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Abstract 

This article presents a preliminary study on data-driven reduced-order modeling (ROM) of 

unsteady nonlinear shock wave. A basic form of such problem can be modeled using the 

Burgers’ equation. The physics-informed neural networks (PINN) approach is used to obtain 

numerical solutions to the problem at certain time steps. PINN is a cutting-edge computational 

framework that seamlessly integrates deep neural networks with the governing physics of the 

problem and is turning out to be promising for enhancing the accuracy and efficiency of 

numerical solutions in a wide array of scientific and engineering applications. Next, extraction 

of the Proper Orthogonal Decomposition (POD) modes from the solution field is carried out, 

providing a compact representation of the system’s dominant spatial patterns. Subsequently, 

temporal coefficients are computed at specific time intervals, allowing for a reduced-order 

representation of the temporal evolution of the system. These temporal coefficients are then 

employed as input data to train a deep neural network (DNN) model designed to predict the 

temporal coefficient at various time steps. The predicted coefficient can be used to form the 

solution. The synergy between the POD-based spatial decomposition and the data-driven 

capabilities of DNN results in an efficient and accurate model for approximating the solution. 

The trained ANN subsequently takes the value of the Reynolds number and historical POD 

coefficients as inputs, generating predictions for future temporal coefficients. The study 

demonstrates the potential of combining model reduction techniques with machine learning 

approaches for solving complex partial differential equations. It showcases the use of physics-

informed deep learning for obtaining numerical solutions. The idea presented can be extended 

to solve more complicated problems involving Navier-Stokes equations. 

Keywords: Physics-Informed Neural Network (PINN), Artificial Neural Networks, Proper-

Orthogonal Decomposition (POD), Data-Driven AI, Reduced-Order Modeling. 

1.  Introduction 

In recent years, the synergy between advanced machine learning techniques and computational 

physics has paved the way for innovative approaches to solving complex scientific problems. 

One such groundbreaking methodology is the Physics-Informed Neural Network (PINN) 

(Raissi et al., 2019), which seamlessly integrates the principles of partial differential equations 
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(PDEs) with the capabilities of Artificial Neural Networks (ANNs). PINN is a machine-

learning approach for solving problems involving Partial Differential Equations (PDEs). This 

novel framework has demonstrated remarkable success in approximating solutions to intricate 

PDEs, offering a powerful tool for understanding, modeling, and predicting the behavior of 

physical systems. PINN enables the network to learn from data while respecting underlying 

physical principles, making it a powerful tool for modeling and predicting intricate physical 

phenomena. PINNs have shown remarkable success in diverse applications, from fluid 

dynamics and material science to medical imaging and geophysics, offering a paradigm shift 

in how we approach scientific discovery and engineering optimization. By seamlessly 

integrating data-driven insights with the foundational laws of nature, PINNs enhance predictive 

accuracy and provide valuable insights into previously elusive physical phenomena, driving 

innovation and advancements in numerous scientific and engineering disciplines. Some 

valuable resources for gaining a deeper understanding of PINN are (Nascimento et al., 2020; 

Karniadakis et al., 2021; Cuomo et al., 2022). 

Reduced Order Modeling (ROM) has emerged as a pivotal technique in the realm of 

computational science and engineering, revolutionizing our ability to tackle complex, high-

dimensional problems efficiently and effectively. At its core, ROM aims to distill intricate 

systems into simplified representations without compromising accuracy, thereby offering a 

compelling solution to the computational bottlenecks often encountered in simulations. By 

leveraging various reduction strategies, ROMs enable the construction of surrogate models that 

capture the essential features of a system’s behaviour, while significantly reducing the 

computational burden. ROMs find their application across diverse scientific disciplines, from 

fluid dynamics and structural mechanics to quantum chemistry. This versatile approach has 

witnessed exponential growth in recent years, driven by advancements in machine learning due 

to its capacity to significantly reduce CPU computational time while preserving the underlying 

physics (Taira et al., 2020).  

