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Abstract
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Collective phenomena in complex networks are very important in modern science. Mean-
while analytical studies in this area are limited to homogêneous networks, where the
number of connections per node is constant, real complex networks are heterogeneous
and, therefore, their investigation is made mainly through numerical simulations and data
science techniques. In this work, we analyticaly solve the parallel dynamics of the Ising
model on an ensemble of complex networks with an aribitrary distribution in the number
of conections per node, valid in the high connectivity limit. Depending on the threshold
noise distribution, that mimics the effect of the heat bath, the system can evolve to non
equilibrium stationary states, since the explicit form of the threshold noise distribution
determines the distribution of microscopic states. Our main result is a pair of equations
that describe the dynamics of the global magnetization of the system, in terms of the
degree and threshold noise distributions. In the long time limit, these equations allow to
determine the critical temperature for the continuous transtition between ferromagnetic
and paramagnetic phases. We show that the critical temperature is determined by the
variance of the degree distribution and by the behavior of the threhsold noise distribution
near zero. The focus of this work lies in the calculation of the critical exponents, both
stationary and dynamical, for the global magnetization and for the variance of the distri-
bution of local magnetizations, in the case which the degrees follow a negativa binomial
distribution. This choice is convenient because it allows to parametrize the heterogeneity
of the network in terms of a single paramenter. For a hyperbolic tangent threshold noise
noise distribution, that promotes detailed balance, both stationary and dynamical critical
exponents agree with previous results from the usual homogeneous mean field theories.
For an algebraic threshold noise distribution, however, detailed balance is broken and the
critical exponents are determined by the tails of the threshold noise distribution. Finally,
we shot that, as the systems approaches the critical temperature, the relaxation time for
the magnetization inside each phase diverges according to typical values of the homege-
neous mean-field theory regardless of the threshold noise distribution. With these results,
we highlight the importance of the degree and termal noise fluctuations on the dynamics
of the Ising model, presenting one step further on the direction of the understanding of
the theoretical description of real complex network phenomena. Generally, we show that
the critical exponents do not depend on the heterogeneity of the network, depending only
on the threshold noise distribution.



Resumo

Palavras-chaves: Modelo de Ising, não-equilíbrio, redes complexas.

Fenômenos coletivos em redes complexas vem se tornando cada vez mais importantes na
ciência moderna. Enquanto estudos analíticos nesta área se limitam essencialmente à re-
des homogêneas, onde o número de conexões por nó não varia, redes complexas reais são
heterogêneas e, portanto, seu estudo é feito principalmente através de técnicas de simu-
lação e análise de dados. Neste trabalho, resolvemos analiticamente a dinâmica paralela
do modelo de Ising em um ensemble de redes complexas com uma distribuição arbitrária
no número de conexões por sítio, valida no limite de alta conectividade. Dependendo da
distribuição de ruído de limiar, que mimetiza o efeito do banho térmico, o sistema pode
evoluir para estados estacionários de não equilíbrio, uma vez que a forma explícita da dis-
tribuição de ruído de limiar determina a forma da distribuição de estados microscópicos.
Nosso resultado principal é um par de equações que descreve a dinâmica da magnetização
global do sistema em termos das distribuições de grau e de ruído de limiar. No limite de
tempos longos, essas equações permitem determinar a temperatura crítica da transição
contínua entre as fases ferromagnética e paramagnética. Mostramos que a temperatura
crítica depende da variância da distribuição de graus e do comportamento da distribuição
do ruído de limiar próxima a zero. O foco deste trabalho está no cálculo dos expoentes
críticos, tanto estacionários quanto dinâmicos, para a magnetização global e para a var-
iância da distribuição das magnetizações locais, no caso em que os graus seguem uma
distribuição binomial negativa. Esta escolha da distribuição de graus é conveniente pois
permite parametrizar a heterogeneidade da rede em termos de um único parâmetro. Para
uma distribuição de ruído de limiar dada por uma tangente hiperbólica, que promove
balanço detalhado, os expoentes críticos estacionários e dinâmicos da magnetização as-
sumem os valores usuais da teoria de campo médio homogênea. Já para uma distribuição
de ruído algébrica, o balanço detalhado é quebrado, e os expoentes críticos são determina-
dos pela cauda da distribuição de ruído de limiar. Por fim, mostramos que, a medida que
o sistema se aproxima da temperatura crítica, o tempo de relaxação da magnetização em
cada fase diverge de acordo com valores típicos de teorias de campo médio homogêneas
independentemente da distribuição de ruído de fundo. Com esses resultados, evidenci-
amos a importância das flutuações de grau e de ruído térmico na dinâmica do modelo
de Ising, dando um passo a mais na direção da descrição teórica de modelos em redes
complexas reais. Em geral, nós mostramos que os expoentes críticos não dependem da
heterogeneidade da rede, mas dependem apenas da distribuição de ruído de limiar.
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1 Introduction

