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Robust Identification of Strongly
Stabilizable Systems

Pertti M. Mikild, Member, IEEE, and Jonathan R. Partington

Abstract—For strongly stabilizable systems for which a
strongly stabilizing controller is known approximately, we con-
sider system identification in the graph, gap, and chordal met-
rics using robust H, identification of the closed-loop transfer
function in the framework proposed by Helmicki, Jacobson, and
Nett. Error bounds are derived showing that robust convergence
is guaranteed and that the identification can be satisfactorily
combined with a model reduction step. Two notions of robust
identification of stable systems are compared, and an alternative
robust identification technique based on smoothing, which can
be used to yield polynomial models directly, is developed.

1. INTRODUCTION

OBUST identification in H, for stable linear sys-

tems (in either continuous time or discrete time)
involves the measurement of a finite number of frequency
response values of the system transfer function (which in
general may be corrupted by noise). From these, one
obtains an approximation to the original system which
should converge in the H, sense as the number of meas-
urements and the noise level simultaneously converge to
infinity and zero, respectively.

This notion of “worst-case” identification essentially
originates with Helmicki, Jacobson, and Nett, [7]-[10],
who gave a concept of robustly convergent identification,
and provided the first algorithm achieving this: it was
nonlinear. In addition, they produced linear algorithms
tuned to a priori information about the unknown system.
Gu and Khargonekar [4], [5] provided an untuned linear
algorithm that, though not robustly convergent, performs
satisfactorily in practice, and gave a large class of rapidly
convergent nonlinear algorithms. In Partington [16] and
[17] it was shown that there is no robustly convergent
(untuned) linear algorithm: additionally some rapidly con-
vergent nonlinear algorithms were given, and links with
interpolation explored. Connections with approxima-
tion were also explored by Mikild [12] and Mikild and
Partington [13].

For unstable infinite-dimensional systems it is also of
interest to perform a robust identification procedure. For
practical reasons, one normally works with a stable
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closed-loop transfer function (that is, one assumes the
existence and possibly incomplete knowledge of a stabiliz-
ing controller), and makes measurements of the closed-
loop frequency response, which again may be corrupted
by noise. Given this, one wishes to obtain an estimate for
the unstable plant, and the appropriate ways to do this are
in the graph, gap, and chordal metrics; as a further
application, one may then wish to design a more robust
controller for the original unstable plant, and this is the
correct framework in which to do this (see, e.g., [18]) As
we shall demonstrate in Section III, if one relies on
identifying one closed-loop transfer function, it is essen-
tial that the controller itself be stable, and so we shall
make this assumption.

In Section II, we set up the mathematical background
to the problem in detail and say more about the identifi-
cation process. In particular, we give a discussion of
notions of robust identification in A(D) and H,, for stable
systems. For stabilizable systems, three metrics are useful
for comparing plants, and these are discussed.

Section III then contains some detailed estimates for
the approximation errors resulting from identification of
the closed-loop transfer function, which show that one
can achieve robust convergence in the framework we
consider. It is also shown that performing a model reduc-
tion step on the identified model is justifiable (and in
general desirable), since robust convergence of the low-
order model is still achievable.

Section IV discusses a smoothing technique which pro-
vides an alternative to the Helmicki-Jacobson-Nett method
of obtaining stable transfer function models via a Nehari
step. This has the advantage that it can be used to
produce identified models which are polynomials (or lie in
some other preassigned model set) in a direct fashion.

In Section V, a very simple closed-loop example is
analyzed, and the effects of robust convergence are
demonstrated.

