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Resumo 

A biodiversidade é moldada por distintos processos ecológicos e evolutivos, atuais e 

passados, e entender como ela se distribui no espaço e no tempo é uma das questões 

centrais da ecologia de comunidades. Para entender a biodiversidade, precisamos 

formas de representá-la, para tanto utilizamos métricas de diversidade. As métricas de 

diversidade descrevem um padrão, seja na ocorrência das espécies ou de riqueza, e é a 

partir desses padrões que inferimos os principais processos que moldam as 

comunidades. Distintos processos podem gerar um mesmo padrão, e discriminar quais 

processos são mais relevantes nos permite compreender a montagem das comunidades, 

além de aumentar nossa capacidade de predizer como alterações ambientais afetam a 

biodiversidade. Independente do processo que estrutura as comunidades, quando 

medimos a biodiversidade contamos com um erro inerente a qualquer estudo ecológico: 

a detecção imperfeita. Nessa tese, usamos modelos hierárquicos multi-espécies tanto 

para acessar como a detecção imperfeita pode afetar os padrões de diversidade (Capítulo 

1), como para avaliar processos que estruturam as comunidades em escalas distintas 

(Capítulo 2 e Capítulo 3). Como organismo modelo, utilizamos a guilda de borboletas 

frugívoras, as quais são representativas das respostas da diversidade às alterações 

ambientais. Utilizando dados de comunidades de borboletas frugívoras em escala local, 

no Capítulo 1, avaliamos como falhas na detecção de indivíduos podem confundir o 

padrão observado em distintas métricas de diversidade, ressaltando a importância do 

uso desses modelos para avaliar a diversidade sempre que possível. Nos capítulos 2 e 3, 

apesar de não considerarmos a detecção imperfeita, acessamos como o filtro ambiental 

(determinado por variáveis climáticas e de paisagem) e biótico modelam a distribuição 

das espécies. Enquanto no capítulo 2, avaliamos esses processos para comunidades de 

borboletas frugívoras do Pampa gaúcho, um dos biomas mais desprotegidos do Brasil, 



 

 

 

no Capítulo 3 usamos um conjunto de dados de comunidades de borboletas frugívoras 

da Mata Atlântica, a qual é considerada hotspot de diversidade. De maneira geral, 

demonstro nessa tese a importância da utilização de ferramentas de modelagem que 

considerem a detecção imperfeita, bem como a não independência (coocorrência) das 

espécies em modelos de ecologia de comunidade, como os modelos hierárquicos multi-

espécies. Dentre as principais vantagens desses modelos destaco a propagação de erro 

nas estimativas dos parâmetros e a resposta compartilhada das respostas entre as 

espécies, que permite tanto modelar espécies raras e melhorar a estimativa dos 

parâmetros quando a confiabilidade da estimativa. Dentre as limitações, destaco a 

complexidade que esses modelos podem assumir, sendo dispendiosos de tempo e de 

informações a priori, e também da natureza dos dados, já que modelos como o de 

detecção precisam de réplicas temporais ou espaciais. Apesar disso, o desenvolvimento 

de abordagens mais generalizadas e a popularização dos modelos hierárquicos multi-

espécies têm muito a contribuir para o entendimento da biodiversidade e dos principais 

processos que a mantém no tempo e no espaço. 

 

Palavras chave: Atributos funcionais, borboletas frugívoras, detecção imperfeita, 

diversidade taxonômica, filogenia, filtro ambiental, JSDM, Mata Atlântica, Pampa. 

 



 

 

 

Abstract 

Biodiversity is shaped by current and past ecological and evolutionary processes, and 

understanding how it is distributed in space and time is one of the central questions of 

community ecology. To understand biodiversity, we need ways of representing it, such 

as diversity metrics. Diversity metrics describe a pattern, either in species occurrence or 

richness, and it is from these patterns that we infer the main processes that shape 

communities. Different processes can generate the same pattern, and decoupling which 

processes are most relevant gives us a better understanding of community assembly and 

increases our ability to predict how environmental changes affect biodiversity. 

Regardless of the process that structures communities, when we measure biodiversity, 

we rely on an inherent error in all ecological work: imperfect detection. In this thesis, I 

employ hierarchical multi-species models to assess how imperfect detection affects 

diversity patterns (Chapter 1) and also to evaluate which processes are responsible for 

structuring communities in different scales (Chapter 2 and Chapter 3). For this, I use the 

guild of fruit-feeding butterflies as a model organism, which is highly diverse and 

sensitive to environmental changes. Using data from local-scale fruit-feeding butterfly 

communities, in Chapter 1, we evaluated how failures to detect individuals can bias 

diversity patterns observed in taxonomic, functional, and phylogenetic diversity, 

highlighting the importance of using these models to obtain more reliable estimates of 

diversity whenever possible. In Chapters 2 and 3, we assessed how the environmental 

(determined by climate and landscape variables) and biotic filter shape species 

distribution. While in Chapter 2, we evaluated these processes for distinct communities 

of fruit-feeding butterflies in Pampa gaucho, one of the most unprotected biomes in 

Brazil, in Chapter 3, we used a dataset of fruit-feeding butterfly communities in the 

Atlantic Forest, which is among the world’s top five biodiversity hotspots. Overall, I 



 

 

 

demonstrate in this thesis the importance of using modeling tools that consider 

imperfect detection and species' non-independence (cooccurrence) in community 

ecology models, such as hierarchical multi-species models. We demonstrated that 

hierarchical multi-species models are flexible and robust tools and provide an important 

direction for community analyses. Among its main advantages is the propagation of 

errors in parameter estimates and the sharing of information among species, allowing 

both modeling of rare species and improving parameter estimates and estimate 

uncertainty. Limitations include the complexity that these models can take on, being 

costly in time and prior information, and the nature of the data, since models, such as N-

mixture models, need temporal or spatial replicates. Nevertheless, the development of 

more generalized approaches and the popularization of hierarchical multi-species 

models has much to contribute to understanding biodiversity and the main processes 

that maintain it in time and space. 

 

Key-words: Fruit-feeding butterflies, Atlantic Forest, taxonomic diversity, phylogeny, 

functional traits, imperfect detection, Pampa, environmental filtering, JSDM. 
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Introdução Geral 

A biodiversidade como vemos atualmente é o resultado de bilhões de anos de 

evolução, moldadas por processos naturais e, mais recentemente, por ações antrópicas 

(TSCHARNTKE et al., 2005; GÁMEZ-VIRUÉS et al., 2015; RAWAT; AGARWAL, 

2015). Frente ao declínio da biodiversidade global, é urgente entendermos como as 

espécies variam no espaço e no tempo, principalmente em sistemas sob altas pressões 

antrópicas (JARZYNA; JETZ, 2016). A Ecologia de comunidades busca compreender a 

geração, manutenção e distribuição da diversidade no espaço e no tempo 

(MITTELBACH; MCGILL, 2019). Embora hoje dispomos de diversas formas de medir 

a diversidade, essas medidas representam simplificações da realidade e explicam apenas 

um ou poucos aspectos da estrutura das comunidades. Além disso, por se tratarem de 

estimativas provenientes de amostras, estão sujeitas a erros, sendo que o acúmulo desses 

erros pode resultar em uma representação equivocada da diversidade, afetando a nossa 

capacidade de detectar padrões de biodiversidade, bem como desvendar os mecanismos 

responsáveis por tais padrões. 

Muitos estudos de ecologia de comunidades usam métricas de diversidade para 

descrever os padrões e inferir os processos que estruturam as comunidades. Porém, é 

reconhecido que um mesmo padrão pode ser gerado por distintos processos que atuam 

em múltiplas escalas. Esses processos podem ser determinísticos ou estocásticos e 

podem ser vistos como filtros que operam em diferentes escalas. O filtro ambiental está 

relacionado ao nicho das espécies, sendo que a relação entre espécie e ambiente pode 

ser mediada por alguma característica funcional ou pelas relações filogenéticas entre as 

espécies. Além da interação com o ambiente, as espécies interagem entre si (filtro 

biótico), fazendo com que algumas espécies tendam a coocorrer mais ou menos do que 
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o esperado ao acaso, indicando um possível sinal de interação competitiva (menor 

coocorrência) ou de facilitação (maior coocorrência). Eventos estocásticos como a 

deriva ecológica ou desastres ambientais podem adicionar variação às comunidades, 

principalmente naquelas comunidades com poucos indivíduos (SIQUEIRA et al., 2020), 

afetando a relação entre organismo e ambiente (CHASE; MYERS, 2011; 

OVASKAINEN et al., 2017). Todos esses processos estão atuando simultaneamente 

sobre os indivíduos, e desvendar sua importância relativa para determinar a distribuição 

das espécies pode ser uma tarefa complicada e muitas vezes inalcançável. 

Desde seu surgimento, a ecologia de comunidades passou por grandes mudanças 

teóricas e analíticas, passando de uma ciência descritiva para uma ciência preditiva 

(OVASKAINEN; ABREGO, 2020; POGGIATO et al., 2021). As primeiras análises de 

comunidade se limitavam a descrever qualitativamente os padrões de riqueza ou 

abundância e os primeiros métodos multivariados só emergiram nos anos 60, 

juntamente com o desenvolvimento do conceito de diversidade beta. Avaliar as 

comunidades de forma multivariada nos permite capturar os padrões de variação na 

composição de espécies entre locais ou ao longo do tempo. O desenvolvimento de 

métodos de ordenação restrita (constrained) permitiu testar diretamente os efeitos de 

processos ecológicos e espaciais, também chamados de processos de montagem, na 

variação da ocorrência e abundância das espécies bem como a hipóteses relacionadas a 

padrões de coocorrência (OVASKAINEN; ABREGO, 2020). Descrever a diversidade 

na forma univariada (riqueza) ou multivariada (composição) depende do objetivo de 

cada estudo, porém os dois cenários podem ser abordados dentro de um contexto 

Bayesiano ou Frequentista. 

Embora a abordagem Frequentista ainda seja a inferência estatística mais 

utilizada em estudo de comunidades, a uso da inferência Bayesiana associada à 
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modelagem hierárquica tem crescido dentro da ecologia de comunidades. A inferência 

bayesiana trata os parâmetros como variáveis aleatórias governadas por uma 

distribuição teórica conhecida, e então a inferência é feita com base em uma distribuição 

posterior (KÉRY; ROYLE, 2016). Já os modelos hierárquicos estimam os parâmetros 

seguindo uma estrutura hierárquica, e associados com a inferência bayesiana, permitem 

que espécies possam compartilhar informações entre si e nos distintos níveis 

hierárquicos. Dessa forma, os modelos hierárquicos multi-espécies possibilitam a 

estimativa de parâmetros para espécies raras, as quais geralmente são desconsideradas 

nos modelos de distribuição (tanto frequentista quanto em alguns modelos bayesianos) e 

ainda permitem a propagação da incerteza durante a estimativa dos parâmetros em todos 

os níveis hierárquicos do modelo. Considerando que a forma como as espécies variam 

nas suas respostas as condições ambientais está muito mais para uma coleção de 

histórias relacionadas do que trajetórias independentes, cada vez mais se torna urgente o 

uso de ferramenta analíticas que incorporem a natureza multivariada dos dados. 

Dado a importância da descrição e compreensão dos fatores que geram padrões 

ecológicos para ecologia de comunidade e biologia da conservação, é essencial o uso de 

ferramentas capazes de produzir estimativas acuradas de padrões em biodiversidade (ex. 

inclusão de detecção imperfeita), e que permitam testar hipóteses sobre processos 

ecológicos (ex. considerando coocorrência de espécies). Nesse sentido, os modelos 

hierárquicos multi-espécies se mostram mais promissores que os métodos 

convencionais frequentistas, e ainda abre um novo campo para o desenvolvimento e 

teste de novas teorias (ELLISON, 2004). Portanto, nos próximos parágrafos, 

descreverei brevemente como os modelos hierárquicos multi-espécies foram utilizados 

nesta tese para responder diferentes questões associadas com a resposta das borboletas 

frugívoras a fatores ambientais em distintas escalas. Borboletas frugívoras são 
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consideradas como ótimos modelos de estudo para representar a relação entre 

biodiversidade e ambiente (BROWN; FREITAS, 2000). Essas borboletas se alimentam 

exclusivamente de frutos fermentados, exsudatos de plantas entre outros compostos 

orgânicos em decomposição (DEVRIES, 1988), facilitando a amostragem dessa guilda 

através de métodos passivos e padronizados (FREITAS et al., 2014). Além disso, elas 

representam entre 50 e 75% da diversidade de borboletas da região neotropical 

(BROWN, 2005), e devido ao grande número de estudos com esse grupo, hoje 

dispomos de uma boa resolução taxonômica e filogenética (CHAZOT et al., 2021), bem 

como informações sobre características morfológicas e comportamentais (BECCALONI 

et al., 2008; SHIREY et al., 2022). 

No capítulo 1, analisamos uma comunidade de borboletas frugívoras em uma 

escala local, onde buscamos entender como a detecção imperfeita, ou seja, a falha em 

observar todos os indivíduos de uma comunidade (MACKENZIE et al., 2002), pode 

afetar os padrões de diversidade observados entre dossel e sub-bosque de uma floresta 

com Araucária no Sul do Brasil. Para isso, usamos um modelo multi-espécies para 

dados de abundância (N-mixture), o qual permite separar o processo biológico do 

processo amostral e estimar a verdadeira abundância das espécies. A partir desta 

estimativa comparamos o padrão de diversidade resultante, considerando ou não a 

deteção imperfeita (Hidden Diversity Framework). Observamos que a detecção 

imperfeita gerou um ruído ou um viés nos padrões de diversidade e que a intensidade de 

viés depende da métrica avaliada (taxonômica, funcional ou filogenética). Concluímos 

este capítulo destacando a necessidade que ferramentas analíticas que modelem os erros 

na detecção sejam usadas em estudos de comunidades locais, garantindo uma maior 

acurácia no padrão observado bem como na inferência dos padrões que mantêm essas 

comunidades no tempo e no espaço. 
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Embora o problema da detecção imperfeita seja considerado nos modelos N-

mixture, esse tipo de modelo não costuma incluir a coocorrência das espécies na 

estimativa dos parâmetros oriundos do processo biológico, além de terem sua aplicação 

limitada a delineamentos amostrais específicos que nem sempre são comuns em dados 

de ecologia de comunidades (ex. réplicas amostrais). Dessa forma, além da limitação 

em aplicação, não conseguimos distinguir a importância relativa de filtros ambientais e 

processos bióticos na distribuição das espécies. Modelos de distribuição conjunta de 

espécies (joint species distribution models, JSDM) surgem como uma importante 

ferramenta nesse sentido, pois modelam as coocorrência residuais, podendo indicar 

interações bióticas (POGGIATO et al., 2021), além de aumentar o poder estatístico 

destes modelos. A Modelagem Hierárquica de Comunidades (conhecido como HMSC 

em inglês) é um framework para análise de comunidades, onde os componentes do 

modelo são conceitualmente ligados aos processos de montagem, como filtros 

ambientais e bióticos. Embora o padrão de coocorrência residual não possa ser 

interpretado puramente como interação biótica (OVASKAINEN; ABREGO, 2020; 

POGGIATO et al., 2021) essa informação pode melhorar a capacidade de modelos em 

predizer a ocorrência ou abundância das espécies. Portanto, visto a dificuldade de 

construir modelos que incorporem a detecção imperfeita em macro escala, tal qual o 

utilizado no primeiro capítulo 1, nos capítulos 2 e 3 utilizei o arcabouço analítico do 

HMSC para estimar como as espécies respondem ao filtro ambiental, considerando 

também como atributos funcionais e relações filogenéticas são capazes de afetar tais 

relações. 

Variáveis ambientais como características de paisagem e condições climáticas 

podem afetar a ocorrência e abundancia de formas distintas (CHECA et al., 2014, 2019; 

SANTOS et al., 2020). Variações microclimáticas podem ter um papel fundamental na 
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dinâmica de metapopulações, afetando o fitness e controlando o tamanho das 

populações (abundância das espécies) (CHECA et al., 2019; XING et al., 2016), 

enquanto que no nível de comunidade, o microclima pode ser crucial na segregação de 

nicho, levando ao aumento na diversidade das comunidades (WALLISDEVRIES; VAN 

SWAAY, 2006). Por outro lado, paisagens heterogêneas podem ser importantes para 

manter a biodiversidade, pois possibilitam a movimentação das espécies entre distintas 

estruturas de habitat permitindo a coocorrência das espécies (BÖRSCHIG et al., 2013; 

GÁMEZ-VIRUÉS et al., 2015). Considerando isso, no capítulo 2, avaliamos como 

variáveis microclimáticas e de paisagem afetam a distribuição e ocorrência de espécies 

de borboletas frugívoras amostradas no Pampa gaúcho, e como características 

intrínsecas da comunidade (tamanho das comunidades baseado no número de 

indivíduos) atuam para determinar a ocorrência e abundância destas espécies no espaço. 

Além de saber qual a contribuição do filtro ambiental na variação da ocorrência e 

abundância das espécies, investigamos como padrões de riqueza de espécies e 

composição funcional foram afetados pelas variáveis ambientais. Observamos que as 

variáveis de paisagem tenderam a determinar a variação na ocorrência enquanto o 

micro-habitat determinou a variação na abundância das espécies. No geral, as 

comunidades responderam negativamente ao aumento da temperatura, indicando que 

habitats campestres tendem a ser menos ricos e abundantes que habitat de floresta 

ripária. No entanto, a heterogeneidade da paisagem foi importante para manter a 

diversidade, uma vez que aumento na homogeneização da paisagem levou a um 

aumento da ocorrência e abundância de espécies mais generalistas. Além disso, 

observamos que em comunidades maiores (compostas por mais indivíduos) os efeitos 

do filtro ambiental tenderam a ser mais fortes, expondo a fragilidade de comunidades 
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pequenas, tanto no entendimento dos processos que as estruturam, quanto na nossa 

capacidade de predizer como essas comunidades irão responder as mudanças climáticas. 

Por fim, no capítulo 3, avaliamos como as comunidades de borboletas frugívoras 

na Mata Atlântica respondem a variáveis climáticas e de paisagem e como essas 

respostas são distribuídas espacialmente em uma escala biogeográfica. Observamos que 

as variáveis climáticas foram mais importantes do que as variáveis de paisagem para 

determinar a ocorrência das espécies, e que os atributos e a filogenia influenciaram o 

nicho das espécies. Ainda, observamos que riqueza e a forma média da asa tiveram 

respostas similares as variáveis ambientais, refletindo em um padrão sobreposto nas 

predições espaciais, onde locais ricos e espécies que apresentam alta capacidade 

dispersiva estão geralmente associadas com centros endemismo e zonas de transição. 

Assim, sugerimos que estes locais são importantes no fornecimento de espécies para 

áreas adjacentes devido a eventos de dispersão. Além disso, observamos que o tamanho 

do corpo nesse grupo segue a regra inversa de Bergmann (SHELOMI, 2012), uma vez 

que comunidades em altas elevações tendem a ser compostas por espécies com menores 

tamanhos de corpo.  

De maneira geral demonstrei que os modelos bayesianos multi-espécies 

representam uma ferramenta promissora para estudos em ecologia de comunidades, 

permitindo a inclusão de fatores importante como a detecção imperfeita e a 

coocorrência das espécies, fornecendo uma compreensão mais acurada dos processos 

que governam a montagem das comunidades. Além das contribuições teóricas e práticas 

provenientes dos três capítulos dessa tese para o entendimento de comunidade de 

borboletas frugívoras, usando os dados coletados para o capítulo 2, foi desenvolvido um 

guia para borboletas frugívoras do Pampa gaúcho (MACHADO et al., 2022). O guia 

está disponível em formato e-Book e pode ser acessado no link 
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https://www.ufrgs.br/leff/wp-content/uploads/2022/12/Guia-Ilustrativo-de-Borboletas-

Frugivoras-do-Pampa-Gaucho-1.pdf. Este guia foi concebido com o intuito de aumentar 

o conhecimento sobre as borboletas, além de conscientizar a população local sobre a 

diversidade de espécies que ocorrem nesse bioma rico, mas também pouco protegido. 

https://www.ufrgs.br/leff/wp-content/uploads/2022/12/Guia-Ilustrativo-de-Borboletas-Frugivoras-do-Pampa-Gaucho-1.pdf
https://www.ufrgs.br/leff/wp-content/uploads/2022/12/Guia-Ilustrativo-de-Borboletas-Frugivoras-do-Pampa-Gaucho-1.pdf
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Abstract 

1. Studies on ecological communities often address patterns of species distribution 

and abundance, but few consider uncertainty in counts of both species and 

individuals when computing diversity measures.  

2. We evaluated the extent to which imperfect detection may influence patterns of 

taxonomic, functional, and phylogenetic diversity in ecological communities.  

3. We estimated the true abundance of fruit-feeding butterflies sampled in canopy 

and understory strata in a subtropical forest. We compared the diversity values 

calculated by observed and estimated abundance data through the hidden 

diversity framework. This framework evaluates the deviation of observed 

diversity when compared with diversities derived from estimated true 

abundances, and if such deviation represents a bias or a noise in the observed 

diversity pattern. 

4. The hidden diversity values differed between strata for all diversity measures, 

except for functional richness. The taxonomic measure was the only one where 

we observed an inversion of the most diverse stratum when imperfect detection 

was included. Regarding phylogenetic and functional measures, the strata 

showed distinct responses to imperfect detection, despite the tendency to 

overestimate observed diversity. While the understory showed noise for the 

phylogenetic measure, since the observed pattern was maintained, the canopy 

had biased diversity for the functional metric. This bias occurred since no 

significant differences were found between strata for observed diversity, but 

rather for estimated diversity, with the canopy being more clustered. 
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5. We demonstrate that ignore imperfect detection may lead to unrealistic estimates 

of diversity and hence, to erroneous interpretations of patterns and processes that 

structure biological communities. For fruit-feeding butterflies, according to their 

phylogenetic position or functional traits, the undetected individuals triggered 

different responses in the relationship of the diversity measures to the 

environmental factor. This highlights the importance to evaluate and include the 

uncertainty in species detectability before calculating biodiversity measures to 

describe communities. 