Proper Orthogonal Decomposition (POD), analogous to Principal Component Analysis (PCA) 

in some fields, stands as a cornerstone technique in ROM. The fundamental idea behind POD 

is to distill the essential features of high-dimensional data into a reduced set of modes or basis 

functions. These modes, ranked in order of significance, represent the principal directions of 

variability within the data. It embodies a powerful method for capturing dominant patterns and 

structures within complex data sets, particularly in the context of fluid dynamics and dynamic 

systems (Holmes et al., 2012). Beyond fluid dynamics, POD finds extensive applications in 

fields such as structural mechanics, vibrational analysis, MEMS technologies, atmospheric 

sciences (where it’s known as empirical orthogonal functions), wind engineering, acoustics, 

and neuroscience (Hemati et al., 2017). The method’s triumph lies in its capacity to offer 

interpretable spatiotemporal decompositions of data, fostering a deeper understanding of 

complex phenomena (Berkooz et al., 1993; Chatterjee, 2000; Kerschen et al., 2002; Feeny, 

2002; Kutz., 2013; Li et al., 2020). Machine learning techniques have been explored to infer 

POD coefficients in non-intrusive parametric ROMs (Ly et al., 2001; Bui-Thanh et al., 2004; 

Audouze et al., 2009; Swischuk et al., 2019). (San and Maulik, 2018) and (San et al., 2019) 

have utilized ANN to predict temporal coefficients of POD in a non-intrusive manner. (Wang 
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et al., 2018) employed long-short-term memory networks (LSTM) to predict future time steps 

of POD coefficients. Furthermore, ANN and LSTM have also been harnessed to develop 

closures for truncated POD modes (San et al., 2019; Ahmed et al., 2020). For instance, Murata 

et al., 2020) and (Fukami et al., 2019) adopted convolutional neural networks (CNNs) for data 

compression and the reconstruction of high-dimensional flow fields. 

ANNs (Saeed et al., 2023) stand as a foundational pillar of modern machine learning and 

artificial intelligence, revolutionizing our approach to complex problem-solving. Inspired by 

the intricate web of neurons in the human brain, ANNs are computational models composed of 

interconnected nodes, or artificial neurons, organized into layers. Their inherent ability to learn 

and adapt from data, extracting intricate patterns and representations, has made them 

indispensable tools in a data-driven world. ANNs have evolved significantly over the years, 

spawning various architectures, including feedforward networks, recurrent neural networks 

(RNNs), convolutional neural networks (CNNs), and more, each tailored to specific tasks.  

The present work revolves around a comprehensive approach that combines PINNs, POD, and 

ANNs to predict complex spatiotemporal systems accurately. PINNs are employed to obtain 

an approximate solution to the Burger, setting the stage for subsequent analyses. A key focus 

lies in extracting dominant coherent structures within the obtained solutions. Here, the POD 

technique comes into play, enabling the identification of essential modes that capture critical 

information about the system’s behavior. These temporal modes, meticulously derived through 

the POD framework, serve as the foundation for our data-driven modeling endeavors. The heart 

of this approach lies in using a deep neural network to harness the temporal information gleaned 

from POD, constructing a predictive model that can anticipate future temporal coefficients with 

remarkable accuracy. 

The rest of the article is organized as follows. Section 2 discusses the PINN solution of the 

model problem. Section 3 describes the development/extraction of POD modes and the 

preparation of temporal coefficient data for data-driven ROM activity. Section 4 discusses the 

development of ROM using a deep neural network. The results and discussion are presented in 

Section 5. Finally, the concluding remarks are given in Section 6.  

2.  PINN Solution of the Model Problem 

PINNs (Raissi et al., 2019) represent a cutting-edge fusion of physics-based modeling and 

machine learning techniques, promising transformative solutions to complex problems across 

various scientific domains. PINN is a machine-learning approach for solving problems 

involving Partial Differential Equations (PDEs). It leverages neural networks’ remarkable 

capacity for function approximation (Hornik and Stinchcombe, 1989). It is a mesh-free 

approach that modifies the solution of governing equations into an optimization problem. It 

merges the data from measurements and partial differential equations (PDEs) in ANN. It 

embeds the PDE in the loss function of the neural network. The loss function includes the initial 

and boundary condition and residual of PDE at selected points in the domain. This residual 

term serves as a penalty to constrain the acceptable solution space. PINN approximates the 