11. MATHEMATICAL BACKGROUND

We shall be considering infinite-dimensional linear
time-invariant systems, and our results will be applicable
to both discrete time and continuous time systems. In
continuous time, the transfer function G(s) of a stable
system is a bounded analytic function in the right-half
complex plane, ie., an element of H(C,) acting on
H,(C,) (the space of analytic functions in the right-half
plane with square integrable boundary values) by multipli-
cation; in discrete time, a stable transfer function g(z)
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(obtained by taking z-transforms) is analytic and bounded
on the set of complex numbers of modulus greater than
one. In either case, we can and will transform the situa-
tion in a norm-preserving manner so as to consider func-
tions analytic and bounded on the unit disk: in the first
case, by defining f(z) = G(#z) so that G(s) = f(#s)
where .# is the Mobius map .#z = (1 — z)/(1 + z); and
in the second case, by defining f(z) = g(1/z). Our results
will be stated in the scalar case for clarity but they extend
to the multivariable case with minor changes—see the
remarks at the end of Section III.

In this paper, we shall be concerned with identifying
unstable plants, that is, in our formulation, ones which are
merely meromorphic inside the unit circle. We assume,
however, that a strongly stabilizing controller exists and is
known at least approximately, that is, that there is a
function C(z) € H, such that G(z) = P(z)/(1 +
C(z)P(2)) € H,. (For a further discussion of this, see
[12].) In fact, we shall make the stronger assumption that
C and G are in the disk algebra A(D) = H, N C(T), the
space of functions analytic in the open disk D = {|z] < 1}
and continuous in the closed disk {|z} < 1}; this is desir-
able since we shall be interested in rational approximation
and identification by means of boundary values on the
unit circle. The disk algebra clearly contains all stable
finite-dimensional (rational) systems, after the transfor-
mations described above.

For H, identification of a function G(z) € A(D) in the
framework of Helmicki, Jacobson, and Nett [7], [10] one is
given a set of possibly corrupted values of the function G
on the unit circle, say, (g,,"-, g,) € C", where g, = G(z,)
+ n(z,) for some interpolation points z;, -, z, (usually
the nth roots of unity) and some noise function n € L(T),
the space of bounded functions on the circle T. From
these, one obtains a function G’ = T,(g,, ", g,) = T.(G,
1) € A(D) which approximates G.

For robust approximation of G one requires the follow-
ing condition:

lim IG" ~ Gll. =0

n—ox.e=|nll=—0

(2.1)

where G’ is an approximation to G produced from the
corrupted measurements on the unit circle. This condition
allows one to discuss robustness with a minimum of a
priori information about the unknown system, and ties in
well with the notions of robust stability in control theory.
We shall see a further benefit of this property in Theorem
2.1 (in that this form of robustness guarantees conver-
gence in the Helmicki, Jacobson, and Nett setting); fur-
ther motivation is provided by (2.3) below, where we
consider an uncertainty set-up in which the unknown
system lies within some ball of systems. Yet another
application is that one can consider a priori information
about the unknown system of a more general nature.
Robust identification of G in the framework of
Helmicki, Jacobson, and Nett is defined as follows: for
M > 0and p > 1let H(p, M) be the set of all functions
G analytic and bounded in the open disk of radius p and
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such that
NGl pe = sup {IG(2)|: 1zl < p} <M < .

Then the Helmicki, Jacobson, and Nett [7], [10] condition
is as follows:

lim sup sup IG' — Gll. =0 22)

n=@e20 . ce Ges

where S = Hp, M). In other words, one demands uni-
form approximation over certain subsets of A(D) which
are relatively compact, that is such that any sequence of
functions in the set has a norm-convergent subsequence.
In fact A(D)-robustness as in (2.1) guarantees this for any
relatively compact subset S.

Theorem 2.1: An untuned identification algorithm yield-
ing G’ as an approximation to G that satisfies the robust-
ness condition (2.1) also satisfies (2.2) for any relatively
compact S, in particular for S = H(p, M), p> 1, M > 0.

