
 
 
 

INSTITUTO DE BIOCIÊNCIAS 

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL 
 
 
 
 
 
 
 
 
 
 
 

DIEGO ALEJANDRO ESQUIVEL MELO 
 
 
 
 
 
 
 
 
 
 
 

SISTEMÁTICA E EVOLUÇÃO DO GÊNERO DE MORCEGOS NEOTROPICAL 

LOPHOSTOMA d'Orbigny, 1836 (CHIROPTERA: PHYLLOSTOMIDAE) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PORTO ALEGRE 

2021



 
 
 
 
 
 
 
 
 

 

DIEGO ALEJANDRO ESQUIVEL MELO 
 
 
 
 
 
 
 
 

SISTEMÁTICA E EVOLUÇÃO DO GÊNERO DE MORCEGOS NEOTROPICAL 

LOPHOSTOMA d'Orbigny, 1836 (CHIROPTERA: PHYLLOSTOMIDAE) 

 
 
 
 

Dissertação apresentada ao Programa de Pós-Graduação em 

Biologia Animal, Instituto de Biociências da Universidade 

Federal do Rio Grande do Sul, como requisito parcial à 

obtenção do título de Mestre em Biologia Animal. 

 
Área de concentração: Biologia Comparada 
 
Orientador: Dr. Filipe Michells Bianchi 

Co-orientadora: Prof.ª Dr.ª Maria João Ramos Pereira 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PORTO ALEGRE 

2021



 

 

 

DIEGO ALEJANDRO ESQUIVEL MELO 

 
 
 
 
 
 
 
SISTEMÁTICA E EVOLUÇÃO DO GÊNERO DE MORCEGOS NEOTROPICAL 

LOPHOSTOMA d'Orbigny, 1836 (CHIROPTERA: PHYLLOSTOMIDAE) 

 
 
 
 
 
 

Aprovada em       de                       de           . 
 
 
 
 
 

BANCA EXAMINADORA 
 
 
 
 
 
 
 
 
 

 Prof.ª Dr.ª Valéria da Cunha Tavares 
 

            (UFPB/ITV) 
 

 
           

 
 
 
 

Dr. Roberto Leonan Morim Novaes 
 

             (FIOCRUZ) 
 
 
 
 
 
 

Dr. Tiago Carvalho 
 

            (PPGBAN/UFRGS) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico este trabalho à minha mãe Flor Alba Melo, pelo carinho, auxílio, energia, força e 

motivação despendidos durante minha trajetória acadêmica.



 

AGRADECIMENTOS 

 

Eu gostaria de expressar a minha mais profunda gratidão ao Dr. Filipe Michels Bianchi 

pelo seu constante apoio, sua inesgotável paciência, suas valiosas ideias, sugestões e 

contribuições, assim como por compartilhar seu conhecimento e historias ao longo 

desses dois anos. Agradeço-o por me aceitar como orientado e por aceitar o desafio de 

entrar num novo mundo dominado pelos animais mais fantásticos que nós temos: os 

morcegos. Acredito que, mais do que se tornar meu orientador, ele se tornou um grande 

amigo. 

 

Agradeço também à Profa. Dra Maria João Ramos pela oportunidade e confiança em me 

aceitar como orientado, pelo acompanhamento, incentivo, e tempo na minha formação. 

Também quero agradecer por compartilhar o gosto pelos morcegos, pelo aprendizado 

que me propiciou e, sobretudo, pela grande amizade que resultou deste trabalho.  

 

Um agradecimento muito especial à Angie Penagos, minha companheira em todos os 

momentos, bons ou ruins, pelo carinho, amizade, paciência, ajuda e por tanto amor. Por 

se aventurar em sair de casa comigo e lutar pelos os nossos sonhos. Para você toda 

minha admiração, respeito e amor! 

 

À minha mãe e irmã, por serem as propulsoras que me ajudaram a chegar até aqui, 

longe de casa, por trás de um ideal, um sonho de me formar no Brasil conseguindo 

entregar este trabalho, aqui.  

 

Aos meus colegas de laboratório, pela amizade e a parceria, assim como por sua 

paciência para me compreender quando eu ainda nem falava alguma coisa em 

português. 

 

Agradeço a UFRGS e ao Departamento de Zoologia pela oportunidade de ensino e pelo 

aprendizado obtido, assim como à bolsa de pesquisa financiada pela Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e auxílios fornecidos pelo 

PPGBAN. 

 

Gracias totales! 
 

 

 

 

 

 



 

2 

 

SUMÁRIO 

RESUMO ............................................................................................................................. 3 

ABSTRACT ........................................................................................................................ 4 

CAPÍTULO I – Introdução Geral ..................................................................................... 5 

Sistemática e Taxonomia: desafios e novas tendências ................................................ 5 

Chiroptera: Avanços na sistemática dos morcegos neotropicais .................................. 7 

Os morcegos de orelhas redondas, Lophostoma d'Orbigny, 1836 ................................ 8 

Histórico taxonômico .................................................................................................. 10 

Objetivos ..................................................................................................................... 11 

Referências .................................................................................................................. 11 

CAPÍTULO II – Diversidade críptica no complexo Lophostoma brasiliense .............. 17 

Multiple lines of evidence support cryptic diversity in the bat Lophostoma brasiliense 

(Chiroptera: Phyllostomidae) ...................................................................................... 17 

ACKNOWLEDGMENTS .......................................................................................... 18 

ABSTRACT ................................................................................................................ 19 

INTRODUCTION ...................................................................................................... 20 

MATERIAL AND METHODS .................................................................................. 24 

RESULTS ................................................................................................................... 33 

DISCUSSION ............................................................................................................. 44 

REFERENCES ........................................................................................................... 49 

SUPPORTING INFORMATION ............................................................................... 62 

CAPÍTULO III – Diversidade críptica no complexo Lophostoma silvicola ................ 78 

Tackling the Linnean shortfall in Lophostoma (Chiroptera, Phyllostomidae): an 

approach with multiple lines of evidence ................................................................... 78 

ABSTRACT ................................................................................................................ 79 

1  |  INTRODUCTION ............................................................................................... 80 

2  |  METHODS AND MATERIALS ......................................................................... 82 

3  |  RESULTS ............................................................................................................ 88 

4  | DISCUSSION ....................................................................................................... 92 

ACKNOWLEDGEMENTS ........................................................................................ 96 

REFERENCES ........................................................................................................... 96 

SUPPORTING INFORMATION ............................................................................. 103 

CAPÍTULO IV – Conclusões e considerações finais ................................................... 117 

 



 

3 

 

RESUMO 

 

Morcegos Lophostoma d'Orbigny, 1836 (Chiroptera: Phyllostomidae) estão distribuídos 

desde o sul do México até o sudoeste do Paraguai e sudeste do Brasil. Este gênero inclui 

sete espécies de morcegos insetívoros, conhecidos como morcegos-de-orelhas-redondas. 

A sistemática e taxonomia do grupo têm sido objeto de diversos estudos, que utilizando 

dados morfológicos e moleculares revelaram uma enorme diversidade fenotípica e 

genotípica, indicando a possível existência de espécies crípticas, principalmente em 

Lophostoma brasiliense Peters, 1866 e Lophostoma silvicola d'Orbigny, 1836. O 

principal objetivo do presente estudo foi analisar a diversidade críptica de Lophostoma 

ao longo de sua distribuição geográfica, integrando análises moleculares, morfológicas 

e morfométricas para esclarecer os limites taxonômicos, distribuição e relações 

evolutivas das suas espécies. No primeiro capítulo, apresento uma avaliação taxonômica 

de L. brasiliense. Foram utilizados métodos de delimitação fenotípica e molecular das 

espécies com base no marcador mitocondrial Citocromo c oxidase subunidade 1 (COI), 

dados morfológicos, morfométricos lineares e geométricos. Os resultados reconheceram 

L. brasiliense como duas linhagens distintas com distribuições alopátricas. Uma 

corresponde à L. brasiliense sensu stricto, com distribuição cis-andina; outra 

corresponde à L. nicaraguae (Goodwin, 1942), atualmente sinônimo de L. brasiliense, 

com distribuição transandina. O status de espécie válida é proposto para L. nicaraguae 

considerando as evidências apresentadas. No segundo capítulo, faço uma avaliação 

taxonômica de L. silvicola baseada em dois genes mitocondriais (COI, Cyt-b) e 

múltiplas evidências fenotípicas (morfologia qualitativa e quantitativa). As análises 

suportam a validação de duas entidades taxonômicas adicionais à L. silvicola: L. 

laephotis (Thomas, 1910) e L. amblyotis Peters, 1867. Por fim, apresento informações 

sobre a distribuição de cada uma das espécies aqui reconhecidas, bem como hipóteses 

sobre a sua diversificação, e discuto as possíveis implicações das barreiras geográficas 

na origem destas espécies.  

 

Palavras chave: espécies crípticas, delimitação de espécies, Phyllostomidae, revisão 

taxonômica, taxonomia integrativa.   
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ABSTRACT 
 

Bats of genus Lophostoma d'Orbigny, 1836 (Chiroptera: Phyllostomidae) are distributed 

from southern Mexico to southwestern Paraguay and southwestern Brazil. This genus 

includes seven species of insectivorous bats, which are known as round-eared bats. 

Systematics and taxonomy of the group have been the subject of several studies, which 

using morphological and molecular data revealed an enormous phenotypic and genetic 

diversity, indicating the possible existence of cryptic species, mainly in Lophostoma 

brasiliense Peters, 1866 and Lophostoma silvicola d'Orbigny, 1836. The main objective 

of the present study was to analyze the cryptic diversity of Lophostoma throughout its 

geographic distribution, integrating molecular, morphological and morphometric 

analyzes to clarify the taxonomic limits, distribution and evolutionary relationships of 

its species. In the first chapter, I present a taxonomic assessment of L. brasiliense. 

Phenotypic and molecular species delimitation methods were used based on the 

mitochondrial marker Cytochrome c oxidase subunit I (COI), morphological, linear and 

geometric morphometric data. The results recognized L. brasiliense as two distinct 

lineages with allopatric distributions. One corresponds to L. brasiliense sensu stricto, 

with a cis-Andean distribution; another corresponds to L. nicaraguae (Goodwin, 1942), 

currently synonymous with L. brasiliense, with trans-Andean distribution. Valid species 

status is proposed for L. nicaraguae considering the evidence presented. In the second 

chapter, I perform a taxonomic assessment of L. silvicola based on two mitochondrial 

genes (COI, Cyt-b) and multiple phenotypic evidences (qualitative and quantitative 

morphology). The analyzes supported the validation of two additional taxonomic 

entities to L. silvicola: L. laephotis (Thomas, 1910) and L. amblyotis Peters, 1867. 

Finally, I present information on the distribution of each of the species recognized here, 

as well as hypotheses about their diversification, and discuss the possible implications 

of geographic barriers in the origin of these species. 

 

Key words: cryptic species, integrative taxonomy, species delimitation, 

Phyllostomidae, taxonomic revision. 
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CAPÍTULO I – Introdução Geral    
 

Sistemática e Taxonomia: desafios e novas tendências  

 

A sistemática e a taxonomia desempenham um papel fundamental no estudo da 

biodiversidade. A sistemática classifica, organiza e estabelece hipóteses sobre as 

relações evolutivas entre os táxons, enquanto a taxonomia os caracteriza e os nomeia 

(Mayr 1999). Ambas disciplinas têm implicações diretas sobre a conservação das 

espécies e possibilitam a compreensão dos processos ecológicos e evolutivos a que os 

organismos estão sujeitos (Huber & Langor 2004).  

Após mais de dois séculos de avanços no conhecimento da biodiversidade sob a 

nomenclatura Lineana, os cientistas descreveram aproximadamente 1.9 milhões de 

espécies (Roskov, 2019), mas estima-se que a quantidade de espécies presentes na Terra 

possa estar entre 5 e 9 milhões (Mora et al., 2011). Assim, embora um conhecimento 

profundo de nossa biodiversidade seja essencial para diversas áreas da biologia, sejam 

básicas ou aplicadas, na verdade só conhecemos uma pequena parte dela. Essa lacuna de 

conhecimento taxonômico é chamada de déficit Lineano (Lomolino et al. 2004), e afeta 

drasticamente outras subáreas relacionadas à biologia, pois tem a ver com a unidade 

fundamental de qualquer estudo em ecologia, evolução, biogeografia e conservação: as 

espécies (Funk et al. 2002). A taxonomia busca reduzir esse déficit, descobrindo, 

delimitando e descrevendo as espécies. 

Apesar de ser tão importante para a biodiversidade, a ciência por trás da 

delimitação do mundo natural em "espécies" é frequentemente negligenciada e mal 

compreendida. A taxonomia enfrenta vários desafios: i) a descrição de novas espécies 

pode ser um processo longo e mais lento do que seu desaparecimento, o que leva os 

taxonomistas a correrem contra o tempo (Chenuil et al. 2019); ii) não há taxonomistas 

suficientes para a elevada quantidade de grupos taxonômicos, o que nos permite supor 

que a taxa de extinção em organismos pouco estudados é muito maior do que a 

descoberta de novas espécies (Chenuil et al. 2019); iii) a taxonomia não recebe o 

necessário reconhecimento social e, subsequentemente, financiamento (Lee 2000; 

Agnarsson & Kuntner 2007). 

Um desafio adicional é o desvendar de espécies crípticas, definidas como a 

ocorrência de diferentes linhagens evolutivas de organismos fenotipicamente 

semelhantes reconhecidas como uma mesma espécie (Bickford et al. 2007). Essas 
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espécies são muito semelhantes fenotipicamente, mas eventualmente distinguíveis do 

ponto de vista ecológico, comportamental ou molecular. Com efeito, historicamente, as 

delimitações taxonômicas têm sido baseadas em características morfológicas 

diagnósticas para separar populações e reconhecer diferenças entre espécies e 

subespécies (Matos-Maraví et al., 2019). No entanto, a delimitação de espécies com 

base somente na morfologia falha quando se trata de espécies crípticas, porque muitas 

vezes não se consegue fazer delimitações explícitas e claras entre elas (Struck et al., 

2018). 

Com o avanço de novas metodologias moleculares e de ferramentas e arcabouços 

estatísticos, novos conceitos de espécies têm sido propostos buscando delinear as 

espécies de forma mais adequada (ver Zachos 2016). Contudo, a delimitação das 

espécies depende do conceito de espécie utilizado e dos critérios de delimitação 

apropriados para esse conceito (Sites & Marshall, 2004; de Queiroz, 2007); portanto, o 

conceito usado afetará o número de espécies finais. Com o objetivo de tentar resolver o 

problema levantado pelo uso de diferentes conceitos de espécies, foi proposto o 

conceito de espécie unificada, que identifica as espécies como linhagens 

metapopulacionais evoluindo separadamente (de Queiroz, 2007). Assim, os “limites” 

das espécies podem ser descobertos pela análise de diferentes tipos de dados de acordo 

com a biologia (em suas mais distintas facetas) das espécies (Jaiswara et al., 2012). 

Para delimitar com precisão as espécies crípticas e, assim, reduzir o déficit 

Lineano, os taxonomistas usam diferentes linhas de evidência (por exemplo, dados 

genômicos, morfológicos, acústicos, ecológicos, climáticos, geográficos, entre outros), 

procurando reconhecer padrões entre os dados e, assim, identificar as unidades 

taxonômicas não reconhecidas (DeSalle et al., 2005; Bickford et al., 2007). O uso dessas 

diferentes linhas de evidência para elucidar questões taxonômicas em estudos 

sistemáticos tem sido designado por "taxonomia integrativa" (Padial et al. 2010; Yeates 

et al. 2010). Neste contexto, múltiplas linhas de evidência fornecem um suporte mais 

robusto para hipóteses que propõem a existência de diferentes linhagens evolutivas (de 

Queiroz 2007). O rigor na delimitação de espécies pode, portanto, ser aumentado 

quando várias abordagens escolhidas para complementaridade são usadas (Schlick-

Steiner et al. 2010). 
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Chiroptera: Avanços na sistemática dos morcegos neotropicais 

 

Os morcegos são a segunda ordem mais diversa de mamíferos, tendo menos 

espécies apenas que os roedores. Atualmente são reconhecidas 21 famílias, 233 gêneros 

e 1432 espécies de morcegos no mundo (Simmons & Cirranello 2020), sendo que mais 

de 380 espécies ocorrem no Neotrópico (Solari & Martínez-Arias, 2014). Estes 

organismos fornecem diferentes serviços ecossistêmicos como a dispersão de sementes, 

polinização, controle biológico de insetos e pequenos vertebrados, e transporte de 

nutrientes para ambientes cavernícolas, contribuindo para o equilíbrio e para a 

manutenção geral dos ecossistemas. Desta forma, devido às funções ecológicas que 

cumprem, os morcegos têm um potencial de importância econômica e geração de 

impactos positivos sobre o bem-estar humano (Kunz et al. 2011; Castillo-Figueroa 

2020).  

Na região neotropical a família mais diversificada morfologicamente e 

representativa é Phyllostomidae. Os estudos sistemáticos morfológicos (Wetterer et al., 

2000; Dávalos et al., 2014) e moleculares (Baker et al., 2003; Rojas et al., 2011; 

Dumont et al., 2012; Dávalos et al., 2014) neste grupo são numerosos e resultaram na 

definição de 11 subfamílias (Macrotinae, Micronycterinae, Desmodontinae, 

Phyllostominae, Glossophaginae, Lonchorhininae, Lonchophyllinae, Glyphonycterinae, 

Carolliinae, Rhinophyllinae e Stenodermatinae), 12 tribos (Diphyllini, Desmodontini, 

Macrophyllini, Phyllostomini, Vampyrini, Glossophagnini, Brachyphyllini, 

Choeronycterini, Lonchophyllini, Hsunycterini, Sturnirini e Stenodermatini), e nove 

subtribos (Brachyphyllina, Phyllonycterina, Anourina, Choeronycterina, Vampyressina, 

Enchisthenina, Ectophyllina, Artibeina e Stenodermatina) (Baker et al. 2016). Porém, 

uma parte importante dos estudos filogenéticos na família têm se concentrado em 

resolver a filogenia profunda, ou seja, a relação entre categorias taxonômicas mais 

elevadas, pelo que ainda existem muitas lacunas de informação nas categorias inferiores 

como as relações entre gêneros e espécies, particularmente dentro de algumas 

subfamílias. Os avanços na sistemática e taxonomia de morcegos, e em particular em 

Phyllostomidae, têm ajudado a aumentar consideravelmente o conhecimento da sua 

diversidade de espécies e padrões de distribuição no neotrópico (Solari & Martínez-

Arias, 2014; Solari et al., 2019). No entanto, existem ainda muitas lacunas sobre muitos 

táxons, especialmente aqueles que podem incluir diversidade críptica.  
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Estudos recentes sugerem elevada diversidade críptica em algumas espécies de 

morcegos (Clare, 2011), razão pela qual é fundamental a geração de novos dados, 

especialmente moleculares, que permitam não só hipotetizar as relações filogenéticas 

em certos grupos, mas também delimitar suas espécies, esclarecendo os mecanismos 

que favoreceram a sua diversificação. Desvendar a diversidade críptica presente num 

grupo taxonômico é um passo fundamental, não só para compreender profundamente a 

diversidade biológica em uma região, mas também para compreender a evolução e 

fatores na conservação que envolvem esta realidade biológica "oculta" (Funk et al. 