PDE solution by training a neural network to minimize the loss function, as shown in Fig. 2.1. 
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The input of the neural network are points within the integration domain. A key innovation with 

PINNs is the inclusion of a residual network that encodes the governing physics equations. The 

general form of a time-dependent PDE can be expressed as follows, 

𝒩(𝑢(𝑋, 𝑡);  𝛾) = 𝑓(𝑥, 𝑡), 𝑋 ϵ Ω, t > 0         (1) 

𝐵(𝑢) = 𝑔(𝑥, 𝑡) for all 𝑡 and 𝑋 ϵ 𝜕Ω     (2) 

Here, Ω ⊂ ℝ𝑑 is the domain with boundary 𝜕Ω and 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑑] is a 𝑑-dimensional 

spatial coordinate vector. 𝛾 represents the parameters associated with the underlying problem 

physics. The function 𝑓 characterizes the data of the problem, and 𝒩 is a nonlinear differential 

operator. The initial condition can be regarded as a variation of the Dirichlet boundary 

condition within this spatiotemporal domain. Consequently, 𝐵 is the operator that defines initial 

or boundary conditions pertinent to the problem, and 𝑔 serves as the boundary function. These 

boundary conditions can manifest as the Neumann, Robin, Dirichlet, or even periodic 

conditions. 

Within the framework of the PINN approach, the prediction of 𝑢 is achieved through a neural 

network (NN). This neural network is characterized by parameters denoted as 𝜃, leading to the 

generation of an approximation.  

�̂�𝜃(𝑥, 𝑡) ≈ 𝑢(𝑥, 𝑡)  (3) 

Here, �̂�𝜃(𝑥, 𝑡) is a neural network. The neural network is trained to learn the optimal values of 

the parameters 𝜃. These parameters are learned through the minimization of a loss function. 

The loss for PINN is defined as follows, 

𝐶 ≈ 𝜔𝒩𝐶𝒩 + 𝜔𝐵𝐶𝐵 + 𝜔𝑑𝐶𝑑𝑎𝑡𝑎  (4) 

Here, 𝜔𝒩, 𝜔𝐵, and 𝜔𝑑 are the weights associated with the model equation, boundary and initial 

conditions, and known data, respectively. 

If the MSE loss function is used, then 𝐶𝒩 , 𝐶𝐵, and 𝐶𝑑𝑎𝑡𝑎 can be written as follows, 

𝐶𝒩 = 𝑀𝑆𝐸𝒩 =
1

𝑁𝑐
∑|𝑓(𝑥𝑖, 𝑡𝑖)|2

𝑁𝑐

𝑖=0

     (5) 

𝐶𝐵 = 𝑀𝑆𝐸𝐵 =
1

𝑁𝐵
∑|𝐵(�̂�𝜃)|2

𝑁𝐵

𝑖=0

 (7) 

𝐶𝑑𝑎𝑡𝑎 = 𝑀𝑆𝐸𝑑𝑎𝑡𝑎 =
1

𝑁𝑑
∑|�̂�𝜃(𝑥𝑖, 𝑡𝑖) − 𝑢𝑖|2

𝑁𝑑

𝑖=0

  (8) 

Here, 𝑁𝑐, 𝑁𝐵, and 𝑁𝑑𝑎𝑡𝑎 are collocation points, initial and boundary points, and data points as 

input for the neural network, respectively. 
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Fig. 2.1: Physics-informed neural network architecture (Cuomo et al., 2022) 

The present study employs the viscous Burgers equation to approximate the solution using 

PINN. The Burger equation can be written as, 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
 =

1

𝑅𝑒

𝜕2𝑢

𝜕𝑡2
       (9) 

Here, 𝑅𝑒 is Reynold’s number. The initial and boundary conditions are as follows, 

𝑢(𝑥, 0) =
𝑥

1 + √
1

𝑒
1

8𝑅𝑒⁄
× 𝑒

𝑥2𝑅𝑒
4⁄

         (10)

 

𝑢(0, 𝑡) = 0  (11) 

𝑢(1, 𝑡) =
1

1 + 𝑒
3𝑅𝑒

16⁄
        (12) 

