument.

This representation is enabled by the spectral structure of musical sounds, which is

usually rather static over time compared to speech signals, for example.”[27] NMF

can compute the weights for a given amplitude spectrum over the set of sources, and

separation is done through a variety of manners. One, as described in Virtanen[27],

for example, is by factoring the spectrogram of the input signal into its bases, and

then grouping them into the individual sources to reconstruct each source individu-

ally by choosing its correct set of bases and weights. An important assumption that

is made, here, is that sound sources add linearly in the time domain when they are

mixed.
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2.6 Supervised source separation

One way of dealing with the issue of complex sound is through using supervised

data: if recordings of individual sources are available, then the model can determine

the set of bases for each source during training, which greatly simplifies the matter.

2.7 Source separation metrics

Supervised data also allows for objective metrics to assess a source separation sys-

tem’s performance. Thanks to the work of Schoben et .[28], and Vincent et al. [29],

there are a few standard metrics for relative amounts of distortion, interference and

artifacts, but the two main metrics are Signal to Distortion Radio (SDR) and Signal

to Interference Ratio (SIR), with the first measuring the quality of the reconstruc-

tion, and the second quantifying the amount of leakage from other sources to a

separated source.

2.8 Evaluation campaigns

Vincent et al organized the first evaluation campaign for audio source separation,

where thirteen research teams submitted algorithms to set against each other using

a dataset of 10 second audio clips.[30] The most recent SiSEC took place in 2018[31].

In the 2007 campaign, the main focus of the field was with NMF or ICA; whereas

in 2018 deep learning techniques had taken over.

2.9 Deep Neural Nets

The SiSec 2018 campaign had 30 systems submitted, and all of them were deep

learning systems. The state of the art, from here on, consists of many such systems,

and whenever a new one is discovered, the likely outcome is on its name ending

with “-Net”. For example, Uhlich et al. 2015 used a deep neural network to extract

instruments from a mixture only with knowledge of the instrument types that are

present in the mixture.[32] The DNN was trained on data from a database of solo
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instrument performances.

2.10 The problem with the STFT

As of 2018, most audio source separation methods rely on spectrogram representa-

tions of the audio signals. It is a convenient representation for a number of reasons:

for example, it allows for direct access to time and frequency components; there are

fast algorithms to compute it (STFT and its inverse); the resulting two-dimensional

data can borrow from work in image processing to apply it directly to audio. How-

ever, there are shortcomings as well. Firstly, the STFT itself is dependent on various

parameters which affect the temporal and frequency resolution of the spectrogram,

namely the window type, the window size, the FFT size, and hop size. The choice

of these parameters is dependent on both the nature of the sound and the intended

goal (e.g. frequency or time discrimination), therefore subtle changes in them can

have profound effects on the quality of analysis and synthesis, and therefore the

quality of separation and its metrics. It is not common to see reasoning for selec-

tion of the STFT parameters in papers, though they might warrant a mention in

a section mentioning how certain parameters are tuned. A solution to this, used

by Venkataramani and Smaragdis in their work investigating how to do end-to-end

source separation, was to have the transform from the waveform delegated to its

own neural network: an auto-encoder neural network that can act as an equivalent

to short-time front-end transforms.[33] This approach tries to kill two birds with

one stone: instead of using the complex valued Discrete Fourier Transform (DFT),

it uses the real valued Discrete Cosine Transform (DCT).

2.11 The problem of phase

How to treat phase information in separation tasks is a complicated issue. On one

hand, Human hearing is relatively indifferent to phase, and many of the matrix de-

composition methods of source separation rely on the assumption that sounds add

linearly in the time domain. But, in reality, sounds interfere with each other when

mixed. In other words, phase is crucial. The output of the STFT is a complex num-
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ber, and while most of the information that is used to distinguish between sounds

lies in the amplitude of the complex value, the phase is crucial to synthesize realistic

audio. The phase is also very unpredictable for real world sources. Below, figure 1

is the magnitude and phase spectrogram of a recording of a cello, and figure 2 that

of a recording of a human voice singing. As you can see, the phase spectrum simply

looks ‘noisier’ than the magnitude spectrum, which is reflected in the difficulty in

selecting characteristic features of the phase for discrimination purposes. A logical

question would therefore be: what about deep learning models? Could they learn

something that the human eye cannot in the data? The performance of state-of-the-

art source separation models have improved to the point that the noisy phase has

now become a limiting factor. In fact, when measuring performance through SNR,

beyond a certain point, improving the magnitude estimate may lead to worse results

when combining it with a noisy phase - for example if the noisy phase is opposite

to the correct phase, it simply cancels the contribution of the frequency.[34]

Some researchers have taken phase into account in various ways, to varying degrees

of success [35],[36][34]
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Figure 1: A bowed cello phrase (source: author)

Figure 2: A human-sung phrase (source: author)

2.12 Denoising convolutional auto-encoders

An interesting application of neural networks is the case of the autoencoder, which

finds an efficient coding (and hopefully decoding) of its input data. Effectively, it

reduces the dimensionality of input data in the latent space of the model One way

of seeing this reduction of dimensionality is that it is a sort of ‘widening’ of a field of

view. It is an important idea in deep learning architectures which seek to learn fea-

tures of data on both a small and large scale. (Akin to the evolution from Recurrent

Neural Networks (RNNs) to Long-Short Term Memory (LSTM) networks to preserve

temporal information in sequential data.) Coming back to audio, in the special case

of singing voice extraction, convolutional encoder-decoder architectures have been

explored. Chandna, Miron, Janer, & Gómez’ paper Monaural Audio Source Separa-

tion Using Deep Convolutional Neural Networks from 2017 uses such a framework,

and was competitive although not best-in-class.[37] Similarly, Grais & Plumbley did
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so using a conditional denoising auto-encoder trained on each source.[38]

Figure 3: architecture of one CDAE, which separates one source, source: Grais &
Plumbley (2017)[38]

2.13 Waveform based source separation

One solution to the limitations of using spectrograms in source separation is to

bypass them completely, and operate on the raw audio waveform level. Waveforms

are high-dimensional and very variable, meaning they’re quite difficult to model in

conventional neural network architectures. Early applications of deep learning to

waveforms include a 2017 paper from the Google DeepMind London group of van

den Oord et al, which presents WaveNet - a deep neural network for generating

raw audio.[39] It operates on a serial, sample-by-sample prediction level, and can

be trained to model arbitrary sound sources with excellent results. One of the

problems with waveform based generative models is modeling long-range temporal

dependencies, which they address by using dilated causal convolutions. The principle

of dilated convolutions is a way of applying a convolutive filter over a larger area

than its length by perforating the input rather than pooling. In the images below we

see a comparison between causal convolution layers and dilated causal convolution

layers. The dilation refers to the fact that only certain values are taken from each

subsequent layer, the rest are set to zero - this allows for a widening of the field of

view in each layer without the additional computational cost of pooling.