 

Keywords: assemblage structure, community hierarchical models, detection 

probability, environmental gradients, fruit-feeding butterflies, functional traits, 

phylogenetic diversity. 
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Introduction 

Estimating the whole biodiversity in a community is a key challenge for ecologists. 

First, because we do not have time and resources to sample all species and individuals 

that are present in a community. Second, even focusing on a target group, there are large 

proportions of species or individuals that remain “hidden” (Chao et al., 2017; 

Devarajan, Morelli, & Tenan, 2020; Guillera-Arroita, Kéry, & Lahoz-Monfort, 2019; 

Yoccoz, Nichols, & Boulinier, 2001). This occurs since both species and individuals are 

not perfectly observed in the field (i.e. they are undetected during sampling), and 

different species have distinct probabilities of being detected (Boulinier, Nichols, Sauer, 

Hines, & Pollock, 1998; Ribeiro, Williams, Specht, & Freitas, 2016). Classical 

community analyses commonly ignore imperfect detection, for both incidence and 

abundance-based approaches, as well as its effects on diversity measures (DeVries, 

Alexander, Chacon, & Fordyce, 2012; Pillar & Duarte, 2010; Wiens & Donoghue, 

2004). Identify the effects of imperfect detection in classical diversity measures might 

improve our understanding of relationships between diversity and environmental 

gradients (Roth, Allan, Pearman, & Amrhein, 2018), and ultimately the processes that 

structure the biological communities (Dorazio, Connor, & Askins, 2015). 

A considerable portion of community studies that employed models that account 

for imperfect detection (e.g., Multi-Species Hierarchical Models) are interested in 

evaluating the true occurrence or abundance, aiming to guide management practices 

(Ruiz-Gutiérrez, Zipkin, & Dhondt, 2010; Yamaura et al., 2012; Zipkin, Andrew Royle, 

Dawson, & Bates, 2010). But, the effects of imperfect detection are not restricted only 

to the taxonomic aspect of diversity (e.g. species richness), and our ability in detecting 

biodiversity patterns may differ among different components of diversity (Iknayan, 
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Tingley, Furnas, & Beissinger, 2014; Jarzyna & Jetz, 2016). Species co-occurring in 

communities exhibit different levels of shared evolutionary history and variation in 

phenotypic traits. These features of species are widely used to infer historical and/or 

ecological mechanisms determining community assembly patterns (Duarte, Debastiani, 

Carlucci, & Diniz-Filho, 2018; Graham & Fine, 2008; Webb, Ackerly, McPeek, & 

Donoghue, 2002). Despite the increase in studies that quantified phylogenetic or 

functional diversity (de Bello et al., 2015; Tucker et al., 2017), few consider the 

imperfect detection in species count for calculate it (Chao et al., 2017; Frishkoff, De 

Valpine, & M’Gonigle, 2017) or have quantified the role and magnitude of the effects 

of imperfect detection on distinct facets of diversity (Jarzyna & Jetz, 2016; Si et al., 

2018). If undetected species have unique phylogenetic information or functional traits, 

by underestimating their contribution to diversity estimate, we are neglecting an 

ecologically important part of the assemblages (Jarzyna & Jetz, 2016). Consequently, 

we would observe a more clustered assemblage than they really are (Si et al., 2018). The 

opposite can also occur when undetected species are phylogenetically or functionally 

redundant (Jarzyna & Jetz, 2016), and the observed assemblages will overestimate 

phylogenetic and functional diversity. Furthermore, the detection of species can be 

biased at some part of the environmental gradient evaluated (Roth et al., 2018). If this 

occurs, not only the observed diversity pattern can be affected, but also our 

interpretation of the relationship among diversity and environmental gradients (Fig. 1a-

b).  
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Figure 1.  Schematic representations of the hidden diversity framework, demonstrating 

how imperfect detection can influence the relationship between an environmental factor 

and a diversity descriptor. Suppose that each set of butterflies represents a community, 

called A and B. Dobs is the value of a given diversity measure calculated from an 

observed community (dark butterflies), which has imperfectly detected species (gray 

butterflies, probability of detection (p) < 1). Dtrue represents the real value of this 

diversity if all species in the community were sampled (p = 1). For the sake of 

simplicity, we will call the difference between the true and observed values hidden 

diversity (HD). Note that in a) despite the 4 units decrease in diversity for both 

communities (HDA = HDB = -4), B remained more diverse than A, and the error 

associated with imperfect detection was constant along the environmental gradient. On 

the other hand, in b) the detection probability is not equal along the gradient, which 

might lead to a bias in the observed relationship between diversity measures and 
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environmental factors, once that Dtrue is the same for A and B, but when only observed 

data is employed to calculate diversity B more diverse than A (HDA = -5, HDB = -1). 

In c) we show a way to interpret the hidden diversity, which takes into account the 

signal of the observed and estimated diversity value. The blue and red colors are 

associated with positive and negative values of HD, respectively. If the observed value 

(x-axis) is positive and the estimated value (y-axis) is negative we have an 

overestimation in the diversity value, while if the observed value is negative and the 

estimated value is positive we have an underestimation in the diversity, and both are in 

the critical bias region. When the observed and estimated values have the same sign, the 

observed patterns tend to hold despite the noise added by imperfect detection. 

 

Insects are the most species-rich taxa in the world, which poses a major 

challenge for ecologists interested in evaluating insect diversity patterns (Thomas, 

2005). Among insect groups, butterflies are considered important biological indicators 

due to their short life-cycle and high sensibility to changes in environmental features 

(New, 1997, Brown & Freitas, 2000). Fruit-feeding butterflies are a conspicuous guild 

of tropical butterflies that feed on rotting fruit, carrion, or plant exudates (DeVries, 

1988) and represent about 50 – 75% of nymphalid diversity in the Neotropical region 

(Brown, 2005). Assemblages of fruit-feeding butterflies show high vertical stratification 

(Devries, 1988; DeVries, Alexander, Chacon, & Fordyce, 2012; Ribeiro & Freitas, 

2012; Santos, Iserhard, Carreira, & Freitas, 2017), with the canopy generally being 

taxonomically more diverse than understory. These strata exhibit a large difference in 

their microclimatic conditions, habitat structure and, hence in their taxonomic 

composition (Araujo, Freitas, Souza, & Ribeiro, 2020; DeVries et al., 2012; Santos et 

al., 2017). Whereas Charaxinae, Biblidinae, and Nymphalinae are recognized as 
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canopy-dwellers, Satyrinae is generally associated with understory sites (Schulze, 

Linsenmair, & Fiedler, 2001). In a phylogenetic or functional perspective, the 

composition of those strata could be also dissimilar, once that lineages of fruit-feeding 

butterflies exhibit habitat preferences (Fordyce & DeVries, 2016) and individuals tend 

to show traits that varying according to characteristics and preferences (Graça, Pequeno, 

Franklin, & Morais, 2017). 

Due to their feeding habit, these butterflies can be sampled with passive and 

standardized methodologies such as bait traps (Freitas et al., 2021). Unlike other 

methods to sample butterflies (entomological nets or transect counts), bait traps avoid 

bias related to variation in the observer or personal expertise about species detection 

(Boulinier et al., 1998, Kéry & Plattner, 2007, Ribeiro et al., 2016). However, the 

detection of individuals might be biased by bait attractiveness in different habitats and 

by the individual ability to find the trap. Weather conditions as wind speed, rain, and 

temperature, can influence the bait volatiles, leading to decreased attractiveness, 

especially in open habitats (Marini-Filho & Martins, 2010). Fruit-feeding butterflies 

typically use odor cues to locate food, and some groups, such as Charaxinae, can find 

more accurately their preferred food (Molleman, Alphen, Brake, & Zwaan, 2005). 

Further, individuals that have high mobility, may often be undetected in a sampling site 

because it is visiting other sites within their home range (Joseph, Elkin, Martin, & 

Possingham, 2009). Therefore, bearing in mind the intrinsic challenges of sampling in 

the canopy together with the characteristics of individuals that inhabit this stratum, it is 

more likely that the canopy has a higher number of undetected individuals than 

understory, yielding a bias in diversity measured in this stratum. 

In this study, we aimed to analyze the extent to which imperfect detection, 

assessed by the estimates of the true abundance of species, can lead to changes in 
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observed patterns of taxonomic, functional, and phylogenetic diversities of butterflies 

living in different forest strata (canopy vs. understory). We expect that: (i) canopy will 

show lower individual detection than understory, leading to a source of bias that hides 

the true diversity value for this stratum. Consequently, this bias induces an erroneous 

inference when we compare diversity values between canopy and understory. (ii) The 

effect of imperfect detection will be lower for phylogenetic and functional measures 

concerning taxonomic diversity. In this case, an increment in species number will not be 

followed by an increment in both phylogenetic and functional diversity, indicating that 

undetected species are redundant with species sampled in the observed community. 

Material and Methods 

Study sites and sampling procedures 

The study site was located in Floresta Nacional de São Francisco de Paula (FLONA-

SFP; centered at 29°25’22’’S, 50°23’11’’W) in Southern Brazil. FLONA-SFP 

comprises an area of 1,615 ha in the Atlantic Forest biome and is composed of Mixed 

Ombrophilous Forest with the presence of Araucaria angustifolia (Bertol.) Kuntze, as 

well as patches with Pinus sp. and Eucalyptus sp. plantations (ICMBio, 2020). The 

climate of the region is temperate without a dry season, and with annual mean rainfall 

near 2,000 mm and an annual average temperature of 14.5°C (Sonego, Backes, & 

Souza, 2007). 

Fruit-feeding butterfly assemblages were sampled between November 2016 and 

March 2017, which correspond to the summer season in the Southern Hemisphere and 

which is the best period of the year for sampling butterflies in the Atlantic Forest 

(Iserhard, Romanowski, Richter, & Mendonça, 2017). We adopted standardized 

methods for sampling fruit-feeding butterflies in the Neotropical region (Freitas et al., 
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2014), which consisted in install five traps per sampling unit, which were baited with a 

mixture of mashed banana and sugarcane juice (Freitas et al., 2021). We performed 

monthly surveys at six sites of native forest within FLONA-SFP for five months. In 

each month, the traps remained open for eight to ten consecutive days and every 48h the 

traps were checked and the bait was replaced. This totalizes a sampling effort of 2,520 

trap-days (10 traps × 6 sampling units × 42 sampling days). In each site, we sampled the 

assemblages of fruit-feeding butterflies in the canopy (~15 m above the ground, inside 

canopy tree crowns) and in the understory (1.5 m above the ground) and each stratum 

was considered as one independent sampling unit. In every trap checking, we measured 

the temperature of the base of each trap using an infrared thermometer (GM-300, 

Benetech®).  

Community model for abundance data 

We employed a modification of the Dorazio-Royle-Yamaura model (DRY) (Kéry & 

Royle, 2016; Yamaura et al., 2011; Yamaura, Kéry, & Andrew Royle, 2016) to estimate 

uncertainties in the individual counts for fruit-feeding butterflies. The modifications 

allow the model to estimate the mean abundance (λik) and detection probability (pijk) for 

each stratum (Zipkin et al., 2010). We assumed that local abundance remained 

unchanged during the survey (i.e. closure assumption, Kéry, Royle, & Schmid, 2005) 

since we sampled in a narrow time window, and that mean abundance and detection 

probability were independent among species. Abundance for each species k at each site i 

is a latent variable (i.e. imperfectly observed) called Nik, which follows a Poisson 

distribution: 

Nik ~ Poisson(λik) 
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where λik is the mean or expected abundance. We assumed that λik varied among sites 

depending on species random effects and if point i was in the canopy (Strata = 0) or the 

understory (Strata = 1), thus allowing species-level effects to differ between the two 

strata (Zipkin et al., 2010). We also included a slope for the mean temperature obtained 

from the base of the traps of each site i (Temp) and add two random site effects, because 

samplings were repeated in time (sampling months, SM) for each sampling units (SU), 

and hence their measures are not independent within them. We fit the model for 

biological process using a log-link function, as follows: 

log(λik) = β.can
k 

× (1 -  Stratai) + β.und
k
 × Stratai + β1

k
 × Temp

i
 + sSUik

 + mSMik
 

where β.can and β.und are the species-specific intercepts for canopy and understory, 

respectively, β1 is the species-specific slope for the temperature effect, s and m are the 

random effects for six sampling units and five sampling months. 

We describe the detection process as: 

y
ijk

 ~ Binomial(Nik, p
ijk

) 

where the number of detected individuals yijk during visit j was obtained with Nik trials 

and a probability of successful detection pijk. The detection history yijk > 0 indicates that 

the species k (1, 2, ..., 35) was observed in site i (1, 2, ..., 12) during the sampling 

occasion j (1, 2, …, 5), while yijk = 0 implies the species was undetected. We modeled 

detectability as a logit-linear combination of species-specific detection probabilities 

dependent on the stratum and two covariates: 

logit (p
ijk

) = α.cank × (1 - Stratai) + α.undk × Stratai + α1k × Dateij + α2k × Temp
ij
 

where α.can and α.und are the species-specific intercepts for canopy and understory, 

respectively, and α1 is the linear effects of the sampling day (transformed to Julian date) 

and α2 is the linear effects of the temperature by day. 
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All covariates for the biological and observation process were standardized 

before perform the Bayesian model. The effect of predictors was corroborated whenever 

95% of the Credible Interval (CRI) did overlap zero. We defined species-specific 

parameters for each stratum and for covariates as coming from normal hyper-

distributions, e.g., β.cank ~ Normal (µβ.can, τβ.can), being that these priors describe the 

heterogeneity among species. We determined vague priors for the hyper-parameters that 

define the mean (µ) and precision (τ) at the community-level, such that µ ~ Normal (0, 

0.001) and τ, that is the inverse of variance (τ = sd-2), where sd ~ Uniform (0, 10), and 

these hyper-parameters are shared by all species in each stratum (Yamaura et al., 2016). 

Considering that the mean detection probability must vary between 0 and 1, we defined 

µα  = logit(µα.pre), when µα.pre ~ Uniform (0, 1), and then,  αk ~ Normal (µα, τα). The 

model was run using the package jagsUI (v. 1.4.9, Kellner, 2021) with three Markov 

Chains Monte Carlo (MCMC), 150,000 iterations with the first 50,000 iterations 

discarded, and a thinning rate of 100. The model code is given in Appendix A (N-

mixture model). These settings of MCMC results in a posterior sampling with 3,000 

iterations. We also defined initial values for parameter N and monitored the community 

mean and species-level parameters. We checked the convergence of MCMC by R-hat 

statistics (Gelman & Rubin, 1992) and graphical visualization. 

In addition, we checked and validated the N-mixture model through simulation 

of metacommunities (Appendix B – Model Validation). For each simulation, we set the 

mean expected abundance for canopy and understory (βs1 and βs2) or the mean 

probability for canopy and understory (αs1 and αs2) to vary, while all other parameters 

were kept constant. For each parameter, we defined true mean values, which we 

consider low, intermediate, and high, resulting in 12 simulated metacommunities 

(hereafter treated as setting code A to L). The output of the simulation provided two 
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main information: the true abundance of species for each community (Ns) and the 

imperfect observed community (yobss). The yobss was then subjected to the N-mixture 

model, and we monitored all parameters estimated. For the biological model, all true 

values of parameters and hyper-parameters fall within 95% of the credible interval of 

the posterior distribution (Appendix B – Fig. B1 to B3), indicating that model was able 

to recovery true parameters values.  

Phylogenetic and functional data 

We collected at least one specimen of each butterfly species captured in bait traps for 

subsequent measurement of functional traits. We selected 12 functional traits to 

characterize functional diversity in each community, including traits related to flight 

performance, habitat use, and ecological behavior (Table 1) (Chai & Srygley, 1990; 

Dudley, 2002; Spaniol, Duarte, Mendonça, & Iserhard, 2019). Using the recently 

proposed phylogeny of Chazot et al. (2019) for Nymphalidae, we obtained the 

phylogenetic relationships among the 35 species of fruit-feeding butterflies recorded in 

this study. We pruned the complete tree to calculate measures of phylogenetic diversity 

and structure of communities. We used the packages ape (v. 5.3, Paradis & Schliep, 

2019), and phytools (v. 0.6-44, Revell, 2012) to prune the tree. 
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Table 1. Description for the functional traits measured for fruit-feeding butterflies sampled at FLONA-SFP, southern Brazil. C – continuous 

traits, B – binary traits. 

 Trait name Type Measure Description References 

FWL Forewing length 

(mm) 

C Forewing base to apex Used as a proxy for body size and 

related with dispersion capacity 

Chai and Srygley 

1990, Sekar 2012 

TM:TDM Thorax mass to 

total body mass 

ratio 

C The ratio between thorax 

mass and total body mass 

The proportion that represents the 

investment in thorax mass; related to 

flight capacity due that thorax allocates 

the flight muscles 

Chai and Srygley 

1990 

AM:TDM Abdomen mass to 

total body mass 

ratio 

C The ratio between abdomen 

mass and total body mass 

The proportion that represents the 

investment in abdomen mass; related to 

investment in reproductive tissues 

Srygley and Chai 

1990 

FEA Functional eye 

area (mm²) 

C Set of linear eye 

measurements 

Represent the functional visual field; 

associated with habitat perception 

Rutowski 2000, 

Turlure et al. 2016 
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WL Wing loading 

(N/m²) 

C Amount of body mass 

sustained by wing area unit  

Related with flight speed and agility 

and can be associated with adaptative 

response to environmental gradients 

Chai and Srygley 

1990, Berwaerts et al. 

2002, Turlure et al. 

2016 

AR Aspect Ratio C The ratio between forewing 

span squared to forewing 

area 

Express the wing shape; related to 

flight speed and agility 

Chai and Srygley 

1990, Berwaerts et al. 

2002 

FS Food 

specialization 

C Amount of host plants used 

by immature stages 

Express the food habit; lower values 

represent specialists and higher values 

represent more generalists species.  

Graça et al. 2017 

Iridescence Wing Iridescence B Presence or absence of 

iridescence coloration 

Related with intra and interspecific 

visual recognition  

Pinheiro et al. 2016, 

Spaniol et al. 2019 

Eyespots Wing Eyespot B Presence or absence of 

wing eyespots 

Related with defense strategies to avoid 

or deflect attacks of visually hunting 

predators 

Stevens 2005, 

Olofsson et al. 2010 
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Rings Mimetic Ring B Member or not of mimetic 

rings complex 

Indicate if species are a member of 

mimetic rings; related to Mullerian, 

Batesian or scape mimetic rings 

Su et al. 2015, 

Spaniol et al. 2019 

Camouflage Camouflage 

strategies 

B Colorations and shapes that 

resemble background or 

environmental structures 

Related to capacity to avoid predators Ruxton et al. 2004; 

Skelhorn et al. 2010 

Disruptive Disruptive 

Coloration 

B Conspicuous colorations in 

the wing's periphery that 

disguises the body outline 

of the animal 

Related to capacity to avoid predators, 

by preventing prey recognition 

Schaefer and Stobbe 

2006 
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Incorporating imperfect detection in diversity measures: The Hidden Diversity 

framework 

To evaluate the magnitude of the effects of imperfect detection on diversity measures 

we developed an R function called hidden.diversity (HD) (Appendix C – Hidden 

diversity framework). This function returns, for each site i, the deviation of observed 

diversity from the estimated diversity, given imperfect detection, and this difference is 

divided by the standard deviation of the estimated diversity as follow: 

hidden.diversity
i
=

div.obsi-div.esti̅̅ ̅̅ ̅̅ ̅̅ ̅

sd.div.esti
 

where div.obsi is the taxonomic, functional or phylogenetic diversity value obtained 

with observed count data for each site, div.esti̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean diversity value obtained from 

Nik posterior sampling in each site and sd.div.esti is the standard deviation of div.esti. 

Positive and negative values of HD indicate, respectively, an overestimation and 

underestimation of observed diversity to estimated diversity values. Overestimation of 

diversity can only occur for phylogenetic or functional measures, since that species 

included can be functionally or phylogenetically redundant, and the N-mixture model 

only accounts for false negatives. However, distinct scenarios can generate positive or 

negatives HD values, and we disentangle these possible scenarios by plotting the 

relationship between observed and estimated diversity values (Fig. 1c). We called noise 

when observed and estimated diversity has the same signal, in other words, the observed 

pattern (overdispersion or clustering) does not change after corrected by imperfect 

detection, but still can be overestimated or underestimated in comparison with the 

estimated true diversity. On the other hand, a bias will occur if the observed and 

estimated diversity have opposite signs, and for these cases, an erroneous pattern in 
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phylogenetic and/or functional structure of communities will be observed when 

undetected species are not considered. 

The input of the hidden.diversity function is the observed community data, a 

phylogenetic tree, a matrix containing the mean traits for each species, and the matrix 

Nik estimated by the N-mixture model which represents the detection-corrected 

abundance. The function internally always calculates taxonomic diversity (TD) and 

abundance, and allows the user to choose the diversity metric that should be calculated 

– “pd” for branch length and “mpd” for distance-based approach - for both phylogenetic 

and functional diversity. The function will calculate the standardized effect size for 

phylogenetic diversity (SES.PD), and functional diversity (SES.FD),  if only “pd” is 

informed, and the SES for phylogenetic and functional structure (SES.MPD and 

SES.MFD respectively) if only “mpd” is informed, or both if the user wishes. Also, the 

function allows indicating if there are binary data in the trait matrix, if the diversity 

measures should be weighted by abundance, the type of null model, the number of 

permutations used to calculate the null models, which aimed. Null models allow 

removing the effect of species richness on diversity measures by randomizing 

communities, permuting by permuting the positions of species in the phylogenetic tree 

or functional dendrograms, or by permuting the sampling units (rows) or species 

identities (columns) in the community matrix. Null models are implemented in the 

package picante (Kembel et al., 2010). The function output is a data frame containing 

SES values of diversity measures for each site (observed and estimated) and the value of 

hidden diversity. 