3.  Development of POD Modes 

The Proper Orthogonal Decomposition (POD) method finds its application in the realm of 

Partial Differential Equations (PDEs) and constitutes an algorithmic process rooted in the 

principles of Singular Value Decomposition (SVD). It is quite a handy method for reducing 

dimensionality when analyzing spatiotemporal systems (Aubry et al., 1988; Amsallem and 

Farhat, 2012). Such systems often manifest as nonlinear PDEs governing the evolution of 

various quantities across time and space in diverse physical, engineering, and biological 

contexts. POD’s success pivots on the widespread observation that complex systems tend to 

encode meaningful behaviors in low-dimensional patterns of dynamic activity. Therefore, POD 
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aims to capitalize on this phenomenon by generating low-rank dynamical systems that model 

the complete spatiotemporal behavior of the underlying complex system. ROMs utilize POD 

modes to project PDE dynamics onto low-rank subspaces, facilitating more efficient 

evaluations of the governing PDE model. These ROMs play a pivotal role in significantly 

enhancing computational speed, enabling tasks like computationally intensive Monte Carlo 

simulations of PDE systems, parameterized PDE system optimization, and real-time control of 

PDE-based systems. Generally, the POD modes can be derived through either the Singular 

Value Decomposition (SVD) or the method of snapshots (Sirovich and Kirby, 1987; Sirovich, 

1989).  

An ensemble of 𝑆 time-discrete snapshots (𝑝𝑛 = 𝑝(𝐱, 𝑡𝑛), 𝑡𝑛 = 𝑡𝑠 + (𝑛 − 1)∆𝑡, 𝑛 =

1, 2, ⋯ , 𝑆) serves as input for the POD analysis, focusing on properties like velocity in the flow. 

The time-dependent flow field 𝑝 is decomposed into its mean �̅�(𝐱) and fluctuating part 𝑝′(𝐱, 𝑡). 

The fluctuating component 𝑝′(𝐱, 𝑡) is then expanded in a Galerkin fashion using temporal and 

spatial variables as follows: 

𝑝(𝐱, 𝑡) = �̅�(𝐱, 𝑡) + 𝑝′(𝐱, 𝑡) = �̅�(𝐱, 𝑡) + ∑ 𝑎𝑗(𝑡)𝜑𝑗(𝐱, 𝑡)

∞

𝑗=1

≈ 𝜏̅(𝐱, 𝑡) + ∑ 𝑎𝑗(𝑡)𝜑𝑗(𝐱)

𝑀

𝑗=1

 

Here, M represents the finite number of modes in the expansion, 𝜑𝑗(𝐱) are the POD modes 

obtained through an eigenvalue problem and 𝑝𝑗(𝑡) are the temporal coefficients. The objective 

of this study is to train an ANN model to determine the values of𝑎𝑗. Details regarding the ANN 

model setup can be found in section 2.3. 

The instantaneous solutions at times 𝑡1, 𝑡2, ⋯ , 𝑡𝑠  ∈ (0, 𝑇) of 𝑝 are stored in a matrix 𝑈 of size 

𝑁 × 𝑆, where 𝑆 ≪ 𝑁 signifies the number of grid points. The goal is to identify a low-

dimensional basis {𝜑1, 𝜑2, ⋯ , 𝜑𝑀} that minimizes the following objective while adhering to 

orthogonality constraints (𝜑𝑖, 𝜑𝑗)
ℋ

= 𝛿𝑖𝑗  ,1 ≤ 𝑖, 𝑗 ≤ 𝑀,  

min
𝜑𝑗

1

𝑆
∑ ‖𝜏(. , 𝑡𝑖) − ∑ (𝑝(. , 𝑡𝑖), 𝜑𝑗(. ))

ℋ
𝜑𝑗(. )

𝑀

𝑗=1

‖

ℋ

2
𝑆

𝑖=1

 

Here, 𝛿𝑖𝑗 is the Kronecker delta function and ℋ is a real Hilbert space with (. , 𝑡) ∈ ℋ | 𝑡 ∈

(0, 𝑇). To address this, an eigenvalue problem is formulated: 