A more relevant example is with U-Net, a network developed by Ronneberger et al.

for biomedical image segmentation in 2015.[7] It uses deep convolutional networks,

which have been at the state of the art in many visual recognition tasks, starting with
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Figure 4: Visualization of a stack of causal convolutional layers, from van den Oord
et al. 2017[39]

Figure 5: Visualization of a stack of dilated causal convolutional layers, from van
den Oord et al. 2017[39]
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the seminal Very Deep Convolutional Networks for Large-Scale Image Recognition

by Simonyan and Zisserman in 2014 which used 16-19 layers of convolution to blow

everybody’s mind wide open.[40] U-Net likewise uses convolutional layers, but in a

contracting path and a symmetric expanding path, through which the size of the

feature map contracts through max pooling and expands through convolution. The

stated purpose of the contracting path is to capture context, and the expanding path

for precise localization of features. The intuitive picture here is that if you reduce the

resolution of an image, you can see the gross features more easily, and conversely with

higher resolution you’re more attuned to finer detail. The performance of U-Net for

medical image segmentation exceeded the best method until then (a sliding-window

convolutional network), as well as being computationally fast: a 512x512 image can

be segmented in less than a second on a GPU.
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Figure 6: Visualization of the U-Net architecture. From Ronneberger et al. (2015)
[7]

U-Net was shortly thereafter adapted to source separation using the magnitude

spectrogram by Jansson et al. (2017), achieving state-of-the-art performance. [41]



16 Chapter 2. State of the Art

Figure 7: U-net for source separation architecture, from Jansson et al. (2017)[41]

This is done in a similar but different way by Wave-U-Net, from Stoller, Ewert,

and Dixon in 2018.[12] It adapts the U-Net architecture to the 1-d time domain

and deals directly with the source separation problem using different layers of down,

and then up-, sampling to generate activations to different scales of features in the

waveform. It computes an increasing number of coarser, higher-level features on

the downsampling side, which are then concatenated with the later features on the

upsampling side, making multi-scale features which are used for making predictions.

Lluís, Pons, and Serra posed the question End-to-end music source separation: is it

possible in the waveform domain? in their paper of the same name, and answered

it in the affirmative.[42] They present a model based on wavenet, borrowing an

idea from Rethage et al. [39], modifying it to be non-causal and parallelizable, and

therefore faster. Although their results were not as good (approx. 1.5dB worse) than

the best spectrogram-based models from the 2018 SiSEC campaign, they succeeded
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in showing the feasibility of end-to-end source separation.

2.14 Generative modeling in a nutshell: density mod-

eling for data synthesis

Let’s take a step back to look at generative modeling through a wider lens to set the

stage for the last section of this where we take a look at diffusion models. Generative

modeling can be seen simply as acting on probability distributions. The end goal is to

generate a something that, under a certain measure of likelihood, is likely to belong

to a known set of somethings which can be described statistically by a probability

distribution. The act of training is the act of learning the probability distribution

of a given dataset, and the act of generation is simply sampling from that learned

probability distribution. The process of training is accomplished through minimizing

the “distance” between the given distribution and the modeled one. There are plenty

of ways to do this, but the benefit of deep learning models is that they can effectively

learn very complex distributions for a variety of data.

There are various ways of measuring likelihood which a generative system attempts

to maximize during its approximation of a given distribution using various divergence

metrics. Some common examples are Kullback-Leibler (KL divergence) or Jensen-

Shannon divergence. Diffusion models, take advantage of the properties of this

process by training a system to reverse it.

Once you’ve learned the distribution, one of the ways to generate a sample is to

feed some random noise into the system and convert it to something that looks

like something that belongs to that distribution. GANs look at some latent noise

vector, pass it to a generator, out pops an image; similarly for VAEs, and Flow-based

models. They do it in a single step, more or less, where you give the neural network

some noise and it gives you a sample, and that might be difficult to analyze.
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2.15 Foundation Models

Now, let’s switch gears a bit and briefly discuss the general idea of Foundation

Models, as this will situate this historical retrospective in this section back into the

present work. Foundation models refer to large-scale machine learning models that

serve as a base, or "foundation", upon which more specialized models or applications

can be built. They’ve become especially prominent with the advent of massive pre-

trained models in natural language processing (NLP), like OpenAI’s GPT[43] series

and Google’s BERT[1]. The key ideas and characteristics of foundation models are

as follows:

Pre-training and Fine-tuning

Foundation models are often pre-trained on vast amounts of data (often public or

general data) to learn generic patterns. Once pre-trained, they can be fine-tuned on

specific tasks or datasets to adapt them to more specialized applications.

Broad Applicability

A single foundation model can be fine-tuned for a wide range of tasks. For instance,

a model like GPT-3 can be used for chatbots, text generation, code writing, and

more, with appropriate fine-tuning.

Scale

Foundation models are typically large, often comprising billions or even trillions

of parameters. The scale of these models contributes to their capacity to capture

intricate patterns in data.

Data-driven

The capability of these models emerges primarily from the vast amounts of data

they’re trained on, rather than domain-specific knowledge hard-coded into them.

This is brought about by large scale data curation pipelines (as we’ll see with the

DINOv2 and SAM projects), where properties emerge from self-supervised learning
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that does not appear in a supervised manner (as with Vision Transformers, which

we’ll discuss more below).