We employed the HD for each diversity measure to evaluate differences between 

canopy and understory in the bias yielded by imperfect detection. For this, we 

performed a linear mixed model (LMM) using the HD values for each diversity measure 
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as the response variable, the strata as a fixed predictor, and the sampling months and 

sites as random factors. We used the lme4 package (v. 4.0.5, Bates, Mächler, Bolker, & 

Walker, 2015) to perform the LMM and the ggplot2 package (v. 3.3.4 Wickham, 2016) 

to graphical visualization of the results. 

Results 

Our database contained 35 species and 914 individuals of fruit-feeding butterflies. We 

found that canopy had lower community-level mean abundance than understory (values 

in the natural scale, µβ.can = 0.166 CRI95% = 0.008 to 0.104, µβ.und = 2.655, CRI95% = 

0.001 to 0.117). Moreover, understory assemblages had a higher mean detection 

probability (µα.can = 0.032, CRI95% = 0.025 to 0.038, µα.und = 0.497, CRI95% = 0.033 to 

0.964) (Fig. 2). We do not explore the effects of predictor variables on abundance and 

detection probability because these results are not crucial for this study, but the values 

for hyper-parameters for community-level are shown in Appendix A (Fig. A1 and A2, 

Table A1). 

 

Figure 2.  Community-mean distribution for expected abundance (a) and detection 

probability (b) for fruit-feeding butterflies sampled at FLONA-SFP, Southern Brazil. 
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These distributions were generated using the community hyperparameters for canopy 

(µcan and sdcan, black color) and understory (µund and sdund, light-yellow color). The 

dashed line represents the mean for each stratum (µ). We apply a square root 

transformation on the x-axis to better improve the visualization. 

 

Hidden diversity (HD) demonstrated that there was an underestimation for both 

strata when only the species richness was evaluated (TD), and for this diversity 

measure, the HD differed between strata (Fig. 3a, Table 2). All other diversity measures 

tended to be overestimated (positive HD values). Phylogenetic and functional measures 

had opposite responses concerning the most overestimated stratum, while for 

phylogenetic measures understory was more overestimated than the canopy, for 

functional measures canopy tended to show higher overestimation than understory. 

Only for functional richness (SES.FD) we did not observe a difference in the HD 

between strata (Table 2). However, observing the relationship among observed and 

estimated diversity, we found that for most sites, the pattern of positive or negative SES 

value was maintained. This implies that, despite the error associated with not 

accounting for imperfect detection, for the fruit-feeding butterfly assembly, imperfect 

detection acts more like a noise than a bias (Fig. 3b). 
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Figure 3. The effects of imperfect detection on multiple dimensions of biodiversity, 

evaluated by the hidden diversity framework for an assemblage of fruit-feeding 

butterflies sampled at FLONA-SFP, southern Brazil. a) Response of each stratum – 

Canopy (dark boxplots) and Understory (light yellow boxplots) – to the imperfect 

detection and their variation among the diversity measures. TD – taxonomic diversity, 

SES – standardized effect size, PD/FD – phylogenetic/functional diversity, MPD/MFD 

– abundance-based mean pairwise phylogenetic/functional distance, MPDi/MFDi – 

incidence-based mean pairwise phylogenetic/functional distance. The red dashed line 

indicates no difference in diversity value between observed and estimated data. b) 

Visual evaluation of the effect of the imperfect detection by sampling unit (points) and 

environmental factors (colors, dark – Canopy; yellow – Understory). Points above the 

dashed red line indicate an underestimate of the diversity and negative values of hidden 

diversity; points below this line indicate an overestimation of diversity and positive 

values of hidden diversity. 
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Table 2. Relationship of hidden diversity values for taxonomic, phylogenetic, and 

functional measures (HD.TD, HD.PD/MPD, HD.FD.MFD) and vertical stratification 

for the assemblage of fruit-feeding butterflies sampled at FLONA-SFP, southern Brazil. 

Bold values indicate a statistical significance at a threshold of 0.05. The asterisk 

indicates values of mean pairwise distances calculated with incidence instead of 

abundance. 

 
Estimate SE t value p 

HD.TD 
    

intercept -2.064 0.163 -12.679 0.000 

Slope -0.099 0.046 -2.163 0.031 

HD.PD 
    

intercept 0.174 0.090 1.931 0.092 

Slope 0.728 0.090 8.060 0.000 

HD.FD 
    

intercept 0.509 0.064 7.955 0.000 

Slope -0.032 0.090 -0.349 0.727 

HD.MPDi* 
    

intercept 0.076 0.128 0.595 0.572 

Slope 0.938 0.095 9.849 0.000 

HD.MPD 
    

intercept 0.226 0.177 1.279 0.240 

Slope 0.848 0.104 8.164 0.000 

HD.MFDi* 
    

intercept 0.619 0.063 9.838 0.000 

Slope -0.312 0.089 -3.511 0.001 

HD.MFD 
    

intercept 0.680 0.094 7.212 0.000 

Slope -0.564 0.101 -5.563 0.000 
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Discussion 

Our results demonstrate that neglect imperfect detection can produce unrealistic 

estimates of diversity, which can be unbalanced between treatment levels or 

environmental gradients. Considering that several community studies are pattern-based, 

ignoring the effect of imperfect detection can leads to spurious interpretations of the 

mechanisms driving community assembly (Joseph et al., 2009), mainly when inversion 

in the observed pattern occurs (critical bias regions, Fig. 1c). For the assemblage of 

fruit-feeding butterflies studied, we found a noise for site scale (the majority of points 

are in the noise region, Fig. 3b), typically produced by the inclusion of redundant 

species at understory for phylogenetic measures, and redundant species at the canopy 

for functional measures. This occurs because the capacity to detect distinct lineages or 

functional traits in both strata was higher than the ability to detect new species (Jarzyna 

& Jetz, 2016), leading to an increase in phylogenetic or functional clustering in relation 

to the observed data. However, since there is a difference in the detection of individuals 

between strata (reached by hidden diversity), the relationship between diversity and the 

environment is biased. 

Canopy and understory have distinct features including microclimatic 

conditions, forest structure, and resource availability (Grimbacher & Stork, 2007; 

Sobek, Tscharntke, Scherber, Schiele, & Steffan-Dewenter, 2009). Such differences are 

commonly associated with the vertical stratification of animal taxa, especially for 

insects (Ashton et al., 2016; Basset et al., 2015). For fruit-feeding butterflies, is 

recognized that some families or tribes are more related with canopy or understory 

(DeVries et al., 2012; Hill, Hamer, Tangah, & Dawood, 2001), including the detection 

probability of species can differ among strata (Ribeiro et al., 2016). In addition to the 

lack of studies evaluating phylogenetic and functional diversity for this group, for the 
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Neotropical region, there is no clear pattern as to which is the most diverse stratum from 

a taxonomic perspective (understory - Araujo et al., 2020; Barlow, Overal, Araujo, 

Gardner, & Peres, 2007; Lourenço et al., 2019; Whitworth et al., 2016; canopy - 

Devries, 1988; DeVries et al., 2012; Ribeiro & Freitas, 2012; Santos et al., 2017). In our 

study, we show that there was a large underestimation in species richness, providing 

evidence that there is a bias for observed taxonomic diversity in canopies sites. This was 

the only case where there was an inversion in the observed pattern: understory was 

richest than canopy employing the observed data, but the canopy has a higher richness 

than understory when we used the estimated data (Appendix C – Fig. C1, Table C1). 

For phylogenetic measures, despite the difference in HD values between stratum, the 

observed pattern was maintained and only the magnitude of the effect was adjusted. 

However, for functional measures based on distances (SES.MFD), the inclusion of 

undetected individuals revealed a significant difference (understory was more diverse 

than canopy), unobserved when only observed data was used (Appendix C – Table C1).  

 As expected, the inclusion of undetected species had a larger effect on 

taxonomic diversity measures than on phylogenetic or functional ones. While for 

taxonomic diversity, each undetected species leads to an increment of the estimated 

diversity value, for phylogenetic and functional measures undetected species may be 

redundant, i.e., contain evolutionary or functional information, respectively, that was 

already covered in the observed data. Furthermore, we observed that the understory had 

a large number of species belonging to the same lineage that were undetected in the 

field. Generally, fruit-feeding butterflies that inhabit the understory belong to Satyrinae 

(particularly to the tribes Morphini and Brassolini). These species tend to be more 

abundant during the summer months (December to February in Southern Hemisphere) 

(Iserhard et al., 2017), and hence more individuals are available to be detected. But at 
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the beginning or end of this season, a smaller number of individuals are active, 

hindering its detection. Such features could explain the clustered pattern observed in the 

understory when we include imperfect detection to perform phylogenetic measures. 

Similarly, a clustered pattern was revealed for functional measures for canopy. Species 

that occupy this stratum generally exhibit traits related to flight performance (Chai & 

Srygley, 1990; Graça et al., 2017), given high mobility to looking for resources and 

favorable conditions (Shahabuddin & Ponte, 2005). Thus, a simple explanation for the 

inclusion of redundant traits in the canopy could be that individuals were absent because 

they were visiting a part of their home area that was not covered by the survey (Joseph 

et al., 2009; Ribeiro et al., 2016). Future investigations should be conducted in this 

context to understand whether high flight mobility leads to a low probability of butterfly 

detection. 

Biodiversity measures are important tools to guide species conservation 

decisions, as well as to infer about the ecological and evolutionary process that structure 

assemblages. Since accounting for imperfect detection improves the accuracy of 

estimates of diversity patterns, in some circumstances, it is strongly recommended (Fig. 

1), because it may lower the risk of erroneously inferring biological processes that are 

implied by sampling uncertainty (Joseph et al., 2009). Several models have been 

proposed in recent years to incorporate imperfect detection in order to improve the 

efficiency of estimating parameters in community studies (Abrams, Sollmann, Mitchell, 

Struebig, & Wilting, 2021; Broms et al., 2015; Frishkoff et al., 2017; Jarzyna & Jetz, 

2016; Tingley, Nadeau, & Sandor, 2020; Zipkin et al., 2010). Further, these models 

allow us to propagate the uncertainty in species-specific detectability to biodiversity 

measures, as we demonstrated here. We expect that the framework developed in this 
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study help researchers to better understand and describe diversity patterns and the 

mechanisms that assembly ecological communities. 
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Appendix A – N-Mixture Model 

Code for the hierarchical Bayesian N-Mixture model (Static_Nmixture_P_RE.txt) and visual evaluation of parameters. This model is a 

modification of the proposed model for The Swiss Breeding Bird Survey (MHB 2014) in the Chapter 11 of the Applied Hierarchical Modelling 

in Ecology (Kéry & Royle, 2016). Furthermore, we assumes that the species-level effects can varies between strata, according whit Zipkin, 

Andrew Royle, Dawson, & Bates (2010). The code for the model is available on 

https://github.com/richterbine/TheHiddenSideofDiversity/tree/main/R/Bayesian_models 

model { 

  # Community priors (with hyperparameters) for species-specific parameters  

  for(k in 1:nspec){ 

    beta.can[k] ~ dnorm(mu.beta.can, tau.beta.can)   # Species-specific random intercept for abundance - canopy 

    beta.und[k] ~ dnorm(mu.beta.und, tau.beta.und)   # Species-specific random intercept for abundance - understory 

    alpha.can[k] ~ dnorm(mu.alpha.can, tau.alpha.can) # Species-specific random intercept for detectability - canopy 

    alpha.und[k] ~ dnorm(mu.alpha.und, tau.alpha.und) # Species-specific random intercept for detectability - 

understory 

     

https://github.com/richterbine/TheHiddenSideofDiversity/tree/main/R/Bayesian_models
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    beta1[k] ~ dnorm(mu.beta1, tau.beta1)            # Species-specific random slope for temperature in biologic process 

    alpha1[k] ~ dnorm(mu.alpha1, tau.alpha1)  # Species-specific random slope for sampling process in sampling process 

    alpha2[k] ~ dnorm(mu.alpha2, tau.alpha2)  # Species-specific random slope for temperature in sampling process  

     

    for(n in 1:5) { 

      month[n, k] ~ dnorm(0, tau.month) 

    } 

    for(n in 1:6){ 

      area[n, k] ~ dnorm(0, tau.area) 

    } 

  } 

  # Hyperpriors for community hyperparameters  

  # abundance model – intercept 

  mu.beta.can ~ dnorm(0, 0.001) 

  tau.beta.can <- pow(sd.beta.can, -2)  

  sd.beta.can ~ dunif(0, 10)  
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  mu.beta.und ~ dnorm(0, 0.001) 

  tau.beta.und <- pow(sd.beta.und, -2)  

  sd.beta.und ~ dunif(0, 10) 

   

  # abundance model - slope for temperature by sites 

  mu.beta1 ~ dnorm(0, 0.001)  

  tau.beta1 <- pow(sd.beta1, -2) 

  sd.beta1 ~ dunif(0, 10) 

   

  # detection model - intercept 

  mu.alpha.can.pre ~ dunif (0, 1) # Detection can have any value between 0 and 1 with equal probability 

  mu.alpha.can <- logit(mu.alpha.can.pre) # Inverse logit – values from -inf to inf as in norm  

  tau.alpha.can <- pow(sd.alpha.can, -2)  

  sd.alpha.can ~ dunif(0, 10)  

   

  mu.alpha.und.pre ~ dunif(0, 1) 

  mu.alpha.und <- logit(mu.alpha.und.pre) 
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  tau.alpha.und <- pow(sd.alpha.und, -2)  

  sd.alpha.und ~ dunif(0, 10)  

# detection model - slope for julian dates 

  mu.alpha1 ~ dnorm(0, 0.001) 

  tau.alpha1 <- pow(sd.alpha1, -2) 

  sd.alpha1 ~ dunif(0, 10) 

   

  # detection model - slope for temperatures per day 

  mu.alpha2 ~ dnorm(0, 0.001) 

  tau.alpha2 <- pow(sd.alpha2, -2) 

  sd.alpha2 ~ dunif(0, 10) 

   

  tau.month <- pow(sd.month, -2) 

  sd.month ~ dunif(0, 10) 

   

  tau.area <- pow(sd.area, -2) 

  sd.area ~ dunif(0, 10) 
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  # Ecological model for true abundance (process model)  

  for(k in 1:nspec) { 

    for (i in 1:nsite) {  

      N[i,k] ~ dpois(lambda[i,k])     # latent abundance of each species in each site 

      log(lambda[i,k]) <- beta.can[k] * (1 - Strata[i]) + beta.und[k] * Strata[i] + beta1[k] * 

Temp[i] + month[Month[i], k] + area[Area[i], k] 

    } 

  } 

 

  # Observation model for replicated counts  

  for(k in 1:nspec) {  

    for (i in 1:nsite) {  

      for (j in 1:nrep) {  

        yc[i,j,k] ~ dbin(p[i,j,k], N[i,k])  

        logit(p[i,j,k]) <- alpha.can[k] * (1 - Strata[i]) + alpha.und[k] * Strata[i] + alpha1[k] 

* Date[i, j] + alpha2[k] * Temp_det[i, j] 
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      } 

    } 

  } 

   

  # Other derived quantities  

  for(k in 1:nspec) { 

    mlambda.can[k] <- exp(beta.can[k])     # Expected abundance on natural scale for canopy 

    mlambda.und[k] <- exp(beta.und[k])     # Expected abundance on natural scale for understory 

    logit(mp.can[k]) <- alpha.can[k]       # Mean detection on natural scale for canopy 

    logit(mp.und[k]) <- alpha.und[k]       # Mean detection on natural scale for understory 

  } 

}
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Figure A 1. Community distribution of the standard deviation for mean parameters, 

estimated by N-mixture models for biological and observational processes, using the 

community data for fruit-feeding butterflies sampled at FLONA-SFP, Southern Brazil. 
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Figure A 2. Specie-specific mean parameters were estimated by the N-mixture model 

for detection probability (upper panel) and abundance (lower panel). Points represent 

the estimated parameter for each species and horizontal bars indicate the 95% of 

credible interval (CRI). If the CRI overlaps the zero (vertical dashed line), we conclude 

that there was no effect of the predictor in species-specific responses. For detection 

probability, sampling day (α1) does not affect the detection of any species, while the 

temperature at trap base (α2) only affected positively the species Carminda paeon 

(Godart, 1824). For expected abundance, temperature (β1) has a positive effect for 

Taygetis ypthima Hübner, [1821], Opoptera fruhstorferi (Röber, 1896), Morpho 

epistrophus (Fabricius, 1796), Memphis moruus (Fabricius, 1775), Epiphile orea 

(Hübner, [1823]). 
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Table A1. The mean and the 95% Bayesian credible interval (CRI) for community-level 

summaries of the hyper-parameters for expected abundance (β’s) and detection 

probability (α’s) estimated by the N-mixture model for fruit-feeding butterflies sampled 

in FLONA-SFP, southern Brazil. Asterisk represents hyper-parameters that overlap 

zero. 

 

Mean Low CRI Upper CRI 

µ βcan -3.4991 -4.4792 -2.5917 

SD βcan 1.8470 1.1903 2.6484 

µ βund -4.4248 -6.3377 -2.9100 

SD βund 3.3726 2.1065 5.3857 

µ β1 0.2237 -0.0740 0.4975* 

SD β1 0.5334 0.2564 0.8592 

µαcan -3.4379 -4.0621 -2.9272 

SD αcan 0.3105 0.0097 0.8413 

µ αund -0.0359 -3.9749 3.6357* 

SD αund 4.9700 0.2257 9.7353 

µα1 -0.1693 -0.4526 0.1057* 

SD α1 0.2276 0.0118 0.5851 

µα2 0.1520 0.0094 0.2878 

SD α2 0.1233 0.0048 0.3062 

SD SM 1.2553 0.9940 1.5692 

SD SU 1.1465 0.9365 1.3983 
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Appendix B – Model Validation 

Visual evaluation of the performance of the N-mixture model built. We used 12 

simulated communities, which we vary parameters related to biological process (β1 and 

β2) and observational process (α1 and α2). We consider that model is valid if the values 

of the real parameters are within the posterior distribution retuned by the N-mixture 

model. The function for simulate metacommunities is a modified version of the 

simComm function developed by Kéry & Royle (2016) and available in the AHMBook 

package (v. 0.2.2). The code to simulate metacommunities are available on 

https://github.com/richterbine/TheHiddenSideofDiversity/tree/main/R/Model_validation 

 

  

https://github.com/richterbine/TheHiddenSideofDiversity/tree/main/R/Model_validation
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Figure B3. Community distribution of mean abundance and detection probability for 

simulated communities. a) and b) are the distribution using the true values for intercept 

parameters (µβ1, sdβ1, µβ2, sdβ2, µα1, sdα1, µα2, sdα2). c) and d) are the distribution using the 

mean values estimated by the Bayesian model (µβcan, sdβcan, µαcan, sdαcan, µβund, sdβund, 

µαund, sdαund). The color indicates the 12 scenarios simulated, when we vary the values 

for µβ1, µβ2, µα1, µα2 for three levels: µβ = 0.5, 1.5, 2.0, the default of function is 1.0; µα = 

0.2, 0.6, 0.8, the default of function is 0.5. We allow only one parameter to vary at a 

time, while others remained fixed to simulate the community. For A, B, and C the µβ1 

varies, for D, E, and F the µβ2 varies, for G, H, and I the µα1 varies and for J, K and L the 

µα2 varies. 
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Figure B4. Posterior distribution of estimated hyper-parameters (µ and sd) for 

simulated communities. a) and b) are the estimated mean values for all parameters 

considering the models simulated varying the mean abundance (β values, setting A to 

F). The dashed line represents the true values used to simulate the community for each 

set. 
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Figure B5. Posterior distribution of estimated hyper-parameters (µ and sd) for 

simulated communities. a) and b) are the estimated values considering the communities 

simulated varying the mean detection probability (α values, setting G to L). The dashed 

line represents the true values used to simulate the community for each set. 
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Appendix C - Hidden diversity framework 

Function to evaluate the extent to which imperfect detection may affect patterns of 

taxonomic, functional, and phylogenetic diversities in ecological communities This 

function allows the user to estimate, in the form of a Standardized Effect Size (SES), 

how much of the diversity was hidden when we do not account with the imperfect 

detection. Further, the user can calculate the hidden diversity only for taxonomic 

diversity (TD and Abundance), for functional (SES.FD and SES.MFD), and taxonomic 

diversity, for phylogenetic (SES.PD and SES.MPD) and taxonomic diversity, or for all 

measures. 

Arguments 

comm = Community data, with sites in the rows and species in the columns. 

N = an array when each “slice” is a matrix of the true-abundance (sites in rows and 

species in columns) for one posterior sampling of the N-mixture model. This object 

represents the detection-corrected abundance. 

phy = a phylogenetic tree, with branch length.  

trait = a trait community matrix, with species in rows and traits in columns. 

Metric = a string with one or two options c(“pd”, “mpd”). If only “pd” is provided, the 

function will calculate the SES (standardized effect size) of the sum of the branch length 

for each community. If only “mpd” is provided, the function will calculate the SES for 

the mean pairwise distance of species that compose each community. Default is c(“pd”, 

“mpd”). This argument only works if a phylogenetic tree or a trait matrix is provided. 
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binary = logical. Default is FALSE. Only necessary when a trait matrix is present. If 

binary = TRUE, the function is taken into account binary traits for construct a functional 

dendrogram. 

abundance.weighted = logical. Default is FALSE. In this case, for SES.MPD and 

SES.MFD only the occurrence/incidence/richness of species is accounted for by 

calculating the diversity values. If abundance.weighted = TRUE, the SES.MPD and 

SES.MFD will be calculated for an abundance-based community matrix. 

Null.model = a string with the null models allowed by ses.pd and ses.mpd function from 

picante package. 

Runs = number of permutations used to calculate the null models. 