2002). Os morcegos Lophostoma d’Orbigny, 1836, (Phyllostomidae: Phyllostominae: 

Phyllostomini), constituem um grupo onde parece existir elevada diversidade críptica 

por explorar, o que tem sido sugerido através de estudos morfológicos e moleculares 

(Velazco & Cadenillas 2011). Por esse motivo, constituem um excelente grupo-alvo 

para contribuir para a redução do défice Lineano em morcegos neotropicais. 

 

Os morcegos de orelhas redondas, Lophostoma d'Orbigny, 1836  

 

Morcegos do gênero Lophostoma d'Orbigny, 1836, (Phyllostomidae: 

Phyllostominae) são insetívoros comuns na região Neotropical, onde ocupam uma 

grande variedade de habitats ao longo da sua distribuição, desde regiões semiáridas a 

florestas tropicais secas e úmidas (Williams & Genoways 2008). O gênero é endêmico 

das Américas e encontra-se distribuído do sul do México ao sudoeste do Paraguai 

(Simmons 2005; Williams & Genoways 2008). Atualmente, compreende sete espécies 

de tamanho pequeno a médio (antebraço 33-56 mm; Williams & Genoways 2008): 

Lophostoma brasiliense Peters, 1867, L. carrikeri (Allen,1910), L. evotis (Davis & 

Carter, 1978), L. kalkoae Velazco & Gardner, 2012, L. occidentale (Davis & Carter, 

1978), L. schulzi (Genoways & Williams, 1980) e L. silvicola d’Orbigny, 1836. 

Relações filogenéticas a nível do gênero foram já estudadas (Lee et al. 2002, 

Porter et al. 2003) assim como revisões taxonômicas para algumas espécies (Velazco & 

Cadenillas 2011; Camacho et al. 2016). Contudo, tem sido sugerida a necessidade de 

uma revisão mais profunda, particularmente para o táxon L. silvicola, que inclui três 

subespécies reconhecidas, embora sem limites taxonômicos claramente definidos, e para 

L. brasiliense que pode representar um complexo de linhagens evolutivas distintas ainda 

não investigado adequadamente (chamado de hidden diversity por Velazco & Cadenillas 

2011).   
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Em análises filogenéticas utilizando o gene mitocondrial Citocromo-b, Velazco & 

Cadenillas (2011) revelaram a parafilia entre linhagens de L. silvicola com três clados 

definidos (Figura 1). No entanto, utilizando apenas dados morfológicos, não foi possível 

diferenciar conjuntos agrupados a partir das análises filogenéticas. Isso demonstra a 

necessidade de uma revisão mais profunda desse complexo de potenciais espécies, por 

meio de uma amostragem mais completa não só de indivíduos, como também de outras 

fontes de informação. 

 

 

Figure 1. Filograma de máxima verossimilhança com base em sequências de 

Citocromo-b para seis espécies de Lophostoma. Sensu Velazco & Cadenillas (2011).  
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Histórico taxonômico  

 

Lophostoma foi descrito por A. d'Orbigny em 1836 como um gênero monotípico, 

usando somente o holótipo de Lophostoma silvicola d'Orbigny, 1836, coletado na 

Bolívia. Posteriormente, outras espécies foram adicionadas ao gênero: Lophostoma 

bidens (Spix, 1823), transferida por W. Peters (1865) por combinação de nomes, L. 

brasiliense Peters, 1867, e L. amblyotis Peters, 1867. Dobson (1878) indicou L. silvicola 

como um sinônimo júnior de L. amblyotis; no entanto Palmer (1898) reconheceu erros 

neste tratamento e tratou Lophostoma como sinônimo júnior de Tonatia Gray, 1827. 

Esta decisão taxonômica perdurou por 80 anos, quando novas evidências citogenéticas, 

de aloenzimas e imunológicas (Patton & Baker, 1978; Baker & Bickham 1980; Arnold 

et al., 1983; Honeycutt & Sarich 1987) indicaram divergências entre as espécies 

agrupadas em Tonatia. Lee et al. (2002) examinaram as sequências de DNA e 

evidenciaram Tonatia como um grupo parafilético, sugerindo elevar Lophostoma 

novamente à categoria de gênero, incluindo as espécies L. brasiliense, L. carrikeri, L. 

evotis, L. schulzi e L. silvicola. A partir deste momento, L. kalkoae; Velazco & Gardner, 

2012 foi descrita e L. occidentale (Davis and Carter, 1978) foi revalidada. Estudos 

recentes reconhecem sete espécies em Lophostoma, (Camacho et al. 2016), das quais 

pelo menos duas apresentam elevada diversidade críptica: L. silvicola e L. brasiliense.  

Neste contexto, esta dissertação foca na diversidade críptica presente em 

Lophostoma e no levantamento de hipóteses sobre os processos de diversificação do 

táxon. Os resultados obtidos permitem melhorar o conhecimento taxonômico deste 

grupo de morcegos no neotrópico, bem como parte da sua diversidade genética e a sua 

distribuição geográfica, informações necessárias ao subsequente reconhecimento de 

áreas prioritárias para sua conservação. Para atingir os objetivos, diferentes linhas de 

evidência foram utilizadas, incluindo dados genéticos mitocondriais, morfológicos e de 

morfometria geométrica e dados geográficos para esclarecer os limites e a diversidade 

das espécies dentro do gênero Lophostoma, com especial ênfases nos grupos L. 

brasiliense e L. silvicola.  
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Objetivos 

 

Objetivo geral 

 

O presente trabalho tem como objetivo geral analisar a diversidade críptica em 

Lophostoma a partir de uma abordagem taxonômica integrativa.  

 

Objetivos específicos  

 

– Delimitar e separar espécies crípticas nos complexos L. brasiliense e L. silvicola a 

partir de evidências genéticas, morfométricas e morfológicas. 

– Descrever e redescrever espécies dentro de cada complexo visando melhorar a   

  diagnose dentro do gênero. 

– Determinar a distribuição geográfica das espécies de Lophostoma. 
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ABSTRACT 

 

Phenotypically similar species – often called cryptic species – represent a challenge for 

taxonomy and conservation biology because they are usually undetectable to science. 

To unravel these cryptic taxa, studies now employ data from different sources under an 

integrative approach. We present an assessment of the cryptic diversity of the 

Lophostoma brasiliense species complex (Phyllostomidae, Chiroptera) based on 

multiple lines of evidence (molecular, morphological, morphometric, geometric 

morphometric and geographic data) and using molecular (ABGD, ASAP, GMYC and 

bPTP) and phenotypic (distance-based approaches and Normal Mixture Model 

Analyses) species delimitation methods. Our analyses recognized two distinct lineages 

with clear allopatric distributions. One of these lineages corresponds to L. brasiliense 

with a cis-Andean distribution and the second lineage corresponds to the formerly 

species Lophostoma nicaraguae with a trans-Andean distribution. The distribution of 

both species is limited by the Andes, constituting an ideal taxonomic group to test the 

effect of the rise of this biogeographic barrier in the mammalian diversification. This 

study evaluates the intraspecific relationships within Lophostoma brasiliense complex, 

and underline the need for multiple lines of evidence to solve the remaining taxonomic 

problems among species of Lophostoma. 

ADDITIONAL KEYWORDS: Cryptic species – species delimitation – systematics – 

taxonomy – neotropical bats – Phyllostominae – round-eared bat 
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INTRODUCTION 

 

The discovery of cryptic species together with the advancement of molecular techniques 

and the use of multiple lines of evidence have revealed an increase in the number of 

new species of mammals in the last few years (Solari et al., 2019). Cryptic species are 

defined as different evolutionary lineages of phenotypically similar organisms classified 

within a single species (Bickford et al., 2007). Unveiling cryptic diversity is essential 

for understanding biogeographic, evolutionary, and ecological processes; it is also 

crucial in conservation biology, because undescribed cryptic diversity may already be 

seriously threatened, by occurring in restricted areas or being endemic to areas suffering 

severe anthropogenic pressures (Delić et al., 2017; Theodoridis et al., 2019; Ramesh et 

al., 2020). 

Unveiling and describing cryptic species involves the use of different lines of evidence, 

including molecular, morphological, acoustic, ecological, climatic and geographic data, 

allowing the recognition of patterns across data for the identification of candidate 

species (DeSalle et al., 2005; Bickford et al., 2007). Since the beginning of the use of 

taxonomy as a practice to classify and name diversity on Earth, species delimitation was 

mostly based on phenotypic characteristics as a single line of evidence (the typological-

morphological concepts: Cronquist, 1978; Mayr, 1996). Approaches grounded in new 

sources of evidence provided new perspectives, methodologies, and species concepts, 

such as the Henningian (Hennig, 1966) and the Ecological (Van Valen, 1976) species 

concepts. Different methods and species concepts challenge taxonomists to decide 

which data types are most likely to uncover new species, and how to handle them, 

simultaneously. The use of these different lines of evidence to elucidate taxonomic 

issues in systematic studies has been called “integrative taxonomy” (Padial et al., 2010, 

but see Yeates et al., 2010).  
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As cryptic species are unveiled, it becomes apparent that many of the sister taxa exhibit 

allopatric distributions, also pinpointing the geographical barriers that may have played 

a fundamental role in their formation (Chenuil et al., 2019). In South America, the 

Andes represent the most important biogeographic feature, affecting rivers, 

precipitation, biome limits, and species distributions (Patterson et al., 2012; Viale & 

Garreaud, 2015). The role of the Andes in limiting gene flow and promoting species 

diversification has been widely reported for many vertebrate taxa, such as birds 

(Brumfield & Capparella, 1996), amphibians (Hutter et al., 2017), and mammals 

(Patterson et al., 2012). The complex and relatively recent Andean uplift promoted high 

diversification in multiple taxa, but also the division of reasonably recent species that 

rapidly accumulated high genetic differentiation but poor morphological differentiation 

(i.e., formation of cryptic species). 

Bats have experienced a considerable increase in the number of species as a result of 

surveys in underexplored regions or from taxonomic reviews using integrative 

taxonomy (Burgin et al., 2018; Solari et al., 2019). However, due to their nocturnal 

habits and the difficulty of assessing many taxa in the wild, the current number of bat 

species is probably still underestimated considering the potential species richness of this 

group (Solari et al., 2019). Indeed, recent studies not only suggest the existence of high 

cryptic diversity in many bat lineages, and the need to revise them in depth (e.g., Clare, 

2007, 2011; Lim & Lee, 2018), but also the potential areas for the occurrence of new 

species, particularly in megadiverse regions (Aguiar et al., 2020). 

Neotropical bats of the genus Lophostoma d'Orbigny, 1836, (Phyllostomidae: 

Phyllostominae) exhibit a wide distribution in the Neotropics, ranging from southern 

Mexico southward to southwestern Paraguay and into eastern Brazil (Simmons, 2005; 

Williams & Genoways, 2008). The seven insectivorous species of Lophostoma are 
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known as round-eared bats. Three of these species are medium-sized (forearm > 49 mm, 

greatest length of skull > 26 mm): L. silvicola d'Orbigny, 1836; L. evotis (Davis & 

Carter, 1978); and L. occidentale (Davis & Carter, 1978); and four are small-sized 

(forearm 36 – 49 mm, greatest length of skull 18 – 26 mm): L. brasiliense Peters, 1867; 

L. carrikeri (Allen, 1910); L. schulzi (Genoways & Williams, 1980); and L. kalkoae 

Velazco & Gardner, 2012 (Williams & Genoways, 2008; Velazco & Gardner, 2012). 

During the past decade, advances in the use of morphological and molecular data have 

improved the knowledge on the systematics and taxonomy of Lophostoma (e.g., 

Velazco & Cadenillas, 2011; Velazco & Gardner, 2012; Camacho et al., 2016). Some 

studies suggest high cryptic diversity, particularly in L. brasiliense and L. silvicola 

which are considered species’ complexes (Velazco & Cadenillas, 2011; Lim & Lee, 

2018). 

Since its original description, the taxonomy of Lophostoma brasiliense has been the 

subject of contention. Peters (1867) described the species based on a single specimen 

from “Baia” (= Salvador), Bahia, Brazil. Later, Robinson & Lyon (1901) described 

Lophostoma venezuelae, a species phenotypically similar to L. brasiliense, based on 

specimens from Macuto, Venezuela. Subsequently, Trouessart (1904) transferred these 

species to the genus Tonatia Gray, 1827. Four decades later, Tonatia nicaraguae 

Goodwin, 1942 and Tonatia minuta Goodwin, 1942 were described from Nicaragua and 

Peru, respectively. For many years, the taxonomic status of these taxa was puzzling. 

Handley (1966) synonymized T. nicaraguae under T. minuta, nomenclature followed by 

some authors such as LaVal (1969) and Valdez & LaVal (1971). However, Jones et al. 

(1971) pointed out that T. nicaraguae had page priority over T. minuta and that the 

former should be the valid name. Koopman (1976) returned to the synonymy raised by 

Handley (1966), arguing that the holotype of T. nicaraguae was an immature specimen 



 

23 

 

with a broken and decalcified skull, invalidating that assignment. This taxonomic 

arrangement was followed by Gardner (1976) and Greenbaum & Jones (1978), until 

Koopman (1978), and later Genoways & Williams (1984), found no consistent character 

to consider them as different taxa, considering only one species: Tonatia brasiliensis. 

Baker (1979) and Baker et al. (1982) reported karyotype information in which they 

retained the names T. brasiliensis, T. minuta, and T. venezuelae suggesting the 

possibility of more than one taxon involved. In 1989, Eisenberg & Redford considered 

four subspecies: Tonatia brasiliensis brasiliensis, T. b. minuta, T. b. nicaraguae, and T. 

b. venezuelae. Finally, Lee et al. (2002) transferred Tonatia brasiliensis, as well as 

evotis, schulzi and silvicola, to the genus Lophostoma with no subspecies recognized 

(Simmons, 2005; Williams & Genoways, 2008). Nevertheless, no comprehensive 

analysis on this putative species complex has ever been made throughout its entire 

distribution, which includes populations on both sides of the Andes. 

Here, using multiple lines of evidence, including molecular (gene tree, distance and 

tree-base methods), morphological (discrete characteristics), morphometric (linear and 

geometric morphometrics), and geographic data, we aim to assess the taxonomic limits 

of the L. brasiliense complex. We hypothesize that L. brasiliense is a complex of 

species with at least two separate evolutionary lineages given its wide distribution 

across the Neotropics, where a wide range of environmental conditions and 

geographical barriers may have promoted its genetic isolation and morphological 

diversification. Because the signature of vicariance caused by the uplift of the Andes is 

visible in numerous mammalian taxa and, particularly, many bat lineages (see Patterson 

et al., 2012), we predict that the trans-Andean and cis-Andean populations represent 

different evolutionary lineages. 

 



 

24 

 

MATERIAL AND METHODS 

 

Molecular analyses 

To assess the phylogenetic relationships of the Lophostoma brasiliense complex, we 

obtained genetic data from specimens in different geographic regions housed in the 

following museums: Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 

Coleção de Tecidos e DNA da Universidade Federal do Espírito Santo, Vitória, Brazil; 

Museu Nacional do Rio de Janeiro, Rio de Janeiro, Brazil; Universidade Federal do 

Maranhão, São Luís, Brazil; Universidade Federal do Pará, Altamira, Brazil and The 

Museum of Texas Tech University, Lubbock, USA. 

DNA extraction, amplification and sequencing 

We extracted total genomic DNA from tissue samples of wing membrane (c. 1 mm2) 

and muscle preserved in ethanol under -20ºC. The extractions were made using DNeasy 

Blood and Tissue kit (Qiagen, Valencia, CA, U.S.A.) according to the manufacturer’s 

instructions, eluting to a final volume of 100 μL. The total genomic DNAs were stored 

at -20°C before amplification. The pair of primers used was designed by Folmer et al. 

(1994), targeting the mitochondrial gene Cytochrome Oxydase subunit I, LCOI 1490 

(5’-GGTCAACAAATCATAAAGATATTGG -3’) and HCOI 2198 (5’-

TAAACTTCAGGGTGACCAAAAAATCA-3’). The PCR conditions consisted in an 

initial denaturation step at 92ºC for 10 min, followed by 35 cycles of 95ºC for 30 s 

(denaturation), 49–51ºC for 40 s (annealing), 72ºC for 90 s (polymerization), 72ºC at 10 

min (final extension), and an infinite hold at 4ºC. The PCR products were purified using 

Exonuclease I and shrimp alkaline phosphatase (Affymetrix, Inc. USB Products, 

Cleveland, OH, U.S.A.). The two DNA strands for the PCR products were sequenced 

by Macrogen, Inc. (Seoul, South Korea). We visually inspected, verified and manually 
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edited the sequence chromatograms using the Staden package (Staden et al., 2000). We 

verified the sequences using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), confirming the 

high similarity of our submitted sequences to Lophostoma species. 

Phylogenetic analyses and molecular species delimitation 

To evaluate the monophyly of brasiliense, we conducted a phylogenetic analysis 

including all COI sequences available on GenBank and additional sequences provided 

by us, totaling 31 sequences of brasiliense, plus five sequences for each Lophostoma 

species available on GenBank, and rooted the tree in Vampyrum spectrum 

(Phyllostomidae: Phyllostominae) (see Supporting Information, Table S1, for voucher 

numbers, locality data, and GenBank accession numbers). We used PhyloSuite (Zhang 

et al., 2020) for the workflow of the analyses. We aligned the sequences with MAFFT 

(Katoh & Standley, 2013) using '--auto' strategy and normal alignment mode. We 

removed ambiguously aligned fragments using Gblocks (Talavera & Castresana, 2007). 

We selected the best partitioning schemes and evolutionary models for pre-defined 

partitions using PartitionFinder2 (Lanfear et al., 2017), with all algorithms and AICc 

criterion. Bayesian Inference phylogenies were inferred using MrBayes 3.2.6 (Ronquist 

et al., 2012) under HKY+G model (2 parallel runs, 10 million generations), discarding 

the initial 20% of sampled data as burn-in. For the GMYC analysis (see below), we 

built an ultrametric tree using the BEAUti2.5/BEAST v2.5 (Bouckaert et al., 2019) with 

the same substitution models of the previous analyses. We assumed a strict clock model 

and a coalescent tree prior with constant population size. We did two independent runs 

for each dataset with 50 million generations, sampling the parameters every 5000 

generations. We used Tracer v.1.7 (Rambaut et al., 2018) to inspect the convergence to 

the stationary distribution of the chains. The first 10% of the generations were discarded 

as ‘burn-in’ and then combined the chains: the combined ESS for each parameter was 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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higher than 200. We visualized and edited the trees using FigTree v1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/). We are aware of the limitations of a gene tree to 

reproduce phylogenetic hypotheses, however our main aim using the COI analysis was 

species delimitation (DeSalle & Goldstein, 2019). 