Proof: Suppose that we have a robust identification
algorithm satisfying (2.1). If condition (2.2) is breached,
then there are a set S, a number € > 0, and a sequence of
functions (F,) € S and approximants F, constructed from
k measurements and a noise level of at most 1/k such
that [|F, — F{ll > € for all k. By relative compactness,
there is a subsequence of the F, which converges in the
A(D) norm to some function F € A(D). But then [|F —
F]ll > €/2 for arbitrarily large values of k, although F/
are approximants to F constructed with k£ points and a
noise level in the measurements of F of at most 1/k +
|IF — F.ll, which tends to zero as k — o in this subse-
quence. However, this contradicts (2.1). 0

It seems unlikely that (2.1) and (2.2) are equivalent
(even if (2.2) holds for all p and M), but algorithms
satisfying (2.2) generally seem to satisfy (2.1) also.

For a relatively compact subset § c A(D), the nature of
one’s a priori information may lead one to consider
worst-case identification over the set

Ss={s+t:se8,teA(D),ltll < 8}

for some & > 0. It follows easily, be treating ¢ as an extra
component to the noise, that the following condition is
also satisfied for an identification procedure satisfying
2.1).

lim sup sup ||G' — Gl = 0. (2.3)

n—w,e=0,8-0 | . Ges,

Identification in A(D) is commonly implemented as
follows. Let E,:A(D) X I(T) — C” be the experiment
operator defined by E (G, 1) = (G(z,) + n(z,));_,, and
let R,:C" — C(T) be a linear operator, the interpolation
operator. Here we regard C”* as IZ, that is, we give it the
supremum norm.

An example of such an operator R, (taken from [17]) is
as follows. Let z = ¢? with 0 < 6 < 27 denote a point of
the unit circle, and define the Dirichlet kernel by

sin(k +1/2)0

k
2sin 8/2 -2 ¥z

r=—k

Dk(e) =
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the Fejér kernel by
K, (9) =(1/(p+1) kZi:ODk(B)
the Jackson trigonometric polynomials (0 < p < n) by
Jp),,(a, 8) =(2/n) ké] aka(B — 1)

where t, = 2wk/n and a, = G(z;) + n(z,) for 1 <k <
n, and the discrete De La Vallée Poussin trigonometric
polynomials (n > 4p + 1) by

V,n(8) = (2p + DIy = (P + 1J,,)/p-

We set R,(a,,,a,) =V,,, a trigonometric polynomial
of degree 2p.

Then the following result shows that any such R, can
be used as the basis of a robustly convergent nonlinear
algorithm by combining it with a Nehari approximation
step—whereby a function of C(T) is replaced by its best
approximation from A(D), as in (7], [10], [4], 5], [16] and
171

Proposition 2.2: Let R, be a uniformly bounded se-
quence of interpolation operators as above such that
IR,E(G, 0) — Gli. = 0 for all G in some dense subset
Q of A(D). Then the two-step identification algorithm 7,
consisting of R, followed by a Nehari best approximation
step, is robustly convergent in the sense of (2.1) and hence
(2.2).

Proof Let K be such that ||R,|| < K for all n. Let
G € A(D) and 7 € L(T). Then, using the linearity of E,
and of R,, and writing 7,(G, n) for the identified model,
we have that

IT.(G,n) — R,E(G, Ml < IG = R,E(G, )l
and hence
IG — T.(G, )l < 2IG — R,E,(G,0)ll
+ 2lIR,E, (O, N -

Let 8 > 0 be given. Then there is a function g € Q such
that ||G — gll. < 8. Thus, since

G — R,E(G,0)l- <llg — R,E,(q,0)ll. + (1 + K)&
we see that

IG ~ T,(G, )l < 2llg — R,E,(q,0)ll
+2(1 + K)8 + 2K|Inll.

This can be made as small as desired by first choosing &
and g, and then by demanding that » be sufficiently large
and |[nll= be sufficiently small. Hence, €2.1) follows, with
G' = T(G, ). m|

When dealing with stabilizable systems P such that
G =P/(1 + CP) € A(D) for some C € A(D), robust ap-
proximation in a metric p such as the graph, gap, or
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chordal metrics (defined below) requires that

w(P,Py=0 (2.4)

lim
n—w,e=lnll=0,1C-C'll=>0
where P’ = G'/(1 — C'G"), with C" an A(D) estimate
of C and with G’ an approximation to G produced as in
(2.1). Again we may ask for uniformity of approximation
over various relatively compact sets of meromorphic func-
tions, but we do not do so here.