In recent years, scientists have gained access to an extraordinary amount of data. From
the necessity to process and analyze such large quantity of informatiom different fields,
such as medicine [1], sports analytics [2] and astronomy [3], the discipline of Data Science
naturally emerged with the establishment of the so called “big data era”. Interestingly,
statistical physics found in this data revolution a large number of new applications [4],
providing a wide set of tools for data and computer scientists, such as the concepts of
phase transitions and energy landscapes in the context of complex systems. While the
standard approach of data science is to develop learning algorithms to correctly predict
new observations by training models from a given dataset [5], the main contribution of
statistical physics to this new plethora of problems comes in the form of simplified sys-
tems, whose solution may reproduce a particular feature of the observations and provides
phenomenological intuition about real phenomena.

Complex systems are ubiquitous in modern science, and may be defined as systems
with a large collection of interacting units, whose behavior crucially dependends on its
details [6], presenting rich phenomena such as collective behavior and phase transitions.
Even though the intricate interaction between their microscopic constituints make com-
plex systems very hard to model, they present the astonishing property of universal critical
behavior [7]. Examples of complex systems can be found in neuroscience, when studying
the activation of about fifty billion neurons in the cortex of the human brain [8]; in soci-
ology, where the dynamics of opinion formation depends on the communication of a large
number of individuals [9]; or in meteorology, where the intricate dynamics of the earth’s
climate depends on properties across diferent space and temporal scales [10]. While data
science develops methods to predict meteorological conditions based on present and past
observations, or models neuronal activation profiles based on measurements of brain ac-
tivity, the typical approach of a physicist is to conceive minimal models to reproduce
specific aspects of the observations. This approach led, for instance, to the development
of energy balance models for global temperature [11] and to the Wilson-Cowan equations
for biological neural networks [12]. Clearly, physical models are improved based on what
is learned from real data, as we have seen in the recent development of disease evolution
for the COVID-19 pandemic evidences [13]. In short, this modelling approach differs from
the predictive approach of data science, as the former is focused on phenomenological
intuition.

Complex systems can be represented through a complex network, a simplified represen-
tation that reduces a system to an abstract structure capturing only the basic information
regarding the interaction between individuals [14]. Complex networks are defined in terms
of a set of nodes connected by links, and are known in math as random graphs [15]. A
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node may represent a person in a community [16], a species in a food web [17] or an
economic agent in a market [18], and interacts with neighboring nodes through its links.
The nature of the interactions also depends on the context. The links can model a so-
cial pressure towards a given choice (an individual may vote for candidate A or B based
on the vote of its connections), the status of an ecological relationship between species
(species A feeds on B that feeds on C) or the balance of a wealth exchange between agents
(which node benefits in a win-lose pair wise exchange). Even though complex networks are
simplifications of complex systems, they capture their central aspects, such as emergent
collective behavior and phase transitions. From the microscopic local interactions, global
macroscopic features may emerge, generating the perfect scenario to the application of
statistical mechanics. For instance, a social system may evolve to a global opinion profile,
where a macroscopic fraction of the population votes for candidate A instead of B [19], or
a dynamical macroscopic activation pattern may arise in the neuronal population forming
the human cortex [20]. Since the nature of the macroscopic behavior depends on a set of
model parameters of the model, the machinery developed to study phase transitions in
physical systems can describe macroscopic properties of complex systems.