For delimiting species using the molecular data, we applied four DNA-based single-

locus species delimitation approaches, two distance-based and two tree-based. The 

methods used were: (a) the automatic barcode gap discovery method (ABGD; 

Puillandre et al., 2012), (b) the assemble species by automatic partitioning (ASAP; 

Puillandre et al., 2021), (c) the Generalized Mixed Yule Coalescent approach (GMYC; 

Pons et al., 2006), and (d) a Bayesian version of the Poisson Tree Processes model 

approach (bPTP; Zhang et al., 2013). These analyses were performed using the ABGD 

web server (ABGD – https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html) setting the 

parameters Simple Distance (p-distances) with relative gap width (X = 1.5); the ASAP 

web (https://bioinfo.mnhn.fr/abi/public/asap/) also setting Simple Distance (p-distances); and 

the Exelixis Lab’s web server (bPTP – http://species.h-its.org/ptp/) setting unrooted, 500 000 

MCMC generations, burn-in of 0.2; (GMYC – http://species.h-its.org/gmyc/) setting “single 

threshold” method. For distance methods the uncorrected p-distances yield more 

accurate (or at least similar) results when compared to other models of nucleotide 

evolution (e.g., K2P; see Srivathsan & Meier, 2012; Collins & Cruickshank, 2012). 

Morphological analysis 

We examined 165 adult specimens of Lophostoma brasiliense (87 males, 75 females 

and three specimens of undetermined sex) which represent the entire distribution of the 

species throughout the Neotropics (Fig. 1). The revised material included fluid-

preserved specimens, dry skins, skeletons and skulls held in the following institutions: 

Coleção de Mamíferos da Universidade Federal do Rio Grande do Sul, Porto Alegre, 

http://tree.bio.ed.ac.uk/software/figtree/
https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
https://bioinfo.mnhn.fr/abi/public/asap/
http://species.h-its.org/ptp/
http://species.h-its.org/gmyc/
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Brazil (DZUFRGS); Museu de Ciências Naturais da Fundação Zoobotânica, Porto 

Alegre, Brazil (MCN); Museu Nacional do Rio de Janeiro, Rio de Janeiro, Brazil 

(MNRJ); Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil 

(MZUSP); Colección Zoológica Universidad del Tolima, Ibagué, Colombia (CZUT); 

Instituto de Investigaciones Biológicas Alexander Von Humboldt, Villa de Leyva, 

Colombia (IAvH); Museo de Historia Natural Universidad de Caldas, Manizales, 

Colombia (MHN-UCa); Museo de Historia Natural Universidad Distrital Francisco José 

de Caldas, Bogotá, Colombia (MUD); Museo de Zoología de Nicaragua (MZN); 

Colección Nacional de Mamíferos-UNAM, Ciudad de México, México (CNMA); 

American Museum of Natural History, New York, USA (AMNH); Field Museum of 

Natural History, Chicago, USA (FMNH); National Museum of Natural History (U.S. 

National Museum), Smithsonian Institution, Washington D.C., USA (USNM); The 

Museum of Texas Tech University, Lubbock, USA (TTU); and Biodiversity Research 

and Teaching Collections, Texas A&M University, College Station, USA (TCWC). The 

examined material included the type specimens of Lophostoma venezuelae Robinson & 

Lyon, 1901 (USNM 102919), Tonatia nicaraguae Goodwin, 1942 (AMNH 41184), and 

Tonatia minuta Goodwin, 1942 (AMNH 71619). A list of specimens included in this 

study, with their respective localities is presented in the Supporting Information 

(Appendix S1). 

In the examined specimens, we observed patterns of dorsal and ventral pelage 

coloration, ear and foot coloration, ear shape, and presence or absence of pinna folds. 

We also analyzed aspects of cranial morphology such as rostrum and skull shape, 

presence or absence of processes (e.g., clinoid, paraoccipital, postorbital, among others), 

and the morphology of the teeth (size and cusps). The nomenclature used to describe the 

skull and its structures follows Velazco (2005).  
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Morphometric analysis 

For each specimen, we examined the quantitative variation in 20 morphological 

measurements that included three externals, 16 craniodental and one postcranial. These 

measurements were defined based on, but not restricted to, those defined by Velazco & 

Cadenillas (2011), and are presented in Table 1. 

We took all measurements using a digital caliper with 0.01 mm resolution on each 

specimen, and all were log10 transformed for the subsequent statistical analyses. We 

calculated mean, standard deviation, and range for each character, and visually 

examined them to assess non-overlapping differences in individual trait measurements 

between groups (candidate species and sex) using box and density plots. We also tested 

for differences in individual traits between groups using Student's t-test, or the 

nonparametric Mann-Whitney U-test when normality and homoscedasticity 

assumptions were not met. We assessed normality and homoscedasticity using the 

Shapiro–Wilk and Levene tests. Outliers were detected using descriptive methods such 

as histogram, boxplot and percentiles. 

To determine whether morphometric data would diagnose distinct phenotypic groups, 

we conducted two types of analyses. First, we separate and grouped geographically 

specimens in Operational Taxonomic Unit (OUT´s) following a consensus of molecular 

delimitation (see Results), and performed a Principal Component Analysis (PCA) and 

Discriminant Function Analysis (DFA) to investigate whether these previously 

determined groups could be distinguished based on external and craniodental 

morphology using the package ‘MASS’ (Ripley et al., 2013) in R version 4.1.0 (R Core 

Team, 2021). Differences in the multivariate space were evaluated using a MANOVA. 

Second, while not assigning groups of specimens a priori, we applied normal mixture 

model analyses (NMMs) to estimate the number of distinct normal distributions that 
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best fitted the pooled morphological data following procedures described by Cadena et 

al. (2018). For these procedures we used the R packages ‘clustvarsel’ and ‘mclust’ in 

three main operations: (1) finding the variables that most effectively delimit 

morphological clusters; (2) using these variables to fit different normal mixture models; 

and (3) selecting the best model determining the optimal number of clusters best 

supported by our dataset. In a complementary analysis, we log-transformed our 

morphometric dataset and performed a PCA on the covariance matrix. Here, rather than 

exploring the species limits using the principal components accounting for most of the 

variation (standard procedure in most taxonomic studies), we reduced the 

dimensionality of the data and selected the set of principal components most useful for 

group discrimination in NMMs using the R package ‘clustvarsel’ (Scrucca & Raftery, 

2018). After identifying those key traits, we examined support for models specifying the 

existence of one to four morphological groups. The group with only one morphological 

cluster represents the current taxonomic treatment of Lophostoma brasiliense as a 

unique species, the group with two clusters consider the results from our phylogenetic 

analyses and the group with four clusters represent previous hypotheses where up to 4 

species were considered (T. nicaraguae, T. venezuelae, T. minuta, and T. brasiliensis). 

We fitted the models using the R package ‘mclust’ (Scrucca et al., 2016) and used the 

Bayesian Information Criterion (BIC) to measure the support for different NMMs. 

Geometric morphometric analysis  

We obtained two-dimensional images of the skull in ventral and dorsal views and the 

mandible in lateral and dorsal views of each specimen using a digital camera (Nikon 

Coolpix P900, Tokyo, Japan). All photos were taken following the same standardized 

protocol in which skulls and mandibles were in the same position and perpendicular to 

the axis of the camera.  



 

30 

 

Two-dimensional landmarks and semilandmarks configurations on the skull and 

mandible were digitized from these pictures using tpsDig version 2.3 (Rohlf, 2017). We 

defined the landmarks based on criteria of homology, consistency of relative position, 

coverage of the form, and repeatability (Zelditch et al., 2012). To examine how many 

landmarks and semilandmarks could effectively capture the information of shape and 

size, we employed a Landmark Evaluation Curve analysis (Watanabe, 2018) with the 

lasec function in the R package ‘LaMDBA’. This function produces a sampling curve 

and a table with fit values that allows it to recognize the number of anatomical points 

necessary to characterize the shape variation and size. We determined the number of 

landmarks and semilandmarks for each region considering a required fit of 0.9, 0.95, 

and 0.99 (Supporting Information, Table S2). Then, the shape and size of the skull were 

obtained through 22 landmarks in ventral view and 9 landmarks with 16 semilandmarks 

in dorsal view of 88 adult specimens, while the shape and size of the mandible were 

obtained from 9 landmarks in lateral view and 12 landmarks in dorsal view of 85 adult 

specimens. Detailed descriptions of the landmarks and semilandmarks and a figure with 

details about these anatomical points on each view are presented in the Supporting 

Information (Appendix S2-A).  

The landmarks dataset was subjected to superimposition using a Generalized Procrustes 

Analysis (GPA) that removes undesirable effects of scale, position, and orientation 

using the gpagen function in the R package ‘geomorph’ (Adams et al., 2020). We 

obtained procrustes shape coordinates, and a size estimator called centroid size (CS) as 

the square root of the sum of squares of the distance of each landmark to the centroid 

(mean of all coordinates) of the configuration (Bookstein, 1997). Also, consensus 

shapes that summarizes the skull and mandible shape variation among species were 
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generated. Here, each individual was compared against the consensus shape, which 

allows to visualize differences between species. 

Statistical analyses of size and shape 

Differences in centroid size between females and males (sexual dimorphism) and also 

among candidate species were graphically summarized using series boxplots in each 

view. The effects of (1) size, (2) sex, and (3) species on skull and mandible shape and 

their interactions were tested by evaluating the fit of models using the randomized 

residual permutation procedure (RRPP) with the lm.rrpp function in the R package 

‘RRPP’ (Collyer & Adams, 2018, 2020). Using the same function, we quantified the 

differences in size among groups, employing the (log) centroid size of the specimens as 

the response variable, and sex and species as independent predictors. Although results 

from these models showed significant differences between sexes for shape in all views 

(see Results), a separate analysis by sex did not alter the overall patterns; therefore, we 

present the results with both sexes included. All models were fit using the type-II 

(hierarchical) sum of squares, and its significance was based on 10,000 permutations of 

residual randomization. We used the anova.lm.rrpp function to compute analysis of 

variance (ANOVA) tables for each model, which are based on random statistical 

distributions and use the F distribution to calculate effect sizes. Pairwise comparisons 

were conducted on significant factors using the pairwise function in the R package 

‘RRPP’ (Collyer & Adams, 2018, 2020).  

Differences in skull and mandible shape among groups (candidate species and sex) were 

also explored using ordination methods. We carried out two main steps: first, we 

performed a PCA on the Procrustes-aligned data using the gm.prcomp function in the R 

package ‘geomorph’ (Adams et al., 2020). Of the PCs produced, we chose those 

containing significant cumulative variance of shape in each view (~90%). Then we 
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generated deformation grids with the extremes (maximum and minimum) of shape 

variation along the principal components 1 and 2 (PC1 and PC2). Second, we used a 

DFA to determine whether the groups could be reliably distinguished. Procrustes 

distances between groups were tested for significance with a 10,000 permutations 

procedure. The probability of a specimen belonging to any of the predefined groups was 

estimated via jackknife cross-validation of the scores. 

Estimating missing landmarks and error measurement 

When one side was damaged or incomplete in structures with bilateral symmetry 

(ventral/dorsal skull and dorsal mandible), we first used the reflectMissingLandmarks 

function in the R package ‘StereoMorph’ (Olsen & Westneat, 2015), where missing 

landmarks on either side are imputed from the mirrored specimen. For those missing 

landmarks that could not be estimated taking advantage of bilateral symmetry, we used 

the least‐squares regression (REG), and the Bayesian PCA (BPCA) in the cranium and 

mandible respectively, to estimate missing values in our datasets using functions from 

the R package ‘LOST’ (Arbour & Brown, 2014). These methods proved to be the best 

missing data estimators for those structures in our dataset, among three standard 

approaches [Bayesian PCA (BPCA), least‐squares regression (REG), mean substitution 

(MS)] and a geometric‐morphometric‐specific method [Thin‐plate spline interpolation 

(TPS)] after a rigorous evaluation carried out by us that included simulations of missing 

data, test for the impact of missing data estimation and analyses on the performance of 

those methods. All evaluation and simulation processes with incomplete specimens and 

comparing the resulting methods are presented in detail in the Supporting Information 

(Appendix S2-B). 

Finally, we tested the error of digitization of the landmarks through a Procrustes 

ANOVA, which measures and compares random errors (Klingenberg & McIntyre, 
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1998; Klingenberg et al., 2002). In this sense, we digitized all skulls and mandibles 

twice and performed a Procrustes ANOVA between these two replicates, which yielded 

very high replicability (> 90% all views). 

Taxonomic decision 

We defined the candidate species according to the results of the following lines of 

evidence: (1) monophyletic lineages using the gene tree; (2) genetic distance-based 

approaches; (3) tree-based methods; (4) delimitation methods using morphometric 

linear distances; (5) normal mixture models (NMMs); and (6) geometric morphometric 

analyses. We evaluated the accumulation of evidence from each method, recognizing 

candidate species to support a distinct species hypothesis. Under this approach, the 

support increases when more data validate clades obtained through previous analyses. 

Finally, we assumed the unified species concept, understanding species as a lineage 

evolving separately from other lineages (De Queiroz, 2007). 

RESULTS 

 

Phylogenetic analysis of Lophostoma brasiliense and molecular species delimitation 

The gene tree based on 56 COI sequences of Lophostoma recovered L. brasiliense as a 

monophyletic group with high posterior probability (PP = 0.99). This clade presents two 

deep lineages that split the specimens from Mexico, Belize, Panama and northern 

Colombia (PP = 1) from the remaining L. brasiliense specimens from South America 

(PP = 0.99); also the monophyly of L. carrikeri (PP = 0.99) and L. schulzi (PP = 1) were 

strongly supported. Lophostoma silvicola was the only non-monophyletic species, 

recovered as paraphyletic (PP = 1) including all specimens of L. evotis (PP = 1). 

The four DNA-based single-locus species delimitation approaches (ABGD, ASAP, 

GMYC, and bPTP) resulted in a similar number of taxonomic units for our samples and 
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were consistent in recognizing two lineages in L. brasiliense. ABGD analyses found 

from 11 to 13 groups within our samples (for prior maximal distance from 0.001000 to 

0.007743), and found barcode gap distance around 0.033. The first (p = 0.0629) and 

second (p = 0.357) best results of ASAP recovered respectively 11 (threshold distance = 

0.027523) and 10 (threshold distance = 0.041284) taxonomic units for our dataset. 

GMYC analysis recovered 13 entities with a confidence interval between 12–13. The 

bPTP identified 11 entities with good support as the best result. ABGD, ASAP, and 

bPTP analyses identified two lineages within the L. brasiliense samples. A cluster 

comprising the sequences from South America (L. brasiliense sensu stricto), and 

another including the sequences from Mexico, Belize, Panama and northern Colombia 

(hereafter, considered as the candidate species). GMYC suggests 4 clusters for L. 

brasiliense: Mexico, Belize, Panama and northern Colombia (candidate species); 

Sergipe and Espírito Santo states in Brazil (Atlantic Forest); Tocantins and Goiás states 

in Brazil (Cerrado) with Guyana-Demerara (Guiana Shield/Amazon); and the remaining 

samples from Guyana (Guiana Shield/Amazon). All algorithms identified L. carrikeri, 

L. schulzi, and L. evotis as one taxonomic unity each, while L. occidentale and L. 

silvicola split in two and three putative species respectively.  

Morphological variation 

Paired tests and density plots did not show evidence of sexual dimorphism, so 

subsequent analyses were carried out considering the pooled sexes (Supporting 

Information, Fig. S1). Although univariate tests recovered significant differences among 

candidate species and L. brasiliense (sensu stricto) for all traits, these exhibited partially 

or largely overlapping distributions indicating that none of the individual traits can 

reliably diagnose the candidate species (Supporting Information, Fig. S2). However, 

considering the whole dataset, MANOVA found significant differences (p < 0.05) 
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between two putative species. In general, considerable variation in the values of 

individual traits was observed between species (Table 2), where one species (the 

candidate species) is smaller than the other (Lophostoma brasiliense sensu stricto). 

The PCA analysis based on 20 morphometric traits (four external and 16 craniodental) 

showed the first principal component (PC1) accounting for 67.93% of the variation, 

PC2 for 8.35% and PC3 for 5.50%, together accounting for more than 80% of the 

variation (Fig. 2A). It appears that most differences between species are related to size: 

PC1 describes variation associated with cranial and mandibular lengths (CIL, GLS, 

CCL, and DENL), while PC2 relates to the variation in ear and hindfoot lengths. 

Although there is overlap between species values, the DFA performed on different 

suites of morphological characters suggests that at least 84% of the individuals within 

the candidate species may be distinguished from those of L. brasiliense based on the 

analyzed measurements (Table 3; Fig. 2B). DFA results on morphological characters 

were similar considering both PCs or log-transformed data. 

The normal mixtures analysis, with no a priori species definition, provided maximum 

support for models specifying two morphological groups (i.e., two distinct phenotypic 

distributions). Model support for the presence of one, two, three or four morphological 

groups according to different taxonomic proposals is larger for two groups (BIC = -

840.1137), rejecting the current scenario of recognition of a single group (Fig. 3).  

Overall, our results pointed to the existence of two phenotypic groups defined by 

morphological variation in our sample of Lophostoma brasiliense, supporting the results 

obtained with the genetic data. 

Geometric morphometrics 

Variation in cranium and mandible size 
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The centroid size (CS) in the cranium and mandible was significantly different between 

the two genetic and morphological identified groups, showing the candidate as smaller 

than Lophostoma brasiliense sensu stricto (p < 0.05 in all views; see graphical 

summaries in Supporting Information, Fig. S3-A). We did not find evidence of sexual 

dimorphism in size in any of the views examined, although the interaction term (species 

x sex) indicates significant sexual dimorphism inside the candidate species, where males 

are larger than females (Supporting Information, Fig. S3-B). Likewise, when comparing 

individuals of the same sex between the two putative species, we found significant 

differences between females in the dorsal skull and dorsal mandible, with females of L. 

brasiliense sensu stricto being larger. The variance of the factors tested, represented by 

mean squares value and the R2, showed that most of the variance in skull and mandible 

size is found between species (Table 4). 

Variation in cranium and mandible shape 

Models showed significant sexual dimorphism in shape in all views (except dorsal 

mandible; Table 5). When we tested for cranial and mandibular shape variation in the 

entire Procrustes shape space, we found significant differences among the two tentative 

species in all views tested (p < 0.05 in all cases). When we evaluated differences 

between females and males separately, significant differences in shape between species 

remained (results not shown: p < 0.05 in all cases). Fitted linear models showed 

significant effect of size on shape variation in all the examined views except dorsal 

mandible; however, morphological variation explained by size was low (< 7% in all 

cases; Table 5) so the allometric effect was ruled out, and analyzes and graphical 

representations were carried out on the original shape coordinates. 

The PCA showed a clear ordination for the dorsal skull and lateral mandible, but not for 

the ventral skull and dorsal mandible. The first three PC scores accounted for ~57 and 
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~64% of the skull and mandible total shape variation, respectively. Results are shown 

from the first two PCs, which accounted for ~55% of the variation (Fig. 4). Specimens 

with positive scores on PC1 presented thinner and elongated rostrum, smaller braincase, 

larger distance between the anteriormost point of premaxilla to nasal, and shorter 

distance between basion and opisthion. In the PC2 individuals with positive scores had 

shorter braincase. Concerning the mandible, the PC1 positive scores were associated 

with shorter, thicker, and more robust jaws, while negative scores with more elongated, 

thin, and slender ones. Most individuals of the putative new species presented positive 

scores on PC1 for the skull and negative for the mandible, showing characteristics that 

may help to differentiate the species (Fig. 4). 