ℳ𝑣 = 𝜆𝑣 

where 𝑣𝑘 for 𝑘 = 1, 2, ⋯ , 𝑆 are the eigenvectors, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑆 > 0 are eigenvalues, 

and 𝑈𝑇𝑈 = ℳ ∈ ℛ𝑆×𝑆 is the correlation matrix that can be defined as, 

ℳ𝑖𝑗 =
1

𝑆
(𝑝(. , 𝑡𝑗), 𝑝(. , 𝑡𝑖))

ℋ
 

As demonstrated in (Sirovich, 1987), the solution can be expressed as: 
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𝜑𝑘(. ) =
1

√𝜆𝑘

∑(𝑣𝑘)𝑗𝑝(. , 𝑡𝑗)

𝑆

𝑗=1

, 1 ≤ 𝑘 ≤ 𝑀 

4. Data-Driven Prediction of Temporal Coefficients (Development of ROM using 

DNN) 

ANN (Saeed et al., 2023) are deep learning frameworks. ANN generates its output by mapping 

a set of inputs through a generalized variation of a linear function. The neurons are organized 

into layers, including input and output layers, with one or more hidden layers in between. The 

input layer takes the input data, and no computation is performed at the input layer. The 

subsequent layers consist of a sequence of neurons that carry out computations on their 

respective inputs and generate the output of hidden layers. In computation, the value of each 

neuron of the previous layer and weights are multiplied, and the bias term is added to generate 

the output neuron of a layer 𝑙. An activation function is applied to the output neuron of a layer. 

The hidden layers carry out computations hidden from the user’s view. The last layer in the 

network is the output layer, typically featuring a linear activation function. Mathematically, the 

dot product of the neurons of the previous layer  𝑥𝑖
[𝑙−1]

 and weights 𝑤𝑗𝑖
[𝑙]

 is taken and bias 𝑏𝑗
[𝑙]

 

is added to generate the output neuron of layer 𝑙. The activation function 𝜑 is applied to the 

output of layer 𝑙. 

𝑧𝑗
[𝑙−1]

= ∑ 𝑥𝑖
[𝑙−1]

. 𝑤𝑗𝑖
[𝑙]

+ 𝑏𝑗
[𝑙]

𝑛𝑙−1

𝑖=1

 

Here, 𝑗 = 1,2, ⋯ , 𝑛𝑙 and 𝑛𝑙 represents the number of neurons in a layer 𝑙. 

The weights and biases are the trainable parameters of the neural network. A loss function is 

the distance between predicted and true values. It is a fundamental component in the training 

of neural networks. The primary objective during training is to minimize this loss. 

Training a neural network is a crucial phase in its development, where the network learns to 

capture patterns and relationships within the provided data. During training, the network 

adjusts the parameters to minimize the loss function. This process involves an iterative 

optimization technique to update these parameters gradually. Gradient descent or its variants 

are used as the optimization technique. The neural network learns from its mistakes by 

comparing its predictions to the true values. The training process refines the ability of neural 

networks to make reasonably accurate predictions over time. Proper training also involves 

considerations such as selecting an appropriate loss function to quantify the prediction errors 

and fine-tuning hyperparameters, like learning rates, to optimize the training process. The 

training aims to enable the neural network to generalize its learned patterns to unseen data, 

ensuring its effectiveness in real-world applications. 

The information is transmitted sequentially from consecutive layers in a unidirectional manner, 

progressing from input to output. The network assumes full connectivity, where every node in 

one layer is linked to those in the subsequent layer. The number of layers and neurons specifies 

the architecture of the network. 
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5.  Results and Discussion 

In the article, the Burger equation, given in Eq. (9), is solved using PINNs, implemented within 

the DeepXDE framework (Lu et al., 2021). The geometry of the problem is an interval in the 

𝑥-domain. The time domain is specified (0,1) to study the problem’s evolution over time 

together with the Dirichlet boundary and initial conditions. The power of automatic 

differentiation (Raissi et al., 2019) is leveraged to compute derivatives efficiently. A 

feedforward neural network is employed with three hidden layers with 20 neurons in each 

hidden layer. The model is compiled using the Adam (Kingma and Ba, 2017) optimizer with a 

learning rate of 1.0×10−3. The training process is initiated for a specified number of iterations. 