Economies of Scale

Training foundation models requires substantial computational resources, often mak-

ing it prohibitive for most organizations. However, once trained, they can be fine-

tuned and adapted at a fraction of the original computational cost, making them

accessible to a broader audience.

Challenges and Concerns

Given the power of these models, there are (as with all technologies), substantial

concerns and challenges to address concerning them:

Bias and Fairness: Given that they’re trained on vast datasets, foundation models

can inadvertently learn and propagate societal biases present in the data.[44][45][46]

Interpretability: Due to their size and complexity, these models can sometimes act

as "black boxes", making it hard to understand why they make certain decisions.[47]

Over-reliance: There’s a risk of the community overly relying on a few popular

foundation models, potentially stifling innovation or leading to monocultures in

machine learning.[48]

Collaborative Development: Given the significance and impact of foundation models,

there’s a growing interest in developing them collaboratively, involving a broader set

of stakeholders, including academia, industry, and civil society.[49]

In summary, foundation models are like "base layers" in machine learning, offering

a starting point that can be tailored to a myriad of specific applications. While they

bring about impressive capabilities and efficiencies, they also come with challenges

and responsibilities, especially concerning their ethical and societal implications.

We’ll get more into this, hopefully, in the discussion at the end of this work.
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2.15.1 Intro to Vision Transformers

Transformers are a type of neural network architecture introduced in a paper called

"Attention is All You Need" in 2017[4].

They were initially designed for handling sequence data, and their primary advan-

tage is the ability to capture long-range dependencies therein, which are hard for

recurrent neural networks (RNNs) to handle, for example. This property makes

them particularly useful for tasks like machine translation, where the understanding

of a word can depend on another word that appears much earlier or later in the

sentence.

At the core of the transformer model is the concept of attention, and in particular,

self-attention or scaled dot-product attention. Attention mechanisms let the model

weigh the importance of a token’s relationship to other tokens in the sequence, which

means they give the model a way to focus more on certain tokens when processing

a sequence of tokens.

ViTs were introduced in 2020 by Google[50], applying a simple method of serializing

image data to a transformer backbone by turning an image into a series of patches

paired with a positional encoding, which would retain the information of where in

the 2-d space each of the image patches are found. The transformer then finds

dependencies within the image data on varying scales. They have exhibited high

performance in this respect, often surpassing the revolutionary convolutional neural

networks in image classification [50], object detection [51], image generation [52],

video understanding [53], fine-grained image recognition [54], transfer and few-shot

learning [55], vision and language integration [56], and of course image segmentation

[57].

However, ViTs can be data-hungry and often require large-scale pre-training on big

datasets to achieve top performance. This is extra motivation to not train them

starting from random weights, instead to apply them in a transfer learning scenario.

For the sake of completeness, let’s take a look at a brief summary of how an image
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is processed by a ViT:

Patch Embedding: The input image is first divided into small patches, typically

of size 16x16 or 32x32. Each patch is then flattened into a vector and linearly

transformed (using a fully connected layer) into a sequence of "tokens". This is

analogous to how in NLP, an input sentence is divided into a sequence of word

tokens.

Position Embedding: In order to retain information about the position of patches

in the original image, positional embeddings are added to the patch embeddings. 1

Transformer Encoder: The sequence of patch embeddings is then passed through

a stack of Transformer encoder layers. Each Transformer layer consists of a multi-

head self-attention mechanism and a feed-forward neural network, along with layer

normalization and residual connections. This allows the model to learn complex

relationships between different parts of the image.

Classification Head: Finally, the embedding of the special "[CLS]" token (added

to the sequence of patch embeddings) is passed through a linear layer to produce

the final classification output.

2.15.2 DINOv2

In the Meta Research group’s April 2023 paper[58], they show that self-supervised

pretraining methods can produce all purpose visual features - i.e. ones that work

across many distributions without pretraining. This paper builds upon the work of a

previous paper from the Facebook AI group which highlighted some very interesting

properties of Vision Transformers (ViT) that put their capabilities of semantic seg-

mentation beyond those of convolutional neural networks by using self-supervision.

They found that self-supervised ViT features contain explicit information about the

semantic segmentation of an image, which does not emerge with supervised ViTs,
1Interestingly, the position embeddings are learned during training. For an input image divided

into N patches, the position embeddings are a NxD matrix, where D is the dimension of the patch
embeddings. This matrix is initialized randomly and updated via backpropagation during training.
These learned position embeddings are added element-wise to the patch embeddings before they
are fed into the transformer encoder blocks.
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nor with convnets. They implemented their findings into a simple model called

DINO, standing for self-DIstillation with NO labels. The 2023 paper builds on that

by scaling up its training, introducing an automatic pretraining pipeline, illustrated

in the figure below, giving us the 2nd version of this model: DINOv2, which is what

we shall put to the test in this section using audio data.

Figure 8: DINOv2 Data Pipeline

2.15.3 SAM

Figure 9: SAM

The Segment Anything Model [59] was introduced by Meta AI Research in 2023

which is an entire project including a dataset, a model, and a new task for image

segmentation. The result is the largest segmentation dataset to date, with over 1 bil-

lion masks; a promptable segmentation model, which exhibits very high performing

zero-shot performance on new image distributions and tasks. It is that characteristic

which made it an interesting choice to apply to audio spectrograms.
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2.15.4 Architecture

The Image Encoder

The image encoder takes an image as an input and outputs an image embedding

that is then used by the mask decoder to make final predictions for the mask. It

uses a masked auto-encoder pre-trained Vision Transformer architecture

The Mask Decoder

The mask decoder outputs a mask foreground probability at each image location,

using a modified transformer decoder block and a mask prediction head.

The Prompt encoder

The model can accept various prompts, which can be rough masks, points, bounding

boxes, or text prompts. The problem of audio source separation is particular, in that

separate audio energy overlaps significantly - nearly every source can be represented

somewhat in nearly every pixel of the input image. Therefore, at first glance, the

idea of using bounding boxes or other positional information may seem to not really

apply. However, using this information within the AudioPair dataset, which we will

discuss more in-depth later in this paper, is indeed useful in the special case of a

mixture which is a foreground and a background sound with distinct density in the

spectrogram. In this case, we can use some positional encoding to help with the

mask generation.