The DFA also showed that the two putative species are significantly different in the 

shape of both the skull and the mandible (Fig. 4). The percentage of correct 

classification using DFA shows high values for the putative new species in three views 

(dorsal skull – 78.38%, ventral skull – 97.29%, and lateral mandible – 90.91%). So, the 

morphological structures with the higher percentage of correct classification and 

probably the most useful to discriminate between the two taxonomic entities are the 

lateral mandible and the ventral skull. The above-mentioned evidence supports the 

recognition of the candidate species as a “confirmed candidate species”. 

ON THE APPLICABILITY OF NAMES IN THE LOPHOSTOMA BRASILIENSE 

SPECIES COMPLEX 

Three epithets are under synonymy of L. brasiliense: venezuelae (Robinson & Lyon, 

1901: 154), nicaraguae (Goodwin, 1942: 205) and minuta (Goodwin, 1942: 209). Based 

on analyses with linear and geometric morphometrics data, which included all type 

specimens, we conclude that nicaraguae should be applied to the trans-Andean 

populations of the Lophostoma brasiliense species complex (Supporting Information, 
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Appendix S3). We do not agree with Handley (1966) and Koopman (1976) in 

considering invalid the holotype of nicaraguae. The holotype represents an adult female 

and does not constitute an immature specimen as stated by these authors. Despite having 

a partially broken skull, the holotype allows an evaluation of the diagnostic 

characteristics of the species. In addition, the single specimen used by Goodwin (1942) 

for the description of this taxon is located in the morphometric space represented by the 

L. nicaraguae samples using both linear and shape measurements (Supporting 

Information, Appendix S3). The holotype of L. venezuelae shares the morphometric 

space with all individuals identified as Lophostoma brasiliense (including the nominal 

type of L. brasiliense) from Brazil, Guyana, Trinidad, Venezuela, eastern Colombia and 

Peru, and is well-separated from specimens of L. nicaraguae from Central America, 

which rules out the use of this name. Lastly, T. minuta clusters with L. nicaraguae using 

linear distances but splits when the mandible shape is analyzed, showing similarities in 

size but differences in shape (Supporting Information, Appendix S3). Moreover, our 

findings suggest no sympatric distribution between populations of L. nicaraguae and T. 

minuta (i.e., L. brasiliense). 

Based on our results, we consider that the name Lophostoma nicaraguae is the 

appropriate name for the trans-Andean populations of the L. brasiliense species 

complex. To clarify the species limit and morphological characteristics of both lineages 

of the L. brasiliense species complex, we provide a emended diagnosis and comparisons 

of both taxa. 

SYSTEMATICS 

ORDER CHIROPTERA BLUMENBACH, 1779 

FAMILY PHYLLOSTOMIDAE GRAY, 1825 
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SUBFAMILY PHYLLOSTOMINAE, GRAY, 1825 

GENUS LOPHOSTOMA D’ORBIGNY, 1836 

LOPHOSTOMA BRASILIENSE PETERS, 1867 

PIGMY ROUND-EARED BAT 

(FIG. 7) 

Lophostoma brasiliense Peters, 1867:674; type locality “Baía” (= Salvador), Bahia, 

Brazil. 

Lophostoma venezuelæ Robinson and Lyon, 1901:154; type locality “Macuto, [Distrito 

Federal,] Venezuela.” 

[Tonatia] brasiliense: Trouessart, 1904:111; name combination. 

T[onatia]. venezuelæ: Miller, 1907:129; name combination. 

Tonatia minuta Goodwin, 1942:209; type locality “Boca Curaray, Ecuador” (= Boca del 

Río Curaray, Loreto, Peru). 

Tonatia brasiliensis: Handley, 1976:16; name combination and correct gender 

concordance. 

[Lophostoma] brasiliense: Lee, Hoofer, and Van Den Bussche, 2002:55; first modern 

use of current name combination. 

Type specimen: Holotype: Adult female, deposited at the British Museum of Natural 

History (BMNH 1849.11.7.14), prepared as dry skin and skull (broken) [purchased 

from] Brandt; data of capture not specified. 

Type locality: Brazil [Bahia,] “Baıa” (= Salvador). 

Distribution: Lophostoma brasiliense occurs from eastern versant of the Andes in 

Colombia, Ecuador, Peru and Bolivia to Orinoquia and eastern Amazonia in Venezuela, 
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Guyana, Suriname, French Guiana and Brazil. The southern limit of this species 

includes the states of Presidente Hayes in central Paraguay [lower (wet) Chaco], Mato 

Grosso do Sul (Cerrado), Sao Paulo, Rio de Janeiro and Espirito Santo (Atlantic Forest) 

in Brazil. The species is also present in the Island of Trinidad (Fig. 5). 

Measurements: External and craniodental measurements are presented in Table 2. 

Emended diagnosis: Lophostoma brasiliense can be distinguished from all Central and 

South American congeners (only exception of L. nicaraguae) by its smaller size (no 

overlapping in greatest length of skull, condyloincisive length, condylocanine length, 

braincase breadth, greatest breadth across the mastoid processes, and mandibular 

toothrow length).  

Description and comparisons: Lophostoma brasiliense is a small-sized bat (FA = 32.8–

42.0 mm; GLS = 18.7–21.7 mm; Table 2). Dorsal pelage presents geographical 

variations with a coloration ranging from dark brown, reddish brown to gray. Ventral 

pelage paler than dorsal. Ears are long and round. The skull is small. The sagittal crest is 

finely development. The dentary is robust. One pair of weakly bifid lower incisors. First 

lower premolar with posterior portion overlapping anterior part of second lower 

premolar, second lower premolar with cutting edge slightly above anterior border of 

cingulum of third lower premolar. For comparisons see Lophostoma nicaraguae 

account.  

LOPHOSTOMA NICARAGUAE (GOODWIN, 1942) 

MESOAMERICAN ROUND-EARED BAT 

FIGS. 6–7 

Tonatia nicaraguae Goodwin, 1942:205; type locality “Kanawa Creek, near Cukra, 

north of Bluefields, [Zelaya,] Nicaragua.” 
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Type specimen: Holotype: Adult female, deposited at the American Museum of Natural 

History (AMNH 41184), prepared as a body in alcohol with extracted skull (broken), 

and collected on 7 August 1916 by Halter and Mannhardt. 

Type locality: Nicaragua [Zelaya,] Kanawa Creek, near Cukra, north of Bluefields, 

collected at 30 m a.s.l. 

Distribution: Lophostoma nicaraguae is a widely distributed species from Mexico, 

throughout Central America, to northern South America. The records located at the 

northernmost point of its distribution include the states of Oaxaca, Chiapas, Campeche 

and Quintana Roo in Mexico, with records in Belize, Guatemala, Honduras, Nicaragua, 

Costa Rica, Panama, Colombia and Ecuador. The southern limit of this species includes 

the northern and central part of Colombia, and the western slope of the Andes in 

Colombia and Ecuador (Pacific region, Fig. 5). Lophostoma nicaraguae is distributed in 

an elevational range from sea level to 1,300 m. 

Measurements: External and craniodental measurements are presented in Table 2. 

Emended diagnosis: Lophostoma nicaraguae can be easily distinguished of all other 

species in the genus (L. evotis, L. occidentale, L. silvicola, L. carrikeri, L. schulzi, and 

L. kalkoe) by its smaller size and shorter skull (AB < 37; GLS < 21). All linear 

measurements of Lophostoma nicaraguae overlap with those of Lophostoma brasiliense 

but are generally smaller. 

Description and comparisons: Lophostoma nicaraguae is a small-sized bat (FA = 31.4–

36.4 mm; GLS = 18.1–20.5 mm; Table 2). The dorsal fur is tricolored and mummy 

brown while the ventral fur is bicolored and clearer with a pale brown coloration. 

Dorsal individual hairs have a white base (approximately 25% of the length of each 

hair), with a long mummy brown subterminal band (approximately 70% of each hair), 
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and a very short, pale to whitish terminal band. The ears are mummy brown and are 

connected by a low band across the forehead with well-marked folds in the naked pinna.  

The skull is small, narrow, delicate, and longer than wide (Fig. 6). In dorsal view, the 

rostrum is elongated, slender, and narrow at the level of the ventral ethmoidal crest, 

parallel-sided and not constricted in the orbital region. The braincase is low, rounded 

and without sagittal crest. The distance between the anteriormost point of premaxilla 

and the nasal is long. Well-developed process of the glenoid fossa. The dentary is thin 

and slender. Small teeth. Labial cingulum of the upper canine is not well developed. 

Posterior border of palate ending on a line across front of last molar. Middle lower 

premolar minute but completely separating anterior and posterior teeth. 

Lophostoma nicaraguae does not present post-auricular patches (present in L. 

occidentale, and L. evotis) or small wartlike granulations on head, wings, legs and 

dorsal surfaces of forearms as in L. schulzi. Fur in the gular region is dark brown in 

Lophostoma nicaraguae, L. evotis, and L. schulzi, but is dark to pale brown in L. 

silvicola and L. brasiliense, and whitish in L. occidentale and L. carrikeri. Abdominal 

fur is pale brown (white in L. carrikeri and L. kalkoe; dark brown in L. evotis and L. 

silvicola; and dark to pale brown in L. brasiliense). Lower lip with a naked “V” shaped 

broken into wart-like protuberances. Noseleaf is broad in the middle and it is gradually 

attenuated to form a sharp point. The wing membranes are dark brown with the 

phalanges of a lighter color. Uropatagium sparsely haired on the proximal third and 

nearly naked posteriorly. Tail is short and does not perforate the uropatagium. The 

dorsal surface of the forearm is covered with short hair in Lophostoma nicaraguae, L. 

brasiliense, L. carrikeri, and L. evotis (naked in L. occidentale, L. schulzi, and L. 

silvicola) while ventrally has the proximal third of the forearm with long pale brown 

hair in Lophostoma nicaraguae, L. occidentale, L. brasiliense, L. carrikeri, and L. evotis 



 

43 

 

(short pale brown hair in L. schulzi and L. silvicola). Metacarpal III is shorter than 

metacarpal V. Tibia is naked. Dorsal surfaces of the feet are naked, and calcar longer 

than foot. 

Some additional characteristics separate L. nicaraguae from its sister species L. 

brasiliense: ears and feet are mummy brown (black to dark brown in L. brasiliense) in 

the same way that the dorsal fur, which is reddish brown (in some geographic regions 

from Brazil) to dark brown (Colombia and Peru) in L. brasiliense. The skull is smaller, 

narrower, and more delicate than in L. brasiliense. Sagittal crest is absent, but weakly 

developed in L. brasiliense. The distance between the anteriormost point of premaxilla 

and the nasal is long (short in L. brasiliense; Fig. 7A). Rostrum is more elongated and 

narrower at the level of the ventral ethmoidal crest (thick in this area in L. brasiliense; 

Fig. 7B). Presence of well-developed process of the glenoid fossa (absent in L. 

brasiliense; Fig. 7C). The mandible is thinner and slender (robust in L. brasiliense). 

Teeth are generally smaller than in L. brasiliense. The cingula of the upper canines are 

not as well developed as that of L. brasiliense (Fig. 7D). 

Ecology: Ecological information on L. nicaraguae is confusing because of its 

taxonomic history. Ecological aspects have been published under the names Tonatia 

nicaraguae, Tonatia minuta, Tonatia brasiliensis, and Lophostoma brasiliense. The 

species has been recorded occupying a wide variety of lowland ecosystems throughout 

its range, including: tropical rainforest, gallery forest, thorn forest, and areas with 

secondary vegetation and strong human intervention as coffee crop and banana groves 

in Honduras and Nicaragua (LaVal, 1969; Valdez & LaVal, 1971; Medina-Fitoria et al., 

2020). In Colombia, it inhabits dry tropical and moist tropical forests in the Caribbean 

and Pacific region (see Esquivel et al., 2020a). This species specializes in the 

modification and use of termite nest as shelters (Esquivel et al., 2020b), and has been 
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reported using this type of shelter in Belize (Reid, 1997), Costa Rica (York et al., 2008), 

Panama (Handley, 1966) and Colombia (Esquivel et al., 2020b). Dental anomalies have 

not been reported for this species (Esquivel et al. 2021).  

DISCUSSION 

 

Using multiple lines of evidence, we provide a comprehensive view on the taxonomic 

status of the L. brasiliense complex and we revalidate L. nicaraguae to the species 

level. Our results are consistent in recognizing Lophostoma nicaraguae as an 

independent evolutionary lineage apart from L. brasiliense and geographically isolated 

by the Andes, confirming our predictions. The morphology, cranial/mandibular shape 

and genetics of Lophostoma nicaraguae are distinct from Lophostoma brasiliense (Fig. 

8), and all other species of Lophostoma. This species increases the number of valid 

taxonomic units in Lophostoma from seven to eight, with four of them occurring in 

Central America.  

Species with wide distribution across diverse habitat types in Neotropical region often 

exhibit high genetic diversity or form cryptic species complexes, for instance in the 

Phyllostomidae, Carollia castanea (Solari & Baker, 2006), Glossophaga soricina 

(Calahorra-Oliart et al., 2021), Platyrrhinus helleri (Velazco et al., 2010), and Trachops 

cirrhosus (Clare et al., 2007). Accordingly, the wide distribution of L. brasiliense from 

Mexico to southern Brazil would indeed suggest the probable existence of unrecognized 

lineages. Here, our analyses recognized two distinct lineages distributed over different 

geographic regions, among what was traditionally known as L. brasiliense, supporting 

our initial hypothesis.   

The diversification process of the genera of the Phyllostominae occurred during the 

Miocene (23–16.9 mya) (Hoffmann et al., 2008). Specifically, divergence of 
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Lophostoma from the remainder of the Phyllostomini must have occurred at least at 15.4 

mya, in the Mid-Miocene. Hoffmann et al. (2008) estimated the divergence between L. 

brasiliense and L. carrikeri about ~ 6.0 mya, in the Late-Miocene. So, the separation of 

Lophostoma nicaraguae from L. brasiliense was more recent and probably 

accompanied by events favoring its geographical isolation, such as the latest rise of the 

Eastern Cordillera, Northern Andes. We hypothesize that an ancestral panmictic 

population split due to the surface uplift of the Andes, resulting in allopatric speciation 

of those two lineages. Between 6 and 3 mya ago, the Northern Andes experienced a 

topographic growth from elevations <1000 m to the present >2500 m, favoring 

vicariance processes (Mora et al., 2008; 2020). The known distribution of L. nicaraguae 

and L. brasiliense suggests elevational restrictions, with none of the species recorded 

above 1400 m. Thus, the Andes seem to have played a fundamental role as a barrier to 

gene flow, delimiting the northern distribution of L. brasiliense and the southern 

distribution of L. nicaraguae, separating these two lineages (Fig. 5).  

A usual first step for species discovery and delimitation processes are the single-locus 

methods. Due to their limitations, convergent results from different algorithms should 

be considered a robust primary species hypothesis (Puillandre et al., 2021). The 

distance-based and tree-based approaches used here, which are grounded on distinct 

species criteria, converged to recognize L. nicaraguae as a taxonomic entity distinct 

from L. brasiliense. Moreover, GMYC split L. brasiliense into three other candidate 

species, corresponding to populations from Amazonia, Cerrado, and Atlantic Forest. 

This algorithm tends to be more sensitive than others used here (Pentinsaari et al., 2017) 

but, like the putative physical barrier that split L. nicaraguae from L. brasiliense, the 

wide range of environmental conditions in historical and contemporary South America 

may have promoted a restriction to gene flow among the populations of L. brasiliense.  
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Distance-based methods are grounded on threshold values to recognize species limits. 

The use of fixed threshold neglects the evolutionary heterogeneity and coalescence 

within diverse lineages (Fujita et al., 2012; Pentinsaari et al., 2017). For any taxon, 

empirical data should be used to look for barcoding gaps, and then setting a threshold 

value (Gonçalves et al., 2021). Our sampled data of COI suggested the threshold value 

for Lophostoma between 2.75 and 4.28%. For the two closest species of L. nicaraguae, 

L. brasiliense and L. carrikeri (Fig. 8), divergence is about 6.8 and 11.7%, respectively. 

The inclusion of new data, mainly sequences from unsampled populations, may refine 

these values. Thus, the evaluation of threshold values should be iterative (Bianchi & 

Gonçalves, 2021). 

Further distributional and molecular evidence may reinforce Lophostoma nicaraguae as 

an independent lineage from L. brasiliense. For instance, Velazco & Cadenillas (2011) 

using the mtDNA cytochrome-b found a population of L. brasiliense from Suriname 

presenting 7.81% of divergence from Panamanian populations, here named L. 

nicaraguae. Other pairs of sister species within the Phyllostomidae show similar 

distribution (Western vs. Eastern Andean Cordilleras) and cytochrome-b divergence, for 

instance, Carollia castanea and C. benkeithi (8.1%) (Solari & Baker, 2006), 

Gardnerycteris keenani and Gardnerycteris crenulata (12.3%) (Hurtado & D’Élía, 

2018), and Tonatia bakeri and Tonatia maresi (7.65%) (Basantes et al., 2020). The 

similar distribution and genetic divergence between these species suggest that all those 

species diversified under the same evolutionary scenario (i.e., allopatric speciation with 

the Andes as the vicariant barrier).  

Despite the molecular and geographic differences mentioned above, our morphometric 

analyses indicate high phenotypic similarity between L. nicaraguae and L. brasiliense. 

Using quantitative data gathered from over 160 specimens we were not able to recover 
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any non-overlapping differences in univariate data that would permit a reliable 

diagnosis of the species. Although univariate tests recovered significant differences for 

all 20 traits among L. nicaraguae and L. brasiliense, differences in mean trait values do 

not allow for unambiguous species diagnoses. Therefore, considering only univariate 

quantitative data, the separation of the two species is a complicated task. We also found 

continuities in the morphometric space between these species. This scarce phenotypic 

separation between species is typical of cryptic complexes and may be explained by at 

least three different mechanisms: (1) recent divergence, (2) convergent evolution 

(parallelism or convergence), and (3) phylogenetic niche conservatism (Fišer et al., 

2018; Struck et al., 2018). We consider that a relatively recent divergence in L. 

nicaraguae better explains its poor morphological differentiation in univariate traits 

from its sister species, L. brasiliense. It is worth noting that this morphological 

similarity, added to the limited availability of specimens in the museums, were the 

reasons for the confusing taxonomic history of this species complex.  

Geometric morphometrics is being increasingly used in bat systematics to analyze 

variation in shape and discriminate among species and populations (Evin et al., 2008; 

Velazco et al., 2010; Taylor et al., 2018; Calahorra-Oliart et al., 2021). Here, the 

geometric morphometrics was doubtless in supporting the recognition of L. nicaraguae 

as a species. Contrary to the use of linear measurements, the shape of the cranium and 

mandible were useful in distinguishing the two species. Geometric morphometrics 

analyses clearly demonstrate that L. nicaraguae and L. brasiliense largely differ in 

centroid size, and exhibit large differences in mandibular and skull shape. The most 

informative components were the lateral mandible and ventral skull. These components 

reflect specializations for feeding and echolocation (Herrel et al., 2008; Santana et al., 
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2010; Arbour et al., 2019) and could be prioritized in future studies seeking solving 

taxonomic problems between closely related species.  