Three natural metrics can be defined to measure the
closeness of one meromorphic function to another.

The first two assume that P, and P, have normalized
coprime factorizations P, = N,/Dy(k = 1, 2) with NN,
+D¢D, =1 on T, and with X,, Y, in H, such that
XN, + Y, D, = 1. See [19] for details. We write G,
- g’; for k=1, 2.

The graph metric d(Py, P,) is defined by

d(P,, P,) = max{ inf G, — G,Qll.,
QeH,liQl<1
inf  IIG, — GlQllw} (2.5)
QeH, Q<1

(see [3] and [19]).
Likewise, the gap metric 8(P;, P,) can be defined by

= inf |G, — G,Qll,

8(P,, P,) = max {nggmll L — GOl
inf ||éz—élgl|m} (2.6)
Q€H,

(see [3)]. Since 8(P,, P,) < d(P,, P,) < 28(P,, P,) these
define the same topology, which is the natural topology
for considering robust stabilization of systems.

A third metric, the chordal metric Z(P,, P,), may be
defined as follows. For two complex numbers w; and w,
the chordal distance between them is

IW1 - Wz'

‘/(1 + 1w P)(1 + Iw,l?)
with #(w, ©) =1/V1+ |wl*. For two meromorphic

functions P,, P, in the disk we write
F( Py, P,) = sup {#(P(z), P,(2)):1zl <1}. (2.8)

More about this metric can be found in [6]. Reference [2]
shows that the chordal metric coincides with the gap
metric when restricted to systems with no unstable zeros
or poles. Also, [15] shows that the chordal metric gives the
same topology as the other two metrics, at least if we
restrict to the set of functions with coprime factorizations
in terms of functions analytic in a disk of radius p for
some p > 1.

FZ(wy,wy) = (2.7)

111. ESTIMATES FOR IDENTIFICATION ERRORS

In this section, we consider the accuracy with which an
unknown unstable SISO open-loop transfer function can
be approximated by an identified model, obtained from a
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set of frequency-response measurements of a stable
closed-loop.

Let P be the given system, and C a stabilizing con-
troller, such that C and G = P/(1 + CP) are both in H,.
By taking measurements of G on the unit circle, we
obtain an identified model G'. However, C itself may not
be known exactly, and we may only have an approximation
C’ to it. These combine to give an approximation P’ to P.

The following two examples show that the convergence
of a set of approximate measurements of C and G =
P/(1 + CP) need not yield a convergent set of approxi-
mants to P = G /(1 — CG) in the case when C is itself
unstable. For convenience, we shall work directly with
continuous-time systems and denote the variable by s.

Example: i) Let P(s) =1, C(s) = 1/s, G(s) =s/(s +
1. A close approximation to C in the gap topology is
C’'=1/(s + a) for a close to zero. If we assume that
G' =G, then P’ =s(s + a)/(s®> + as + a), which does
not converge to P in the gap topology as a — 0 (consider
the value at the origin.)

Example: i) Let P(s) = 1, C(s) = 1/5, G(s) = s /(s +
1) again, and suppose that C’ = C, ie., C is known
exactly, and that G’ = (s + a)/(s + 1), which is close to
G in H, for a close to zero. Now P’ = s(s + a)/(s? — a),
which again does not converge to P in the gap topology as
a— 0.

Our first result estimates the distance of P’ from P in
the graph, gap, and chordal metrics under the necessary
assumption that C is itself stable. As an alternative to
using G = P/(I + CP) one can use any one of the four
stable transfer functions in the matrix

[‘;](1 +cP)'[Cc 1

and similar results hold with slightly different error esti-
mates.