The useful information would be the ability to use text prompts to separate separate

sources. This functionality is not released publicly, and would have to be integrated

into the model manually. The paper mentions that it uses a CLIP[60] encoder.
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Figure 10: Example input with point prompts
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Network Design

The work of adapting these models to work in a source separation context was to

create a software framework in pytorch[61] which acts as an encoder and decoder

from- and to- the audio data through the given models.1

In order to answer the question whether the pretrained feature extractors are or are

not able to extract meaningful information from spectra, we have to be able to make

sure that the mask decoders of each are able to translate those features in a way

that allows us to quantify those features.

This effectively turns the whole network into one model, in which the segmentation

model sits as a pretrained backbone, and the surrounding functions are encoder and

decoder parts.

3.1 Architecture

Designing a deep learning model is part art and part science, but the more I under-

stand of it, the more I see that in essence, each layer in a deep learning model can be

thought of as a transformation that reshapes the feature space, with the objective

of making certain patterns in the data easier to recognize for subsequent layers or

systems.
1All of the code involved in this project will be available in my personal github at

https://github.com/BenjaminOlsen/SegSep.

25
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Figure 11: the network

The network in this work consists of a front end encoder which reads audio, divides

it into slices, turns each slice into a spectrogram, shapes that spectogram into a

tensor for segmentation model, receives the resulting segmentation mask, applies

the mask to the input audio’s magnitude spectrum, and reconstructs the estimated

audio with the original phase from the input audio. This section will describe each

part.

3.1.1 Encoder

Downsampling

We downsample to reduce the data requirements, from the 44.1kHz de facto standard

sampling rate down to half that at 22.05kHz. While losing information in the high

frequencies (above 11.025 kHz), this greatly speeds up the training process, and

thanks to the majority of the audio in the FSD50k and MUSDB18 datasets being

especially information rich in the lower bands, suffices for our purposes of source

separation.



3.1. Architecture 27

STFT

We turn the downsampled audio into its spectral representation using the Short

Time Fourier Transform. The parameters of the STFT are generally very important

to be able to clearly represent the important features of the audio in the spectral

data, and in this application must be especially carefully constructed in order to

minimize distortion of the signal.2 Each of the models expects input tensors of

a certain shape, and attention must be paid to pass the spectral data unchanged

through the model.

Explicitly, considering the width and height to be the dimension of the spectrogram:

width = ⌊(audio_length− win_length)/hop_length⌋+ 1

and since we are using one-sided FFTs thanks to audio being real-valued:

height = ⌊n_fft/2⌋+ 1

To this end, we specify the width and height of the spectrogram that the STFT

should produce, and calculate the fft length to be precisely

n_fft = 2 · (height− 1)

We set the window length to be:

win_length = n_fft

The hop length:

hop_length = nfft//8

2This baseline "identity" contribution of the encoder and decoder without passing through the
model is quantified in the Results
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and slice the input audio into chunks of size:

input_chunk_size = (sample_rate/resample_rate) · (width− 1) · hop_length

Figure 12: Spectrogram from AudioPair Dataset
(audio 1, audio 2, mixture)

Figure 13: Spectrogram from AudioPair Dataset
(audio 1, audio 2, mixture)

Model Head

The head of the model transform the feature representations (or tokens) output by

the vision transformer backbone of the segmentation model, and outputs a segmen-

tation map. This is done differently for each model, as discussed in the state of the

art section. Namely, the SAM model comes with a mask decoder pretrained, and

the DINOv2 model does not. Therefore, a different training approach must be taken

for each one.

For DINOv2, the head must be customized for the intended purpose. As the creators
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of the model implied, the DINOv2 is multipurpose visual feature learner, and the

goal of the head design is to make a sub-network that can adequately capture the

richness of the feature maps produced by the backbone and translate them into

segmentation maps.

An initial approach using a linear classifier head was taken, as illustrated in the

figure below, where the DINOv2 model’s outputs are the Feature Map, which is then

reshaped and run through a 1x1 convolutional layer (a.k.a. a point-wise convolution,

equivalent to a fully-connected layer), which is then passed through an activation

function to generate a predicted mask.

Figure 14: Linear Classifier Head

This approach failed. This is not terribly surprising, as a linear combination of fea-

tures is the simplest transformation that can be applied, and the nature of visualized

sound is quite complex.

Therefore, a more sophisticated head was proposed. This, we call the FeatureTrans-

former.

FeatureTransformer

There are two sections to the FeatureTransformer: the first is a transformer block

that takes the feature map produced by the backbon and passes it through a

transformer and convolutional layer. The second part is a stepped convolution-

upsampling sequence of operations, which is similar to the expanding path of the

U-Net architecture.
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Figure 15: FeatureTransformer pt. 1: transformer block
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Figure 16: FeatureTransformer pt. 2: upsample-conv
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The goal of the transformer block is to provide a learned, non-linear transformation

of the input features at each spatial location (or token), which can improve the

model’s ability to extract useful information from the input data.

In a Vision Transformer (ViT) model, the transformer encoder layers are responsible

for modeling the interactions between all pairs of tokens in the input data. This

is useful for tasks where the relationship between different parts of the image (the

spectrogram, in our case) is important. It’s clear that in object detection or semantic

segmentation tasks, for example, understanding how different parts of the image

relate to each other can be critical for making accurate predictions.

However, in some tasks, it might be beneficial to apply further transformations to

the output of the transformer layers. This is where the FeatureTransformer comes

into play. It provides an additional, learnable transformation of the features at each

token, which can help to enhance the features or bring out certain patterns that

might be useful for the task at hand.

In the context of this model, the output of the first part is then passed through

a series of convolutional and upsampling layers, which gradually increase the spa-

tial resolution of the feature maps. These operations are well-suited for tasks like

semantic segmentation, where the goal is to make a prediction at each pixel (or

spectrogram bin). The transformer block helps to provide a good starting point

for these upsampling operations, by providing a rich, learned representation of the

input data at each token.