Following initial training, the L-BFGS (Byrd et al., 1995) optimizer is used for further fine-

tuning. We introduce an early stopping criterion to enhance convergence. The space-time 

solution of the Burgers equation at different values of the Reynolds number is shown in Fig. 

2.2. 

       

(a)        (b) 

       

(c)                                                                          (d) 

Fig. 2.2: Space-time solution of the Burgers equation for different values if the Reynolds 

number: (a) Re = 100, (b) Re = 300, (c) Re = 500, and (d) Re = 700 
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The PINN solution is used to generate POD for the viscus Burger equation. The SVD is 

preferred due to its computational efficiency. The POD modes are calculated using the solution 

of the Burger equation obtained using PINN. Ten temporal coefficients are obtained at 500 

equally spaced time steps. These temporal coefficients are further used to generate the ANN-

based ROM. The singular values and first four POD modes for Re = 100, 300, 700, and 900 

are visualized.in Fig. 2.3 and 2.4, respectively. 

        

(a)         (b) 

        

(c)         (d) 

Fig. 2.3: Singular Values (a) Re = 100 (b) Re = 300 (c) Re = 500 (d) Re = 700 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2.4: First four POD modes: (a) Re = 100, (b) Re = 300, (c) Re = 500, and (d) Re = 700 

In this study, a feedforward neural network (FNN) is used to establish a mapping from previous 

time steps to future time steps. The input data for the neural network comprises the temporal 

coefficients derived. The architecture consists of two hidden layers with 512 neurons in each 

layer. The ReLU activation function is applied in the hidden layer. The training process was 

executed using TensorFlow (Abadi et al., 2015), wherein the neural network was optimized to 

minimize the error between predicted and target temporal coefficients. The optimization 

procedure employed the Adam optimization algorithm (Kingma and Ba, 2017). To identify the 

optimal architecture for the ANN, Autokeras (Jin et al., 2019) was harnessed, which leverages 

Bayesian Optimization (Wu et al., 2019) to explore configurations such as the number of 
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hidden layers and neurons. The training dataset is comprised of 490 time steps for each 

Reynolds number value at 100, 500, and 700, with an additional 30 time steps reserved for 

testing purposes. Notably, time coefficients associated with the Reynolds number at 300 were 

excluded from training. The model’s capability to predict out-of-sample POD coefficients for 

Re = 300 is evaluated. Given a Reynolds number and past time steps, it can forecast future time 

steps. Furthermore, Fig. 3 illustrates the first four coefficients, demonstrating a strong 

agreement between the predictions and the actual data. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3: First four temporal coefficients at different values of the Reynolds number: (a) Re = 

100, (b) Re = 300, (c) Re = 500, and (d) Re = 700 

6. Conclusion 

In conclusion, this preliminary study highlights the promising synergy between Data-Driven 

Reduced-Order Modeling (ROM) techniques and the Physics-Informed Neural Networks 

(PINN) approach in tackling the Burgers’ equation, which features a shock wave. In this study, 

the numerical solution is obtained using PINN at different values of Reynolds number. Next, 

our methodology involves the extraction of Proper Orthogonal Decomposition (POD) modes 

from the solution field, enabling a concise representation of the system’s dominant spatial 

patterns. By subsequently computing temporal coefficients at specific time instants in the 

interval (0,1), we establish a reduced-order framework for capturing the temporal evolution of 
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the system. The utilization of these extracted POD coefficients as input data for training a deep 

neural network (DNN) model results in a powerful tool for predicting the solution of the model 

problem at various time steps. Additionally, the interpolation for out-of-sample data is 

conducted, specifically at the value of Reynolds number 300. Our findings reveal that the ANN 

model outperforms the conventional POD-ROM. This fusion of POD-based spatial 

decomposition and the data-driven capabilities of DNN proves efficient and accurate in 

approximating the solution, even in the presence of complex shock waves. Furthermore, our 

study underscores the broader potential of integrating model reduction techniques with 

machine learning approaches for solving intricate partial differential equations. The presented 

framework offers a promising avenue for addressing complex phenomena while balancing 

computational efficiency and predictive accuracy in a wide range of scientific and engineering 

applications. 
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