Considering the cranial and mandibular shape, the pattern of sexual dimorphism was 

similar for both L. nicaraguae and L. brasiliense. While the size is similar between 

males and females, the mandibles of females are significantly thinner than those of 

males. We see two explanations for this pattern: first, at the physiological level it has 

been found that the females of some insectivorous bats, such as Eptesicus fuscus, 

decrease their skeletal mass during pregnancy and lactation due to the increased calcium 

requirements associated with raising the offspring (Booher & Hood, 2010). This is also 

seen in other mammals, including humans (Grizzo et al., 2020); second, from a 

functional ecology perspective, it is known that males of Lophostoma use their teeth to 

modify active termite nests and use them as roosts, suggesting adaptations to roost 

excavation (Esquivel et al., 2020b), and thus explaining a positive pressure for thicker 

mandibles. 

Lophostoma constitutes an example of a successful phyllostominae radiation, with its 

species occupying many ecosystems of the Neotropics (Williams & Genoways, 2008). 

The use of multiple lines of evidence unveiled new lineages of these bats, placing them 

among the most diverse Phyllostominae genera (Velazco & Gardner, 2012). Despite 

these advances, our results still suggest a greater number of species within Lophostoma. 

We found considerable molecular divergence in L. silvicola dispersed in different 

lineages. Lophostoma silvicola has been recovered as paraphyletic, clustering the entire 

lineage of L. evotis (Baker et al., 2004; Velazco & Cadenillas, 2011). Further studies 

should use multiple lines of evidence to solve doubts about the taxonomic status of the 

currently recognized subspecies of L. silvicola, as well as the taxonomic identity of L. 

evotis. 
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Data Availability statement 

Genetic sequences are available in Genbank. Supplementary data are available with this 

article in its online version. Data and R codes are available upon request.  
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GenBank/BolSystems accession numbers and geographic information are given for the 

Lophostoma samples used in the phylogenetic analyses.  

Table S2. Results from performing LaSEC with 1000 iterations. 

Figure S1. Paired test and density plots showing differences between sex. 

Figure S2. Density plots of individual traits between species. Dark = Lophostoma 

brasiliense, Blue = Candidate species. 

Figure S3. A- Plot centroid size by species. B – Plot centroid size by species/sex. 
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Figures 

Figure 1. Sampling localities of Lophostoma specimens analyzed in this study. Dark 

dots represent localities from specimens in museums, the red star indicates the type 

locality for L. brasiliense, while the green, blue, and orange triangles point out type 

localities for synonyms (nicaraguae, venezuelae, and minuta, respectively). A list of 

revised specimens with their respective localities is presented in the Supporting 

Information, Appendix S1. 

Figure 2. Morphometric variation in Lophostoma brasiliense. A- Principal Components 

Analysis (PCA) on 20 externals, craniodental and mandibular measurements performed 

for all samples of the Lophostoma brasiliense complex. Each individual is represented 

by a dot, painted according to the group to which it belongs (L. brasiliense: black; 

candidate species: light blue). Outer solid‐line ellipses delimit the area enclosing 95% of 

the individual points in each group, whereas inner broken‐line ellipses encompass 50% 

of those points. B- Linear Discriminant Function (LD1) after cross-validation tests. 

Even though there is overlap between the two putative species showing morphological 

similarity, individuals tend to cluster together with their respective group. 

Figure 3. Support for species delimitation scenarios without a priori information 

generated from normal mixture models. Plot shows results for normal mixture models 

specifying one to nine morphological clusters, as well as models fitting both previous 

and current hypotheses of subspecies. 

Figure 4. Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) of Lophostoma brasiliense and the candidate species obtained from four 

different views. Each individual is represented by a dot, painted according to the group 

to which it belongs (L. brasiliense: black; candidate species: light blue). 
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Figure 5. Geographic distribution of Lophostoma nicaraguae (light blue) and 

Lophostoma brasiliense (light dark) based on the localities of the specimens analyzed in 

this study.  

Figure 6. Dorsal, ventral, and lateral views of the skull and lower jaw of the holotype of 

Lophostoma nicaraguae (AMNH 41184♀).  

Figure 7. Comparative morphology of Lophostoma brasiliense (left, FMNH 75140♂) 

and Lophostoma nicaraguae (right, TTU 28009♂).  

Figure 8. Phylogram of 56 Lophostoma COI sequences showing results of species 

delimitation methods. Numbers indicate support values of the adjacent node retrieved in 

the Bayesian inference. Titles of columns indicate the current treatment of L. brasiliense 

as one group (CurT), and the results from species delimitation methods employed (see 

Taxonomic decision section). Boxes in different colours indicate species inferred with 

each method. 
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Tables 

Table 1. External and craniodental variables used in this study.  

 

Table 2. External and craniodental measurements (mm), including mean, standard 

deviation, range, and sample size of Lophostoma brasiliense and the candidate species. 

p-values from univariate tests are shown. Measurement acronyms follow Table 1.  

Table 3. DFA classification results without (DFA) and with (DFA-CVs) leave-one-out 

cross-validation for all morphometrics analyses and datasets. MANOVA statistically 

significant differences between the candidate species and Lophostoma brasiliense sensu 

stricto are marked with an asterisk. 

Table 4. ANOVA results regarding effects of sex, species and their interaction on 

centroid size (log CS). 

Table 5. ANOVA results regarding effects of size (allometry), sex (sexual dimorphism), 

species and their interactions on shape.  
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Figure 1 
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Figure 3 
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Figure 5  
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Figure 6 
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Figure 7 
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Figure 8 
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Table 1  

 

Measurement Definition 

External Forearm length (FA) 

Distance from the tip of the olecranon process to the wrist 

(including the carpals). This measurement is made with the wing at 

least partially folded. 

 Ear length (EL) Distance from basal notch to the tip of the pinna. 

 Hind-foot length (HF) 
From the proximal edge of the base of the calcar to the tip of the 

claw of the longest toe. 

 Bands of contrast in the dorsal fur Bicolored (0), tricolored (1), tetracolored (2). 

 
Bands of contrast in the dorsal 

ventral 
Unicolored (0), bicolored (1), tricolored (2), tetracolored (3). 

Cranial Greatest Length of Skull (GLS) 
Greatest distance from the occiput to the anteriormost point on the 

premaxilla (including the incisors). 

 Condyloincisive Length (CIL) 
Distance between a line connecting the posteriormost margins of the 

occipital condyles and the anteriormost point on the upper incisors. 

 Condylocanine Length (CCL) 

Distance between a line connecting the posteriormost margins of the 

occipital condyles and a line connecting the anteriormost surfaces of 

the upper canines. 

 Braincase Breadth (BB) 
Greatest breadth of the globular part of the braincase, excluding 

mastoid and paraoccipital processes. 

 Zygomatic Breadth (ZB) Greatest breadth across the zygomatic arches. 

 Postorbital Breadth (PB) Least breadth at the postorbital constriction. 

 Palatal Length (PL) 
Distance from the posterior palatal notch to the anteriormost border 

of the incisive alveoli. 

 Palatal Width at Canines (PWC) 
Least width across palate between lingual margins of the alveoli of 

upper canines. 

 Mastoid Width (MSTW) 
Least breadth across skull immediately behind jugal base of 

zygomatic arches. 

 Mastoid Process Width (MPW) Greatest breadth across the mastoid processes. 

 
Maxillary Toothrow Length 

(MTRL) 

Distance from the anteriormost surface of the upper canine to the 

posteriormost surface of the crown of M3. 

 
Molariform Toothrow Length 

(MLTRL) 

Distance from the anteriormost surface of P3 to the posteriormost 

surface of the crown of M3 

 Palatal Width at M2 (PWM2) Greatest width across palate between labial margins of the M2s 

 Dentary Length (DENL) 
Distance from midpoint of condyle to the anteriormost point of the 

dentary. 

 
Mandibular Toothrow Length 

(MANDL) 

Distance from the anteriormost surface of the lower canine to the 

posteriormost surface of m3. 

 Coronoid Height (COH) 
Perpendicular height from the ventral margin of mandible to the tip 

of coronoid process. 

 
Posterior border of the hard palatal 

(MP) 
‘‘U’’ shaped (0), ‘‘V’’ shaped (1). 

 Clinoid process (CP) Absent (0), Present (1). 

 Base Foramen (BF) ‘‘U’’ shaped (0), ‘‘V’’ shaped (1), Other (2) 

Postcranial Metacarpal III Length (MET-III) 
Distance from the joint of the wrist (carpal bones) with the 3rd 

metacarpal to the metacarpophalangeal joint of 3rd digit. 
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Table 2  

 

  Lophostoma brasiliense Candidate species p-value 

FA 36.24 ± 1.93 34.70 ± 0.88 < 0.01 

 
(32.87–42.00)  69 (31.41–36.40)  41 

 HF 11.45 ± 1.10 10.40 ± 0.89 < 0.01 

 
(8.80–14.00)  51 (9.00–13.00)  36 

 E 23.86 ± 1.81 23.33 ± 1.12 0.057 

 
(18.60–28.00)  52 (20.00–25.00)  37 

 MET-III 28.44 ± 1.53 27.46 ± 1.25 < 0.05 

 
(25.25–32.90)  74 (21.92–29.90)  41 

 GLS 20.34 ± 0.79 19.41 ± 0.48 < 0.01 

 
(18.70–21.79)  81 (18.18–20.50)  60 

 CIL 17.87 ± 0.69 17.15 ± 0.41 < 0.01 

 
(16.20–19.27)  81 (16.12–18.05)  60 

 CCL 17.31 ± 0.64 16.59 ± 0.39 < 0.01 

 
(16.12–18.77)  81 (15.59–17.42)  60 

 BB 8.23 ± 0.24 7.89 ± 0.20 < 0.01 

 
(7.59–8.97)  81 (7.40–8.33)  60 

 ZB 9.71 ± 0.42 9.16 ± 0.27 < 0.01 

 
(8.79–10.59)  81 (8.18–9.60)  60 

 PB 3.27 ± 0.13 3.17 ± 0.13 < 0.05 

 
(3.00–3.60)  82 (2.82–3.50)  60 

 PL 8.90 ± 0.51 8.37 ± 0.38 < 0.01 

 
(7.85–9.97)  81 (7.60–9.13)  60 

 PWC 3.97 ± 0.29 3.78 ± 0.25 < 0.05 

 
(3.40–4.60)  82 (3.33–4.41)  60 

 MSTW 8.57 ± 0.35 8.13 ± 0.28 < 0.01 

 
(7.69–9.48)  81 (7.28–8.96) 60 

 MPW 9.47 ± 0.36 9.02 ± 0.27 < 0.01 

 
(8.71–10.25)  81 (8.23–9.53)  60 

 MTRL 7.08 ± 0.28 6.84 ± 0.18 < 0.01 

 
(6.58–7.73)  82 (6.28–7.15)  60 

 MLTRL 5.83 ± 0.31 5.55 ± 0.18 < 0.01 

 
(5.17–6.46)  81 (5.00–5.80)  60 

 PWM2 6.38 ± 0.25 6.07 ± 0.21 < 0.01 

 
(5.75–6.96)  81 (5.62–6.63)  60 

 DENL 12.79 ± 0.58 12.15 ± 0.26 < 0.01 

 
(11.54–14.05) 82 (11.48–12.64)  60 

 MANDL 7.88 ± 0.35 7.60 ± 0.22 < 0.01 

 
(6.97–8.60)  82 (7.12–8.19)  60 

 COH 4.90 ± 0.32 4.42 ± 0.27 < 0.01 

  (4.11–5.64)  81 (3.63–4.95)  60   
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Table 3 
 

L. brasiliense Candidate species L. brasiliense Candidate species

Log-Transformed Traditional Data

External only 77 86.36 90.91 79.54 84.85 < 0.001*

Cranial only 130 91.67 91.38 84.72 84.48 < 0.001*

Cranial and External 76 100 90.32 91.11 87.10 < 0.001*

Principal Components (~90%)

External only 77 81.82 84.85 75.00 84.85 < 0.001*

Cranial only 130 90.28 93.10 86.11 91.38 < 0.001*

Cranial and External 76 100 90.32 100 90.32 < 0.001*

Dataset MANOVA
DFA % correct DFA-CVs % Correct

N

 
  

 

Table 4  
 

  Df SS MS R2 F Z P 

Centroid Size (CS) 

(A) DORSAL SKULL 

Sex 1 0.0004 0.0004 0.0030 0.2599 -0.2555 0.6027 

Species 1 0.0091 0.0091 0.0673 5.7949 1.9221 < 0.05 

Sex x species 1 0.0091 0.0091 0.0671 5.7809 1.9609 < 0.05 

Residuals 74 0.1164 0.0016 0.8591    

Total 77 0.1355      

(B) VENTRAL SKULL 

Sex 1 0.0001 0.0001 0.0003 0.0240 -1.2212 0.8750 

Species 1 0.0558 0.0558 0.1380 12.9191 2.8282 < 0.001 

Sex x species 1 0.0327 0.0327 0.0807 7.5575 2.2228 < 0.05 

Residuals 73 0.3155 0.0043 0.7797    

Total 76 0.4047      

(C) DORSAL MANDIBLE 

Sex 1 0.0008 0.0008 0.0064 0.5283 0.1025 0.4721 

Species 1 0.0198 0.0198 0.1619 13.3558 2.8506 < 0.001 

Sex x species 1 0.0088 0.0088 0.0719 5.9324 1.9604 < 0.01 

Residuals 63 0.0933 0.0015 0.7637    

Total 66 0.1221      

(D) LATERAL MANDIBLE 

Sex 1 0.0008 0.0008 0.0031 0.2312 -0.3511 0.6392 

Species 1 0.0157 0.0157 0.0577 4.3726 1.6908 < 0.05 

Sex x species 1 0.0117 0.0117 0.0430 3.2551 1.4301 0.0701 

Residuals 68 0.2443 0.0036 0.8979    

Total 71 0.2721           
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Table 5  
 

  Df SS MS R2 F Z P 

Shape 

(A) DORSAL SKULL 

Size 1 0.0034 0.0034 0.0721 6.5178 3.8334 < 0.001 

Sex 1 0.0024 0.0024 0.0512 4.6274 3.0086 < 0.001 

Species 1 0.0017 0.0017 0.0370 3.3401 2.4674 < 0.001 

Size x sex 1 0.0007 0.0007 0.0144 1.3040 0.7271 0.2364 

Size x species 1 0.0009 0.0009 0.0188 1.6979 1.1702 0.1233 

Sex x species 1 0.0004 0.0004 0.0089 0.8057 -0.1179 0.5430 

Size x sex x species 1 0.0004 0.0004 0.0092 0.8314 -0.0572 0.5212 

Residuals 70 0.0364 0.0005 0.7745    

Total 77 0.0471      

(B) VENTRAL SKULL 

Size 1 0.0023 0.0023 0.0628 5.5333 4.5838 < 0.001 

Sex 1 0.0009 0.0009 0.0258 2.2708 2.2296 < 0.01 

Species 1 0.0020 0.0020 0.0555 4.8839 4.4583 < 0.001 

Size x sex 1 0.0004 0.0004 0.0111 0.9729 0.1371 0.4426 

Size x species 1 0.0008 0.0008 0.0225 1.9830 1.8623 0.0309 

Sex x species 1 0.0004 0.0004 0.0115 1.0153 0.2160 0.4127 

Size x sex x species 1 0.0007 0.0007 0.0190 1.6715 1.4122 0.0808 

Residuals 69 0.0281 0.0004 0.7835    

Total 76 0.0359      

(C) DORSAL MANDIBLE 

Size 1 0.0004 0.0004 0.0165 1.2111 0.5777 0.2798 

Sex 1 0.0005 0.0005 0.0238 1.7469 1.2371 0.1073 

Species 1 0.0009 0.0009 0.0435 3.1931 2.3673 < 0.01 

Size x sex 1 0.0004 0.0004 0.0197 1.4453 0.8921 0.1830 

Size x species 1 0.0003 0.0003 0.0158 1.1627 0.4879 0.3108 

Sex x species 1 0.0004 0.0004 0.0187 1.3774 0.7943 0.2130 

Size x sex x species 1 0.0008 0.0008 0.0355 2.6104 1.9593 0.0268 

Residuals 59 0.0171 0.0003 0.8029    

Total 66 0.0213      

(D) LATERAL MANDIBLE 

Size 1 0.0022 0.0022 0.0257 2.384 2.326 < 0.01 

Sex 1 0.0031 0.0031 0.0351 3.256 2.940 < 0.01 

Species 1 0.0161 0.0161 0.1854 17.179 5.674 < 0.001 

Size x sex 1 0.0007 0.0007 0.0079 0.735 -0.496 0.691 

Size x species 1 0.0008 0.0008 0.0096 0.888 -0.101 0.538 

Sex x species 1 0.0013 0.0013 0.0145 1.342 0.837 0.200 

Size x sex x species 1 0.0010 0.0010 0.0118 1.092 0.389 0.347 

Residuals 64 0.0600 0.0009 0.6906    

Total 71 0.0868           
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CAPÍTULO III – Diversidade críptica no complexo Lophostoma silvicola 

Artigo a ser submetido ao periódico Zoologica Scripta 

 

Tackling the Linnean shortfall in Lophostoma (Chiroptera, Phyllostomidae): an 

approach with multiple lines of evidence 

Diego A. Esquivel1*, Maria João Ramos Pereira1,2, Filipe Michels Bianchi1  

1 Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande 

do Sul, Porto Alegre, RS 91501-970, Brasil. 
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Short running title: Tackling the Linnean shortfall in Lophostoma 
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ABSTRACT 

The Linnean shortfall represents one of the main challenges for biodiversity, because it 

implies a gap in the taxonomic knowledge of the most basic units of study in ecology, 

evolution, and conservation: species. Here, we address the Linnean shortfall in the 

Lophostoma silvicola species complex using multiple lines of evidence through an 

integrative approach to clarify the species boundaries, distribution, and evolutionary 

relationships. Our results provide a comprehensive view on the taxonomic status of the 

complex and indicate three clearly differentiated genetic lineages, namely, Lophostoma 

silvicola (sensu stricto), in Paraguay, Bolivia, southern Peru and central Brazil; 

Lophostoma laephotis in Guyana, French Guiana, Suriname and northern Brazil; and 

Lophostoma amblyotis, in central/northern Peru, western Brazil, Ecuador, Venezuela and 

Panama. We suggest raising L. laephotis and revalidate L. amblyotis to the species level. 

Our data suggest that these species diverged from a recent speciation probably driven by 

ecological factors.  