Parallel = number of cores used to process the function 

Value 

The function returns a list with two to six data frames (dependent on imputed diversity): 

TD, Abund = always returned. Each object is a data frame with four columns: the 

observed richness/abundance, the mean richness/abundance for estimated data (N), the 

standard deviation of the estimated richness/abundance, and the hidden diversity. 

sesPD, sesFD, sesMPD and sesMFD = only returned if the user informed a phylogenetic 

tree and/or a functional traits matrix. Each object has four columns: the SES value for 

observed diversity, the SES values for mean estimated diversity, the standard deviation 

for estimated SES, and the hidden diversity. 
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hidden.diversity <- function(comm, N, phy = NULL, trait = 

NULL, metrics = c("pd", "mpd"), binary = 

FALSE, abundance.weighted = FALSE,  null.model 

= "taxa.labels", runs = 499, parallel = 3) { 

   

  n.site <- dim(N)[1] # n.site: the number of sampling sites 

  n.samp <- dim(N)[3] # n.samp: the number of posterior sampling 

   

  # transforming N in occurrence data (y) 

  y <- N 

  for (i in 1: dim(y)[3]) { 

    b = which(y[,,i] > 0)  

    y[,,i][b] = 1   

    y[,,i][-b] = 0   

  } 

   

  # calculating the observed and estimated richness (TD) 

  TD.df <- data.frame(TD.obs = apply(vegan::decostand(x = 

comm, method = "pa"), 1, sum), TD.est = 

apply(apply(y, c(1,3), sum), 1, mean), TD.sd = 

apply(apply(y, c(1,3), sum), 1, sd)) 

  TD.df$HD.TD <- (TD.df$TD.obs - TD.df$TD.est)/TD.df$TD.sd 

   

  # calculating the observed and estimated abundance 

  N.df <- data.frame(N.obs = apply(comm, 1, sum), N.est = 

apply(apply(N, c(1,3), sum), 1, mean), N.sd = 

apply(apply(N, c(1,3), sum), 1, sd)) 

  N.df$HD.N <- (N.df$N.obs - N.df$N.est) / N.df$N.sd 

   

  div_measures <- c("rich", "abund", "pd", "mpd") 

  hd_metric <- pmatch(metrics, div_measures) 

   

  # if a phylogenetic tree is provided  
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  if (!is.null(phy)){ 

    if(any(hd_metric == 3)){ # calculation of PD 

      # observed data 

      pd.obs <- picante::ses.pd(samp = comm, tree = phy, 

null.model = null.model,      runs = runs, 

include.root = F) 

       

      # estimated data 

      if (is.numeric(parallel)) { 

        CL1 <- parallel::makeCluster(parallel, type = 

"PSOCK") 

        newClusters <- TRUE 

      } 

      if (!inherits(CL1, "cluster")) { 

        pd.ses <- array(NA, dim = c(n.site, 2, n.samp)) 

        for (i in 1:n.samp){ 

          temp_pd <- picante::ses.pd(samp = N[,,i], tree = 

phy, null.model = null.model, runs = runs, 

include.root = F) 

          pd.ses[ , 1, i] <- cbind(temp_pd[,6]) 

          } 

        PD.df <- data.frame(SES.PD.obs = pd.obs[ 

,"pd.obs.z"],                          SES.PD.est 

= apply(pd.ses[,1,], 1, mean, na.rm = T),                 

SES.PD.sd = apply(pd.ses[,1,], 1, sd, na.rm = T))         

      } 

      else { 

        res_sesPD_samp <- parallel::parApply(cl = CL1, 

MARGIN = 3, X = y, FUN = picante::ses.pd, 

tree = phy, null.model = null.model, 

include.root = F, runs = runs) 

        

        HD.comm <- list(SES.PDest = res_sesPD_samp) 
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        PD_est <- matrix(unlist(lapply(HD.comm$SES.PDest, 

function(x) x$pd.obs.z)), nrow = nrow(comm), 

ncol = dim(y)[3], dimnames = 

list(rownames(comm), paste("samp", 1:dim(y)[3], 

sep = "_"))) 

        matrix_mean_SES_PD <- 

data.frame(matrix(c(apply(PD_est, 

MARGIN = 1, mean), apply(PD_est, 

MARGIN = 1, sd)), nrow = nrow(comm), 

ncol = 2, dimnames = 

list(rownames(comm), c("mean_ses.pd", 

"sd_ses.pd")), byrow = FALSE)) 

         

        PD.df <- data.frame(SES.PD.obs = pd.obs$pd.obs.z, 

SES.PD.est = matrix_mean_SES_PD$mean_ses.pd, 

SES.PD.sd = matrix_mean_SES_PD$sd_ses.pd) 

        } 

      # calculating the Hidden Diversity for SES.PD 

      PD.df$HD.PD <- (PD.df$SES.PD.obs - PD.df$SES.PD.est) 

/ PD.df$SES.PD.sd 

    } 

     

    if(any(hd_metric == 4)){ # calculation of MPD 

      # observed data 

      mpd.obs <- picante::ses.mpd(samp = comm, dis = 

cophenetic(x = phy), null.model = null.model, 

runs = runs) 

       

      # estimated data 

      mpd.ses <- array(NA, dim = c(n.site, 2, n.samp)) 

       

      if (is.numeric(parallel)) { 

        CL1 <- parallel::makeCluster(parallel, type = 

"PSOCK") 

        newClusters <- TRUE 

      } 
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      if (!inherits(CL1, "cluster")) { 

        mpd.ses <- array(NA, dim = c(n.site, 1, n.samp)) 

        for (i in 1:n.samp){ 

          temp_mpd <- picante::ses.mpd(samp = N[,,i], dis = 

cophenetic(x = phy), null.model = null.model, 

runs = runs) 

           

          mpd.ses[,1,i] <- cbind(temp_mpd[,6]) 

        } 

         

        MPD.df <- data.frame(SES.MPD.obs = mpd.obs[ , 

"mpd.obs.z"], SES.MPD.est = apply(mpd.ses[,1,], 

1, mean, na.rm = T), SES.MPD.sd = 

apply(mpd.ses[,1,], 1, sd, na.rm = T))        

      }  

      else { 

        res_sesMPD_samp <- parallel::parApply(cl = CL1, 

MARGIN = 3, X = y, FUN = 

picante::ses.mpd, dis = cophenetic(phy), 

abundance.weighted = abundance.weighted,  

null.model = null.model, runs = runs) 

        HD.comm <- list(SES.MPDest = res_sesMPD_samp) 

         

        MPD_est <- matrix(unlist(lapply(HD.comm$SES.MPDest, 

function(x) x$mpd.obs.z)), nrow = nrow(comm), 

ncol = dim(y)[3], dimnames = 

list(rownames(comm), paste("samp", 1:dim(y)[3], 

sep = "_"))) 

 

        matrix_mean_SES_MPD <- 

data.frame(matrix(c(apply(MPD_est, 

MARGIN = 1, mean), apply(MPD_est, 

MARGIN = 1, sd)), nrow = nrow(comm), 

ncol = 2, dimnames = 

list(rownames(comm), 

c("mean_ses.pd", "sd_ses.mpd")), 

byrow = FALSE)) 
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        MPD.df <- data.frame(SES.MPD.obs = 

mpd.obs$mpd.obs.z, SES.MPD.est = 

matrix_mean_SES_MPD$mean_ses.pd, SES.MPD.sd = 

matrix_mean_SES_MPD$sd_ses.mpd) 

        } 

       

    # hidden for mpd phylo 

    MPD.df$HD.MPD <- (MPD.df$SES.MPD.obs - 

MPD.df$SES.MPD.est) / MPD.df$SES.MPD.sd 

    } 

  } 

 

  # calculation for traits 

  if (!is.null(trait)){ 

    if(binary == TRUE){ 

      bin <- vector() 

      for(i in 1:ncol(trait)){ 

        bin[i] <- is.integer(trait[, i]) | 

is.factor(trait[, i]) 

      } 

      con.t <- which(bin == F) 

      bin.t <- which(bin == T) 

      t.dist <- 

ade4::dist.ktab(ade4::ktab.list.df(list(log(trait[, 

con.t]), ade4::prep.binary(trait[, bin.t], 

col.blocks = ncol(trait[, bin.t])))), type = c("Q", 

"B")) # create a dist matrix, considering mixed-

variables 

    }  

      else { 

      t.dist <- 

ade4::dist.ktab(ade4::ktab.list.df(list(log(trait))), type 

= "Q") 
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    } 

    tree.func <- hclust(d = t.dist, method = "average") # 

clustering using UPGMA 

    tree.func <- ape::as.phylo(tree.func) 

     

    if(any(hd_metric == 3)){ # calculation of FD 

      # observed data 

      fd.obs <- picante::ses.pd(samp = comm, tree = 

tree.func, null.model = null.model, runs = runs, 

include.root = F) 

       

      # estimated data 

      if (is.numeric(parallel)) { 

        CL1 <- parallel::makeCluster(parallel, type = 

"PSOCK") 

        newClusters <- TRUE 

      } 

       

      if (!inherits(CL1, "cluster")) { 

        fd.ses <- array(NA, dim = c(n.site, 1, n.samp)) 

        for (i in 1:n.samp){ 

          temp_fd <- picante::ses.pd(samp = N[,,i], tree = 

tree.func, null.model = null.model, runs = 

runs, include.root = F) 

          fd.ses[ , 1, i] <- cbind(temp_fd[,6]) 

        } 

        FD.df <- data.frame(SES.FD.obs = fd.obs[ , 

"pd.obs.z"],SES.FD.est = apply(fd.ses[,1,], 1, 

mean, na.rm = T), SES.FD.sd = apply(fd.ses[,1,], 

1, sd, na.rm = T)) 

      } 

        else { 

        res_sesFD_samp <- parallel::parApply(cl = CL1, 

MARGIN = 3, X = y, FUN = picante::ses.pd, 
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tree = tree.func, null.model = null.model, 

include.root = F, runs = runs) 

         

        HD.comm <- list(SES.FDest = res_sesFD_samp) 

        FD_est <- matrix(unlist(lapply(HD.comm$SES.FDest, 

function(x) x$pd.obs.z)), nrow = nrow(comm), 

ncol = dim(y)[3], dimnames = 

list(rownames(comm), paste("samp", 1:dim(y)[3], 

sep = "_"))) 

        matrix_mean_SES_FD <- 

data.frame(matrix(c(apply(FD_est, 

MARGIN = 1, mean), apply(FD_est, 

MARGIN = 1, sd)), nrow = nrow(comm), 

ncol = 2, dimnames = 

list(rownames(comm), c("mean_ses.fd", 

"sd_ses.fd")), byrow = FALSE)) 

         

        FD.df <- data.frame(SES.FD.obs = fd.obs$pd.obs.z, 

SES.FD.est = matrix_mean_SES_FD$mean_ses.fd, 

SES.FD.sd = matrix_mean_SES_FD$sd_ses.fd) 

        } 

      # hidden FD 

      FD.df$HD.FD <- (FD.df$SES.FD.obs - FD.df$SES.FD.est) 

/ FD.df$SES.FD.sd 

    } 

     

    if(any(hd_metric == 4)){ 

      dist.func <- cophenetic(x = tree.func) 

      mfd.obs <- picante::ses.mpd(samp = comm, dis = 

dist.func, null.model = null.model, runs = runs) 

      mfd.ses <- array(NA, dim = c(n.site, 1, n.samp)) 

       

      if (is.numeric(parallel)) { 

        CL1 <- parallel::makeCluster(parallel, type = 

"PSOCK") 

        newClusters <- TRUE 



78 

 

 

      } 

      if (!inherits(CL1, "cluster")) { 

        for (i in 1:n.samp){ 

        temp_mfd <- picante::ses.mpd(samp = N[,,i], dis = 

dist.func, null.model = null.model, runs = 

runs) 

           

          mfd.ses[ , 1, i] <- cbind(temp_mfd[, 6]) 

        } 

        MFD.df <- data.frame(SES.MFD.obs = mfd.obs[ , 

"mpd.obs.z"], SES.MFD.est = apply(mfd.ses[,1,], 

1, mean, na.rm = T), SES.MFD.sd = 

apply(mfd.ses[,1,], 1, sd, na.rm = T)) 

        }  

        else { 

        res_sesMFD_samp <- parallel::parApply(cl = CL1, 

MARGIN = 3, X = y, FUN = 

picante::ses.mpd, dis = 

cophenetic(tree.func), 

abundance.weighted = abundance.weighted, 

null.model = null.model, runs = runs) 

        HD.comm <- list(SES.MFDest = res_sesMFD_samp) 

         

        MFD_est <- 

data.frame(matrix(unlist(lapply(HD.comm$SES.MFD

est, function(x) x$mpd.obs.z)), nrow = 

nrow(comm), ncol = dim(y)[3], dimnames = 

list(rownames(comm), paste("samp", 1:dim(y)[3], 

sep = "_")))) 

         

        matrix_mean_SES_MFD <- 

data.frame(matrix(c(apply(MFD_est, 

MARGIN = 1, mean), apply(MFD_est, 

MARGIN = 1, sd)), nrow = nrow(comm), 

ncol = 2, dimnames = 

list(rownames(comm), 

c("mean_ses.mfd", "sd_ses.mfd")), 

byrow = FALSE)) 



79 

 

 

         

        MFD.df <- data.frame(SES.MFD.obs = 

mfd.obs$mpd.obs.z, SES.MFD.est = 

matrix_mean_SES_MFD$mean_ses.mfd, SES.MFD.sd = 

matrix_mean_SES_MFD$sd_ses.mfd) 

            } 

      # hidden mfd 

      MFD.df$HD.MFD <- (MFD.df$SES.MFD.obs - 

MFD.df$SES.MFD.est) / MFD.df$SES.MFD.sd 

    } 

  } 

   

  if (newClusters) { 

    parallel::stopCluster(CL1) 

  } 

   

  if(!is.null(trait) & !is.null(phy)){ 

    if(all(hd_metric == c(3, 4))){ 

      list_res <- vector(mode = "list", length = 6) 

      names(list_res) <- c("TD", "Abund", "sesPD", 

"sesMPD", "sesFD", "sesMFD") 

      list_res$TD <- TD.df 

      list_res$Abund <- N.df 

      list_res$sesPD <- PD.df 

      list_res$sesMPD <- MPD.df 

      list_res$sesFD <- FD.df 

      list_res$sesMFD <- MFD.df 

       

      for (i in 3:length(list_res)) { 

        pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 
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        list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

      } 

       

      return(list_res) 

    } 

      else { 

      if(hd_metric == 3){ 

        list_res <- vector(mode = "list", length = 4) 

        names(list_res) <- c("TD", "Abund", "sesPD", 

"sesFD") 

        list_res$TD <- TD.df 

        list_res$Abund <- N.df 

        list_res$sesPD <- PD.df 

        list_res$sesFD <- FD.df 

         

        for (i in 3:length(list_res)) { 

          pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

          list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

        } 

         

        return(list_res) 

      } 

         

      if(hd_metric == 4){ 

        list_res <- vector(mode = "list", length = 4) 

        names(list_res) <- c("TD", "Abund", "sesMPD", 

"sesMFD") 

        list_res$TD <- TD.df 
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        list_res$Abund <- N.df 

        list_res$sesMPD <- MPD.df 

        list_res$sesMFD <- MFD.df 

         

        for (i in 3:length(list_res)) { 

          pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

          list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

        } 

         

        return(list_res) 

      } 

    } 

  } 

   

  if(is.null(phy) & !is.null(trait)){ 

    if(all(hd_metric == c(3, 4))){ 

      list_res <- vector(mode = "list", length = 4) 

      names(list_res) <- c("TD", "Abund", "sesFD", 

"sesMFD") 

      list_res$TD <- TD.df 

      list_res$Abund <- N.df 

      list_res$sesFD <- FD.df 

      list_res$sesMFD <- MFD.df 

       

      for (i in 3:length(list_res)) { 

        pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

        list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 
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      } 

       

      return(list_res) 

    }  

      else{ 

      if(any(hd_metric == 3)){ 

        list_res <- vector(mode = "list", length = 3) 

        names(list_res) <- c("TD", "Abund", "sesFD") 

        list_res$TD <- TD.df 

        list_res$Abund <- N.df 

        list_res$sesFD <- FD.df 

         

        for (i in 3:length(list_res)) { 

          pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

          list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

        } 

         

        return(list_res) 

      } 

      if(any(hd_metric == 4)){ 

        list_res <- vector(mode = "list", length = 3) 

        names(list_res) <- c("TD", "Abund", "sesMFD") 

        list_res$TD <- TD.df 

        list_res$Abund <- N.df 

        list_res$sesMFD <- MFD.df 

         

        for (i in 3:length(list_res)) { 

          pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 
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          list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

        } 

         

        return(list_res) 

      } 

    } 

  } 

  if(!is.null(phy) & is.null(trait)){ 

    if(all(hd_metric == c(3, 4))){ 

      list_res <- vector(mode = "list", length = 4) 

      names(list_res) <- c("TD", "Abund", "sesPD", 

"sesMPD") 

      list_res$TD <- TD.df 

      list_res$Abund <- N.df 

      list_res$sesPD <- PD.df 

      list_res$sesMPD <- MPD.df 

       

      for (i in 3:length(list_res)) { 

        pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

        list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

      } 

       

      return(list_res) 

    }  

      else { 

      if(hd_metric == 3){ 

        list_res <- vector(mode = "list", length = 3) 

        names(list_res) <- c("TD", "Abund", "sesPD") 
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        list_res$TD <- TD.df 

        list_res$Abund <- N.df 

        list_res$sesPD <- PD.df 

        for (i in 3:length(list_res)) { 

          pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

          list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

        } 

         

        return(list_res) 

      } 

         

      if(hd_metric == 4){ 

        list_res <- vector(mode = "list", length = 3) 

        names(list_res) <- c("TD", "Abund", "sesMPD") 

        list_res$TD <- TD.df 

        list_res$Abund <- N.df 

        list_res$sesMPD <- MPD.df 

         

        for (i in 3:length(list_res)) { 

          pos_obs_na <- which(is.na(list_res[[i]][,1]) == 

TRUE & is.na(list_res[[i]][,2]) == FALSE) 

          list_res[[i]][pos_obs_na, paste("HD", 

gsub("ses","", names(list_res)[i]), sep = ".")] <- 

list_res[[i]][pos_obs_na, 2]/list_res[[i]][pos_obs_na, 3] 

        } 

                return(list_res) 

      } 

    } 

  } 

}
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Figure C1. Relationship among diversity measures and canopy (dark boxplots) and 

understory (light yellow boxplots). a) Diversity pattern calculated using only observed 

data. b) Diversity pattern calculated using 100 matrices of estimated true abundance. TD 

– taxonomic diversity, SES – standardized effect size, PD/FD – phylogenetic/functional 

diversity, MPD/MFD – abundance-based mean pairwise phylogenetic/functional 

distance, MPDi/MFDi – incidence-based mean pairwise phylogenetic/functional 

distance. 
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Table C1. Relationship between distinct facets of biodiversity and vertical stratification 

for fruit-feeding butterflies community sampled at FLONA-SFP, southern Brazil. The 

first four columns show the relationship of diversity measures obtained by observed 

data with canopy and understory, and the last four columns show the relationship of 

diversity measures obtained by estimated data (corrected-by-detection). Bold values 

indicate a statistical significance at a threshold of 0.05. Asterisk indicates the unique 

case where there was an inversion of the most diverse stratum. TD – taxonomic 

diversity, SES – standardized effect size, PD/FD – phylogenetic/functional diversity, 

MPD/MFD – abundance-based mean pairwise phylogenetic/functional distance, 

MPDi/MFDi – incidence-based mean pairwise phylogenetic/functional distance. 

  Observed data 

 

  Estimated data 

  Estimate SE t value p   Estimate SE t value p 

TD 

         
Canopy 1.440 0.373 3.860 0.004 

 

6.296 0.785 8.021 0.000 

Understory* 0.280 0.140 2.003 0.046 

 

-1.169 0.088 -13.35 0.000 

SES.PD 

         
Canopy -0.547 0.297 -1.841 0.108 

 

-0.459 0.264 -1.739 0.132 

Understory -0.584 0.194 -3.003 0.003 

 

-1.017 0.048 -21.33 0.000 

SES.FD 

         
Canopy -0.589 0.315 -1.873 0.094 

 

-0.772 0.213 -3.619 0.009 

Understory 0.009 0.200 0.047 0.963 

 

-0.038 0.049 -0.764 0.446 

SES.MPDi 

         
Canopy -0.506 0.304 -1.668 0.137 

 

-0.382 0.277 -1.379 0.212 

Understory -0.580 0.186 -3.118 0.002 

 

-1.140 0.051 -22.29 0.000 
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SES.MPD 

         
Canopy -0.546 0.318 -1.719 0.128 

 

-0.480 0.315 -1.523 0.172 

Understory -0.568 0.184 -3.084 0.003 

 

-0.930 0.050 -18.48 0.000 

SES.MFDi 

         
Canopy -0.626 0.306 -2.044 0.072 

 

-0.914 0.218 -4.199 0.004 

Understory 0.087 0.201 0.433 0.666 

 

0.276 0.045 6.188 0.000 

SES.MFD 

         
Canopy -0.680 0.341 -1.996 0.076 

 

-0.922 0.263 -3.505 0.008 

Understory 0.175 0.202 0.866 0.388   0.463 0.044 10.61 0.000 
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Abstract 

1. The Uruguayan savanna biome comprises one of the most extensive areas of 

natural grassland vegetation on the Earth. This biome has significantly changed 

land cover in recent decades, where croplands have replaced natural grasslands. 

Modification of landscape characteristics can affect biodiversity changing 

species occurrence and abundance, which modify the community structure and 

hence the ecosystem functioning in this fragile biome. 

2. Here, we evaluated how microhabitat conditions and landscape affect the 

occurrence and abundance of fruit-feeding butterflies in different communities 

in the Brazilian Pampa biome. Furthermore, we assessed whether intrinsic 

community characteristics, such as community size, can affect the relationship 

between species and the environment.  

3. We found that landscape variables contributed more to explain variation in 

species occurrence, while microhabitat and dispersal trait were more critical to 

explain variation in species abundance. Richness and abundance were generally 

lower under higher temperatures (grassland sites), and this habitat is 

characterized by species with less flight ability. Further, more mobile species 

were benefited under an increasing homogenization of the landscape. Finally, we 

observed that larger communities were more driven by environmental filters 

than smaller communities. 