Equilibrium statistical physics describes systems in thermodynamic equilibrium [21].
In such cases, the relaxation from an initial configuration to a stationary state leads to the
occupation of the available microstates, which are distributed according to the Boltzmann
distribution. However, the relaxation mechanism still lacks a general theory. Also, the
application of statistical physics to other areas is highlighting systems for which detailed
balance may not hold, resulting in the occupation of microstates distributed in discordance
with the Boltzmann distribution [22]. Therefore, even the stationary configuration, such
systems will not be in thermal equilibrium. The description of these two different situations
is the central aim of non-equilibrium statistical physics, and complex systems are a fruitful
scenario for their investigation.

Mean-field theories in statistical physics are important because they capture collective
phenomena and phase transitions in complex systems [7]. In a mean field approach, each
individual interacts with a coarse-grained effective field produced by its neighbors, instead
of taking into account the detailed contribution of each individual variable. Averaging the
behaviour of an individual over this effective field provides a macroscopic description of
the system in terms of order parameters, which captures qualitative features of phase
transitions [23]. Within the context of mean-field theories, the Ising model stands out for
its simplicity. Introduced as a model of magnetic materials [24, 25], the Ising model is
formed by a set of binary random variables with values plus or minus one, called spins,
placed at each node of a network. The spins interact with each other through the coupling
strenght associated to each link and the state of a node depends on the configuration of
its neighbors. Interestingly, many different systems and problems can be mapped onto the
Ising spins, so the model is a minimal framework to study problems from many different
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areas, such as sociology [19], economy [26] and computer science [27]. The coupling deter-
mines both the strength and the nature of the interaction. If the interaction between two
spins is positive, they tend to point in the same direction, while if it is negatie, the tend
to point in contrary directions. The coupling strenghts can also introduce interaction dis-
order in the system. By assuming that the coupling follow from a symmetric probability
distribution, the coexistence of ferromagnetic (positive couplings) and anti-ferromagnetic
(negative couplings) interactions is promoted. One famous example of a disordered spin
model is the Sherrington-Kirkpatrick spin glass [28], where the couplings between spins
are drawn from a Gaussian distribution, leading to many interesting phenomena [29].

Another kind of disorder may arise from the structure of the underlying network. For
instance, we can consider the ferromagnetic Ising model on a two-dimensional lattice [30]
and randomly remove some of the connections between the spins. In this new model,
known as diluted two-dimensional lattice [31], the Ising ferromagnet may behave drasti-
cally different than in the original two-dimensional model. The diluted two dimensional
lattice is one example of model in which the number of conections per spin, or degree
of each spin, is random. Another important example of network with degree fluctuations
is the Erdős-Réniy ensemble [15], where a probability is assigned to each possible pair
of spins to be connected. While most models consider homogeneous networks, where de-
gree fluctuations are irrelevant, and must resort to the thermodynamic limit in order to
provide analytical solutions, real complex networks are sparse and heterogeneous, i.e.,
present finite connectivity and degree fluctuations. For these reasons, the investigation of
real phenomena is heavily based on numerical simulations and data science methods, so
the analytical understanding of the effects of network heterogeneities in spin models is a
central problem in network science [32].