Theorem 3.1: Let P be a possibly unstable open-loop
transfer function and C € H, a stable controller such that
the closed-loop transfer function G = P/(1 + CP) e H,
is stable; let G’ be an approximation to the closed-loop
transfer function G, with ||G — G’|| = @, C’ an approxi-
mation to the controller C, with ||C ~ C’|| = 8, and P’ =
G'/(1 = C'G") the corresponding approximation to the
open-loop transfer function P. Then ||GC — G'C'|| < y
=Gl B + alIC|| + apB, and the following error bounds
hold for the graph metric d(P, P’), the gap metric (P,
P’) and the chordal metric #(P, P’).

) d(P, P') <2n/(1 — n), where 7 = /a2 + y2(1 +
lCib;

i) 8(P, P') < 2n/(1 — m), where n is as in i);

i) P, P')<(1+ IICII)Z(1
IGI(IGI + a)

-y +lich)”
The same inequalities hold if the roles of C,G,and P
and their primed equivalents are reversed.

— max(a,y)(1 +[ICl)

+ B max (1
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Proof: First, the estimate to GC — G'C’ follows on
writing
GC-G'C'=G(C-CY+(G-GHC'.

i) Note that G and 1 — CG are coprime, and hence
(G/(1 — CG)) is a coprime factorization of P.

We now adopt an approach very similar to that of [18,
theorem 4.1] using [19, lemma 7.3.2]. Observe first that if
IGll > Il — CGl, then since [ICIIIG]| + Il — CGIl > 1, we
have that (Gl = 1/(1 + [ICI). Similarly, if 1 — CG| >
IIGIl, then |1 — CG|l = 1/(1 + |ICID. Either way,

IG*G + (1 — CG)*(1 - CG)| > 6>
on the imaginary axis, where 6 = 1/(1 + ||C|).
We also have that [[G - G, 1 -CG) -1 —

C'Glw = ya? + y?, and hence if we form a normal-
ized coprime factorization

(G/R)
(1 - CG)/R

of P, then |[G/R-G'/R, (1-CG)/R—(1 - C'G")/
Rll- < 7 =+va®+ y% /6. The result now follows from
[19, lemma 7.3.2], as required.

i) This follows immediately from i), since the gap
metric is less than or equal to the graph metric ([3]).

iii) An easy estimate of the chordal metric (P, P’) (at
a point s) follows from the fact that

F(P,P'y <min(|P - P'|,1/P — 1/P')).

(See, e.g., [6])

In this case, we have

(G- G') + GG'(C - C')
T (1-CG)(1-C'G)

pP-p

and

’

——— +(C-C").
o T

As in i) we consider the cases when a) |G|/l — CG| < 1
and [1 - CG| > 1/(1 + |ICID and b) |G|/I1 — CG| = 1 and
IGl = 1/(1 + ICID.

In the first case

(G -G
 (1-CG)(1-C'G")

1/P—1/P' =

(C — CYGG’
(1-CcG)1-C'G)"

’

Hence

PPl aTiema asicn =y
BIGIIGI + )
(1/(L+ ICH) (1, +ICh) =)

In the second case

G -G
GG’

1/P-1/P' =C' - C +
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Hence
a

(1/(1 +IC) (/A + Il = a)

Finally, taking the supremum over all points s, we
obtain

/P -1/P'|< B+

F(P,P)<(1+ IICII)2(

1 — max (a,y)(1+ICl)
. IGIIGI + @)

tRmax (LT qen |

O

Various algorithms for H,, identification of stable sys-
tems (corresponding to functions f in the disk algebra)
have been given recently in [7]-{10), [4], [5], [16] and [17].
Some very rapidly convergent ones are to be found in [5]
and [17]: these guarantee an error bound for identification
with n frequency response measurements (each subject to
noise not exceeding €) of O(E,(f)) + O(e), where

E,(f) =inf{lf —pl:p
a trigonometric polynomial of degree n}.

In the case when f € H( p) (i.e., analytic and bounded in
a disk of radius p) for some p > 1 it is easy to see that
E,(f) decreases at an exponential rate with n. Combining
these algorithms with the result above we obtain the
following.