4. The Pampa naturally comprises a grassland-forest mosaic maintained by low-

intensity farm activities. Heterogenous landscapes can support more species than 

simplified landscapes because they provide distinct microhabitats and potential 
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sources of diversity to surrounding regions. The homogenization of fauna can 

profoundly affect species’ interaction and even ecosystems’ functioning. 

Further, we draw attention to the fragility of communities with few individuals 

since their relationships with the environmental filter are less robust. This 

mismatch between species and environment can reduce our understanding of the 

processes that shape communities and our ability to predict community 

responses to climate and land use change. 

Keywords: Occurrence, abundance, natural grasslands, functional traits, environmental 

filter,  JSDM, community size.
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Introduction 

The Uruguayan savanna biome (Pampa) comprises one of the most extensive 

areas of natural grassland vegetation on the Earth, covering approximately 70 million 

hectares in Southern Brazil, central-eastern Argentina, and Uruguay (Baeza & Paruelo, 

2020). Since the introduction of cattle raising in the 17th century, grazing has 

represented the main economic activity in Pampa and is recognized as a key factor in 

maintaining the ecological features of grasslands, including the prevention of forest 

expansion (Lima et al., 2020; Overbeck et al., 2007; Pillar & Quadros, 1999). 

Unfortunately, in recent decades this biome experienced a significant change in land 

use/land cover, where the natural grasslands were replaced mainly by crops, silviculture, 

and artificial pastures (Baeza et al., 2014; Baeza & Paruelo, 2020). Increasing land use 

intensification is expected to affect biodiversity by decreasing the population size and 

modifying the community structure and the ecosystem functioning (Gámez-Virués et 

al., 2015; Medan et al., 2011). Furthermore, the loss of natural coverage, combined with 

the lower percentages of protected areas, places Pampa as one of the most endangered 

biomes of the world (Hoekstra et al., 2004; Overbeck et al., 2007; Roesch et al., 2009). 

The use of well-known groups of invertebrates could be critical to identify 

priority areas for conservation because they exhibit high sensitivity to environmental 

changes (Brown & Freitas, 2000; New, 1997). For the Pampa biome, there is a gap in 

knowledge of species distribution, especially of invertebrates (Lima et al., 2020; Renner 

et al., 2018), jeopardizing our ability to predict how species can respond to 

environmental change. Within insects, butterflies are used worldwide as biological 

models to understand underlying processes that structure communities at local and 

landscape scales (Börschig et al., 2013; Pavoine et al., 2014) and generally reflect the 

responses of non-target groups (New, 1997). Both landscape and climatic conditions 
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can affect the occurrence and abundance of butterflies (Checa et al., 2019; Santos et al., 

2020). Microclimatic variation can play a significant role in metapopulation dynamics 

controlling abundance (Checa et al., 2019; Xing et al., 2016), and at the community 

level, microclimate can be critical for niche segregation, favoring the persistence of 

diverse communities (WallisDeVries & van Swaay, 2006). On the other hand, low-

intensity farming is important in maintaining local diversity and enhancing biodiversity 

in the surrounding landscape (Ekroos et al., 2013), while increasing land use intensity 

can reduce species diversity and leads to biotic homogenization (Börschig et al., 2013; 

Gámez-Virués et al., 2015). Furthermore, species’ response to microhabitat and 

landscape variables can depend on their life-history traits, such as dispersal ability 

(Öckinger et al., 2010; van Halder et al., 2017). 

Dispersion is a critical trait in determining the survival and persistence of 

species, mainly when there are shifts in climate niches or to connect populations in a 

fragmented landscape (Freire et al., 2021). In butterflies, traits related to wing or thorax 

measures can be related to dispersal capacity because they affect flight performance 

(Chai & Srygley, 1990; Srygley & Chai, 1990). The wing-thorax ratio (WTR) is a 

measure of body allometry, where low WTR values describe a stouter body and faster 

flights, and high WTR values indicate slender bodies and slow flights (Graça et al., 

2017; Hall & Willmott, 2000). Butterflies inhabiting extensively managed grasslands 

experience more stable habitats than intensively managed ones, which allows habitat 

specialization (Börschig et al., 2013). Species specialists have narrow feeding niches, 

lower mobility, and are generally smaller than generalist species (Börschig et al., 2013; 

Freire et al., 2021). Due to their lower dispersal ability, specialized species are more 

affected by landscape changes, both by altering host plant availability and changing 

biotic interactions. Identifying how dispersal-related traits are linked to environmental 
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features could improve our understanding of how species respond to habitat alteration in 

threatened biomes such as Pampa, as well as the identification of species under high 

extinction risk (Börschig et al., 2013; Kotiaho et al., 2005; Pavoine et al., 2014).  

Trait-based approaches benefit from the framework of Assembly Rules 

(Ackerly, 2003; McGill et al., 2006). Assembly rules postulate that deterministic and 

stochastic processes, viewed as filters (Zobel, 1997), can operate at different scales until 

determining the local species composition (Ovaskainen & Abrego, 2020; Zobel, 1997). 

Deterministic processes are related to the niche, including the response of species to the 

environmental gradients (environmental filter) or species interactions (biotic filter), and 

actuate as selective forces, filtering species that can survive and persist in local 

communities (Kraft et al., 2015; Ovaskainen & Abrego, 2020). By considering the traits 

that influence species’ responses to the environment rather than focusing on the species 

itself, we can gain a deeper understanding of assembly processes, which can be linked 

with speciation and adaptation, if we also take into account how these traits evolved 

(Ovaskainen & Abrego, 2020). On the other hand, the stochastic processes can provide 

variation in the local communities by altering the relative abundance of species or their 

occurrences at random (Siqueira et al., 2020). Mechanistic and observational studies 

indicate that stochasticity can play a critical role in communities composed of small or 

isolated populations (Siqueira et al., 2020). Investigating how species respond to 

environmental, biotic, and stochastic filters in different environmental contexts and 

community sizes may be relevant from an applied perspective since many types of 

environmental disturbances, such as land use intensification, can reduce the size of local 

communities, compromising their functioning (Siqueira et al., 2020). 

Fruit-feeding butterflies (Lepidoptera, Nymphalidae) compose a guild that feeds 

mainly on rotten fruit rather than nectar (DeVries, 1987), and due to this characteristic, 
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they can be sampled by standardized and passive methods, allowing comparison among 

different sites (Freitas et al., 2014). Thus, this guild represents an excellent study model 

for evaluating how processes act to assemble distinct communities in the Brazilian 

Pampa. Considering the high threat to the Pampa biome, we aimed to unravel the 

ecological processes that shape the diversity of fruit-feeding butterflies of the Pampas. 

Specifically, we evaluated 1) how the environment filter defined by microclimatic 

conditions and landscape use, dispersal traits, and the phylogenetic relationships act to 

shape the occurrence and abundance of fruit-feeding butterflies, 2) how the community-

level responses (taxonomic and functional) depend on the environmental variation, and 

3) the relationship between the community size and the strength of the environmental 

filter to species distributions. We expect that 1) landscape variables will be more 

important to determine variation in fruit-feeding butterflies’ occurrence than 

microclimate variables, which will be more important to structure the abundance 

variation, and both the trait and the phylogeny will be important in defining the niche of 

species (Freire et al., 2021; Graça et al., 2017). For community level, we expect that 2) 

taxonomic structure will be more affected by microhabitat while functional composition 

will respond more to landscape features, leading to an increase of butterflies with high 

flight mobility at homogeneous sites. Further, we expect 3) that larger communities 

(high abundance) will have a stronger signal of environmental selection processes and 

less effect of stochasticity than small communities. 

Material and Methods 

Study area 

We sampled the fruit-feeding butterflies in four municipalities of the Rio Grande do Sul 

State, southern Brazil: Eldorado do Sul (EEA – 29° 59′ 49.7″ S, 51° 18′ 28.3″ W), 
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Jaguarão (JG – 32° 33′ 58″ S, 53° 22′ 33″ W), São Gabriel (SG – 30° 20′ 9″ S, 54° 19′ 

12″ W), and Quaraí (QR – 30° 23′ 16″ S, 56° 27′ 3″ W) (Fig. 1). For JG, SG, and QR 

we sampled private proprieties in the rural areas of the municipalities, while the EEA 

(Estação Experimental Agronômica) is a public area from the Universidade Federal do 

Rio Grande do Sul, with a total area of 1560ha. All the sampling points are located 

under the Pampa biome domain (Fig 1), consisting of a landscape dominated by 

grasslands, and the forest formation is restricted to slopes and near water bodies 

(riparian forests), composing a natural mosaic (Luza et al., 2014). As the Pampa is in a 

transitional zone between tropical and temperate climates, it has hot summers and cool 

winters and no dry season (Overbeck et al., 2007), the annual precipitation ranges from 

1200–1600mm, and the mean annual temperatures range from 13 – 17 °C. The sampled 

sites have a high heterogeneity in geomorphological composition, which could affect 

the floristic composition and consequently alter the butterflies’ composition (Curtis et 

al., 2015; Roesch et al., 2009). The EEA is located in the Central Depression, where the 

soil is primarily formed from arenitic substrates (sandy soils). São Gabriel and Jaguarão 

belong to the Sul-Riograndense Shield, this formation is dominated by outcrop rocks of 

igneous rock, making the landscape with moderate to strong slopes (Filho et al., 2017; 

Ramos & Koester, 2014), and Quaraí belongs to Serra Geral Formation, composed 

predominantly by basaltic rocks (Silva et al., 2004). 
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Figure 4. Map of the study localities in the Pampa biome, in the southern part of Rio 

Grande do Sul State, Brazil. The number of pictures corresponds to sample areas. 1. 

Eldorado do Sul (EEA), 2. São Gabriel (SG), 3. Quaraí (QR), 4. Jaguarão (JG). 

 

Sampling procedure 

Fruit-feeding butterfly assemblages were sampled in two field expeditions, the 

first between December 2019 and February 2020 and the second between November 

2020 and February 2021. The period between December and March corresponds to the 

summer season in the Southern Hemisphere, which is the best period of the year for 

sampling butterflies (Iserhard et al., 2017). Each local was sampled twice, except for 

EEA, and we alternated the month of sampling between the expeditions, resulting in 

seven independent sampling occasions. The sampling design was equal for all locals 



97 

 

 

and consisted of seven sampling units in the native grasslands and seven sampling units 

in the riparian forests, except for SG, which had only six SU in the riparian forest at the 

first survey. We adopted standardized methods for sampling fruit-feeding butterflies in 

the Neotropical region (Freitas et al., 2014), which consisted in installing five bait traps 

(called Van Someren-Rydon) per sampling unit, which were baited with a mixture of 

mashed bananas and sugarcane juice (Freitas et al., 2014). The traps remained open for 

an average of 10 consecutive days, and we checked the traps daily to replace the bait 

and identify the individuals caught. For those individuals not easily identified during 

sampling, we collect the specimen for identification in the laboratory. In addition, we 

collected and fixed at least one specimen from each species for functional evaluation. 

All released individuals were marked with sequential numbering to avoid recounting. 

The total sampling effort was 48,500 trap hours (97 sampling units and 70 sampling 

days). We measure the temperature and humidity using a Hobo® datalogger, placed 

inside the traps in grasslands and forests. The dataloggers were programmed to take 

measures at an interval of every 30 minutes.  

Data description 

Community data (matrix Y) – the community data is a matrix with the individual counts 

for each species in each sampling unit. We define a community as the set of species 

sampled from a municipality on each sampling occasion (n = 1, ..., 7). From Y, we 

derived the presence-absence data (YPA) for each community – the species have one if 

present and 0 if absent from the sampling unit. Further, we used the Hellinger 

transformation on abundance data to obtain a relative abundance matrix (YNormal), once 

the Hellinger transformation standardizes the abundances to sample totals and then 

square roots them (Legendre & Legendre, 2012). 
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Environmental data (matrix X) – the environmental data contains a categorical variable 

habitat with two levels: grassland or riparian forest, and the microclimatic variables 

temperature and humidity (as cited above), which were pooled across each sampling 

unit for each local and each survey. For each SU of each local, we extract the land use 

and land cover (LULC) as a proportion of Forest Formation, Natural Grassland, and 

Crop area in a buffer of 500m around the sampling unit centroid coordinate. These 

variables were chosen because they represent the natural cover of the Pampa (forest and 

grasslands), as well as anthropic land use for agriculture. The LULC data were acquired 

from the 6-collection of the MapBiomas project (https://mapbiomas.org/), using 2020 as 

the base year and a resolution of 30m2. Although the data on LULC have many classes, 

only 11 classes were included by the buffer (Forest Formation, Forest Plantation, 

Wetlands, Grasslands, Mosaic Agriculture and Pasture, Soybean, River, Lake and 

Ocean, Other Temporary Crops, Other non-Vegetated Areas, Rocky Outcrop, and Rice). 

We define the variable Crop as a sum of the proportion of the variables Forest 

Plantation, Mosaic Agriculture and Pasture, Soybean, Other Temporary Crops, and 

Rice. Wetlands, Rivers, lakes and oceans, Other non-Vegetated Areas, and Rocky 

Outcrop proportions were not used in the analysis.  

Trait data (matrix T) – We gathered values of the wing-thorax ratio (WTR) for all 35 

species sampled. To obtain trait data, we used digital images of species obtained from 

voucher specimens or specimens of museum collections (Unicamp, UFPel). The 

specimens were placed on a white background with a scale bar and photographed using 

a digital camera on a tripod. The linear measures were extracted from the images using 

the software TPSdig version 2.30 (Rohlf, 2015). We measure linear measures for 

forewing length (FWL) and the length and width of the thorax (TL, TW, respectively). 

We used these linear measures to calculate the WTR (𝐹𝑊𝐿2 𝑇𝑉⁄ , when TV is the thorax 
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volume (𝑇𝐿 × 𝑇𝑊2) (Graça et al., 2017)). As we usually measured more than one 

specimen, the WTR represents an average value by specie.  

Phylogenetic data (matrix C) – The phylogenetic data have the phylogenetic 

relationship among the 35 species of fruit-feeding butterflies sampled. We constructed 

our phylogenetic tree using as backbone a phylogenetic hypothesis proposed by Chazot 

et al. (2021). We used a species inclusion procedure based on the cladistic hierarchy. 

Following this procedure, species not represented in the phylogenetic tree were inserted 

as polytomies at the genus node. If there is no species representative of the genus in the 

backbone tree, we searched the literature to find which of the genera present in the 

phylogeny was closest to the species to be inserted and grafted the species as a sister 

group. 

Data analysis 

We evaluated how the environmental variables affect the species’ occurrences and 

relative abundances by fitting a joint species distribution model whit the Hierarchical 

Modelling of Species Communities framework (HMSC, Ovaskainen et al. 2017). We 

build two model structures, one to evaluate the occurrence (PA model) and one to 

evaluate the abundance of the species (Normal model). Despite this, we used the same 

variables to model fixed and random effects. The fixed component models the 

environmental filter, and we include matrix X, traits, and phylogenetic information 

(matrix T and C). As temperature, humidity, and habitat type as correlated, we have 

chosen to use only temperature as the microhabitat descriptor to avoid multicollinearity 

and hence the over-parametrizations of the model (Ovaskainen & Abrego, 2020). In this 

way, high temperatures indicate drier grassland areas, and low temperatures correspond 

to wetter riparian forest areas. For the random component, we opted to include spatially 
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explicit random effects (XY), which describe the spatial coordinates for each sampling 

unity.  

For each community (n=7) we fitted the model PA and Normal, resulting in 14 

models. As occurrence was represented by presence-absence data, we employed a 

Bernoulli distribution with a probit-link function in PA model, while we used Gaussian 

distribution for relative abundance data in Normal model. We ran models with two 

Markov chain Monte Carlo (MCMC), a burn-in of 1000, a thin rate of 10, and 1000 

posterior samples, using the default prior definitions by the HMSC framework 

(Tikhonov et al., 2020). We examine the MCMC convergence using the potential scale 

reduction factor (Gelman-Rubin convergence diagnosis (Gelman & Rubin, 1992). We 

assessed the explanatory power through R2 for Normal and Tjur R2 for PA models. We 

explored the parameters estimated in terms of variance partitioning from model 

components and examined how each variable affects the species niche and if traits and 

phylogeny mediate these effects (β, γ, and ρ). Also, we examine if there are residual 

species associations (Ω) and spatial effects (α). Regarding community-level structure, 

we predict the responses in terms of richness, relative abundance, and community-

weighted trait mean (CWM) for each community in relation to environmental covariates 

included in models and accessed the strength of the relationships through correlation 

tests. 

We performed a linear model to evaluate the relationship between the 

environmental filter and community size, using the model fit of the Normal model (R2) 

as the response and community size (total abundance of each community) as the 

predictor variable. Additionally, we evaluated if the community size is related to the 

variance explained by each environmental variable and by the random part of the model. 
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The scripts and processed data to perform the analysis were stored on GitHub 

https://github.com/richterbine/MS_DiversityofPampaBfly. 

Results 

We collected a total of 4,621 individuals distributed in 36 species and 28 genera 

belonging to the four subfamilies of fruit-feeding butterflies (Table S1). Satyrinae was 

the most abundant (95.8% of the total), being that 98% of the individuals belonged to 

Satyrini. Charaxinae was the second most abundant subfamily (2.2%), followed by 

Biblidinae with 1.9% and Nymphalinae with 0.2%. The riparian Forest plots were richer 

and more abundant than the grassland plots (Table S1; Fig. S1, Supplementary 

material). Regarding the communities, the EEA2 was the richest site (25 species) but 

the less abundant (159 individuals), while QR2 was the most abundant (1,326 

individuals), and, together with JG2, had the lowest richness (12 species). SG1 and SG2 

showed more equitability on abundance distribution (Fig. S1c, Supplementary material), 

and SG1 had higher diversity in terms of subfamily and tribe at grassland sites (Fig. S1 

a-b, Supplementary Material). 

For all communities and both model structures, the MCMC convergence was 

satisfactory (Fig. S2, and Table S2, Supplementary material), and the explanatory power 

was greater than 0.5 (Table 1), indicating a good fit of the PA and Normal models to the 

fruit-feeding butterflies’ data.

https://github.com/richterbine/MS_DiversityofPampaBfly
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Table 3. The mean explanatory power (EP), with their standard deviation (SD), the mean observed occurrence/relative abundance (Obs), and the 

mean predicted occurrence/relative abundance (Pred) for model PA, which model the occurrence of species, and model Normal, which model the 

relative abundance data for each community (EEA – Estação Experimental Agronômica, JG – Jaguarão, SG – São Gabriel; number 1 and 2 

indicate the first and the second field expedition respectively).  

 PA  Normal 

Local EP (Tjur R2) SD Obs Pred  EP (R2) SD Obs Pred 

EEA2 0.79 0.31 62 62.65  0.56 0.38 26.13 26.14 

JG1 0.78 0.26 66 66.01  0.62 0.31 24.14 24.13 

JG2 0.85 0.18 51 51.04  0.75 0.28 17.17 17.17 

QR1 0.52 0.31 66 65.63  0.58 0.26 21.90 21.89 

QR2 0.78 0.25 70 69.70  0.59 0.33 24.22 24.22 

SG1 0.64 0.28 60 60.57  0.53 0.31 22.72 22.72 

SG2 0.76 0.21 47 47.81  0.58 0.27 20.65 20.58 
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Although the explanatory variable that contributed most to the model predictions 

for presence-absence data differed among communities, landscape variables explained 

more than 50% of the variation in the data for five communities (EEA2, JG1, QR1, 

QR2, and SG1, Fig. 2), while in only two the microhabitat was more important (JG2 

and SG2, Fig. 2). In addition, the random part of the PA model explained less than 5%, 

indicating that we included relevant environmental predictors in the fixed part of the 

model for all communities. On the other hand, for relative abundance data, in four 

communities, we had microhabitat conditions as the leading explanatory variable (SG1, 

SG2, JG1, and JG2, Fig. 3), while for two communities, the forest proportion was the 

most important in the variance partitioning (QR1 and QR2, Fig. 3). The random part of 

the model explained more than 10% for all communities, being that for EEA2, it 

explained more than 30% of the variation in the data (Fig. 3).
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Figure 5. Variance partitioning for each community indicating the proportion of explanation from fixed (environmental variables) and random 

components of the model from presence-absence data (PA model). 
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Figure 6. Variance partitioning for each community indicating the proportion of explanation from fixed (environmental variables) and random 

components of model from relative abundance data (Normal model).
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Regarding species response, the WTR did not significantly affect species niche 

with at least 0.90 posterior probability for the model PA for any community. On the 

other hand, WTR was important in explaining more than 50% of the variation in 

species’ occurrences in two communities (QR1 and SG1, Table S3, Supplementary 

material). For the relative abundance data, the opposite occurs. The trait was less 

correlated to abundance variation (Table S3, Supplementary material), but we captured 

a significative association between WTR and species niches for QR1 and SG1, although 

these associations differ between communities (Fig. S3, Supplementary material). We 

did not observe strong evidence for phylogenetic niche conservatism (PNC) in any 

community since the 95% credible interval includes zero (Table S4, Supplementary 

material), excepted by EEA2 (ρ = 0.97, CRI 95% = 0.78 - 1.00, Table S4) on Normal 

model. 

We found a significant signal in the residual species association (Ω) with a 

support level of 0.9 for both presence-absence and relative abundance data (Fig. S4 and 

S5, respectively, Supplementary material). Although the associations changed regarding 

data type (occurrence or abundance), we found mainly positive associations, indicating 

that species tended to co-occur more than expected by chance (Fig. S4 and S5, 

Supplementary material). Indeed, there was no support for spatial signal in the residual 

for any community or model structure, as the posterior distribution of the α overlapped 

with zero (Table S4, Supplementary material).  

For the community-level response to environmental factors, species richness and 

relative abundance were negatively related to the microclimatic condition (Fig. 4a, Fig 

5a). Regarding the landscape variables, the proportion of crops presented an overall 

positive relationship on richness but with less support (Fig. 4g), while for the other 

variables (forest and grassland proportion), we found few and mixed influences on 
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richness with no clear patterns (Fig. 4c and e). The same lack of pattern in community 

responses to landscape variables was observed when abundance was evaluated, 

although the correlations were more robust than in PA models (Fig. 5c, e and g). 