 

KEYWORDS  

bats, cryptic species, integrative taxonomy, mammals, species delimitation, systematics, 

taxonomy, round eared bat.  
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1  |  INTRODUCTION 

The discovery and description of new species in a world under accelerated change due to 

anthropogenic pressures is task against the clock for science. Despite describing hundreds 

of new species each year, it is unknown how many species may be disappearing or how 

many species are yet to be discovered (Yap et al. 2015; Malcom et al. 2019). Conservative 

estimates suggest that the total number of species is approximately 5–9 million (Mora et 

al., 2011; Costello et al., 2012), but only about 1.9 million have been named (Mace et al. 

2005; Roskov et al. 2019). This lack of taxonomic resolution has been called the Linnean 

shortfall (Lomolino 2004; Hortal et al. 2015), and has profound implications, as species 

represent the fundamental units of biological studies (Bianchi & Gonçalves, 2021). In 

ecological and evolutionary studies, species are the cornerstone for exploring broad-scale 

patterns of biodiversity organization and the processes behind them (Scheffers et al. 

2012).  

Tackling the Linnean shortfall has become a priority, since we are living the sixth mass 

extinction due to accelerated human–induced species losses (Wake & Vredenburg 2008; 

Ceballos et al. 2015, 2020) with a rate estimated to be as high as those of the five previous 

mass extinctions of Earth's history (Pimm et al. 1995; Barnosky et al. 2011). One of the 

main challenges to face this shortfall is the presence of cryptic species. These species are 

commonly defined as the occurrence of different evolutionary lineages of phenotypically 

similar organisms classified as a single species (Bickford et al. 2007). Even those species 

understood as well-studied may hold cryptic species; some are virtually invisible and 

overlooked in conservation plans, aggravating the possibility to reduce the Linnean 

shortfall. However, new approaches have paved the way for the development of new 

techniques and methods to understand the taxonomic units. Side by side with these 

practical advances, new species concepts (see de Queiroz 2007), have helped taxonomists 

to identify and separate cryptic species. Several taxonomists have been using different 

lines of evidence (e.g. molecular, morphological, acoustic, ecological, climatic and 

geographic data), looking to recognize patterns across the data to identify and delimitate 

species (DeSalle et al., 2005; Bickford et al., 2007). Species boundaries are drawn from a 

set of evidence pointing out a separation of lineages (de Queiroz 2007), so that the 

taxonomist must decide which and how much evidence is enough to infer when two 

evolutionary lineages represent separate species. Under this approach, called "integrative 
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taxonomy” (Padial et al. 2010, but see Yeates et al 2010), multiples lines of evidence 

provide a stronger hypothesis considering different evolutionary lineages allowing the 

establishment of more robust boundaries (de Queiroz 2007).  

Bats comprise one of the most diverse mammalian orders with approximately 1430 

described species (Simmons & Cirranello 2020). But, due to its habits, behaviors (e.g. 

nocturnal and high-flying animals), and the difficulty of assessing them in the wild, the 

knowledge of its richness is incipient (Solari et al. 2019). This taxonomic group has 

experienced an elevated number of new species described in recent years. In the past two 

decades, more than 300 species were described as the result of discoveries based on 

fieldwork or taxonomic reviews using integrative taxonomy (Burgin et al. 2018). 

Although Chiroptera is considered a well-known group among the mammals, studies have 

unveiled a high cryptic diversity in many species, demanding a deeper revision (Clare 

2007, 2011; Loureiro et al. 2019; Calahorra-Oliart et al. 2021). Considering the rapid and 

widespread habitat destruction worldwide, and particularly in the megadiverse Neotropics, 

this region should receive urgent attention as there is a risk of losing biodiversity before 

species are even described by science (Aguiar et al. 2020). 

Lophostoma d'Orbigny, 1836 bats (Phyllostomidae: Phyllostominae) are gleaning 

insectivores common in the Neotropical region, where occupy a wide variety of habitats 

across their range, from semiarid regions to tropical humid forests (Williams and 

Genoways 2008). This genus, currently, comprises eight valid species, but recent studies 

using morphological and genetic data suggested that its diversity is underestimated, 

especially in species as Lophostoma brasiliense and Lophostoma silvicola which represent 

cryptic species (Velazco & Cadenillas 2011; Lim & Lee 2018).  

Lophostoma silvicola is recognized as a cryptic species complex distributed continuously 

in the Neotropic from southern Mexico to southwestern Paraguay (Simmons 2005; 

Williams and Genoways 2008). Three subspecies are valid: Lophostoma s. centralis Davis 

and Carter, 1978, in Central America; L. s. laephotis (Thomas, 1910), from the Guianas to 

the lower Amazon basin of Brazil; and L. s. silvicola d’Orbigny, 1836, the nominal 

subspecies located in Paraguay, Bolivia, east of the Andes in Peru, Ecuador, and 

Colombia, and with records in Venezuela and Brazil (Simmons 2005; Williams and 

Genoways 2008). Moreover, molecular studies indicate possible additional lineages, 

suggesting an underestimated diversity within the L. silvicola complex (Clare et al. 2007, 

2011; Velazco & Cadenillas 2011; Lim & Lee 2018). An integrative approach may furnish 
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robust evidence for taking taxonomic decisions and making precise taxa delimitation of L. 

silvicola. In this study, we employed multiple lines of evidence including multilocus 

molecular data, morphological, morphometric, and geometric morphometric data, and 

geographic data to clarify the species boundaries and diversity within the Lophostoma 

silvicola complex. Specifically, we aim to: (a) clarify the taxonomic status of the 

subspecies of Lophostoma silvicola based on extensive geographic sampling along the 

Neotropical region, (b) assess unrecognized cryptic taxa using comprehensive analysis, 

and (c) apply different algorithms of molecular species delimitation to infer the validity of 

species and subspecies. We hypothesize that L. silvicola is a complex of species with 

several independent evolutionary lineages given its wide distribution across the 

Neotropics, where a wide range of environmental conditions and geographical barriers 

possibly promoted genetic isolation and morphological diversification.  

 

2  |  METHODS AND MATERIALS 

2.1  |  Samples, DNA extraction and sequencing 

We obtained samples for the molecular analysis from tissue samples as wing membrane 

(c. 1 mm2), liver or muscle that had been frozen or preserved in either ethanol or lysis 

buffer. We generated new sequences from individuals in different geographic regions 

targeting two gene fragments: Cytochrome Oxidase subunit I (COI) and Cytochrome-b 

(Cyt-b). These sequences were complemented with an additional 174 COI and 16 Cyt-b 

sequences of Lophostoma, which were downloaded from GenBank. In total, we analyzed 

210 sequences (see Supplementary Data 1 for museum ID, voucher numbers, locality data, 

and GenBank accession numbers). 

We extracted the DNA using DNeasy Blood and Tissue kit (Qiagen, Valencia, CA, 

U.S.A.) according to the manufacturer’s instructions, eluting to a final volume of 100 μL. 

We stored the total genomic DNAs at -20 °C before amplification. We used the pairs of 

primers designed by Folmer et al. (1994) targeting the mitochondrial gene COI, LCOI 

1490 (5’-GGTCAACAAATCATAAAGATATTGG-3’), and HCOI 2198 (5’-

TAAACTTCAGGGTGACCAAAAAATCA-3’), and by Irwin et al. (1991) targeting the 

mitochondrial gene Cyt-b, L14724 (5’-CGAAGCTTGATATGAAAAACCATCGTT-3’) 

and H15915 (5’-AACTGCAGTCATCTCCGGTTTACAAGAC-3’). The PCR conditions 

for COI consisted in an initial denaturation step at 92ºC for 10 min, followed by 35 cycles 

of 95ºC for 30 s (denaturation), 49–51ºC for 40 s (annealing), 72ºC for 90 s 
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(polymerization), 72ºC at 10 min (final extension), and an infinite hold at 4ºC. For Cyt-b 

the same conditions were followed, except for 48–50ºC for 45 s (annealing). We purified 

the PCR products using Exonuclease I and shrimp alkaline phosphatase (Affymetrix, Inc. 

USB Products, Cleveland, OH, U.S.A.). The two DNA strands for the PCR products were 

sequenced by Macrogen, Inc. (Seoul, South Korea). We visually inspected, verified and 

manually edited the sequence chromatograms using the Staden package (Staden et al., 

2000). We verified the sequences using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), 

confirming the high similarity of our submitted sequences to Lophostoma species. 

2.2  |  Phylogenetic analysis and molecular species delimitation 

We used PhyloSuite (Zhang et al., 2020) for the workflow of the analyses. We aligned the 

sequences of each gene with MAFFT (Katoh & Standley, 2013) using '--auto' strategy and 

normal alignment mode. We removed ambiguously aligned fragments using Gblocks 

(Talavera & Castresana, 2007) with the following parameter settings: minimum number of 

sequences for a conserved/flank position (21/21), maximum number of contiguous non-

conserved positions (8), minimum length of a block (10), allowed gap positions (with 

half). We selected the best partitioning schemes and evolutionary models for pre-defined 

partitions for each genetic marker using PartitionFinder2 (Lanfear et al., 2017), with all 

algorithms and AICc criterion. Each gene was analyzed independently using Bayesian 

methods (MB). Bayesian Inference phylogenies were inferred using MrBayes 3.2.6 

(Ronquist et al., 2012) under partition model (2 parallel runs, 50 million generations), 

discarding the initial 20% of sampled data as burn-in. For the GMYC analysis (see 

below), we built an ultrametric tree using the BEAUti2.5/BEAST v2.5 (Bouckaert et al., 

2019) with the same substitution models of the previous analyses. We assumed a strict 

clock model and a coalescent tree prior with constant population size. We did two 

independent runs for each dataset with 50 million generations, sampling the parameters 

every 5000 generations. We used Tracer v.1.7 (Rambaut et al., 2018) to inspect the 

convergence to the stationary distribution of the chains. The first 20% of the generations 

were discarded as ‘burn-in’ and then combined the chains: the combined ESS for each 

parameter was higher than 200. We visualized and edited the trees using FigTree v1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/). 

For delimiting species using the genetic data, we applied four DNA-based single-locus 

species delimitation approaches, two distance-based and two tree-based. The methods 

used were: (a) the automatic barcode gap discovery method (ABGD; Puillandre et al., 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://tree.bio.ed.ac.uk/software/figtree/
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2012), (b) the assemble species by automatic partitioning (ASAP; Puillandre et al., 2021), 

(c) the Generalized Mixed Yule Coalescent approach (GMYC; Pons et al., 2006), and (d) 

a Bayesian version of the Poisson Tree Processes model approach (bPTP; Zhang et al., 

2013). These analyses were performed using the ABGD web server (ABGD – 

https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html) setting the parameters Simple 

Distance (p-distances) with relative gap width (X = 1.5); the ASAP web 

(https://bioinfo.mnhn.fr/abi/public/asap/) also setting Simple Distance (p-distances); and 

the Exelixis Lab’s web server (bPTP – http://species.h-its.org/ptp/) setting unrooted, 500 

000 MCMC generations, burn-in of 0.2; (GMYC – http://species.h-its.org/gmyc/) setting 

“single threshold” method. For distance methods the uncorrected p-distances yield more 

accurate (or at least similar) results when compared to other models of nucleotide 

evolution (e.g., K2P; see Srivathsan & Meier, 2012; Collins & Cruickshank, 2012).  

2.3  |  Morphological and morphometric analysis 

We analyzed the morphology of 428 adult specimens of Lophostoma silvicola (215 

females, 205 males and eight specimens of undetermined sex) coming from different 

localities throughout its entire distribution in the Neotropic (Fig. 1). Reviewed specimens 

are housed in 14 natural history museums: Museu Nacional do Rio de Janeiro, Rio de 

Janeiro, Brazil (MNRJ); Museu de Zoologia da Universidade de São Paulo, São Paulo, 

Brazil (MZUSP); Museo de Historia Natural, Universidad Nacional Mayor de San 

Marcos, Lima, Perú (MUSM); Colección Zoológica Universidad del Tolima, Ibagué, 

Colombia (CZUT); Instituto de Investigaciones Biológicas Alexander Von Humboldt, 

Villa de Leyva, Colombia (IAvH); Museo de Historia Natural Universidad de Caldas, 

Manizales, Colombia (MHN-UCa); Museo de La Salle, Bogotá, Colombia (MLS-BOG); 

Museo de Historia Natural Universidad Distrital Francisco José de Caldas, Bogotá, 

Colombia (MUD); American Museum of Natural History, New York, USA (AMNH); 

Field Museum of Natural History, Chicago, USA (FMNH); Louisiana State University 

Museum of Natural Science, Louisiana, USA (LSUMZ); National Museum of Natural 

History (U.S. National Museum), Smithsonian Institution, Washington, USA (USNM); 

Museum of Texas Tech University, Lubbock, USA (TTU) and Biodiversity Research and 

Teaching Collections, Texas A&M University, College Station, USA (TCWC). Using 

previously published measurements, our analyses included the holotype of Lophostoma 

silvicola laephotis and Lophostoma evotis. A list of specimens included in this study, with 

their respective localities is presented in the Supplementary Data 2. 

https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
https://bioinfo.mnhn.fr/abi/public/asap/
http://species.h-its.org/ptp/
http://species.h-its.org/gmyc/
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From these specimens we examined the qualitative and quantitative variation of a dataset 

of 18 morphological characters that include two externals and 16 craniodental. 

Craniodental and mandibular measurements were recorded following Velazco and 

Cadenillas (2011) and are described in the Supplementary Data 3. These measurements 

were taken using a digital caliper with 0.01 mm resolution on each specimen and were 

log10 transformed for statistical analyses.  

2.4  |  Species delimitation using phenotypic data  

We conducted two types of analyses to determine whether morphometric data can 

diagnose distinct phenotypic groups. First, we grouped the specimens according to the 

results of the genetic analyses, considering clusters present in both gene-trees (see 

Results). Then, we performed a principal component analysis (PCA) and discriminant 

function analysis (DFA) to investigate whether these previously established groups could 

be distinguished based on external and craniodental morphology using the package 

‘MASS’ (Ripley et al., 2013) in R version 4.1.0 (R Core Team 2021). Differences between 

females and males, and between the candidate species in univariate trait measurements 

were visually assessed using box and density plots. We used Student's t-test or the 

nonparametric Mann-Whitney U-test to test for sexual dimorphism and one-way ANOVA 

with post-hoc Tukey’s honest significant differences (HSD) to test differences between the 

candidate species. Differences in multivariate space were calculated using multivariate 

analysis of variance (MANOVA) with the multivariate measurements as a response 

variable, and sex and species as predictors. Second, we conducted normal mixture model 

analyses (NMMs) to estimate the number of distinct normal distributions that best fit the 

pooled morphological data following procedures described by Cadena et al. (2018). These 

procedures use the R packages ‘clustvarsel’ and ‘mclust’ (Scrucca et al. 2016; Scrucca and 

Raftery 2018), involving series of steps in order to find the variables that most effectively 

delimit morphological clusters and with which to fit different normal mixture models for 

selecting the best model determining the optimal number of clusters. In this sense, we 

conducted a principal component analysis (PCA) on the covariance matrix and selected 

the set of principal components most useful for group discrimination in NMMs using the 

R package ‘clustvarsel’ (Scrucca and Raftery 2018). Afterwards, we used different models 

to test the existence of two to four morphological groups. Two morphological clusters 

represent the current taxonomic treatment of Lophostoma silvicola and Lophostoma evotis 

as independent species, three clusters the oldest taxonomy that considered up to three 
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species (silvicola, evotis, and laephotis) and four clusters as suggested by the genetic 

results. Due to the small number of specimens, L. s. centralis was not included. Models 

were fitted using the R package ‘mclust’ (Scrucca et al., 2016) and ranked according to 

values from Bayesian Information Criterion (BIC).  

 

2.5  |  Geometric morphometric Analysis  

Two-dimensional images of skull and mandible were obtained using a digital camera 

(Nikon Coolpix P900, Tokyo, Japan) and following a standardized protocol where skulls 

and mandibles were in the same position and perpendicular to the axis of the camera. 

From these images, we digitized landmark and semilandmarks configurations using tpsDig 

version 2.3 (Rohlf 2017). To determine how many anatomical points could appropriately 

capture the shape and size information, we used the lasec function in the R package 

‘LaMDBA’ (Watanabe 2018). This function performs a Landmark Evaluation Curve 

analysis and produces a sampling curve and a table with fit values that allows it to 

recognize the number of anatomical points necessary to characterize the shape variation 

and size. We determined the number of landmarks and semilandmarks for each region 

considering a required fit of 0.9, 0.95, and 0.99 (Supplementary Data 4). Then, the shape 

and size of the skull were obtained through 22 landmarks in ventral view and 9 landmarks 

with 16 semilandmarks in dorsal view of 116 adult specimens, while the shape and size of 

the mandible were obtained from 9 landmarks in lateral view of 124 adult specimens. 

Detailed descriptions of the landmarks and semilandmarks and a figure with details about 

these anatomical points on each view can be found in the Supplementary Data 5A.  

Coordinates were superimposed using a Generalized Procrustes Analysis (GPA) that 

removes differences unrelated to the shape (scale, position, and orientation; Rohlf and 

Slice 1990) using the gpagen function in the R package ‘geomorph’ (Adams et al. 2019). 

We symmetrized both sides (left and right) of the landmarks in the dorsal and ventral 

views of the skull to avoid redundancy, and only the symmetric part of the variation was 

analyzed (Klingenberg et al. 2002). We obtained procrustes shape coordinates, and a size 

estimator called centroid size (CS) as the square root of the sum of squares of the distance 

of each landmark to the centroid (mean of all coordinates) of the configuration (Bookstein 

1997).  

Analysis were conducted to assess the effect of sex (sexual dimorphism), species and their 

interaction on cranial and mandibular size by evaluating the fit of models using the 
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randomized residual permutation procedure (RRPP) with the lm.rrpp function in the R 

package ‘RRPP’ (Collyer & Adams, 2018, 2020). RRPP was also used to test the effect of 

(1) size, (2) sex, and (3) species on skull and mandible shape and its interactions. All 

models were fit using the type-II (hierarchical) sum of squares, and its significance was 

based on 10 000 permutations of residual randomization. We used the anova.lm.rrpp 

function to compute analysis of variance (ANOVA) tables for each model, which use 

distributions of random statistics and use the F distribution to calculate effect sizes. 

Pairwise comparisons were conducted on significant factors using the pairwise function. 

These comparisons calculate distances among species pairs, effect sizes and P-values 

based on distances between means (Collyer & Adams, 2020).  

Differences in skull and mandible shape among candidate species were also explored 

using ordination methods. First, we performed a principal component analysis (PCA) on 

the procrustes aligned data using the gm.prcomp function in the R package ‘geomorph’ 

(Adams et al. 2019). Among the PCs produced, we choose those that contained a 

significant cumulative of shape variance on each view (~90%). After, we generated the 

deformation grids with the extremes (maximum and minimum) of shape variation along 

the principal components 1 and 2 (PC1 and PC2). Then, we used a discriminant function 

analysis (DFA) to determine whether the groups could be reliably distinguished. 

Procrustes distances between groups were tested for significance with a 10 000 

permutations procedure. The probability of a specimen belonging to any of the predefined 

groups was estimated via jackknife cross-validation of the scores.  