Corollary 3.2: Let P, C, and G be as in Theorem 3.1, let
G’ be an identified model as produced from n frequency
response measurements of G using the algorithms of [5]
and [17], let C’ be an estimate of the controller C and let
P’ be the identified (possibly unstable) plant given by
P' = G'/(1 — C'G’). Then the error between P and P’
satisfies

w(P,P) < K,E(G) + Kye + K,lIC = C'll (3.1)

where u is any of the graph, gap, or chordal metrics, and
where K, K,, and K, are constants which depend on G
and C but not on n, ||C — C'l| or €.

Proof: This result follows from Theorem 3.1 on ob-
serving that @ = O(E(G)) + O(e) and that y = O(a) +
o(iC - C'ID. o

These estimates are realistic, since in the special case
C =0, G = P, the three metrics are locally equivalent to
the H, norm, and in general the dependence of the
estimates in this case on n and e are realistic. The special
case G = 0 may also be considered: this shows that the
dependence of the error estimates on C is also realistic.

To obtain low-order models for G (and hence P) a
model reduction step is appropriate, and theoretical re-
sults for stable systems were given in [17] and [13]. No
suitable results are yet available for truncated balanced
realizations, but for an optimal Hankel-norm approximant
G of degree k to an identified model G’ for G, the error
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bound in [17] is as follows:

IG — Gl < (8k + 1)a,(G) + k(C,E,(G) + C,linllx)
(3.2)

for absolute constants C; and C,; here
a,(G) = inf {|G —rllo : r € A(D), rational, deg(r) <k}.

Combining this with the estimates above we obtain the
following.

Corollary 3.3: Let P, P, C, C', G, and G' be as in
Corollary 3.2, let G’ be a degree-k optimal Hankel-norm
approximation to G', let C be a rational approximation to
C and let P=G/Q - CG) be the resulting reduced-
order identified model for P. Then the degree of Pis at
most deg (G) + deg (€) and the error between P and P
satisfies

w(P,P') < Koka,(G) + K,kE,(G)
+ K,ke + K5lIC — €Il (3.3)

where u is any of the graph, gap, or chordal metrics, and
where K,, K, K,, and K, are constants which depend on
G and C but not on k, n, ||C — C|l or e.
Proof: This follows from Theorem 3.1, exactly as
Corollary 3.2 did, but using the estimate (3.2). ]
In the multivariable case, similar results hold. The
closed-loop system G(z) = P(zXI + C(2)P(z))™" is now
required to be analytic and matrix valued on the disk with
continuous boundary values, and can again be approxi-
mately identified by means of matrix-valued frequency
response measurements. Error estimates similar to those
in this section can be obtained for the approximation
error in P in the gap and gap metrics (the chordal metric
is more difficult to define in this context) by repeating the
above calculations.

IV. AN IDENTIFICATION ALGORITHM USING
SMOOTHING

In this section, we shall be reconsidering the question
of identification of a stable transfer function G from a set
of corrupted values g, = G(z,) + 7(z,) measured at the
nth toots of unity, as in Section II. An extension to
stabilizable systems may be derived as in Section III: to
illustrate this, we shall give an example in Section V using
both of these techniques for closed-loop identification.

Virtually all identification algorithms in the literature
proceed by first obtaining a not necessarily stable rational
model from the given data (usually a trigonometric poly-
nomial) and then using a Nehari approximation step to
approximate this by a stable model. In this section, we
propose an alternative technique based on smoothing.

To motivate this new technique, note that the effec-
tiveness of the two-stage process is limited by the effec-
tiveness with which one can approximate the unknown
system by trigonometric polynomials (that is, polynomials
in z and 1/2). It turns out that, if we consider the sets
H.( p, M), approximation by rational functions, in particu-
lar by trigonometric polynomials, performs no better in
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the worst case than approximation by standard polynomi-
als.

To make these comments precise, let P, be the set of
polynomials of degree at most n, T, the set of trigono-
metric polynomials of degree at most # and R, the set of
rational L. functions of degree at most n. Then the
following result is true.