Finally, considering the functional composition, communities located at higher 

temperatures tend to have a higher occurrence and abundance of species with high WTR 

(slower flights, Fig. 4b and Fig. 5b). The response of CWM using occurrence or 

abundance data to landscape variables was very similar, although we found fewer strong 

correlations using occurrence. An increase in the proportion of landscape variables 

(habitat homogenization) tends to increase the occurrence and abundance of species 

with low WTR (faster flights, Fig. 4 d, f, and h, Fig. 5 d, f, and h).
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Figure 7. Predicted responses of species richness and CWM to environmental variables estimated by the PA model. Each colored line represents 

one community, and values within panels describe the strength in correlation (r) between community descriptor and environmental variables. The 

regression lines and confidence intervals (shaded area) were generated by performing a linear model. 
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Figure 8. Predicted responses of relative species abundances and community-weighted trait mean to environmental variables estimated by the 

Normal model. Each colored line represents one community, and values within panels describe the strength in correlation (r) between community 

descriptor and environmental variables. The regression lines and confidence intervals (shaded area) were generated by performing a linear model. 
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 We found that the size of communities positively affected the strength of the relationship 

between community composition and their responses to environmental factors (Fig. 6a). When 

decoupling the effects of each variable with community size, we found that native forest and 

grassland proportion were the main responsible variables in determining the strength of 

community responses and environmental variables (Fig. 6c and d), meaning that bigger 

communities are more affected by natural landscape variables than smaller communities. 

Further, we did not find a significant relationship between the random effect and community 

size. 

 

Figure 9. Relationship between community size (measured as the abundance sum of all species 

sampled for each community) and environmental predictors. a) effect of community size on the 

global model fit, measured as R2. From b) to f) we evaluate the relationship between community 

size in the explained variation by environmental variables (b to e) and random effects (f). The R2 

value inside plots indicates the coefficient of determination for the linear model adjusted. The 

blue line indicates the predicted response, and the gray shadow indicates the confidence interval 

of 95%. 



111 

 

 

Discussion 

Due to the great difference in ecological processes that maintain biodiversity in 

grasslands and forested ecosystem (Luza et al., 2014; Pillar & Vélez, 2010), studies that assess 

how environmental filters shape species distribution in natural grasslands ecosystems are 

essential to guide actions of conservation and sustainable use (Lima et al., 2020; Pillar & Vélez, 

2010). In this study, we investigate the role of environmental and ecological processes in shaping 

fruit-feeding butterflies’ occurrences and abundance in the Brazilian Pampa biome. We highlight 

the different effects that the microhabitat and landscape variables have on the variation of 

occurrence and abundance of species and how landscape homogenization can change the 

functional composition, leading to communities with more generalist species in term of habitat 

requirements. Furthermore, we draw attention to the fragility of communities with few 

individuals. Since their relationships with the environmental filter (deterministic process) are 

weaker, our ability to predict how these communities will respond to climate and land use 

changes is reduced. Because small communities are more subjected to random loss of species 

and individuals than large communities, changes in their composition can lead to a loss in 

functional diversity and hence affecting ecosystem functioning (Gámez-Virués et al., 2015; 

Siqueira et al., 2020). 

We would expect landscape variables to affect species occurrence since its permanence 

depends not only on microclimatic factors but also on habitat structure and the presence of host 

plants (Lawton, 1983). The landscape of Pampa is naturally heterogeneous, generally forming a 

grassland-forest mosaic maintained by low-intensity farm activities such as cattle raising and fire 

(Luza et al., 2014; Pillar & Vélez, 2010). These mosaics can enhance biodiversity because 

structurally complex landscapes can support more species than simple landscapes (Tscharntke et 
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al., 2012). Our results corroborate the patterns found in temperate grasslands, in which semi-

natural grasslands act as population sources exporting individuals to the surrounding habitats 

(Börschig et al., 2013; Ekroos et al., 2013; Öckinger & Smith, 2007). Further, landscape 

variables are important to determine the functional structure of communities, leading to an 

increase in the abundance of more-generalist species (higher flight mobility) according to an 

increase in landscape scale simplification (habitat homogenization, Gámez-Virués et al. 2015). 

Studies in temperate grasslands, and even at Pampa to other taxa, indicate that land use 

intensification leads to a biotic homogenization in insect communities (Börschig et al., 2013; 

Pires et al., 2022; Renner et al., 2018). For communities evaluated in this study, we observed an 

important role of landscape heterogeneity since the increment in the dominance of one land use 

class leads to an increase in the occurrence and abundance of mobile species. Although species 

that inhabit grasslands cannot directly depend on forest resources, they can gain from the natural 

barrier that forests create, increasing the humidity and reducing wind speed.  

On the other hand, microclimate guides variation in species’ relative abundances and 

strongly shapes patterns of richness and abundance of communities. Microclimate plays an 

important role in determining metapopulation dynamics both directly by promoting habitat 

suitability or indirectly by controlling food availability (Checa et al., 2014; Curtis et al., 2015), 

and traits are expected to mediate the relationship between species abundance and environmental 

gradients (Curtis et al., 2015). Individual and community-level responses indicate a negative 

association between species occurrences or relative abundance with temperature. High 

temperatures are associated with grassland habitat in our study, and consequently, we can 

conclude that grassland habitat has fewer species and individuals than plots located in the 

riparian forest. However, regarding functional composition, we observe that grassland habitats 
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are characterized by individuals with low dispersal capacity (large WTR). This indicates that 

individuals inhabiting grasslands tend to be more specialized and less diverse than individuals 

living in riparian forest habitats. Xing et al. (2016), studying butterflies in a tropical woodland 

rainforest in Australia, reported the role of microhabitats in filtering darker and larger individuals 

to the forest interior, while smaller species preferred sunny habitats. Although all the riparian 

forests sampled showed some disturbance level caused by cattle trampling, such as reduced 

understory (Carlucci et al., 2016), they support lower temperatures and provide vertical structure, 

which could be related to other traits like body size and color that reflect distinct adaptive 

strategies (Shreeve et al., 2001; Xing et al., 2016). This result reinforces the importance of 

maintenance of the grassland-forest mosaic, which provides suitable habitat at the microhabitat 

scale and buffers the functional homogenization at the landscape scale (Andrade et al., 2015). 

Deterministic processes (environmental filter) are notably relevant in shaping the 

butterfly communities in the Pampa, but we also observed that intrinsic characteristics of 

communities also influenced how communities respond to environmental gradients. 

Communities with more individuals show a larger influence of the environmental filter than the 

smaller communities. However, we did not find a huge effect of community size in determining 

the relationship between community composition and environment. By decoupling the 

proportion of explanation, we observe that forest and grassland proportions are the landscape 

features that most contribute to the positive association between community size and the 

environmental filter. This relationship is more evident in the Quaraí communities than in other 

locals since Quaraí sites remain in the highly conserved natural landscape (Andrade et al., 2015). 

Due to high stability, species can be more adapted to survive and persist at low disturbed sites, 

increasing the match between niche and environment. On the other hand, EEA2 has the smallest 
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community size and has the highest proportion of variance explained by random components. 

Interestingly, it is in an anthropized matrix, either due to the presence of plantations or the 

proximity to large urban centers. These results may indicate that increasing land use change may 

reduce our ability to predict community response because we lose the correspondence between 

species and their niches, making small communities more fragile and subject to the effect of 

random factors (Siqueira et al., 2020).  

Concluding remarks 

The occurrence of fruit-feeding butterflies, as well as of other taxa (Dala-Corte et al., 

2016; Pires et al., 2022; Renner et al., 2018) in the Brazilian Pampa biome, is structured by both 

landscape and microclimate variables, influencing the species all aspects of community 

structures. In general, our results support that the homogenization of the landscape results in 

communities composed of more generalist species, and therefore, these findings show the 

importance of maintaining the mosaic of forested and grassland areas in the Pampa biome (Luza 

et al., 2014). Furthermore, in the Pampa biome, the new agricultural lands replace mainly native 

grasslands and have been growing in recent years (IBGE, 2020). This can either lead to a change 

in the cooccurrence of species due to change in land cover, as the extinction of grassland 

specialist species, modifying the community composition, ecological interactions, and even the 

ecosystem functioning (Börschig et al., 2013). We hope that these results will improve our 

understanding of how ecological, evolutionary, and stochastic processes act to shape 

communities, especially in highly threatened ecosystems such as the Pampa.
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Supplementary material 

 

Figure S1. Distribution of fruit-feeding butterflies' abundances at the subfamily level 

(a), the Tribe level (b), and by species (c). The data was split between forest and 

grassland habits, and by communities – Estação Experimental Agronômica (EEA), 

Jaguarão (JG), Quaraí (QR), and São Gabriel (SG). The numbers that followed the 
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community’s name indicate the survey season: 1 for summer 2020, and 2 for summer 

2021. The abundance data (y-axis) was squared-rooted for better visualization of the 

data.  
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Figure S2. MCMC convergence diagnosis for the parameters estimated by the two 

model structures implemented: a) the presence-absence data with a probit distribution 

(PA), and b) the relative abundance data with a normal model (Normal), measured in 

terms of the potential scale reduction factor. The convergence of MCMC was evaluated 

for each community, represented by the colors. α – parameter related to the spatial 

structure of the model; β – parameter related to the species niche; γ – parameter related 

to the effects of traits on species niche; Ω - parameters related to the phylogenetic signal 

of the species’ niche. The dashed line represents the expected threshold of 1.1, which 

indicates a good convergence of MCMC. 
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Figure S3. Heatmap of estimated γ parameters linking the mean wing-thorax ratio 

(mWTR) to species niches. Blue and red colors represent parameters that are estimated 

to be positive and negative, respectively, with at least 0.90 posterior probability. JG – 

Jaguarão; QR – Quaraí; SG – São Gabriel. The numbers that follow the community 

names indicate the sampling occasion.
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Figure S4. Residual species association (Ω) for presence-absence data (model PA) 

showing the associations that were positive or negative with at least 0.90 posterior 

probability.
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Figure S5. Residual species association (Ω) for relative abundance data (model Normal) showing the associations that were positive or negative 

with at least 0.90 posterior probability.
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Table S1. List of fruit-feeding butterflies species sampled in four localities of the Brazilian Pampa – Estação Experimental Agronômica (EEA), 

Jaguarão (JG), Quaraí (QR), and São Gabriel (SG) – at native grasslands and riparian forest plots. The samples was collected in two summer 

seasons, one between December 2019 and February 2020 and another between November 2020 and March 2021. 

  Native Grasslands     Riparian Forest     Total 

Subfamily/Tribe/Species EEA JG QR SG   EEA JG QR SG   

Biblidinae 
 

4 3 4 
 

4 24 27 22 88 

Ageroniini 
     

1 
 

1 7 9 

Hamadryas epinome (C. Felder & R. Felder, 1867) 
       

1 7 8 

Hamadryas februa (Hübner, [1823]) 
     

1 
   

1 

Biblidini 
     

1 
 

3 2 6 

Biblis hyperia (Cramer, 1779) 
     

1 
 

3 2 6 

Callicorini 
     

1 7 1 2 11 

Catagramma pygas (Godart, [1824]) 
        

2 2 

Diaethria candrena (Godart, [1824]) 
     

1 7 1 
 

9 

Catonephelini 
 

4 3 4 
 

1 17 22 11 62 

Eunica eburnea Fruhstorfer, 1907 
 

4 
 

1 
 

1 17 12 9 44 

Eunica tatila (Herrich-Schäffer, [1855]) 
  

3 3 
   

10 2 18 

Charaxinae 
   

2 
 

13 27 31 28 101 

Anaeini 
   

2 
 

8 24 31 12 77 
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Memphis moruus (Fabricius, 1775) 
     

4 3 30 4 41 

Zaretis strigosus (Gmelin, [1790]) 
   

2 
 

4 21 1 8 36 

Preponini 
     

5 3 
 

16 24 

Archaeoprepona amphimachus (Fabricius, 1775) 
     

1 
   

1 

Archaeoprepona demophon (Linnaeus, 1758) 
     

2 
  

16 18 

Archaeoprepona demophoon (Hübner, [1814]) 
     

2 
   

2 

Prepona pylene Hewitson, [1854]  
      

3 
  

3 

Nymphalinae 4 
  

1 
 

2 
   

7 

Coeini 
   

1 
 

1 
   

2 

Historis achaeronta (Fabricius, 1775) 
   

1 
 

1 
   

2 

Nymphalini 4 
    

1 
   

5 

Smyrna blomfildia (Fabricius, 1781) 4 
    

1 
   

5 

Satyrinae 66 42 257 160 
 

205 1150 2146 399 4425 

Brassolini 
     

7 9 
 

2 18 

Blepolenis batea (Hübner, [1821]) 
      

3 
  

3 

Dinastor darius (Fabricius, 1775) 
        

2 2 

Eryphanis reevesii (E. Doubleday, [1849]) 
     

5 
   

5 

Narope cyllastros E. Doubleday, [1849] 
     

1 
   

1 

Opoptera aorsa (Godart, [1824]) 
     

1 
   

1 

Opsiphanes invirae (Hübner, [1808]) 
      

6 
  

6 
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Morphini 
      

7 29 
 

36 

Morpho epistrophus (Fabricius, 1796) 
      

7 29 
 

36 

Satyrini 66 42 257 160 
 

198 1134 2117 397 4371 

Capronnieria galesus (Godart, [1824]) 
     

3 9 
  

12 

Carminda paeon (Godart, 1824) 
     

5 61 
  

66 

Cissia eous (Butler, 1867) 4 
 

7 2 
 

14 
 

54 14 95 

Cissia phronius (Godart, [1824]) 
  

16 4 
 

28 249 1044 184 1525 

Erichthodes narapa (Schaus, 1902) 9 
        

9 

Hermeuptychia sp Forster, 1964 2 
 

11 
  

11 42 49 22 137 

Moneuptychia soter (Butler, 1877) 1 
    

24 106 112 28 271 

Paryphthimoides poltys (Prittwitz, 1865) 
     

74 663 833 114 1684 

Stegosatyrus periphas (Godart, [1824]) 1 
 

1 
      

2 

Taygetis ypthima Hübner, [1821] 
     

3 
 

1 
 

4 

Yphthimoides affinis (A. Butler, 1867) 1 
        

1 

Yphthimoides celmis (Godart, 1824]) 
 

42 222 154 
 

2 4 24 35 483 

Yphthimoides ochracea (Butler, 1867) 48 
    

24 
   

72 

Yphthimoides ordinaria Freitas, Kaminski & Mielke, 2012 
     

10 
   

10 

Total 70 46 260 167   224 1201 2204 449 4621 
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Table S2. Potential scale reduction factor for the ρ parameters, considering two model 

structures: PA – presence-absence data with a probit distribution, and Normal – the 

Hellinger transformed abundance data with a normal distribution. Values in italic 

indicate values higher than the acceptable threshold of 1.1.  

Model Local Estimated Upper CI 

PA EEA2 1.00 1.00 

JG1 1.10 1.35 

JG2 2.46 5.27 

QR1 1.08 1.15 

QR2 1.00 1.01 

SG1 1.02 1.02 

SG2 1.16 1.55 

Normal EEA2 1.00 1.00 

JG1 1.00 1.00 

JG2 1.00 1.01 

QR1 1.00 1.00 

QR2 1.00 1.00 

SG1 1.00 1.00 

SG2 1.00 1.00 
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Table S3. Proportions of variance in species niches explained by the trait (mWTR) 

included in the model for presence-absence data (PA) and relative abundance data 

(Normal), as well as the proportion of variance that the mWTR explain out of species 

occurrence/relative abundances (Y). 

Model Local Intercept Temp Forest Grassland Crop Y 

PA EEA2 16.37 14.66 18.63 12.75 11.48 4.39 

 JG1 16.59 16.95 15.63 16.22 18.18 12.32 

 JG2 10.24 11.10 3.07 2.66 1.60 7.40 

 QR1 56.98 5.21 61.22 60.12 82.97 72.86 

 QR2 1.74 2.66 1.56 3.79 63.56 28.82 

 SG1 36.21 28.49 21.23 48.27 65.19 60.70 

 SG2 11.90 7.56 59.56 37.99 48.38 32.26 

Normal EEA2 11.57 7.83 33.34 34.33 33.28 10.66 

 JG1 9.25 1.58 39.61 52.89 51.62 4.06 

 JG2 14.92 7.08 33.01 49.88 48.49 11.65 

 QR1 51.16 16.19 79.28 83.06 15.39 28.65 

 QR2 22.11 12.36 56.87 57.65 16.96 14.16 

 SG1 10.13 12.31 57.31 52.89 29.77 22.91 

 SG2 8.38 5.20 37.37 40.48 25.42 18.67 
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Table S4. Estimated α and ρ parameters. Values in bold indicate a significative signal. We 

chose to show only the two leading latent factors (factor1 and factor2) because they explain 

most of the variation. 

   Probit  Lognormal Poisson  Normal 

      2.5% 50% 97.5%   2.5% 50.0% 97.5%   2.5% 50% 97.5% 

EEA2 α factor1 0.00 0.00 0.02 
 

0.00 0.01 0.04 
 

0.00 0.00 0.00 

  
factor2 0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
0.00 0.00 0.03 

 
ρ 

 
0.00 0.12 0.39 

 
0.00 0.15 0.64 

 
0.83 0.97 1.00 

JG1 α factor1 0.00 0.00 0.02 
 

0.00 0.00 0.04 
 

0.00 0.00 0.00 

  
factor2 0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
ρ 

 
0.00 0.00 0.41 

 
0.00 0.24 0.88 

 
0.00 0.81 1.00 

JG2 α factor1 0.00 0.00 0.01 
 

0.00 0.00 0.04 
 

0.00 0.00 0.00 

  
factor2 0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
ρ 

 
0.00 0.25 0.78 

 
0.00 0.00 0.62 

 
0.00 0.82 1.00 

QR1 α factor1 0.00 0.00 0.04 
 

0.00 0.00 0.02 
 

0.00 0.00 0.02 

  
factor2 0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
0.00 0.00 0.04 

 
ρ 

 
0.00 0.00 0.41 

 
0.00 0.30 0.90 

 
0.00 0.76 1.00 

QR2 α factor1 0.00 0.00 0.04 
 

0.00 0.00 0.04 
 

0.00 0.00 0.00 

  
factor2 0.00 0.00 0.04 

 
0.00 0.00 0.05 

 
0.00 0.00 0.04 

 
ρ 

 
0.00 0.10 0.71 

 
0.00 0.00 0.91 

 
0.00 0.45 0.98 

SG1 α factor1 0.00 0.00 0.01 
 

0.00 0.00 0.01 
 

0.00 0.00 0.00 

  
factor2 0.00 0.00 0.02 

 
0.00 0.00 0.02 

 
0.00 0.00 0.02 

 
ρ 

 
0.00 0.13 0.69 

 
0.00 0.42 0.99 

 
0.00 0.82 1.00 

SG2 α factor1 0.00 0.00 0.01 
 

0.00 0.00 0.03 
 

0.00 0.00 0.02 

  
factor2 0.00 0.00 0.03 

 
0.00 0.00 0.03 

 
0.00 0.00 0.03 

  ρ   0.00 0.28 0.73   0.00 0.05 0.93   0.00 0.76 0.99 
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Abstract 

1- The Atlantic Forest is among the world’s top five biodiversity hotspots and currently, 

only 40% of its total area is composed by natural coverage. Here, we evaluated the role of 

the landscape and climatic variables in defining species niches and how response traits 

and phylogenetic relationships mediate species responses. Also, we mapped the richness 

and functional composition of fruit-feeding butterflies along the Trinational Atlantic 

Forest, highlighting centers of diversity as well as the main filters that determine species 

distributions.  

2- We used occurrence data of the fruit-feeding butterflies of 60 communities along the 

Atlantic Forest. We employed the Hierarchical Modelling of Species Communities 

framework to model the species niche and community-level responses to environmental 

filters (macroclimatic and landscape variables) and to predict the spatial distribution of 

richness and community-weighted mean traits. 

3- Fruit-feeding butterfly communities are mainly composed of rare species (low 

occurrence), and species occurrence was determined primarily by macroclimatic 

conditions. The traits explained more than 50% of the variation in species niches, and we 

detected a phylogenetic niche conservatism in species responses. At the community level, 

richness and aspect ratio have similar responses to environmental variables, mainly 

positive. Community-mean body size respond negatively to open formations, 

temperature, and elevation.  

4- Despite the high rates of landscape modification in the Atlantic Forest, the macroclimatic 

variables guided species’ responses to environmental filters. We observed joint responses 

of phylogenetic closed related species, indicating the strength of niche conservatism for 

fruit-feeding butterflies and corroborating the group-level response in this guild. On the 

macroecological scale, the dispersal trait is correlated with species richness, indicating 
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that dispersion may be important to maintain the high levels of richness, mainly in the 

Araucarian transitional zone. On the other hand, the body size that responds to seasonality 

at small scales is constrained by elevation on larger scales, supporting the converse-

Bergmann rule for this guild.  

5- Our results enhance the importance of both landscape and climatic variables in structure 

species occurrence in the Atlantic Forest, emphasizing the role of traits and phylogeny in 

defining species niches. Identifying how macroecological patterns are linked to 

environmental predictors can improve our understanding of the key processes that make 

the Atlantic Forest a diversity hotspot. 