Concerning equilibrium critical phenomena, Ising models are characterized by well
known mean-field critical exponents, as long as the fourth moment of the degree distri-
bution is finite [33–35], even in heterogeneous networks [36]. In comparison with complex
systems that evolve to an equilibrium behavior, progress has been much slower on the
side of non-equilibrium heterogeneous Ising models, both dynamical and stationary. To the
best of our knowledge, the stationary non-equilibrium critical exponents are not known.
Another challenge regarding non-equilibrium Ising models is that, in contrast to the ma-
jority of problems of classical mechanics [37], Ising systems lack an intrinsic dynamics.
This is due to the fact that they are described by a pseudohamiltonian [38], devoid of a set
of natural equations of motion generally derived through Hamilton’s relations. Therefore,
the evolution rule for Ising systems must be set up artificially. The most common update
scheme for the Ising model is called Glauber dynamics [39], where the spins are updated
based on the local fields induced by the configuration of their neighbours, plus a stochas-
tic threshold noise that mimics the contact with a heat bath. Since detailed balance fails
depending on the distribution of the threshold noise [40], the explicit form of the distri-
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bution plays a main role on the characterization of stationary limits as equilibrium or
non equilibrium states. The effects of degree and thermal fluctuations on the dynamical
exponents [54] are also not known.

There are two main classes of networks for which the dynamics of Ising spins is solved:
dense random graphs and sparse directed random graphs [41–43]. Interestingly, recent
studies on the spectra of random graphs [44] and on the equilibrium of spin models on
networks [36] led to analytical solutions that depend on the degree distribution, in the
limit where the mean degree is infinitely large. In this work, we extend these previous
results to the non-equilibrium dynamics of the Ising model. By considering ferromagnetic
couplings, we develop a mean field theory that describes the evolution of the Ising models
for arbitrary degree and threshold noise distributions. Our results improve the under-
standing of critical phenomena of Ising systems in highly connected networks, being one
step closer to the description of real sparse complex networks, accessible only through sim-
ulations. In addition, we generalize the aforementioned works by considering distributions
of threshold noise that induce the breakdown of detailed balance, presenting an analytical
framework that has potential applications beyond physical systems. Overall, our work in-
troduces the Ising models on a class of networks that retain the effect of both topological
structure and noise distribution, whose non-equilibrium dynamics can be solved exactly,
presenting insights on the network and termal fluctuations effects on the Ising model.

This work is organized as follows. In the first part of Chapter 2, we introduce the
Ising model and present the microscopic dynamics known as Glauber parallel dynamics.
Then, we derive the probabilistic version of the dynamics and proceed to the derivation
of the dynamical equations for the global and local magnetizations of the heterogeneous
Ising model with arbitrary threshold noise distribution. In Chapter 3 we explore in detail
the consequences of the dynamical equations by choosing the negative binomial degree
distribution, that allow to easily interpolate between homogeneous and heterogeneous
networks, and by comparing two different threshold noise distributions, one for which
detailed balance holds and one for which it does not. We derive both stationary and
dynamical critical exponents and discuss their dependence on degree and thermal fluctu-
ations. In the last chapter, we conclude the work by presenting a concise review of the
results and pointing some interesting open questions in the field.



2 Stochastic dynamics of the Ising model

The Ising model was introduced by Wilhelm Lenz and Ernst Ising (1920 [24] and
1925 [25], respectively) as a modelling tool to understand equilibrium ferromagnetism.
It is a simplified model that treats the atomic magnetic moments as binary variables, or
spins, that interact in order to minimize the system’s energy. Beyond its original physical
motivation, a myriad of modern applications raised the Ising model to the level of a
general framework to study complex systems, such as algorithm optimization [27], opinion
formation [19] and economy stability [26]. The Ising model consists of a collection of 𝑁
spins 𝜎𝑖 = ±1, identified by the index 𝑖 = 1, · · · , 𝑁 , whose equilibrium configuration is
described by the Boltzmann distribution [45]

𝑝(𝜎) = 𝑒−𝛽𝐻(𝜎), (2.1)

where 𝛽 is the inverse temperature parameter and 𝐻(𝜎) is the hamiltonian of the system,
given by