In summary, the combination of transformer layers, and convolutional upsampling

provides a powerful, multi-scale model architecture that can adapt to a wide variety

of tasks.

Decoder

The output of the model and its head is a segmentation map prediction for the

given input mixture spectrogram. The result, then is directly applied to the input

spectrogram to create a predicted filtered spectrogram for the source. Given a
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predicted segmentation mask M̂ , and input spectrogram Sin, the predicted source’s

magnitude spectrum |Ŝ| is given by the elementwise product of the mask and the

magnitude of the input spectrum.

|Ŝ| = M̂ · |Sin|

This predicted magnitude spectrum is then combined with the phase of the input

spectrogram to create an estimated complex spectrum

Ŝ = |Ŝ| · cos(∠Sin) + j · |Ŝ| · sin(∠Sin)

which is then passed through an inverse short time fourier transform (ISTFT) using

the same parameters as the encoder’s STFT to create an real valued estimated

source audio ŝ:

ŝ = ISTFT (Ŝ)
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Datasets

The original aim of this work was to adapt these models to do musical instrument

source separation, and the target dataset was MUSDB18, which provides a mixture

track along with its separate source stems (vocal, drums, bass, other). However,

over the course of the experiments, it was noted that the peformance of the models

on this type of dataset was lacking: the quality of the predicted masks were low in

the zero-shot scenario, and remained faulty even with fine-tuning.

Instead, we turned our attention to using a Sound Event Recognition (SER) dataset,

the FSD50k [62], to which we apply a data augmentation strategy in order to adapt

the dataset to audio source separation.

The dataset is split into "dev" and "eval" splits, which we use as the training and

evaluation datasets, respectively.

4.1 Data Augmentation

We use a novel data augmentation strategy, inspired by the FUSS dataset [63], which

involves building upon the FSD50k dataset to create realistic synthetic mixtures of

various sounds for source separation benchmarking. In this work, we introduce the

AudioPair dataset which allows for a simplified source separation corpus. The goal

was to give a degree of flexibility to the synthetic mixture creation, where instead

34
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of combining sounds selected randomly, we can specify certain conditions on which

audio is mixed with which. In this case, we introduce a preprocessing step which

collects audio features of each sound in the FSD50k, and then in sampling from the

augmented dataset we can specify conditions on that data. In the current work, we

set the following conditions:

Those characteristics are: 1) a minimum sample duration, 2) minimum difference

in mean spectral centroid between the pair, 3) minimum difference in mean spec-

tral bandwidth between the pair, 4) minimum difference in mean spectral contrast

between the pair, 5) minimum difference in mean spectral flatness between the pair.

For each of audio samples in the FSD50k dataset, we collect the mean, maximum,

minimum and standard deviation for each of the features.1, and in the creation of

each data point for training, we select two audios that are at least one standard

deviation apart in each of the respective features. This has the effect of combining

only sufficiently "distinct" audio.

In a general sense, this can be used to customize the "difficulty" of a source sepa-

ration task. A subtask of this work, would be to find out if there was some sort of

threshold across which the segmentation models under consideration would perform

better or worse.

The goal was to provide set of training data from which we could move, in evaluation,

to a "harder" or "easier" audio dataset with ease. Harder, in this case, would mean

that there is more overlap between the foreground and background noise, i.e. a lower

minimum difference in the metrics between the pairs; and easier would be the less

overlap, or higher minimium difference in the features.

4.2 Audio Features

This section is a brief discussion of each of the aforementioned audio features used

in the AudioPair dataset.

1See Appendix A for a summary of this data
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4.2.1 Spectral Centroid

The spectral centroid is roughly equivalent to the "center of mass" of a slice of

spectrum, and corresponds to the perceived "brightness" of a sound, (where a higher

centroid typically corresponds to a brighter sound, and a lower centroid is a duller

sound), and is a useful quantity in distinguishing the frequency distribution between

audio. Its formula C is as follows, given a magnitude spectrum S(f) where f is the

frequency.

C =

∑
f f · S(f)∑
f S(f)

4.2.2 Spectral Bandwidth

The Bandwidth is the "width" of a spectrum, which relates to the perceived timbre or

texture of a sound, and can have a few different definitions. Here we use the following

where given a spectral centroid C, magnitude spectrum S(f) and frequency f , the

spectral bandwidth B is:

B =

√∑
f S(f) · (f − C)2∑

f S(f)

4.2.3 Spectral Contrast

The Spectral Contrast is a measure of the difference between the maximum and

minimum values of a magnitude spectrum. A high spectral contrast is more char-

acteristic of harmonic sounds, a lower spectral contrast is more characteristic of

noise-like sound, and can be useful for distinguishing between harmonic instruments

(like a violin) and percussive instruments (like a drum). [64]

For a given frame of an audio signal, let Fpeak and Fvalley represent the magnitudes

of the peak and valley frequencies, respectively. The spectral contrast SC for that
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frame is:

SC = Fpeak − Fvalley

Note: The peaks and valleys are typically determined within specified frequency sub-

bands, and is often calculated for multiple sub-bands, resulting in multiple values

for each frame. Here, we use the mean value over the entire band, resulting in one

value per frame, of which we then take the mean.

4.2.4 Spectral Flatness

Also known as the Wiener Entropy, this is also a measure of how noise-like a wave-

form is. A value closer to 1 is given by noisier sounds, and closer to 0 more tonal.

[65]

The spectral flatness SF is calculated as the ratio of the geometric mean and the

arithmetic mean of a spectrum S(f) with N frequency bins:

SF =

N

√∏N
i=1 S(fi)

1
N

∑N
i=1 S(fi)
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Experiment Setup

The experimental phase of this work consists of evaluating the audio source separa-

tion performance of the aforementioned models under various conditions.

5.1 Zero-shot

The most straightforward way of evaluating each of the models is in a zero-shot

scenario, but this does involve a different approach between the DINOv2 and SAM

based models.

SAM Zero-shot

Straight out of the box, so to speak, the SAM comes with a pretrained mask decoder

as well as the option to use its prompt encoder’s features as well, which can use sparse

or dense input - therefore, the possible zero-shot configurations that the SAM based

model can take various combinations of these features.