Keywords: community assembly, environmental filters, fruit-feeding butterflies, Joint 

Species Distribution Models (JSDM), landscape, phylogenetic niche conservatism (PNC), 

species traits. 
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Introduction 

The Atlantic Forest is globally recognized for its biodiversity and is among the world’s top 

five biodiversity hotspots (Marques & Grelle, 2021; Myers et al., 2000). However, since the 

arrival of the Portuguese colonizers, a long history of human interaction and transformation 

of this biome began, which profoundly altered its landscape, leaving only 12.6% of native 

vegetation cover in Brazil (IBGE 2020; Marques and Grelle 2021). Natural coverage 

(including forest and non-forest formation) represents approximately 40% of the total area of 

the Atlantic Forest, while around 57% of Atlantic Forest coverage is attributed to anthropic 

use (urbanization and agriculture/farming) (Projeto MapBiomas Mata Atlântica Trinacional, 

2022). Changes in the landscape are expected to cause changes in local communities altering 

habitat structure, food resources, and species interactions, which are related to niches and 

processes that define species occurrences (Ovaskainen et al., 2017; Sobral-Souza et al., 

2021). In addition to altering the taxonomic composition, landscape modifications can 

produce a homogenization of functional traits, shifting the communities from specialists to 

generalist species and hence modifying ecological interactions (Bagchi et al., 2018; Börschig 

et al., 2013; Gámez-Virués et al., 2015). In this way, determining to what extent species-

specific traits are linked to environmental filtering and whether phylogenetically related 

species exhibit shared environmental responses could help us understand how climate and 

landscape changes affect species distributions in this threatened biome (Marques & Grelle, 

2021; Poggiato et al., 2021; Tikhonov et al., 2020). 

Community data obtained from non-manipulative observational approaches are 

shaped by the full complexity of the assembly processes, but since these processes can rarely 

be observed directly, we end up inferring them based on patterns (Ovaskainen et al., 2019; 

Pilowsky et al., 2022). However, the same pattern can be generated by distinct processes, and 

this ambiguity does not allow us to assess the importance of each process (ecological, 
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evolutionary, or stochastic) in structuring communities (Pilowsky et al., 2022). Model-based 

approaches are a rising field within community ecology. They seek to incorporate the 

assembly processes that determine variation in species occurrence, identity, and traits across 

space and time (Tikhonov et al., 2020). At the macroecological scale, Species Distribution 

Models (SDM) are largely used to infer species-specific and community-level responses 

(stacked) to environmental variables, however this analytical tool models species 

independently, restricting our understanding of biotic filtering, evolutionary constraints, and 

distribution of rare species (Ovaskainen & Abrego, 2020). To address non-independence in 

species response, Joint Species Distribution Models (JSDM) explicitly accommodate the 

multivariate nature of biological communities by linking species responses to the 

environment (Poggiato et al. 2021). These joint responses of species could improve our 

ability to model biological communities, even those dominated by rare species (Ovaskainen 

& Abrego, 2020), opening new possibilities to answer questions about species interactions 

(Tobler et al., 2019) but also to test directly ecological hypotheses (Ellison, 1996).  

Within modern theories of community assembly, the Assembly Rules Framework 

refers to any process that facilitates or restricts the occurrence of a species (Keddy, 1992). 

Processes can be viewed as filters that operate at different scales and ultimately define 

species composition in local communities. Within this framework of filters, processes related 

to large-scale historical patterns of speciation and migration are treated distinctly from 

ecological processes, which determine species composition due to small-scale dispersal 

events, abiotic variation (environmental filters), and biotic interactions (biotic filters) (Keddy, 

1992; Ovaskainen & Abrego, 2020). Further, species traits and phylogenetic relationships can 

influence how species respond to environmental filters. Traits related to dispersal and 

competitive ability can indicate which species can reach and colonize certain areas and which 

species can secure adequate resources (McGill et al., 2006; Ovaskainen et al., 2017). 
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Including functional traits rather than focusing on the species per se allows for a better 

understanding of assembly processes (Pavoine & Bonsall, 2011) since we can link these 

processes with speciation and adaptation if we consider how these traits evolved (Ovaskainen 

& Abrego, 2020).  

Macroecological variables can influence biodiversity patterns by modifying species 

richness directly through physiological constraints or indirectly by modulating energy 

availability in the system, i.e., host plants (Menéndez et al., 2007; Wright, 1983). In a recent 

study, Santos et al. (2020) found that climate and landscape predict high species richness for 

fruit-feeding butterflies in zones described as centers of endemism (sensu da Silva and 

Casteleti 2003) in the Atlantic Forest. Fruit-feeding butterflies are recognized as relevant 

study models because their response to environmental variations is rapid and robust, and they 

serve as a proxy for the response of other groups (Brown & Freitas, 2000). Despite the 

important results brought by the study of Santos et al. (2020) and the implications for 

conservation, the authors ignore biotic interactions and evolutionary processes when 

modeling species niches. Identifying and including ecological traits that influence species’ 

response to environmental conditions can improve predictions of species occurrence and 

community-level responses to climate change (Ovaskainen & Abrego, 2020; Xing et al., 

2018). 

Furthermore, we can access ecogeographic patterns related to functional composition 

and relate this pattern to ecosystem functioning (biomass ratio hypothesis) (Grime, 1998) 

since the functional traits of dominant species are expected to be correlated to ecologically 

meaningful properties of communities (Duarte et al., 2018; Ricotta & Moretti, 2011). A 

recognized macroecological pattern for animals is the Bergmann rule, which postulates that 

body size is expected to increase with latitude/altitude (Shelomi, 2012). However, this 

relationship may be inverse for ectothermic organisms, such as butterflies, i.e., the organisms 
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are smaller as latitude/altitude increases, resulting in the converse Bergmann rule. The 

converse Bergmann rule arises in insects due to restrictions in the “optimal time window”, 

which decreases the time for foraging and growth, reducing body size (Lehnert et al., 2012; 

Shelomi, 2012). 

Here we modeled the occurrence of fruit-feeding butterflies along the Trinational 

Atlantic Forest (TAF), employing a JSDM framework conceptually linked to the assembly 

rules framework. Specifically, we investigated: 1) how much variation in species occurrence 

is due to environmental filtering, co-occurrences, and random processes? 2) how do species 

traits and phylogenetic relationships correlate with ecological niches? 3) how do predicted 

richness and functional composition vary in response to environmental conditions and 4) how 

are these patterns distributed along TAF? We expected that 1) species will respond positively 

to an increase in the mean temperature and precipitation, as well as natural coverage (open or 

forest natural proportion), and negatively to anthropogenic disturbances (urbanization and 

agricultural proportion) and altitude, but due the high habitat heterogeneity of TAF (Marques 

& Grelle, 2021), landscape variables will be more critical than macroclimatic variables to 

explain variation in species occurrences; 2) Species with small body size and fast-flights (low 

aspect ratio) will increase their occurrence probabilities under human-modified landscapes. 

Large species need more resources for their development and are more vulnerable to habitat 

loss than smaller ones (Freire et al., 2021; Shahabuddin & Terborgh, 1999), while mobile 

organisms can cross barriers and exploit ephemeral and unpredictable resources (Denno et al., 

1996; Shahabuddin & Terborgh, 1999). 3) At the community level, we expect an increase in 

species richness as forest cover, temperature, and precipitation increase, while community-

weighted mean (CWM) will be associated with human-modified landscapes, in which we will 

observe a reduction in mean body size and increasing in dispersive capacity for communities 

under intensive land use; 4) at a macroecological scale, we expect to find hotspots matching 
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known endemism centers in TAF (Silva and Casteletti, 2003) and a converse-Bergmann rule, 

where insects get smaller as latitude/altitude increases. 

Methods 

Study area 

TAF is the second-largest forest in South America, being that 93% of its distribution 

is located in Brazilian territory, followed by Paraguay (5.3%) and Argentina (1.7%) (Fig. 1). 

The limits of TAF that we used in this study was defined based on the spatial file provided by 

MapBiomas Mata Atlantica Trinacional project (https://bosqueatlantico.mapbiomas.org/). 

Given its extent, the TAF has a wide range in both latitude and longitude (approximately 31° 

in latitude and 23° in longitude), covering everything from coastal environments to the 

interior of the continent, as well as experiencing distinct regimes of climatic conditions. The 

climate, according to the Köppen-Geiger climate classification, includes the major types A 

(tropical), B (arid), and C (temperate) (Peel et al., 2007). All these heterogeneities can be 

related to distance from the tropics or by association with high-altitude areas (Marques & 

Grelle, 2021). Unfortunately, the extent of the TAF does not represent the extent of the 

natural forest formation but rather a mosaic of forest fragments with anthropized areas. In 

Figure 2, we showed the variation in macroclimatic conditions (Fig 2A and B), topographic 

structure (Fig 2C), and land use and land cover (Fig. 2D) over TAF. 

https://bosqueatlantico.mapbiomas.org/
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Figure 10. Map of the TAF domain (green polygon), which covers the coastal portion of 

Brazil, a small proportion of Paraguay, and Argentina. The red dots represent the coordinates 

of the fruit-feeding butterfly communities accessed in this study (n = 60). The black lines 

indicate country limits. The inset shows the position of the study site within the South 

American continent.  
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Figure 11. Patterns of distribution of macroclimatic variables, topographic variation, and 

classes of land use and land cover for tri-national Atlantic Forest. a) Annual mean 

temperature (°C); b) Precipitation of Warmest Quarter (mm); c) Elevation (m); d) Land Use 

and Land Cover classes. The distribution of variables was generated for a spatial resolution of 

1 Km2.
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Fruit-feeding butterflies community data 

We started by reviewing the dataset from Santos et al. (2018), selecting only studies 

that sampled fruit-feeding butterflies with bait traps and standardized baits (Freitas et al., 

2014) or a combination of active search with entomological nets and bait traps. Because this 

information was not explicit in the dataset, we reviewed each article cited by Santos et al. 

looking for the sampling method used and the total sampling effort of the study (trap hours). 

Studies that did not fit the methodological criteria cited above and those that we could not 

find online were removed from the dataset. Further, we complemented the dataset by 

performing a search of published and unpublished articles using the terms “fruit-feeding 

butterflies”, “bait-traps,” and “Atlantic Forest” on scientific search platforms such as Web of 

Science and Google Scholar. We added some studies published after 2018 and hence not 

included in the dataset by Santos et al. (2018), as well as studies carried out in the ecotones 

region between Atlantic Forest and Caatinga or Cerrado biomes.  

We compiled 68 studies and took information from 75 sampling locations (hereafter 

called communities). However, we only used information about 60 communities since the 

remaining 15 communities were out of the TAF limit established in this study. For each 

community, we obtained information about the location as Country, State, Municipality, 

study area, and geographic coordinates when available. When the geographic coordinates 

were not provided, we took the coordinates at the centroid of the sampling sites from Google 

Earth. The species list comprises only species treated as true fruit-feeding butterflies that 

belong to four subfamilies of Nymphalidae (Charaxinae, Biblidinae (except Dynamine), 

Satyrinae, and the tribes of Nymphalini and Coeini belonging to Nymphalinae) (Freitas et al., 

2014). Those subfamilies comprise a guild that feeds exclusively on rotting fruits, plant 

exudate, and decaying material, such as feces and carrion (Devries, 1988). The raw dataset 
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encompasses a total of 280 species, 14 tribes, and 85 genera belonging to the four subfamilies 

of fruit-feeding butterflies. The species names were checked for taxonomic classification 

changes to meet this guild’s most up-to-date nomenclature, especially for Satyrinae (Espeland 

et al., 2019). The metadata is available on GitHub 

https://github.com/richterbine/MS_Hotspots_inside_the_Hotspot/tree/main/data/raw/bfly.  

Functional data 

We obtained information on functional traits for 258 of the 280 fruit-feeding butterfly 

species on TAF. We extract the functional data using digital images of the fruit-feeding 

butterflies registered in TAF. The images were obtained by taking photos of museum 

collections – Museu de Zoologia ‘Adão José Cardoso’, at Universidade Estadual de 

Campinas – or by searching in digital collections of museums (https://collections-

zoology.fieldmuseum.org/list) and accessing images deposited in the Butterflies of America 

website (http://www.butterfliesofamerica.com/). We extracted nine linear measurements 

representing the width and length of the wings and body parts from images with a scale bar. 

We tried to obtain more than one measurement per species and select only males in order not 

to include variations related to sexual dimorphism. Therefore, trait values represent the mean 

value of traits for males of the species. In the way to select traits related to flight performance 

and competitive ability, we choose body size, represented by the mean forewing length 

(FWL), and the aspect ratio (AR), which is a derived measure, calculated as 4*FWL2/FA*2, 

where FA is the forewing area, calculated as the product of forewing length and forewing 

width. While body size variation can be associated with diet breadth and abundance of 

butterflies (Freire et al., 2021), AR represents the wing shape and is related to flight 

performance, being that species with long and narrow wings (large aspect ratio) are 

https://github.com/richterbine/MS_Hotspots_inside_the_Hotspot/tree/main/data/raw/bfly
https://collections-zoology.fieldmuseum.org/list
https://collections-zoology.fieldmuseum.org/list
http://www.butterfliesofamerica.com/
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aerodynamically more efficient than short and wide wings (low aspect ratio) (Mena et al., 

2020). We used the software TPSutil and TPSdig2 (http://www.sbmorphometrics.org/soft-

dataacq.html) to rescale images and perform the linear measurement.  

Phylogenetic information 

We used the phylogenetic tree of Nymphalidae proposed by (Chazot et al., 2021) to 

obtain the phylogenetic relationship among all species of fruit-feeding butterflies recorded 

within the TAF boundaries. Unfortunately, phylogenetic trees do not always carry all the 

information about the species relationships described for the taxon, so we adopted a species 

inclusion procedure based on the cladistic hierarchy. Following this procedure, species that 

occurred at TAF but were not represented in the Nymphalidae backbone tree were grafted as 

polytomies in the genus node if there were at least one species of the genus in the tree. In case 

of no representative of the genus, the species were placed nearest to the sister genus in the 

tree. Finally, we prune the Nymphalidae backbone tree to represent only the phylogenetic 

relationships of the 258 species of fruit-feeding butterflies, for which we also have functional 

information. We manipulate and prune the phylogenetic tree using the R environment (R 

Core Team et al., 2021), employing the packages ape v. 5.6-2 (Paradis & Schliep, 2019), 

geiger v 2.0.7 (Pennell et al., 2014), and phytools v. 1.0-1 (Revell, 2012). 

Environmental and spatial data 

We use spatial data from two sources: the Wordclim 2.1 database 

(https://worldclim.org/data/worldclim21.html) and the MapBiomas Mata Atlantica 

Trinacional project (https://bosqueatlantico.mapbiomas.org/). From Worldclim, we extract 

the current climatic data from 19 bioclimatic variables (BIO) and the elevation at a resolution 

http://www.sbmorphometrics.org/soft-dataacq.html
http://www.sbmorphometrics.org/soft-dataacq.html
https://worldclim.org/data/worldclim21.html
https://bosqueatlantico.mapbiomas.org/
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of 30s (each pixel has approximately 900m2). We select two variables from 19 BIOs 

corresponding to the annual mean temperature (BIO 1) and the precipitation of the warmest 

quarter (BIO 18). These variables were chosen because they are related to butterfly activity 

and physiological requirements (Brown & Freitas, 2000). From MapBiomas, we obtained the 

land use and land cover (LULC) data, considering the first collection of the Trinational 

covering of the Atlantic Forest (Argentina, Brazil, and Paraguay) by the Google Earth Engine 

toolkit. The LULC is a raster composed of 12 classes of land use and land cover, mapped in a 

30m scale (each pixel has 30m2) considering the most recent year available, i.e., 2019. We 

started processing the data by resampling the pixel size of the LULC, BIO, and elevation to 

correspond to approximately 1 km2. We reclassified the entire extension of the Atlantic 

Forest into six classes from MapBiomas: Forest Formation, Natural Open Formations 

(composed of Savanna Formation, Grassland, and Rocky outcrop), Agriculture (composed of 

Forest Plantation, Pasture, Agriculture, Mosaic of Agriculture and Pasture), Urbanization 

(Non-vegetated area), Non-Forest Natural Formations (composed by Wetland, Other Non-

Forest Natural Formation), and Water (River, Lake, and Ocean). We used the new LULC 

classification to extract the percentage of each of the six classes in a 1km buffer around each 

community, therefore returning the proportion of coverage of each LULC class for each 

community. We manipulated the spatial data mainly using the package raster v. 3.5-15 

(Hijmans, 2022) on the R environment (R Core Team et al., 2021). 

Data analysis: HMSC Framework 

The Hierarchical Modeling of Species Community framework (HMSC) is a 

multivariate hierarchical generalized linear mixed model fitted with Bayesian inference and 

belongs to the JSDM approaches. Before performing analysis in the HMSC framework, we 
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had to prepare the data in matrices. The community data (matrix Y) comprised the 

presence/absence of 258 species of fruit-feeding butterflies in each of the 60 communities 

distributed along the TAF (red dots, Fig. 1). The matrix X described the environmental 

covariates, that we called climatic variables (annual mean temperature and precipitation of 

the warmest quarter), a topographic variable (Elevation), and land use and land cover or 

landscape variables (proportion of natural forest formation, proportion of natural open 

formations, proportion of urban area, proportion of agricultural area). The matrix T described 

the mean values of the body size, measured as forewing length (FWL) and the aspect ratio 

(AR) for the 258 species. Also, we provide the phylogenetic relationship for the 258 species 

to consider the non-independent evolutionary history of species (matrix C). All these 

matrices were related to the fixed component of the HMSC. In the random component, we 

included an explicit spatial random effect at the sampling location level by providing the 

spatial coordinates of the communities (xy). 

We fitted three concurrent models: mFULL, mENV, and mSPACE, all models 

include the matrix T and C, and we used probit regression to model species occurrence 

probabilities at each site. The first model, mFULL contains the environmental covariates 

(matrix X) as fixed effects and the spatial scale as random effects. The mENV only accounts 

for environmental covariates (matrix X), i.e., no random effects, whereas mSPACE only had 

random effects. We ran the HMSC framework with default prior definitions (Ovaskainen et 

al., 2017; Ovaskainen & Abrego, 2020) and standardized the X and T matrices to ensure 

reasonable performances of the priors. We ran the model for three MCMC chains, a thin rate 

of 50, and a sample of 100 values per chain. The first 25,000 values were discarded as 

transient. We used the package Hmsc v.3.0-11 (Tikhonov et al., 2020) in the R environment 

(R Core Team, 2021). 
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We evaluated the model’s convergence based on the potential scale reduction factor 

(Gelman & Rubin, 1992) for parameters related to niche and residual species associations. 

We assessed the best-fitted model employing a Widely Applicable Information Criterion 

(WAIC) among the three models, which describes the goodness of fit concerning model 

complexity (Ovaskainen & Abrego, 2020). Using the best model selected (lower WAIC), we 

evaluated fixed and random effects on species occurrence and assessed the exploratory and 

predictive power via 4-k-fold cross-validation. We evaluated the niche parameters (β) and the 

effect of traits and phylogeny in the species niche (γ and ρ, respectively). Further, we used 

the parameters estimated to predict the community-level response considering each variable 

for richness, community-weighted mean body size (CWM – FWL), and community-weighted 

mean aspect ratio (CWM – AR). We measured the strength of the relationship between 

community structure and environmental covariate through a correlation test and considered a 

correlation coefficient higher than 0.7 as significant. Finally, we used the posterior predictive 

distribution of the parameters to predict the species’ occupancy probability by cell grid (1 

km2) along with the TAF. From the expected occupancy matrix, we derived the mean 

occupancy probability by subfamily and tribe and the richness by summarizing information 

within communities. Further, we used the expected occupancy matrix to predict the spatial 

distribution of body size and AR along TAF. We used the package ggplot2 v. 3.3.5 

(Wickham, 2016) and its extensions to data visualization. All codes to perform the analysis 

were stored on GitHub (https://github.com/richterbine/MS_Hotspots_inside_the_Hotspot). 

Results 

We extract information from 60 sampling sites regarding the presence or absence of 

258 species of fruit-feeding butterflies. Most species had a prevalence lower than 0.3 
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(78.3%), and less than 4% had a prevalence higher than 0.7 (Fig. S1a, Supplementary 

material). Observed species richness varied from eight to 109 and was not correlated with 

sampling effort (r = 0.17, t = 1.31, p = 0.19). Most sites had a richness between 20 and 60 

species (Fig. S1b, Supplementary Material). We considered that the convergence diagnostic 

of the MCMC for all models was satisfactory since, for most parameters, the potential scale 

reduction factor is close to the optimal value of one (Fig. S2 mFULL, Supplementary 

Material). Based on WAIC, the model mFULL, which included both environmental 

covariates and random spatial effects in its structure, fitted the data better than the model that 

only considered environmental covariates (WAICmFULL = 77.04, WAICmENV = 91.94) but 

hardly differed from the spatial model (which did not consider environmental covariates) 

(WAICmSPACE = 77.57). The model mFULL had an explanatory power of 0.30 (average Tjur 

R2) and a predictive power of 0.10 (cross-validation average Tjur R2), and the following 

analyses were done based on the parameters estimated by this model. 

The variance partitioning indicated that the largest proportion of variation in species 

occurrences was explained by spatial random effects (38.56%) followed by climatic 

conditions (31.14%) (Fig. S3, Supplementary material). LULC and elevation explained 

approximately 30% of the variation in species occurrences. The traits explained 56% of the 

variation in species niche but only 5.28% of the variation in species occurrences probabilities. 

We found evidence for phylogenetic niche conservatism (PNC) since the estimates for 

parameter ρ did not overlap zero (median = 0.48, 95% CRI = 0.33 – 0.63). Regarding spatial 

random effect, the leading factor is non-spatial (median = 1.03, 95% CRI = 0 – 2.75). Thus, 

the variation was independent among the sampling sites. However, we observed a spatial 

signal in the second latent factor (median = 6.18, 95% CRI = 4.12 – 9.45) that varies at the 



153 

 

   

 

scale of ca. 5 km. The residual association between species pairs showed more positive than 

negative associations (Fig. S4, Supplementary material). 

Generally, the species were rare (negative association with the intercept) (Fig. 3a), 

indicating an occurrence probability of less than 0.5. Regarding the effects of environmental 

variables, we observed more significant associations between species responses and climatic 

conditions than with landscape or topographic variables. Among the landscape variables, 

most of the significant responses were positive, and the proportion of forest formation had 

more associations with species than other variables (Fig. 3a, heatmap). In addition, we 

capture a positive association between this niche axis and the aspect ratio (Fig. 3b). This 

indicates that species with long and narrow forewings tend to occur more in forest habitats 

responding positively to this landscape feature. Few species responded to natural open 

formations (Fig. 3a, heatmap). Regarding climatic variables, annual mean temperature 

presented a positive association with most species of Biblidinae and Charaxinae and negative 

associations with Brassolini and Morphini, indicating that species of these clades tend to 

respond similarly (Fig. 3a, heatmap). Precipitation of the warmest quarter positively affects 

species’ response, mainly for Brassolini and Morphini. 