Theorem 4.1:

sup inf |G — p,ll
GeH p,M) PnEPn

sup inf |G — ¢l
GeHSp,M) n€ T

sup inf |G —rlle=M/p"*.
GeHfp M) <R,

Proof: Clearly, since P, C T, C R, of the first three
expressions above the first is greater than or equal to the
second, and the second is greater than or equal to the
third. From a result of Babenko (see [11], page 126]) the
extremal function for the P, problem is G(z) =
Mzn+ l/pn+ l’ glVlng

sup  inf |G = p,ll. = M/p""".
GeHSp,M) PnEF,

However,

sup inf |G — 7l
GeH{p,M) r€R,

is at least as large as the (n + 1)st singular value of a
Hankel matrix corresponding to G(z) = Mz"*!/p"+1,
namely the (n + 1)-by-(n + 1) matrix

0 0 0 M/pn+l

0 . M/pn+l 0

0 M/pn+1 0
M/pn+! 0 0 0

(see e.g., [20, ch. 16]). This matrix has (n + 1) singular
values all equal to M/p"*! and so the result follows. O
It is therefore of interest to study an identification
process that yields a polynomial model directly. For gen-
erality, we start with an approximation set (¢,) in A(D),
i.e.,, a sequence of linearly independent elements of 4(D)
whose linear span is dense in A(D). One important
example is the polynomial set {z¥~1}, . |, or more gener-
ally the simple rational set {[(z — @) /(1 — a2)[*" '}, . |, for
a fixed constant a with —1 < a < 1. We also make the
assumption that each member of the approximation set is
continuously differentiable on the unit circle.

Here, we give an identification algorithm based on
polynomial models: more general algorithms can be de-
fined similarly. Given data (g,,---, g,) and a fixed constant
B > 0 define the identified model to be that polynomial p
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of degree at most m — 1 which minimizes the quantity

sup ng—p(zk)l,ilnllp’llm} (4.1

1<k<n

A

\ = max {
where m = m(n) is any integer-valued function such that
lim,_,. m(n) =, and A, = B~!d, with d, the distance
|z, — z,| between consecutive interpolation points.

The problem of minimizing expressions such as (4.1)
has been discussed by Barrodale et al. [1]. They observe
that an alternative form, where one chooses p to mini-
mize the quantity

sup [g — p(z)l-,
1<k<n

*
,,—max{

A, sup

O<ow<2n

|p’(ei°')|*} (4.2)

n

where, for a complex number z = x + iy, |z|- denotes max
(Ixl, Iy, can be solved by linear programming, since it is

-essentially a problem involving the solution of an overde-

termined system of linear equations in an /, sense. Since
|z|« < |z| < V2|zl-, this alternative criterion is worth con-
sidering and similar error bounds can be derived to the
ones we shall now present.

A further computational simplification, which avoids
calculating any H, norms, is to replace the expression
lp’lle by the somewhat larger expression [Ip'l; = L7}
klp,l, where p(z) = L~} pez*-.

Theorem 4.2: The algorithm using (4.1) above is robustly
convergent over A(D).

Proof: Given G € A(D) and § > 0 there exists a
polyngmial F of degree r, say, such that ||F — G| < &.
Hence

A, <max(e+ 8, A F'|l)

for n large enough that r < m(n) — 1, where € > 0 is the
noise level. Now if p is the polynomial minimizing (4.1),
and wg is the modulus of continuity of G, then

IG —ple < A, + wg(d,) + A, d, /A, + €
=1+ B\, + wg(d,) + €
< (1+ B)max(e+ 8, A,llF']l)