DINO Zero-shot

DINOv2, unlike SAM, does not come with a pretrained mask decoding network,

therefore in order to evaluate the zero-shot performance of the feature extracting

backbone, the head (described previously) needs to be trained.

38
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5.2 Fine-tuning

The act of fine tuning the respective models involves exposing the components of the

model to audio data, specifically training it over the AudioPair dataset described

in a previous section. The general approach to training is to train over the entire

AudioPair dev dataset, evaluate on a subset of the AudioPair eval dataset. We train

using an automatic stopping condition, where we allow for up to 10 epochs of no

improvement in the evaluation loss. While the loss is the most important metric,

we also track the accuracy as measured by the scale invariant signal-to-noise ratio

(SI-SNR) between the estimated audio and the ground-truth audio. You will find

the loss / accuracy curves for the training of each model in an appendix.

We use pytorch’s Adam[66] optimizer implementation.

SAM fine tuning

As there are multiple components of SAM that can be fine tuned, we have taken

various approaches: 1) fine tuning the mask decoder network, 2) fine tuning the

image encoder network.

DINOv2 fine tuning

As there is only one component of the provided backbone, fine tuning the DINOv2

model simply involves fine tuning the provided feature extracting backbone.

5.2.1 Loss Functions

Following the work of Enric Gusó[67], we use a log-compressed L2 loss on the mag-

nitude spectra:

LOGL2freq =
10

NΩK

∑
k

∣∣|Ŷn,ω,k| − |Yn,ω,k|
∣∣2

with N the number of frames and. Ω the number of frequency bins in the STFT; and



40 Chapter 5. Experiment Setup

with K = 2 is the number of sources, one foreground sound and one the background

sound.

5.3 Evaluation

The evaluation is done over the validation set of the augmented FSD50k dataset,

the AudioPairDataset, and the results quantified using the BSS eval package. Given

the flexibility of the AudioPairDataset, we can vary the parameters of the generated

pairs to see how well the models perform under different audio conditions. To this

end, we offer three different sets of parameters for evaluation: easy, medium, and

hard. For the easy evaluation, we set the parameters of the AudioPairDataset so that

the chosen audios are two standard deviations away from each other. This allows

for a greater difference in the character of the sound, and an easier separation task.

For the medium condition, we choose the parameters to be one standard deviation

apart, and for the hard condition the audios are chosen without setting any minimum

distance from one another.

Feature std

Spectral Centroid 1305.68 Hz
Spectral Bandwidth 996.263 Hz
Spectral Contrast 0.0565
Spectral Flatness 0.1054

Table 1: Feature standard deviation summary

The particularity of these conditions is that for each restriction placed on any of

the parameters, the effective size of the dataset is changed. The underlying size

of the eval set of the FSD50k is 10231 samples, the size of the set of all pairs is(
10231

2

)
= 5.23× 107. Subject to various minimum length constraints the size of the

evaluation datasets is reduced, examples found in the tables below.

These minimimum size constraints are not chosen randomly - they correspond to

the length of a single audio chunk for a spectrogram of 448 or 1024 time bins at

22.05kHz: the spectrogram size used for DinoWrapper and SamWrapper evaluation,
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Dataset Sample Count

Easy 2.771× 106

Medium 1.127× 107

Hard 4.616× 107

Table 2: Eval Dataset Size; min length: 4.5s

Dataset Sample Count

Easy 5.430× 105

Medium 2.180× 106

Hard 8.923× 106

Table 3: Eval Dataset Size; min length: 23.66s

respectively.

In the interest of time, we evaluated each of the models with a random subset of

the same size of each respective datasets, limiting each evaluation run to 3 × 103

samples, using the bss_eval_sources function from the mir_eval.separation package
1

1the decision to use this package instead of the museval package was due to the ease of adapting
it to this particular case, also since the results don’t show a competitive comparison between other
source separation tools, the interest of this paper is to show the relative performance of the models
trained here.
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Results

The results we’d like to quantify are the standard source separation metrics in-

cluded in the mir eval BSS package: The Signal-to-Distortion ratio (SDR), Source-

to-Interference Ratio (SIR), and Source-to-Artifact Ratio (SAR). An estimate ŝ of

a source starget is assumed to be comprised of four separate components:

ŝk = sk + ek,interf + ek,noise + ek,artif

where the e terms are the errors attributed to interference from other source, noise,

and artifacts, respectively.

SDR = 10 · log10
( ∑

k s
2
k∑

k(sk − ŝk)2

)

SDR evaluates the overall separation quality by comparing the estimated source to

the clean source while considering both interference and artifacts.

SIR = 10 · log10

( ∑
k s

2
k∑

k e
2
k,interf

)

SIR evaluates the separation between the desired source and the interference or

unwanted sources. It quantifies how much the estimated source resembles the clean

42
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source compared to other interfering sources.

SAR = 10 · log10

(∑
k(sk + ek,interf + ek,noise)

2∑
k e

2
k,artif

)

SAR focuses on the quality of the estimated source in terms of artifacts or distortions

introduced during separation. It measures how much the estimated source matches

the clean source, while accounting for any residual noise.1

6.1 Model Summary

Here, we present the set of models which we hold up for evaluation. This is a subset

of the models which we trained during the project, but these span the different

training strategies used. There is plenty of art[68] in training deep learning models,

and so taking a varied approach in training seemed to offer the highest chance for

finding the right combination of hyperparameters.2 In the description of the training

strategy in the table below, what is described is the portion of the parameters of the

entire model included in the training. Some important details are: DINO1 uses the

trained FeatureTransformer from DINO0; SAM3 trains both the mask decoder and

image encoder simultaneously, whereas SAM4 first trains the image encoder with a

frozen mask decoder in a first run, then freezes the image encoder and trains the

mask decoder. The reader may now see that there are many more strategies to be

taken, especially considering that SAM’s prompt encoder is completely neglected in

these runs.