𝐻(𝜎) = −
∑︁
(𝑖,𝑗)

𝐽𝑖𝑗𝜎𝑖𝜎𝑗. (2.2)

In equation (2.2), ∑︀(𝑖,𝑗) denotes summation over all pairs of interacting spins and 𝐽𝑖𝑗 is
a coupling factor, which controls the strength and nature of the pairwise interaction. A
pair of spins tend to align for ferromagnetic 𝐽𝑖𝑗 > 0 and anti-align for anti-ferromagnetic
𝐽𝑖𝑗 < 0 couplings.

An important aspect of the Ising model is that it has no intrinsic dynamics. As dis-
cussed in [38], this results from the fact that equation (2.2) is actually a pseudohamilto-
nian, devoid of a set of natural equations for the evolution of its generalized coordinates
and associated momenta. A simple artificial dynamical rule to describe the microscopic
evolution of an Ising system was proposed by Roy Glauber in 1963 [39]. It consists of
updating spins at integer time steps 𝑡 based on the equation

𝜎𝑖,𝑡+1 = sgn[ℎ𝑖(𝜎𝑡) + 𝑇𝜁𝑖,𝑡], (2.3)

where the vector 𝜎𝑡 denotes the microstate of the system at time 𝑡 and 𝜁𝑖,𝑡 are independent
and identically distributed random variables drawn from a probability distribution 𝜇(𝜁).
The quantities 𝜁 define the threshold noise that mimics the heat bath. The sign function
sgn[𝑥] is defined as

sgn[𝑥] =

⎧⎪⎨⎪⎩1, if 𝑥 > 0,

−1, if 𝑥 < 0,
(2.4)

and ℎ𝑖(𝜎𝑡) is the local field at site 𝑖 and time 𝑡, given by

ℎ𝑖(𝜎𝑡) =
𝑁∑︁
𝑗=1

𝐽𝑖𝑗𝜎𝑗,𝑡. (2.5)
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The local fields introduce correlation between spins and define a mechanism through which
a spin evolves based on its interaction with the neighborhood. For 𝑇 → 0, the dynamics
is completely deterministic, while for 𝑇 → ∞ it is completely random since the stochastic
term in (2.3) dominates the sign function, rendering correlation between spins introduced
by (2.5) irrelevant.

The remainder of this chapter is divided as follows. In Section 2.1, we derive a proba-
bilistic description of the updating rule (2.3) in the case of parallel dynamics, and discuss
the relation between the threshold noise distribution 𝜇(𝜁) and detailed balance. In Section
(2.2), we address the effects of structural disorder on the system and present the dynam-
ical equations for the ferromagnetic Ising model on random graphs. Finally, in Section
(2.3) we introduce the notion of critical exponents and present a brief review of such
exponents regarding the Ising model.

2.1 Probabilistic description of parallel microscopic dynamics
In the first part of this chapter we presented the so called Glauber dynamics, defined by

equation (2.3). There are two main ways to apply this evolution rule [45]: one could choose
randomly a single spin 𝜎𝑖,𝑡 at each time step and update it, simulating a continuous time
process (as it was done originally in [39]), or update all spins simultaneously, generating a
discrete time process. Each of these possibilities is referred to in the literature as sequential
and parallel evolution, respectively. In this work, we consider the latter case, i.e., at each
time step all spins are simultaneously updated based on the configuration of the system on
the previous time step. Since each parallel iteration counts for up to 𝑁 sequential steps,
the discrete time evolution captures the long time behavior of the system, and even though
a continuous time approach would be closer to physical reality, such discrete approach
has applications on fundamental optimization problems in computer science [27].