2.6  |  Estimating missing landmarks and error measurement 

A common issue in geometric morphometric studies is missing data due to incompleteness 

of samples. A widely used but not recommended solution is to remove those incomplete 

specimens or, preferably, estimate them (Arbour & Brown 2014). When we had 

specimens with missing data in the dorsal/ventral skull (structures with bilateral 

symmetry), we first used the reflectMissingLandmarks function in the R package 

‘StereoMorph’ (Olsen and Westneat 2015). This function permits imputing missing points 

from the mirrored side (reflecting labelling). For those missing landmarks that could not 

be estimated taking advantage of bilateral symmetry, then, we conducted a rigorous 

evaluation that included simulations of missing data, testing for the impact of missing data 

estimation and analyses about performance of different estimation techniques 

(Supplementary Data 5B). Among the evaluated techniques, we used the Bayesian PCA 
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(BPCA), least‐squares regression (REG), mean substitution (MS) and the 

geometric‐morphometric‐specific method Thin‐plate spline interpolation (TPS). From our 

analyses we concluded to use REG, and TPS in the ventral cranium and lateral mandible 

respectively to estimate missing values in our datasets.  

Finally, we tested the error of digitization of the landmarks through a Procrustes ANOVA, 

which measures and compares random errors (Klingenberg & McIntyre, 1998; 

Klingenberg et al., 2002). In this sense, we digitized all skulls and mandibles twice and 

performed a Procrustes ANOVA between these two replicates, which yielded very high 

replicability (> 94 % all views). 

2.8 | Taxonomic decision 

We defined the candidate species according to the results of the following lines of 

evidence: (1) monophyletic lineages using the gene trees; (2) genetic distance-based 

approaches; (3) tree-based methods; (4) delimitation methods using morphometric linear 

distances; (5) normal mixture models (NMMs) and (6) geometric morphometric analyses. 

We evaluated the accumulation of evidence from each method recognizing candidate 

species to support a “new” species hypothesis. Here, we assumed the unified species 

concept, understanding species as a lineage evolving separately from other lineages (De 

Queiroz, 2007). 

 

3  |  RESULTS 

3.1  |  Phylogenetic analyses and molecular species delimitation 

All the gene trees recovered the same results concerning the reciprocal monophyly of the 

Lophostoma species. For both Bayesian algorithms, most species were monophyletic with 

the higher support values (PPs=1): L. carrikeri, L. schulzi, L. evotis, L. occidentale, L. 

brasiliense, and L. nicaraguae. Lophostoma silvicola was the only non-monophyletic 

species, recovered as paraphyletic (PP = 1) including L. evotis (Fig. 2). 

The gene tree topologies were incongruent among markers and algorithms, producing 

three scenarios. COI and Cyt-b makers produced the same topology under Beast 

algorithm, while under MrBayes recovered different relationships. Two clades were 

consistent among the analysis: (L. carrikeri (L. brasiliense, L. nicaraguae)) and (L. 

occidentale (L. silvicola (L. evotis, L. silvicola))). Both clades are sisters, while the 

position of L. schulzi is different in each scenario. Lophostoma schulzi appears as sister to 
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the remaining Lophostoma species (COI under MrBayes); sister to L. occidentale (Cyt-b 

under MrBayes); or sister to (L. carrikeri (L. brasiliense, L. nicaraguae)) (both makers 

under Beast; Fig. 2). 

For the clade formed by the paraphyletic L. silvicola and L. evotis, the Cyt-b phylogenies 

(Fig. 3) recovered four main clades, one of them corresponding to L. evotis. Besides L. 

evotis, the remaining groups seemingly matching current subspecies taxonomy and are 

recognized henceforth as candidate species: candidate species A (samples from Bolivia, 

Paraguay and central Brazil); candidate species B (samples from Guyana, French Guiana 

and Suriname); and candidate species C (samples from Peru, Ecuador, Venezuela and 

Panama). The COI phylogenies recovered the same groups, and two additional lineages. 

One clade clustering the specimens from southern Peru (Manu) and eastern Brazil 

(Rondonia), candidate species D; and a single lineage sequence from Cerrado in Brazil, 

candidate species E (Fig. 3). The average Cyt-b pairwise distance among the candidate 

species (A, B, C) ranged from 4.75% to 5.94% (Table 1), while the pairwise distance 

using COI ranged from 4.48% to 8.43% (Table 2).  

Tree- and distance-based methods of species delimitation did not produce congruent 

results, inferring different numbers of species for the complex depending on the method 

applied. Distance-based algorithms recognized between four (Cyt-b) to six (COI) species, 

while tree-based algorithms between seven (Cyt-b) to 36 (COI) species (Table 3). 

However, the four DNA-based single-locus species delimitation approaches (ABGD, 

ASAP, bPTP, and GMYC) were consistent in recognizing to L. evotis and most 

recognized the same three main clades mentioned above in L. silvicola, regardless of the 

genetic marker used.  

3.2  |  Phenotypic species delimitation 

The paired tests showed significant differences between the sexes, but the density and 

PCA plots lacked evidence of sexual dimorphism. Thus, the following analyses were 

carried out considering the pooled sexes (Supplementary Data 6). One-way ANOVA 

recovered differences among candidate species for all 18 characters which continued 

statistically significant after adjustment with the Benjamini–Hochberg procedure (all P < 

0.001) (Benjamini & Hochberg, 1995). Post-hoc Tukey’s HSD tests also identified 

significant differences in mean values for some traits of candidate species. Candidate 

species A differed from candidate species B in 14 traits related to shorter lengths of skull 

(GLS, CIL, CCL, BB, ZB, PL, PWC, MSTW, MTRL, MLTRL, PWM2) and mandible 
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(DENL, MANDL, COH). Candidate species A also differed from candidate species C in 

six traits, which indicated a shorter length of skull (CCL, MTRL, PWM2) and mandible 

(DENL, MANDL, COH). Candidate species B differed from candidate species C in all 18 

morphological traits, by having larger external and craniodental measurements. 

Lophostoma evotis showed significant differences regarding all other species. In summary, 

significant differences were found in size between the candidate species, where B is the 

largest species, while A and L. evotis are the smallest (see graphical summaries and test 

results in Supplementary Data 7). These differences were also confirmed when we 

analyzed the multivariate space, where MANOVA pointed out significant differences 

between each of the candidate species (p < 0.001). The variation in the values of 

individual traits observed between species is described in Table 4.  

The PCA analysis based on 18 morphometric traits (two external and 16 craniodental) 

showed the first principal component (PC1) accounting for 68.97% of the variation, PC2 

for 6.06% and PC3 for 4.47%, together accounting for ~80% of the variation (Fig. 4A). 

PCA confirms size-related differences: PC1 describes variation associated with cranial 

and mandibular lengths (DENL, CCL, CIL), while PC2 relates to the variation in forearm 

and metacarpal III lengths. Although there is overlap between species values, the DFA 

suggests that at least 83, 71 and 84% of the individuals of the candidate species A, B and 

C respectively may be distinguished based on the external and craniodental measurements 

analyzed. DFA indicated low values in the classification using only cranial characters 

(Table 5; Fig. 4B). DFA results on morphological characters were similar considering 

both PCs or log-transformed data. 

The normal mixtures analysis, with no a priori species definition, provided maximum 

support for models specifying two morphological groups (i.e., two distinct phenotypic 

distributions). However, the clusters estimated by this model included one very large (255 

specimens) and one very small (24 specimens) group, each of which included 

representatives scattered across the Neotropic. Model support for the presence of two, 

three or four morphological groups according to different taxonomic proposals was larger 

for two groups (BIC = -3155.074; Fig. 5).  

Overall, our results pointed to the existence of two or four phenotypic groups defined by 

morphological variation in our sample of L. silvicola, considering both NMMs and 

distance-based approaches respectively. 
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3.3  |  Geometric morphometric  

Variation in cranium and mandible size  

The centroid size in the cranium and mandible was significantly different between some 

pairs of species, supporting the differences in size described using linear measurements. 

Candidate species B is the largest species in the complex while L. evotis is the smallest. 

Candidate species C showed significant differences respecting candidate species A and 

candidate species B (P < 0.05 in all views, see pairwise comparison and graphical 

summaries in Supplementary Data 8A). We found evidence of sexual dimorphism in size 

in ventral skull and lateral mandible views, where males were larger than females 

(Supplementary Data 8B), however, a separate analysis by sex did not alter the overall 

patterns; therefore, we present the results with both sexes included. The variance of the 

factors tested, represented by mean squares value and the R2, showed that most of the 

variance in skull and mandible size is found among the species (Table 6).  

Variation in cranium and mandible shape 

Models did not show sexual dimorphism in the shape of the skull but a significant sexual 

dimorphism in the shape of the mandible (Table 7). When we tested for cranial and 

mandibular shape variation in the entire procrustes shape space, we found significant 

differences among species in all views tested (P < 0.05 in all cases). Even when we 

evaluated the differences between females and males separately in the mandible (due to 

sexual dimorphism) the differences in shape between species remained (results not shown: 

P < 0.05 in all cases). The interaction between size and species was significant just for the 

ventral skull (Table 7). Fitted linear models found significant effect of size on shape 

variation in all the examined views, however the morphological variation explained by 

size was very low (< 8% in all cases; Table 7). So, the allometric effect was ruled out, and 

the analyzes and graphs were carried out on the original shape coordinates. 

The PCA showed an ordination for dorsal and ventral skull, but not for lateral mandible. 

The first three PC scores accounted for ~65 and ~60% of the skull and mandible total 

shape variation respectively. We only show the results from the first two PCs, which 

accounted for ~50% of the variation (Fig. 6). In the skull, specimens with negative scores 

on PC1 had a rostrum more elongated and robust at the level of the canines, a larger 

distance between the anteriormost point of premaxilla to nasal, a thicker postorbital 

constriction, a smaller braincase, a larger distance between the molars with a wider 

palatal, a greatest breadth across the zygomatic arches and a shorter distance between 
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basion and opisthion. In the PC2 individuals with negative scores had a shorter and 

smaller braincase. With respect to mandible, the PC1 positive scores were associated with 

shorter, thicker, and more robust jaws, with a larger perpendicular height from the ventral 

margin of mandible to the tip of the coronoid process. Negative scores with more 

elongated, thin, and slender jaws. Most individuals of candidate species B had positive 

scores on PC1 in the skull and mandible, while most individuals of candidate species C 

negative scores, showing some useful characteristics that can differentiate these species 

(Fig. 6). 

The Discriminant Function Analysis (DFA) also showed that species were significantly 

different in the shape of both the skull and the mandible (Fig. 7). The percentage of 

correct classification using DFA shows high values for candidate species C in all views 

(dorsal skull – 89.02 % –, ventral skull – 87.84 % – and lateral mandible – 92.85 %), and 

acceptable values for candidate species B in the skull, but not lateral mandible (dorsal 

skull – 73.33 % –, ventral skull – 69.57 % – and lateral mandible – 43.47 %), in the same 

way as for candidate species A (dorsal skull – 75 % –, ventral skull – 77.77 % – and 

lateral mandible – 11.11 %). Moreover, the morphological structures with the higher 

percentage of correct classification and probably the most useful to identify each species 

were the ventral (79.12 %) and dorsal skull (78.39 %), whereas the lateral mandible had a 

smaller percentage (49 %). 

4  | DISCUSSION 

 

The number of species within the genus Lophostoma has been shown to be higher than is 

currently valid (Velazco & Cadenillas 2011; Lim & Lee 2018; Esquivel et al. in. prep). 

Without a clear understanding of the taxonomic units, boundaries, and relationships within 

the genus, any analyses about evolutionary and ecological processes could be under severe 

bias. Under an integrative approach, we recognized at least four independent evolutionary 

lineages within the L. silvicola species complex.  

The molecular results suggested L. silvicola as a paraphyletic species, grouping L. evotis 

and multiple independent evolutionary lineages. We opted for the most parsimonious 

scenario of molecular species delimitation to run the subsequent analyses. Thus, four 

lineages were explored within the L. silvicola complex: L. evotis and the candidate species 

A, B, and C. This split of lineages was corroborated by phenotypic analyses, and their 

geographical distribution is parapatric. The distribution of these putative species hinted at 

reevaluating the status of current synonyms and subspecies of L. silvicola. Thus, the 
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candidate species A from Paraguay, Bolivia, southern Peru and central Brazil, corresponds 

to L. silvicola sensu stricto; the candidate species B from Guyana, French Guiana, 

Suriname and northern Brazil, corresponds to L. laephotis; and candidate species C from 

central/northern Peru, western Brazil, Ecuador, Venezuela and Panama, corresponds to L. 

amblyotis. Currently, L. amblyotis is a junior synonym of L. silvicola. Thus, we raising L. 

laephotis to the species level and revalidate L. amblyotis. Our results are consistent in 

recognizing these species as independent evolutionary lineages. The morphology, 

cranial/mandibular shape and genetics of these species are distinct (Fig. 8). These species 

increase the number of valid taxonomic units in Lophostoma from eight to ten (Esquivel et 

al. in prep), with nine of them occurring in South America.  

The use of morphological, morphometric, geographic and molecular evidence under an 

integrative approach (Dayrat 2005; DeSalle et al., 2005) became a powerful tool to the 

species discovery and delimitation, allowing taxonomists tackling the Linnean shortfall 

especially in cryptic species. This approach assumes that a greater amount of evidence 

from different datasets represents a more robust species hypothesis and decreases the 

probability of false identifications (Damm et al., 2010). Here, the use of multiple lines of 

evidence allowed the recognition of additional taxonomic entities within the silvicola 

complex. Individual approaches indicated the existence of the complex (Velazco & 

Cadenillas 2011; Lim & Lee 2018), but were unable to establish limits to each lineage. 

Molecular delimitation methods are a powerful tool for recognizing cryptic species in bats 

(Salicini et al., 2011; Demos et al., 2018, 2019). Due to the limitations of single-locus 

species delimitations, we applied conservative criteria to establish the number of species, 

where convergent results from different algorithms were considered a robust primary 

species hypothesis (Puillandre et al., 2021). The distance-based and tree-based approaches 

used here, which are grounded on distinct species criteria, converged to recognize L. 

laephotis and L. amblyotis as taxonomic entities distinct from L. silvicola supporting our 

main conclusions. GMYC identified more groups than the other methods, but this 

algorithm tends to overestimate the number of species (Damm et al., 2010). 

The current study provides further evidence for strong genetic differentiation within L. 

silvicola. mtDNA divergence among internal lineages is equivalent to interspecific genetic 

distances with other well-recognized sister species (e.g., L. evotis, see Table 1-2) and is 

greater than distances between many other sister pairs in Phyllostomidae as for example 

between Sturnira hondurensis Goodwin, 1940 and S. ludovici Anthony, 1924: 5.74%, 
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Sturnira burtonlimi Velazco & Patterson, 2014 and S. adrianae Molinari, Bustos, Burneo, 

Camacho, Moreno & Fermin, 2017: 3.93% (Molinari et al. 2017), Micronycteris buriri 

Larsen, Siles, Pedersen & Kwiecinski, 2011 and M. megalotis (Gray, 1842): 1.9% (Larsen 

et al. 2011) among others. Furthermore, the genetic divergence values are greater than the 

threshold values proposed by the methods (Cyt-b 3.3%; COI 3%), supporting the 

recognition of candidate species as valid species. 

Diversification of Lophostoma occurred during the Mid-Miocene, approximately 15.4 mya 

ago (Hoffmann et al., 2008). Specifically, the divergence of L. silvicola began about 7.8 

mya ago in the Late-Miocene, with an explosive diversification towards the current 

lineages less than 3 mya ago, in the Plio-Pleistocene (Hoffmann et al., 2008). This rapid 

and recent diversification may partly explain the high genetic but low morphological 

differentiation present between these lineages. Distributional data on the species of the L. 

silvicola complex provides additional insights about this rapid diversification. The current 

known distribution of each species in the complex suggests constraints in the elevational 

range —none of these species has been recorded above 2000 m.a.s.l —and type of forest. 

Andes is the main terrestrial biogeographic barrier South American, and triggered the 

diversification of several species of bats (Patterson et al., 2012), including Lophostoma 

species (e.g., L. nicaraguae, L. brasiliense, L. occidentale) (Esquivel et al. in prep). Under 

this scenario, it was to be expected for the cis-Andean and trans-Andean populations to 

present large enough genetic distances to be consider different species. However, we 

found that L. amblyotis occurs on both sides of the Andes and with, apparently, low 

genetic divergence. This could confirm a recent separation of these populations which, 

although separated by the Andes (allopatric populations), probably have not had enough 

time to accumulate genetic or morphological differences. We hypothesize that distinct 

environmental conditions related to forest type (the biogeographic gradient hypothesis, 

Moritz et al. 2000) may better explain the diversification within the complex. Lophostoma 

laephotis seems to be restricted to the Amazonian forests of northeastern South America; 

L. silvicola to the forests in southern Peru, savannas in Bolivia and Brazil, specifically the 

Cerrado, while L. amblyotis to sub-Andean forests. However, more geographic and 

genetic data are needed to test these distributional predictions. 

We also found a high phenotypic similarity between all the species of the silvicola 

complex. Although we reviewed more than 420 specimens, and the analyzes revealed 

significant differences in the mean values of individual traits between species, we were 
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unable to find non-overlapping traits allowing a reliable diagnosis of each of the species. 

Finding diagnostic morphological features between "cryptic" species is a complex task 

(Fišer & Zagmajster, 2009; Schlick-Steiner et al., 2010) due to high intraspecific variation 

and low interspecific variation (Jugovic et al., 2012). In our case, the variation within the 

populations is quite high, in contrast to the differences between species, so that univariate 

morphological characters alone are not enough to discriminate between species of the 

silvicola complex. The morphological distinction between these species is reduced to 

variations in size, differences in multivariate space, and differences in the shape of the 

skull and jaw. 

How many species are there in Lophostoma? 

Our findings help to improve the knowledge about the systematics and taxonomy of this 

group and to reduce its Linnean shortfall. However, unanswered questions remain within 

Lophostoma. Given the limitations of the data set analyzed here, we cannot infer the status 

of the subspecies L. s. centralis. We could not evaluate its state due to low number of 

samples from museum collections, as well as the impossibility of obtaining further tissue 

samples from the field. We highlight the relevance of continuing to collect specimens in 

unsampled areas in Costa Rica, Nicaragua and specially Honduras, needed to clarify the 

taxonomic status of L. s. centralis and the distribution limits of L. amblyotis and L. evotis 

in Central America. We were also unable to establish the phylogenetic position of L. 

kalkoe and of a new species that appears within L. occidentale in our molecular analyzes, 

which deserves additional studies. Then, the results of this work should be considered an 

additional step that raises more questions than it answers. We recognize ten species of 

Lophostoma, but the high number of putative species within L. silvicola stricto sensu must 

be explored using other approaches such as the use of nuclear markers or ecological niche 

models. 
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SUPPORTING INFORMATION 

 

Additional Supporting Information may be found in the online version of this article at the 

publisher’s web-site: 

Supplementary Data 1. Specimens used for phylogenetic analyses. Species, vouchers 

numbers, GenBank/BolSystems accession numbers and geographic information are given 

for the Lophostoma samples used in the phylogenetic analyses.  

Supplementary Data 2. List of specimens included in this study. 