Ideal Model

Even if the model backbone predicts the source’s magnitude spectrum mask per-

fectly, there are still some distortion and artifacts introduced by the series of down-

1All of these measurements are presented for the sake of quantitative rigor: they provide insight
into model performance, but these measurements are not without their issue with respect to source
separation quality. Having a better SDR, for example, does not correspond to a "better" separation
to the ear, and it could be argued that in the context of audio the qualitative separation quality is
more important than the quantitative, but of course it depends on the application.

2Incidentally, for all of these models we used a learning rate of 1e-5 without slowdown.
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Model Training

IDEAL Ideal source mask - oracle performance
DINO0 FeatureTransformer head training
DINO1 DINOv2 backbone fine tuning
SAM0 Sam Zero Shot
SAM1 Mask decoder finetuning
SAM2 Image encoder finetuning
SAM3 Mask decoder and image encoder fine tuning
SAM4 Image encoder training followed by mask decoder training

Table 4: Model Summary

sampling, STFT, ISTFT, reconstruction using the phase of the mixture, and up-

sampling operation. The ideal model, here, is the best possible case wherein the

source’s magnitude spectrum prediction is perfect. This performance measures the

error introduced by everything except the model backbone itself.

6.2 Quantitative Performance Summary

For each of the models, we present the results of the evaluation over the AudioPair-

Dataset’s eval set. Each of the values are calculated on a per-track basis.

IDEAL maximum minimum mean std
Easy, SDR 58.56 -24.58 19.17 14.83
Easy, SIR 286.47 0.00 221.88 40.60
Easy, SAR 58.56 -24.58 19.17 14.83
Medium, SDR 54.23 -18.74 17.21 13.53
Medium, SIR 283.97 0.00 217.80 41.99
Medium, SAR 54.23 -18.74 17.21 13.53
Hard, SDR 54.95 -12.13 15.33 11.02
Hard, SIR 287.01 0.00 213.58 50.88
Hard, SAR 54.95 -12.13 15.33 11.02

Table 5: Summary of Evaluation Metrics for IDEAL
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DINO0 maximum minimum mean std
Easy, SDR 51.10 -61.60 2.56 16.88
Easy, SIR 275.40 -91.31 219.39 36.19
Easy, SAR 51.10 -61.60 2.57 16.87
Medium, SDR 47.87 -42.20 -0.81 15.08
Medium, SIR 275.64 0.00 218.23 27.96
Medium, SAR 47.87 -42.20 -0.80 15.08
Hard, SDR 44.79 -52.72 -1.36 12.88
Hard, SIR 276.61 0.00 217.16 30.43
Hard, SAR 44.79 -52.72 -1.35 12.88

Table 6: Summary of Evaluation Metrics for DINO0

DINO1 maximum minimum mean std
Easy, SDR 45.65 -31.55 2.32 17.08
Easy, SIR 273.21 0.00 215.43 34.21
Easy, SAR 45.65 -31.55 2.32 17.07
Medium, SDR 33.67 -36.58 -1.13 15.73
Medium, SIR 271.82 85.40 217.21 25.14
Medium, SAR 33.67 -36.58 -1.13 15.73
Hard, SDR 37.64 -30.10 -1.55 13.28
Hard, SIR 266.77 0.00 213.94 31.56
Hard, SAR 37.64 -30.10 -1.55 13.28

Table 7: Summary of Evaluation Metrics for DINO1

SAM0 maximum minimum mean std
Easy, SDR 20.85 -42.09 -3.84 16.94
Easy, SIR 276.30 -25.41 210.49 53.52
Easy, SAR 20.85 -42.09 -3.84 16.94
Medium, SDR 20.99 -40.24 -4.87 15.14
Medium, SIR 281.61 0.00 206.06 50.81
Medium, SAR 20.99 -40.24 -4.87 15.14
Hard, SDR 18.21 -36.40 -5.39 12.63
Hard, SIR 287.84 0.00 212.03 37.79
Hard, SAR 18.21 -36.40 -5.38 12.63

Table 8: Summary of Evaluation Metrics for SAM0
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SAM1 maximum minimum mean std
Easy, SDR 12.59 -46.39 -6.69 14.57
Easy, SIR 274.91 0.00 204.13 59.56
Easy, SAR 12.59 -46.39 -6.69 14.57
Medium, SDR 12.21 -51.69 -7.34 13.08
Medium, SIR 274.99 0.00 205.01 48.72
Medium, SAR 12.21 -51.69 -7.34 13.08
Hard, SDR 10.89 -36.32 -6.99 11.05
Hard, SIR 272.63 0.00 205.66 44.74
Hard, SAR 10.89 -36.32 -6.99 11.05

Table 9: Summary of Evaluation Metrics for SAM1

SAM2 maximum minimum mean std
Easy, SDR 9.52 -43.71 -6.94 13.26
Easy, SIR 275.61 -33.54 208.78 52.66
Easy, SAR 9.52 -43.71 -6.94 13.26
Medium, SDR 10.43 -40.01 -9.65 12.44
Medium, SIR 277.17 0.00 209.95 43.03
Medium, SAR 10.43 -40.01 -9.65 12.44
Hard, SDR 11.74 -40.81 -8.15 10.18
Hard, SIR 281.51 0.00 204.45 50.08
Hard, SAR 11.74 -40.81 -8.15 10.18

Table 10: Summary of Evaluation Metrics for SAM2

SAM3 maximum minimum mean std
Easy, SDR 9.89 -42.63 -7.25 13.15
Easy, SIR 274.16 0.00 207.63 49.33
Easy, SAR 9.89 -42.63 -7.25 13.15
Medium, SDR 9.87 -44.62 -9.08 12.25
Medium, SIR 270.93 -177.44 200.54 51.47
Medium, SAR 9.87 -44.62 -9.09 12.25
Hard, SDR 9.47 -43.05 -8.06 10.07
Hard, SIR 269.98 0.00 197.71 50.56
Hard, SAR 9.47 -43.05 -8.06 10.07

Table 11: Summary of Evaluation Metrics for SAM3
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SAM4 maximum minimum mean std
Easy, SDR 18.62 -41.83 -3.75 15.20
Easy, SIR 281.24 0.00 208.61 52.09
Easy, SAR 18.62 -41.83 -3.75 15.20
Medium, SDR 16.01 -35.64 -5.82 13.34
Medium, SIR 281.43 0.00 210.53 40.93
Medium, SAR 16.01 -35.64 -5.83 13.33
Hard, SDR 17.75 -35.31 -5.54 10.82
Hard, SIR 278.62 0.00 204.35 47.78
Hard, SAR 17.75 -35.31 -5.54 10.82

Table 12: Summary of Evaluation Metrics for SAM4



Chapter 7

Discussion

The performance of nearly all of the models in all scenarios is lacking. Surprisingly,

we see that DINOv2 out performs SAM in mean SDR.