+ wg(d,) + € (4.3)

by the triangle inequality, noting that || p’|l < A, /A,. This
can be made arbitrarily small by choosing € small and n
large (8 and F having been chosen first), and hence (4.1)
gives an algorithm which is robustly convergent over A(D).
O
Note that this technique provides us with a polynomial
model directly; as an alternative, one may find that the
rational model set is more appropriate given certain a
priori information about the system. The calculations are
very similar and will not be repeated here: as a result, one
would now obtain an identified model which is a polyno-
mial in (z — a)/(1 — az).
One important observation here is that the identifica-
tion points do not need to be equidistant for the algo-
rithm above to be used. Provided that as n tends to
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infinity the mesh d, (the maximum distance between
consecutive interpolation points) tends to zero, the algo-
rithm is still robustly convergent and the same error
bounds hold. Also, if we use || p'll; rather than || p’ll. this
does not affect the robust convergence and the only
change in the proof of Theorem 4.2 is to replace ||F'll. by
NF1ls.

V. NUMERICAL EXAMPLE

To illustrate the methods of Sections III and IV, in this
section we include a numerical example of closed-loop
identification, in which both the controller and the
closed-loop transfer function are only given approxi-
mately.

We take the very simple unstable plant P(s) = 1/s and
a constant controller C'(s) = 1, giving 1/(s + 1) as the
‘ideal’ stable closed-loop system. To reflect errors in the
controller and the measured transfer function, let C(s) =
C'(s) + nc(s), where n- has modulus 0.05 and random
complex argument, let G(s) = P/(1 + CP) and let G, =
G + 7, where 7, also has modulus 0.05 and random
argument.

Closed-loop A(D)-identification based on frequency re-
sponse measurements of G, using the algorithm of [17]
followed by model reduction produces an approximation
G’ to G, and hence an approximation P’ = G'/(1 —
C’'G’) to P, as follows.

Starting with 21 points and noise level 0.05, the identi-
fied model for G had Hankel singular values equal to
0.467, 0.054, 0.050, 0.038, 0.030, 0.009,---,and hence a
first-order model G’ was appropriate: this was produced
by means of a truncated balanced realization (which tends
to produce best results for this particular procedure, to
judge from our numerical experience: see e.g., [17]) In
fact |G’ — (1/(s + D)Il. = 0.046 and the final open-loop
model was

1.014 + 0.048s

P(s) =
() 0.021 + 5

The simulation was repeated using 41 points and a
noise level of 0.025. In this case |G’ — (1/(s + D). =
0.017 and the final open-loop model was

0.967 + 0.0008s

P’
() 0.005 + 5

indicating that convergence in the gap topology is taking
place.

The methods of Section IV were also used to identify
the closed-loop system G. The true transformed system is
0.5z + 0.5, and taking m = 2 (polynomials of degree 1)
naturally gives good results. Three values of B were tried.

For B =1 the first example gave G'(z) = 0.427z +
0.487 with A, =0.127 and P’(s) =(0.971 + 0.063s)/
(0.092 + 5), the second G'(z) = 0.468z + 0.514 with
Ay, = 0.072 and P'(s) = (1.030 + 0.0495)/(0.019 + s).

With B = 2 these became G'(z) = 0492z + 0.478 with
A, =0.076 and P'(s) = (0.975 — 0.0145)/(0.029 + s);
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and G'(z) = 0.506z + 0.489, with A,; = 0.046 and P'(s)
= (0.978 — 0.0175) /(0.005 + s), respectively. Taking 8 =
5 gave the same results as = 2. Note that in general,
high values of 8 will tend to amplify the effects of noise
since they diminish the effects of large values of p'.

One could now use one of these identified models to
design a robust controller for the original plant P, e.g., by
using the techniques of [14]; a controller based on the
identified model P’ will in the limit (as the number of
points tends to infinity and the noise levels tend to zero)
tend to optimality for the unknown plant P also.

V1. CONCLUSIONS

The notion of robust identification and approximation
given in (2.1) extends naturally to the problem of identifi-
cation of unstable systems in the gap topology, using
closed-loop transfer function measurements, and satisfac-
tory low-order models can be produced by these means, as
shown in Section III.

In addition, it is of interest to have a robust identifica-
tion algorithm that produces a model in some specified set
(e.g., a polynomial) and the methods of Section IV give a
means of achieving this.
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