Supplementary Data 3. Detailed descriptions of external and craniodental measurements 

used in this study.  

Supplementary Data 4. Results from performing LaSEC with 1000 iterations. 

Supplementary Data 5. A- Detailed descriptions of the landmarks and semilandmarks 

used in this study and a figure with details about these anatomical points on each view. B- 

Selection of the best missing data estimator to our dataset using simulations with 

incomplete specimens. 

Supplementary Data 6. Paired test and density plots showing differences between sex. 

Supplementary Data 7. Density plots of individual traits between species.  

Supplementary Data 8. A- Plot centroid size by species. B – Plot centroid size by 

species/sex. 
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Figures 

Figure 1. Sampling localities of Lophostoma silvicola specimens analyzed in this study. 

Dark dots represent localities from specimens in museums, the red star indicates the type 

locality for L. silvicola, while the green and yellow star point out type localities for 

subspecies (laephotis and centralis, respectively). A list of revised specimens with their 

respective localities is presented in the Supplementary Data 1. 

Figure 2. Phylogenetic gene-trees showing relationships between Lophostoma species.  

Figure 3. Majority rule (50%) consensus tree of Lophostoma based on Bayesian analyses 

using: (A) Cytochrome oxidase I; (B) Cytochrome-b. Values above branches are Bayesian 

posterior probabilities. 

Figure 4. Morphometric variation in the Lophostoma silvicola species complex. A- 

Principal Components Analysis (PCA) on 18 externals, craniodental and mandibular 

variables performed for all samples of the Lophostoma silvicola complex. Each individual 

is represented by a dot, painted according to the group to which it belongs (candidate 

species A: black; candidate species B: red; candidate species C: light blue; L. evotis: 

yellow). Outer solid‐line ellipses delimit the area enclosing 95% of the individual points in 

each group, whereas inner broken‐line ellipses encompass 50% of those points. B- Linear 

Discriminant Function after cross-validation tests. Even though there is overlap between 

two putative species showing morphological similarity, individuals tend to cluster together 

with their respective group. 

Figure 5. Support for species delimitation scenarios without a priori information 

generated from normal mixture models. Plot shows results for normal mixture models 

specifying one to nine morphological clusters, as well as models fitting both previous and 

current hypotheses of subspecies. 

Figure 6. Principal Component Analysis (PCA) of Lophostoma silvicola species complex 

obtained from three different views. Each individual is represented by a dot, painted 

according to the group to which it belongs (candidate species A: black; candidate species 

B: red; candidate species C: light blue; L. evotis: yellow).  

Figure 7. Linear Discriminant Analysis (LDA) of Lophostoma silvicola species complex 

obtained from three different views. Each individual is represented by a dot, painted 

according to the group to which it belongs (candidate species A: black; candidate species 

B: red; candidate species C: light blue; L. evotis: yellow). 

Figure 8. Cyt-b phylogram showing results of species delimitation methods. Numbers 

indicate support values of the adjacent node retrieved in the Bayesian inference. Titles of 
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columns indicate the current treatment of L. silvicola as one group (Current), and the 

results from species delimitation methods employed (see Taxonomic decision section). 

Boxes in different colours indicate species inferred with each method. 

 

Tables 

Table 1. Pairwise cytochrome-b sequence divergence (%) among Lophostoma candidate 

species (average in black; standard error in blue). 

Table 2. Pairwise cytochrome oxidase I sequence divergence (%) among Lophostoma 

candidate species (average ± standard error). 

Table 3. Results from genetic algorithms. Numbers in parentheses represent the number 

of species estimated by each algorithm within the silvicola complex. 

Table 4. External and craniodental measurements (mm), including mean, standard 

deviation, range, and sample size of the candidate species. Measurement acronyms follow 

Table 1.  

Table 5. DFA classification results without (DFA) and with (DFA-CVs) leave-one-out 

cross-validation for all morphometrics analyses and datasets. MANOVA statistically 

significant differences between the candidate species. 

Table 6. ANOVA results regarding effects of sex, species and their interaction on centroid 

size (log CS). 

Table 7. ANOVA results regarding effects of size (allometry), sex (sexual dimorphism), 

species and their interactions on shape.  
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Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

Figure 3 

 

 



 

108 
 

Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

109 
 

Figure 5 
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Figure 6 
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Figure 7  
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 Figure 8 
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Table 1 

  1 2 3 4 5 6 7 8 9 

1– L. brasiliense 

 
0.000 0.009 0.009 0.009 0.009 0.010 0.010 0.009 

2– L. nicaraguae 0 
 

0.009 0.009 0.009 0.009 0.010 0.010 0.009 

3– L. carrikeri 10.91 10.91 
 

0.009 0.009 0.009 0.010 0.009 0.009 

4– L. evotis 12.87 12.87 12.13 
 

0.008 0.009 0.007 0.006 0.005 

5– L. occidentale 12.95 12.95 13.54 12.32 
 

0.008 0.009 0.009 0.008 

6– L. schulzi 12.68 12.68 11.31 12.21 11.80 
 

0.009 0.009 0.009 

7– Candidate species A 13.45 13.45 12.65 6.04 12.18 12.38 
 

0.006 0.006 

8– Candidate species B 13.07 13.07 11.87 5.48 12.77 12.06 5.94 
 

0.005 

9– Candidate species C 13.28 13.28 12.67 4.11 12.42 12.70 5.55 4.75   

 

 

Table 2 

  1 2 3 4 5 6 7 8 9 10 11 

1–  L. brasiliense 
 

0.0094 0.0124 0.0127 0.0129 0.0131 0.0132 0.0132 0.0130 0.0133 0.0132 

2–  L. nicaraguae 6.91 
 

0.0119 0.0129 0.0127 0.0132 0.0128 0.0126 0.0130 0.0128 0.0137 

3–  L. carrikeri 12.26 11.53 
 

0.0131 0.0133 0.0133 0.0138 0.0135 0.0139 0.0134 0.0141 

4–  L. evotis 13.33 13.17 13.86 
 

0.0128 0.0132 0.0097 0.0084 0.0073 0.0087 0.0102 

5–  L. occidentale 13.49 13.91 14.85 13.47 
 

0.0140 0.0111 0.0118 0.0119 0.0115 0.0123 

6–  L. schulzi 13.46 14.23 13.64 12.84 16.36 
 

0.0129 0.0131 0.0131 0.0133 0.0142 

7– Candidate species A 13.29 12.82 15.20 6.80 11.20 12.36 
 

0.0092 0.0086 0.0082 0.0114 

8– Candidate species B 12.92 12.13 14.20 5.02 11.94 12.60 6.17 
 

0.0079 0.0091 0.0104 

9– Candidate species C 12.90 13.01 14.76 3.95 11.92 12.88 5.61 4.48 
 

0.0081 0.0104 

10– Candidate species D 14.44 13.84 14.26 5.80 11.75 13.38 5.35 6.29 5.44 
 

0.0100 

11– Candidate species E 13.80 13.37 14.37 7.24 12.12 14.30 8.43 7.30 7.63 6.85   

 

 

Table 3 

  Distance-based Tree-based 

 
ABGD  ASAP bPTP GMYC 

COI 13 (6) 13 (6) 21 (9) 54 (36) 

Threshold dist. 0.030 0.028 
  CYTB 10 (4) 10 (4) 12 (5) 15 (7) 

Threshold dist. 0.033 0.028     
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Table 4 

  Candidate species A Candidate species B Candidate species C L. evotis 

FA 53.15 ± 0.92 55.34 ± 1.94 53.54 ± 2.34 49.73 ± 1.46 

 (51.98–54.10) 7 (51.45–59.90) 90 (45.39–60.39) 195 (48.66–51.39) 3 

MET-III 42.01 ± 1.22 44.03 ± 1.90 42.97 ± 2.11 38.78 ± 1.41 

 (40.10–43.70) 7 (38.30–48.82) 90 (37.34–50.24) 195 (37.46–40.26) 3 

GLS 26.58 ± 0.64 28.48 ± 0.79 27.43 ± 0.98 25.35 ± 0.39 

 (25.54–27.45) 10 (27.01–30.50) 91 (24.98–30.45) 211 (24.88–25.96) 7 

CIL 23.32 ± 0.39 24.90 ± 0.62 23.93 ± 0.83 22.17 ± 0.40 

 (22.62–23.80) 10 (23.60–26.24) 91 (22.29–27.38) 211 (21.63–22.58) 7 

CCL 22.51 ± 0.40 24.07 ± 0.61 23.13 ± 0.77 21.21 ± 0.31 

 (21.70–23.15) 10 (22.75–25.52) 91 (21.38–25.28) 211 (20.85–21.64) 7 

BB 10.35 ± 0.28 10.85 ± 0.27 10.57 ± 0.32 10.00 ± 0.21 

 (9.95–10.71) 10 (10.20–11.66) 91 (9.62–11.40) 211 (9.72–10.33) 7 

ZB 13.10 ± 0.29 13.84 ± 0.48 13.22 ± 0.49 12.20 ± 0.34 

 (12.65–13.52) 10 (12.86–15.16) 91 (11.45–14.52) 211 (11.62–12.67) 7 

PB 4.27 ± 0.09 4.22 ± 0.14 4.10 ± 0.17 4.08 ± 0.17 

 (4.18–4.40) 10 (3.94–4.62) 91 (3.70–4.53) 211 (3.77–4.27) 7 

PL 12.21 ± 0.41 13.42 ± 0.43 12.78 ± 0.59 11.32 ± 0.24 

 (11.79–12.95) 10 (12.00–14.57) 91 (11.00–14.61) 211 (10.99–11.59) 7 

PWC 5.71 ± 0.30 6.08 ± 0.34 5.82 ± 0.33 5.13 ± 0.15 

 (5.30–6.16) 10 (5.25–6.72) 91 (4.91–6.60) 211 (4.93–5.30) 7 

MSTW 10.92 ± 0.26 11.41 ± 0.34 10.91 ± 0.37 9.94 ± 0.40 

 (10.52–11.40) 10 (10.61–12.65) 91 (10.20–11.97) 211 (9.43–10.54) 7 

MPW 13.67 ± 0.40 13.87 ± 0.51 13.36 ± 0.49 12.25 ± 0.10 

 (13.20–14.50) 10 (12.71–15.01) 91 (12.07–14.75) 211 (12.07–12.33) 7 

MTRL 9.44 ± 0.21 10.14 ± 0.24 9.71 ± 0.33 8.77 ± 0.20 

 (9.13–9.75) 10 (9.60–10.84) 91 (8.80–10.58) 211 (8.47–9.03) 7 

MLTRL 7.59 ± 0.17 8.18 ± 0.23 7.81 ± 0.33 6.93 ± 0.32 

 (7.37–7.95) 10 (7.52–8.79) 91 (7.04–9.66) 211 (6.45–7.23) 7 

PWM2 8.43 ± 0.19 9.11 ± 0.29 8.67 ± 0.33 7.96 ± 0.18 

 (8.17–8.74) 10 (8.40–9.74) 91 (7.73–9.68) 211 (7.75–8.31) 7 

DENL 16.93 ± 0.21 18.42 ± 0.55 17.61 ± 0.64 16.16 ± 0.47 

 (16.66–17.20) 10 (17.20–19.88) 91 (15.85–19.17) 211 (15.56–16.82) 7 

MANDL 10.57 ± 0.17 11.39 ± 0.33 10.87 ± 0.37 10.30 ± 0.43 

 (10.17–10.74) 10 (10.24–12.07) 91 (9.96–11.80) 211 (9.72–10.99) 7 

COH 6.58 ± 0.16 7.37 ± 0.40 7.01 ± 0.40 6.53 ± 0.56 

  (6.35–6.80) 10 (6.60–8.39) 91 (6.08–8.31) 211 (5.86–7.35) 7 
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Table 5 

 

Dataset N 
DFA % correct DFA-CVs % Correct 

MANOVA 
A B C A B C 

Log-Transformed Data        

Cranial  320 60.00 69.57 85.72 40.00 67.39 83.89 < 0.001* 

Cranial and External 276 83.33 75.00 87.36 83.33 71.59 84.07 < 0.001* 

Principal Components (~90%)         

Cranial  320 40.00 70.65 85.31 40.00 67.39 84.36 < 0.001* 

Cranial and External 276 83.33 68.18 87.36 66.67 65.91 85.16 < 0.001* 

 

 

Table 6 

 

  Df SS MS R2 F Z P 

Centroid Size (CS) 

(A) DORSAL SKULL 

Sex 1 0.0097 0.0097 0.0178 3.2657 1.4290 0.0726 

Species 4 0.2067 0.0517 0.3788 17.3367 6.5090 < 0.001 

Sex x species 4 0.0127 0.0032 0.0233 1.0643 0.3883 0.3448 

Residuals 107 0.3190 0.0030 0.5845    

Total 116 0.5457      

(B) VENTRAL SKULL 

Sex 1 0.0323 0.0323 0.0251 4.2022 1.6508 0.0427 

Species 4 0.4441 0.1110 0.3449 14.4575 5.5683 < 0.001 

Sex x species 4 0.0166 0.0041 0.0129 0.5403 -0.4072 0.6545 

Residuals 103 0.7909 0.0077 0.6143    

Total 112 1.2875      

(D) LATERAL MANDIBLE 

Sex 1 0.0588 0.0588 0.0444 8.6443 2.3308 0.0037 

Species 4 0.4930 0.1233 0.3721 18.1226 6.4189 < 0.001 

Sex x species 4 0.0078 0.0020 0.0059 0.2870 -1.0924 0.8602 

Residuals 115 0.7821 0.0068 0.5903    

Total 124 1.3248           
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Table 7 

 

  Df SS MS R2 F Z P 

Shape 

(A) DORSAL SKULL 

Size 1 0.0047 0.0047 0.0534 8.0157 4.0002 < 0.001 

Sex 1 0.0013 0.0013 0.0145 2.1809 1.6100 0.0539 

Species 4 0.0128 0.0032 0.1471 5.5225 5.9479 < 0.001 

Size x sex 1 0.0007 0.0007 0.0082 1.2322 0.6368 0.2620 

Size x species 4 0.0029 0.0007 0.0334 1.2530 0.8382 0.2055 

Sex x species 4 0.0019 0.0005 0.0220 0.8256 -0.4631 0.6766 

Size x sex x species 2 0.0016 0.0008 0.0179 1.3473 0.8760 0.1912 

Residuals 99 0.0575 0.0006 0.6591    

Total 116 0.0873      

(B) VENTRAL SKULL 

Size 1 0.0045 0.0045 0.0600 9.2070 6.0339 < 0.001 

Sex 1 0.0009 0.0009 0.0114 1.7470 1.5886 0.0578 

Species 4 0.0105 0.0026 0.1389 5.3250 6.9117 < 0.001 

Size x sex 1 0.0009 0.0009 0.0117 1.7967 1.7044 0.0452 

Size x species 4 0.0036 0.0009 0.0476 1.8266 2.8451 0.0024 

Sex x species 4 0.0026 0.0007 0.0349 1.3374 1.4079 0.0795 

Size x sex x species 2 0.0007 0.0004 0.0099 0.7613 -0.7990 0.7866 

Residuals 95 0.0466 0.0005 0.6195    

Total 112 0.0753      

(D) LATERAL MANDIBLE 

Size 1 0.0142 0.0142 0.0815 11.700 5.728 < 0.001 

Sex 1 0.0025 0.0025 0.0141 2.027 1.722 0.0446 

Species 4 0.0091 0.0023 0.0525 1.882 2.631 0.0043 

Size x sex 1 0.0004 0.0004 0.0026 0.369 -1.660 0.9509 

Size x species 4 0.0038 0.0010 0.0220 0.790 -0.754 0.7785 

Sex x species 4 0.0043 0.0011 0.0249 0.892 -0.285 0.609 

Size x sex x species 2 0.0014 0.0007 0.0078 0.559 -1.388 0.9136 

Residuals 107 0.1298 0.0012 0.7456    

Total 124 0.1740           
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CAPÍTULO IV – Conclusões e considerações finais 

 

Com este trabalho aprofundamos o conhecimento taxonômico dos morcegos neotropicais 

do gênero Lophostoma, revelando e identificando a diversidade críptica presente em dois 

complexos de espécies indicados para o gênero, Lophostoma brasiliense e Lophostoma 

silvicola. Especificamente, foi provida evidência para a revalidação de Lophostoma 

nicaraguae como uma linhagem separada de Lophostoma brasiliense e foi proposta a 

categorização ao nível de espécie para L. laephotis e L. amblyotis. Todas essas espécies 

muito semelhantes morfologicamente. O trabalho também mostrou que o número de 

espécies dentro desse gênero está atualmente subestimado e melhora o conhecimento 

sobre a diversidade, os limites entre as espécies e a distribuição desse fascinante grupo de 

organismos. Os dados taxonômicos e moleculares gerados nesta dissertação servirão como 

base para futuros estudos evolutivos, filogenéticos e biogeográficos, além de contribuir 

para o estabelecimento de futuras atividades de manejo e conservação das espécies.  

 

Os métodos de delimitação de espécies foram eficientes para revelar a diversidade críptica 

e delimitar as espécies. No entanto, o uso do Generalized Mixed Yule-Coalescent 

(GMYC), apresentou discordâncias relacionadas a uma sobre estimação no número de 

entidades taxonômicas. Os métodos de delimitação de espécies fenotípicos baseados em 

modelos mistos normais mostraram uma eficiência muito restrita para delimitar espécies 

crípticas neste trabalho. Apesar de delimitar adequadamente as espécies no complexo 

Lophostoma brasiliense, sua utilidade foi limitada no complexo silvicola. Possivelmente, 

um maior número de amostras por grupo pode melhorar sua eficiência, ou talvez a escolha 

de outros caráteres fenotípicos.  

 

Lophostoma ocupa um grande número de habitats na região neotropical com a maioria das 

suas espécies presentes na América do Sul. Diferentes processos e barreiras geográficas 

têm influenciado a diversificação desse grupo de morcegos. Os Andes têm sido uma 

barreira fundamental que parece explicar a diversificação de L. brasiliense e L. 

nicaraguae, assim como delimitar a distribuição de L. occidentale e L. carrikeri. No 

entanto, as barreiras não são apenas físicas, mas também ecológicas, como as associadas 

ao tipo de floresta ou biomas. Diferentes coberturas florestais parecem ter influenciado a 

diversificação do complexo L. silvicola como foi discutido no capítulo II.  
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Estudos futuros devem incluir a análise com marcadores nucleares para elucidar ainda 

mais as relações filogenéticas das espécies dentro do gênero e dentro de cada complexo de 

espécies. Da mesma forma, seria interessante poder obter mais dados de áreas pouco 

amostradas neste estudo, como a região nordeste e centro do Brasil, as florestas 

subandinas na Bolívia e as planícies do Leste e Caribe na Colômbia. Questões que 

precisam de ser abordadas, incluem o estado taxonômico da subespécie L. s. centralis, 

para o qual são necessários tecidos e dados provenientes de Costa Rica e Honduras; a 

descrição de uma linhagem não conhecida de L. occidentale que poderia representar uma 

nova espécie revelada aqui nesse trabalho; e a posição filogenética de L. kalkoe, espécie 

que não foi possível obter tecidos.  