We can see that the progressive difficulty of the source separation tasks is reflected in

the data, where the performance, at least, decreases even further with the difficulty

of the dataset.

In a paper from 2020 titled "Black Magic in Deep Learning: How Human Skill

Impacts Network Training"[68], which investigates explicitly how human skill is

involved in hyperparameter tuning, the researchers come to the conclusion that

human skill correlates highly with the final performance of the models. The majority

of the work in this has been to find a way to train these models properly, so that they

might be able to express their potential for audio source separation. This has not

been a trivial task, and by the time of writing of this paper, I can report that there

hasn’t been a satisfactory settling upon a proper combination of hyperparameters

which would allow me to say that the initial goal has been accomplished. Weeks

of cumulative training time has been used, without bearing the fruit of a highly

performing model. We can see from the results table that while the zero shot

performance is lacking, the fine-tuned performance seems even to degrade in parts.

I choose to still present the results, even though I cannot stand behind them strongly.

I still believe that the potential still lies locked inside them, as I have not been able
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to ascertain a definitive reason for their failure to learn the features of audio. This

will have to be worked out in the future.

However, I believe that beyond the shortcomings of the models, that this work is not

without merit - and in particular, the AudioPairDataset is a worthy contribution

to the task of audio source separation. For further work, adding flexibility to this

dataset would be highly interesting - for example, adding room impulse response,

as is done in the FUSS dataset.

7.1 Final Thoughts

The main work of this thesis is hidden behind the results. I purposefully chose

this topic because it went far beyond my area of comfort - at the beginning of this

journey I had little to no deep learning experience, but I saw the potential of this

project to participate in a hot area of research, to ride a wave of emerging work and

to get my hands dirty with the contemporary material of the field. It has been a

trial by fire, and although I do not leave it with the satisfaction of having a highly

performing model, I have learned more than I expected to at the beginning. And

for that, I am truly grateful.
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Appendix A

Statistics for Audio Features

The statistics presented in these tables are for the entire FSD50k datasets, divided

into their dev and eval subsets. The way to read the table is that for each frame of

each track, each of the features are calculated - therefore, each statistical measure

also has a max, min, mean, and standard deviation. The value in at (row, column)

is to be read as "the (column) (row) is (value)", e.g. "the maximum standard

deviation of the spectral centroid observed across any track of the FSD50k dev

dataset is 8458.93"

A.1 FSD50k dev dataset

Centroid maximum minimum mean std
max 21296.85 0.00 7907.70 3341.01
min 13427.69 0.00 1224.80 1369.01
mean 16767.41 0.00 3425.43 2171.99
std 8458.93 0.00 1305.68 954.93

Table 13: Spectral Centroid stats - dev
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Flatness maximum minimum mean std
max 1.0002 0.0000 0.5934 0.2246
min 0.8052 0.0000 0.0543 0.0839
mean 0.8448 0.0000 0.2135 0.1616
std 0.4134 0.0000 0.1054 0.0685

Table 14: Spectral Flatness stats - dev

Contrast maximum minimum mean std
max -0.1588 -1.0000 -0.6476 0.0980
min -0.6500 -1.0000 -0.9196 0.0484
mean -0.3864 -1.0000 -0.7887 0.0783
std 0.2696 0.0000 0.0565 0.0327

Table 15: Spectral Contrast stats - dev

Bandwidth maximum minimum mean std
max 11010.52 0.0000 6201.66 1344.20
min 7297.88 0.0000 1607.50 1153.62
mean 8368.24 0.0000 3493.98 1353.66
std 3566.96 0.0000 996.26 596.22

Table 16: Spectral Bandwidth stats - dev

A.2 FSD50k eval dataset

Centroid maximum minimum mean std
max 19957.71 300.82 8258.06 3359.88
min 14511.17 0.0000 1123.26 1356.29
mean 16222.08 31.86 3606.87 2206.28
std 7540.10 10.91 1315.95 937.49

Table 17: Spectral Centroid stats - eval

Flatness maximum minimum mean std
max 1.0001 0.0049 0.6101 0.2251
min 0.7414 0.0000 0.0528 0.0837
mean 0.8182 0.0003 0.2281 0.1662
std 0.4216 0.0003 0.1008 0.0654

Table 18: Spectral Flatness stats - eval
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Contrast maximum minimum mean std
max -0.2544 -0.9982 -0.6620 0.0956
min -0.5985 -1.0000 -0.9273 0.0509
mean -0.4071 -1.0000 -0.8039 0.0705
std 0.3295 0.0000 0.0506 0.0306

Table 19: Spectral Contrast stats - eval

Bandwidth maximum minimum mean std
max 10647.06 757.15 6244.70 1301.19
min 6831.86 0.0000 1550.14 1214.28
mean 8154.49 44.74 3629.69 1338.46
std 3362.62 31.93 943.64 575.33

Table 20: Spectral Bandwidth stats - eval



Appendix B

Loss / Accuracy curves

These figures show the loss and accuracy progressions per training epoch of each of

the models presented in this paper.
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64 Appendix B. Loss / Accuracy curves

Figure 17: DINO0 loss/accuracy
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Figure 18: DINO1 loss/accuracy



66 Appendix B. Loss / Accuracy curves

Figure 19: SAM1 loss/accuracy
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Figure 20: SAM2 loss/accuracy



68 Appendix B. Loss / Accuracy curves

Figure 21: SAM3 loss/accuracy



69

Figure 22: SAM4 loss/accuracy
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