Further, we observed that precipitation was positively related to forewing length (Fig. 

3b), indicating that larger butterflies occurred more in sites with high precipitation during the 

warmest months. For elevation, we observed a positive association with the genus 

Yphthimoides (Satyrini), while Brassolini, Morphini, and Charaxinae (genus 

Archaeoprepona) have negative associations. Elevation was negatively related to AR (Fig. 

3b), indicating that species that occur at high elevations tend to exhibit low AR, i.e., fast and 

costly flights.
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Figure 12. Estimated species niches responses (β parameters) and trait values for each fruit-feeding butterflies species in the TAF. Panel a) 

exhibits the phylogenetic relationship between species, highlighting the main clade division (Subfamilies and tribes),  heatmap for species niche 

parameters (Int – intercept; For – Natural Forest Formation; Open – natural open formations; Agri – Agriculture; Urb – Urbanization; Temp – 

Annual mean temperature; Prec – Precipitation of the warmest quarter; Elev – Elevation), showing parameters that are estimated to be positive 

(blue) and negative (red), respectively, with at least 0.90 posterior probability, and the bar plots indicating the mean value for Aspect ratio (AR) 

and Forewing length (FWL in centimeters). Panel b) exhibits the heatmap of estimated γ parameters linking species traits to species niches 

indicating the positive (blue) and negative (red) associations with at least 0.90 posterior probability. 
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Regarding community-level response, species richness and CWM – AR generally had 

similar responses to environmental variables (Fig 4, first and third rows). LULC variables 

tended to increase species richness and increased the frequency of species with high AR (Fig. 

4). The annual mean temperature did not affect species richness or CWM – AR, and the 

precipitation of the warmest quarter did not affect CWM – AR. Elevation had weaker 

correlations but was also positive for these communities’ features (Fig. 4). Regarding the 

CWM – FWL, we observed that LULC variables have a positive correlation, except the 

natural open formations, which exhibited a negative correlation with CWM – FWL (Fig. 4, 

second row). Further, increasing temperature and elevation reduced the CWM – FWL, 

whereas precipitation increased it (Fig. 4). 
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Figure 13. Predicted responses to variation in environmental conditions. The first row exhibits the relationship between species richness and 

focal environmental variables (controlling for the effect of other environmental covariates included in the model). The second and third rows 

exhibited the relationship between community weighted mean for the body size (FWL) and aspect ratio (AR) to environmental variables, 

respectively. The values above each panel indicate the correlation coefficient (r) assessed through a correlation test. 
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Employing the parameters estimated by mFULL model, we computed the posterior 

mean prediction for the occurrence of all species along all TAF in a grid of 1 km2. The 

posterior mean richness for all TAF varies between 15 and 89 species (Fig. 5a), with a 

posterior standard deviation varying between 2 and 34 species, with the highest uncertainties 

coinciding with areas with high species richness estimates (Fig. S5, Supplementary material). 

We identified five regions of high species richness in the TAF, the first was related to the 

South of Bahia, northeastern Brazil, and despite the high estimated richness, it had low 

uncertainty associated (Fig. 5a; Fig. S5, Supplementary material). The second and third 

regions are associated with the metropolitan regions of São Paulo and Rio de Janeiro. The 

fourth region is related to the north of Santa Catarina and southeastern Paraná, and the fifth is 

associated with the north of the Misiones region and western Paraná. The distribution of the 

subfamilies/tribes of fruit-feeding butterflies were generally low but continuous along TAF 

(Fig. S6, Supplementary material). Regarding the functional composition, we observed a 

distinct pattern in the trait distribution along TAF. While high values of CWM–AR 

overlapping areas with high expected richness (Fig. 5c), the community-weighted mean for 

body size (Fig. 5b) indicated that communities near the coastal Atlantic Forest are composed 

of species with longer wing lengths.
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Figure 14. Predicted community features across Trinational Atlantic Forest. a) Expected 

richness (range from 15 to 89 species). b) The community-weighted mean (CWM) value 

considering forewing length (FWL) and c) for CWM considering the aspect ratio (AR).
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Discussion 

Here we accessed the main filters that shaped the diversity of fruit-feeding butterflies along 

the tri-national Atlantic Forest. Within the environmental variables, climatic variables highly 

influenced the species niche, and the traits explained more than 50% of the variation in the 

niche. We found evidence for phylogenetic niche conservatism (PNC), indicating that 

response traits and phylogenetic relationships are essential for determining species niche. We 

highlight the importance of the random spatial effect in explaining the variation in species 

occurrence. Decoupling the role of processes that shape biological communities are crucial to 

predict how species will respond to climate and land use changes (Poggiato et al., 2021), and 

including traits and phylogenetic relationships, we assess can make inferences of ecosystem 

functioning (Ovaskainen et al., 2017; Perović et al., 2015).  

At the community level, LULC variables mainly produce positive responses in all 

aspects of community structure. Further, since richness and CWM – AR hotspots have 

similar spatial patterns, we can infer that dispersal features can be important to maintain high 

diversity in TAF. On the other hand, for community body size, we found support for converse 

Bergmann’s rule since body size decreased with elevation, even though the lower 

temperatures caused body size to increase. 

Niche and species occurrence 

In general, the species of fruit-feeding butterflies are rare, i.e., they have low 

occurrence probabilities along TAF. Joint species distribution models (JSDMs) can be 

advantageous when modeling community data since they assume that species share 

information, allowing the estimate of the response of rare species by borrowing information 

from common species (Ovaskainen & Abrego, 2020; Poggiato et al., 2021). Despite their 



161 

 

   

 

rarity, these species are especially positively influenced by environmental covariates, whereas 

more common species can respond positively or even negatively to environmental variables 

(Fig. S7). Rare species are generally of conservation concern but are often disregarded in 

modeling frameworks because they lack sufficient data necessary for model fitting (Zipkin et 

al., 2010). Some rare butterflies occur at the same sites as other threatened taxa (like frogs 

and mammals), providing a valuable measure of habitat conservation status (Brown & 

Freitas, 2000; Uehara-Prado et al., 2007). 

Considering the high habitat conversion in Atlantic Forest, we expected that 

landscape features instead macroclimatic conditions would be more critical to define 

variation in species occurrences. However, we observed that LULC variables are more 

related to the tribe or subfamily-level responses. This group-level response has already been 

reported for fruit-feeding butterflies (Brown & Freitas, 2000; Uehara-Prado et al., 2007) and 

was corroborated in this study as we detected a PNC. PNC may be related to the use of host 

plants since it is known that there is a relationship between host plant diversity and butterfly 

diversification (Chazot et al., 2021; Ferrer-Paris et al., 2013). Thus, the occurrence of species 

is limited by the presence of their host plants or their ability to adapt to new hosts 

(phylogenetic constraint) (Chazot et al., 2021), causing species to respond similarly to 

variations in the niche. 

From a functional perspective, we observe that butterflies with longer and narrower 

wings (high AR) occur more in forest habitats but are restricted by elevation. Although flight 

performance depends on other traits (Betts & Wootton, 1988), it is recognized that high AR 

promotes power economy, allowing slow and endurance flights (Chai & Srygley, 1990; 

DeVries et al., 2010; Dudley & Srygley, 1994). Species of Morphini and Haeterini, known to 

employ this type of flight (DeVries et al., 2010; Stylman et al., 2019), showed a positive 
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response to the forest formation while tending not to respond or decrease their occurrence at 

higher elevations. In addition, species in these clades showed a positive response to increased 

precipitation in the warmest quarter, and we observed that this niche axis is associated with 

body size (FWL). Seasonality is important in determining insect population dynamics 

(Wolda, 1988), while pluviosity-related variables are recognized as important factors 

affecting fruit-feeding butterflies’ diversity (Checa et al., 2019; Santos et al., 2017). Larger 

species demand a greater amount of resources to complete their life cycle, and therefore they 

tend to occur in a narrow period when optimal resources are available (Ribeiro & Freitas, 

2011). For Atlantic Forest, we can suggest that alteration in the time window due to climate 

changes can affect the occurrence of specific traits, such as body size, and may reflect 

alterations in the ecosystem functions. 

Community-level responses 

The fruit-feeding butterfly richness is uneven for the Atlantic Forest, and it is not 

primarily driven by latitudinal gradient but is associated with centers of endemism and in the 

transition subregion of the Araucaria Forest. Similar results were found by Santos et al. 

(2020), indicating that the region of Serra do Mar, which concentrates the largest continuous 

forest remnants and more areas covered by protected areas (Ribeiro et al. 2009), had the 

potential to support more considerable species richness. However, we highlight two 

conspicuous richness hotspots in the Araucaria transition region that coincide with areas of 

forest remnants surrounded by an agricultural matrix. According to the habitat amount 

hypothesis, regardless of the spatial configuration, what matters is the total amount of habitat 

in an appropriate spatial extent of the local landscape (Fahrig, 2013; Rybicki et al., 2020). 

The EcoLand (which models the climatic and landscape filters independently) model 
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proposed by Santos et al. (2020) points to these areas as of conservation importance in the 

face of climate change, indicating that in these locations, the appropriate landscape overrides 

the effects of climate to maintain species richness. We emphasize the importance of these 

regions, not only because of their high taxonomic diversity but also because these sites are 

composed of slow-flying and gliding species (high aspect ratio).  

The overlap between areas of high richness and high AR may indicate an effect of 

dispersal on maintaining the number of species in the local community. For the Brazilian 

Atlantic Forest, previous studies suggest species richness is higher in forest fragments than in 

continuous areas (Filgueiras et al., 2016; Uehara-Prado et al., 2007). If some of these forest 

fragments are high-quality patches capable of maintaining large population sizes, then the 

richness of lower-quality patches is supported through mass effect (Brito et al., 2021; Leibold 

et al., 2004). Habitat alteration in these centers can lead to both a decline in species numbers 

and a change in functional composition, altering population and metacommunity dynamics 

and ecosystem functioning (Gámez-Virués et al., 2015; Santos et al., 2020). Communities of 

species that share similar traits are more likely to maintain ecosystem functioning if these 

species exhibit different responses to environmental filters (Gámez-Virués et al., 2015). 

Regarding body size distribution, we observe that communities located at high 

elevations tend to be composed of species with smaller bodies, with sites near the southern 

coast showing the highest values. The insect body size and altitude relationship generally 

follow the converse-Bergmann cline or no clines (Shelomi, 2012). At high elevations, the 

growing season is short, which reduces the development time for ectotherms to a single 

season or less (Mousseau, 1997), whereas, at low elevations, the growing season is relatively 

longer, allowing more resources acquisition during the extended development time, resulting 

in larger butterflies. However, we observed that within the lowlands (coast), the southern 
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portion of TAF concentrates larger species than the northern portion. This pattern can be due 

to a phylogenetic artifact (Ribeiro & Freitas, 2011) since the species with the largest bodies 

belong to Brassolini and Morphini (tribes of Satyrinae), and their distribution match areas of 

highly expected mean body size (FWL). On the other hand, the body size is related to many 

other life-history traits, such as diet breadth (Freire et al., 2021; Marini-Filho & Martins, 

2010). The smaller species generally have a restricted feeding niche, being more specialized 

than the larger species (Freire et al., 2021; Perović et al., 2015). We found that increasing 

open natural formations increases the frequency of smaller species, i.e., acting as a filter 

preventing the persistence of generalist species. In this way, our result highlighted the 

importance of protecting the non-forested ecosystems, which is highly neglected in Brazilian 

conservation policies (Overbeck et al., 2015), to conserve both species and functions 

associated with these systems. 

Conclusion 

In the face of climate change and intensifying land use, understanding the role of 

environmental and biotic processes in assembling communities is a central issue in ecological 

research. The use of JSDM can improve our capacity to estimate, predict and evaluate 

species’ response to environmental gradients while considering the non-independence in 

species’ responses (Ovaskainen & Abrego, 2020; Tobler et al., 2019). Our results bring new 

insights into processes that shape the diversity of fruit-feeding butterflies in the Atlantic 

Forest, showing that both traits and evolutionary history are essential to define species’ 

responses to environmental filters. By including attributes and phylogeny in species 

modeling, we can test questions related to niche adaptations (Ovaskainen et al., 2017), but we 

can also assess how these characteristics are distributed in space. Identifying how 
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macroecological patterns are linked to environmental predictors and other diversity patterns 

improves our understanding of the assembly processes that make the Atlantic Forest a 

diversity hotspot.
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Supplementary material 

 

Figure S6. Basic summaries of the fruit-feeding butterflies recorded along the 

trinational Atlantic Forest. a) Species prevalence measured as the mean of occurrence of 

species over sampling units. b) Species richness measures as the sum of occurrence by 

sampling unit. y-axis (density) indicates number of species (a) and sampling units (b).  

 

 

Figure S7. MCMC convergence diagnostics for Model FULL, which contains 

environmental covariates and spatial random effects. The panels show the distribution 

of the potential scale reduction factor for the β (a), gamma (b), and Ω (c) parameters. 

The red dashed line indicates the optimal value of 1.1.
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Figure S8. Variance partitioning among the fixed and random effects included in the 

mFull.
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Figure S9. Residual species association. We removed species without any significant association to improve data visualization. The species was 

grouped using a hierarchical clustering method (“complete”) based on similarities.
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Figure S10. Illustration of uncertainty in model predictions. The panel shows the posterior standard deviation of species richness based on 

parameters estimated by mFull.
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Figure S11. The occurrence probability distribution at the subfamily and tribe level for fruit-feeding butterflies along the tri-national Atlantic 

Forest. Within Satyrinae, Haeterini had a high probability of occurrence on the Bahian coast, Morphini + Brassolini had hotspots in the Serra do 

Mar and along the southern coast. Biblidinae was more associated with transitional zones with Cerrado/Caatinga, and Nymphalinae, despite the 

lower species diversity, was highly occurrent along TAF, mainly at Bahia and Serra do Mar coast. The occurrence of Charaxinae tended to 

decrease with latitude and longitude and was more constrained to the coastal portion of TAF. 
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Figure S12. Illustration of variation in species niches. In panels, the x-axis represents the mean occurrence probability (intercept), while the y-

axis represents the β for each environmental covariate. Negative and positive values in x-axis indicate, respectively, rare and common species. 

Values in the y-axis indicate the species’ positive or negative response to the focal environmental covariates. Symbols represent the subfamily 

(circles) and tribe (triangles) to which the species belongs. 
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Considerações finais 

Concluí através desta tese que os fatores climáticos são os principais responsáveis por 

estruturar as comunidades de borboletas frugívoras, desde a escala local (microclima) até a 

escala biogeográfica (macro clima). Além disso, os padrões de diversidade também foram 

relacionados com variações na paisagem, ressaltando a importância da inclusão desse tipo de 

informações na modelagem da diversidade. Enquanto o aumento da proporção florestal leva a 

um aumento da riqueza de espécies na Mata Atlântica, a manutenção do mosaico campo-

floresta aumenta a diversidade no Pampa. Esses resultados corroboram a ideia de que as 

respostas observadas são dependentes de escalas, mas são também dependentes do contexto 

regional de cada bioma, os quais são temporalmente dependentes. Vale também destacar a 

importância das características funcionais, principalmente aquelas ligadas a dispersão, bem 

como as relações filogenéticas sobre o nicho das espécies. Entender essa relação pode auxiliar 

a entender o funcionamento ecossistêmico, visto que mudanças na composição podem levar a 

homogeneização funcional ou filogenética. Espécies similares funcionalmente tem altas 

chances de sobreviver aos processos determinísticos e estocásticos se suas respostas as 

variáveis ambientais forem distintas (GÁMEZ-VIRUÉS et al., 2015). 

Entender como as espécies respondem ao ambiente em diferentes sistemas é 

fundamental para explicar a diversidade, mas também para guiar práticas de conservação. 

Nesse sentido, a precisão e acurácia na caracterização dos padrões ecológicos provenientes de 

dados de diversidade são fundamentais. O uso de métodos de coleta passivo e padronizado, 

bem como o aumento do esforço amostral podem ajudar a reduzir o viés causado pela 

detecção imperfeita, porém a sua correção pode ser indispensável quando medimos a 

biodiversidade. Estudos de ecologia de comunidade geralmente empregam desenhos 
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amostrais replicados no espaço ou tempo, o que permitiria o emprego de modelos de 

ocupação ou N-mixture. A baixa utilização destas ferramentas de modelagem em ecologia de 

comunidades pode ser devido à complexidade dos modelos, e da não popularização da 

inferência bayesiana nas análises de ecologia de comunidade. Nessa tese utilizei os modelos 

hierárquicos multi-espécies de diferentes formas, demonstrando a alta maleabilidade dessa 

abordagem para acessar questões importantes dentro da ecologia de comunidades, e que não 

seriam possíveis de serem incluídas em arcabouços analíticos frequentistas mais tradicionais 

(p.ex. detecção imperfeita e coocorrência entre espécies). Frente a isso, finalizo ressaltando os 

benefícios do uso desse tipo de modelagem, as principais limitações das abordagens utilizadas 

neste estudo e as perspectivas das análises multi-espécies para ecologia de comunidade. 

Vantagens da abordagem hierárquica bayesiana 

A inferência bayesiana pode ser usada para estimar parâmetros ecologicamente 

significativos ao mesmo tempo que fornece uma medida explicita da quantidade de incerteza 

da estimativa do parâmetro (ELLISON, 1996). Além disso, esse tipo de inferência pode ser 

usado tanto para avaliar modelos ecológicos como para testar hipóteses, uma vez que ela 

fornece uma medida quantitativa da probabilidade da hipótese ser verdadeira dado os valores 

observados (ELLISON, 2004). Adicionando uma estrutura hierárquica, permitimos que as 

observações, ou seja, as espécies, compartilhem informações entre si. Embora os modelos de 

distribuição de espécies “stacked” (stacked SDM), juntem as informações específicas para 

compor as respostas a nível de comunidades, eles não consideram que as espécies 

compartilham informações quando modelam os processos que determinam as ocorrências. 

Assim, os modelos hierárquicos multi-espécies surgem como uma ferramenta robusta quando 

queremos predizer a distribuição das espécies no espaço, principalmente por permitirem a 
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estimativa confiável de parâmetros para espécies raras. Comunidades ecológicas são 

naturalmente dominadas por muitas espécies raras, logo, descartar espécies menos frequentes 

pode modificar a observação de padrões ecológicos em comunidades. Além disso, espécies 

raras estão geralmente no foco de estudos de conservação pois tem alto risco de extinção, 

sendo fundamental estimar como elas respondem as variações no espaço e no tempo. 

Principais limitações 

Infelizmente, ainda não dispomos de uma teoria unificadora na ecologia de 

comunidades (OVASKAINEN; ABREGO, 2020) e seria exagero pensar que teríamos uma 

única forma de analisar a biodiversidade. Com isso, cada tipo de ferramenta analítica tem seus 

benefícios e suas limitações, e não é diferente com os modelos hierárquicos multi-espécies. 

Devido a sua alta flexibilidade em acomodar parâmetros, os modelos hierárquicos são menos 

generalizáveis e muitas vezes altamente complexos, o que torna o seu uso mais limitado. 

Ainda, é preciso assegurar a robustez dos modelos, uma vez que na maioria das vezes usamos 

informações a priori vagas, para que as estimativas feitas não sejam decorrentes do modelo 

pressuposto (análises de sensibilidade). Em relação a capacidade computacional, o 

desenvolvimento de técnicas de MCMC (Markov chain Monte Carlo) gerou um grande 

avanço na inferência dos parâmetros, pois permitiu caracterizar as distribuições posteriores 

através de simulações. No entanto, as MCMC podem consumir muito tempo até convergirem, 

principalmente em modelos complexos e com grande número de parâmetros. 

Considerando a aplicabilidade, decidir qual tipo de abordagem usar depende da 

natureza dos dados e do objetivo de cada estudo. Geralmente dados de comunidades são 

obtidos através de amostragem repetidas no tempo e no espaço. Porém, nem sempre esse tipo 

de informação é disponibilizado nos estudos, restringindo nossa capacidade de aplicar por 
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exemplo modelos de ocupação ou N-mixture, os quais precisam das repetições de modo a 

distinguir o processo amostral do processo biológico. Dessa forma, modelos que consideram 

coocorrência devem ser empregados quando temos dados oriundos de um desenho amostral 

que garanta coletas de espécies que coocorrem em uma dada área. Isso implica que embora 

dados de pontos de ocorrência possam ser usados nesse framework, as interpretações 

resultantes podem não ter um sentido biológico. 

Perspectivas 

Enquanto os estudos de monitoramento da vida selvagem e de biologia populacional tem 

incorporado a detecção imperfeita em suas estimativas a mais de 20 anos (MacKenzie et al. 

2002; Pellet 2008), estudos em ecologia de comunidade geralmente ignoram as consequências 

da detecção imperfeita sobre os padrões observados (Jarzyna and Jetz 2016; Benoit et al. 

2018). Infelizmente, a estimativa dos erros amostrais ainda não foi implementada no HMSC, 

embora os autores reconheçam a importância da inclusão desse processo (OVASKAINEN; 

ABREGO, 2020), e com isso nos capítulos 2 e 3 desconsideramos a detecção imperfeita nos 

dados. Recentemente, estudos tem tentado incorporar tanto a detecção imperfeita como a 

coocorrência das espécies na estimativa de ocorrência e abundância (DORAZIO; CONNOR; 

ASKINS, 2015; TOBLER et al., 2019). Esse tipo abordagem tem potencial de abrir novas 

possibilidades para responder uma gama de questões relacionadas a como as espécies 

respondem ao ambiente, mas também as interações ecológicas, enquanto leva em 

consideração possíveis erros que possam prejudicar a observação do padrão.  
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