Parallel dynamics can be described in terms of probabilities, which is more suitable
for an analytical development based on the microscopic probability 𝑝𝑡(𝜎) of observing a
global configuration 𝜎 at a time 𝑡. Since the microscopic dynamics is a Markov process,
the time evolution of 𝑝𝑡(𝜎) follows from

𝑝𝑡+1(𝜎) =
∑︁
𝜎′
𝑊 (𝜎|𝜎′)𝑝𝑡(𝜎′), (2.6)

where 𝑊 (𝜎|𝜎′) is the transition probability from state 𝜎′ to 𝜎. We stress that the transi-
tion probabilities are not functions of time, only of the state configurations, and once an
initial probability 𝑝0(𝜎) is given, what we need is to determine the explicit form of such
transition probabilities in order to solve the dynamics.
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Let us derive 𝑊 (𝜎|𝜎′) from equation (2.3). Considering the transition from a mi-
crostate 𝜎′ to another 𝜎, the updating rule can be formulated as

𝜎𝑖,𝑡+1 =

⎧⎪⎨⎪⎩1, if 𝜁𝑖,𝑡 > −𝛽ℎ𝑖(𝜎′
𝑡),

−1, if 𝜁𝑖,𝑡 < −𝛽ℎ𝑖(𝜎′
𝑡),

(2.7)

where 𝛽 = 1/𝑇 is the inverse temperature parameter. Each of the possible transitions
happens with probability

𝑝(𝜎𝑖,𝑡+1 = 1) =
∫︁ ∞

−𝛽ℎ𝑖(𝜎′
𝑡)
𝑑𝜁𝜇(𝜁), (2.8)

𝑝(𝜎𝑖,𝑡+1 = −1) =
∫︁ −𝛽ℎ𝑖(𝜎′

𝑡)

−∞
𝑑𝜁𝜇(𝜁). (2.9)

Assuming a symmetric threshold noise distribution, 𝜇(𝜁) = 𝜇(−𝜁), the probability 𝑝(𝜎𝑖,𝑡+1 =
1) can be written as

𝑝(𝜎𝑖,𝑡+1 = 1) =
∫︁ ∞

𝛽ℎ𝑖(𝜎′
𝑡)
𝑑𝜁𝜇(𝜁) + ℱ [𝛽ℎ𝑖(𝜎′

𝑡)] , (2.10)

where
ℱ [𝛽ℎ𝑖(𝜎′

𝑡)] =
∫︁ 𝛽ℎ𝑖(𝜎′

𝑡)

−𝛽ℎ𝑖(𝜎′
𝑡)
𝑑𝜁𝜇(𝜁) = 2

∫︁ 𝛽ℎ𝑖(𝜎′
𝑡)

0
𝑑𝜁𝜇(𝜁) (2.11)

is the so called activation function. Combining equations (2.9) and (2.10), we can drop
the time index and write as unique equation for the transition probability of a single spin
as follows

𝑊 (𝜎𝑖|𝜎′) = 𝛿𝜎𝑖,1

[︃∫︁ ∞

𝛽ℎ𝑖(𝜎′)
𝑑𝜁𝜇(𝜁) + ℱ [𝛽ℎ𝑖(𝜎′)]

]︃
+ 𝛿𝜎𝑖,−1

∫︁ −𝛽ℎ𝑖(𝜎′)

−∞
𝑑𝜁𝜇(𝜁). (2.12)

Making use of the fact that 𝑊 (𝜎𝑖|𝜎′) must be normalized and of the identity 𝛿𝜎,±1 =
1
2(1 ± 𝜎), we obtain the compact form

𝑊 (𝜎𝑖|𝜎′) = 1
2{1 + 𝜎𝑖ℱ [𝛽ℎ𝑖(𝜎′)]}. (2.13)

From equation (2.13), since each spin is updated in parallel, we obtain the explicit form
for the transition probability

𝑊 (𝜎|𝜎′) =
𝑁∏︁
𝑖=1

1
2{1 + 𝜎𝑖ℱ [𝛽ℎ𝑖(𝜎′)]}, (2.14)

allowing to write equation (2.6) in terms of the activation function as

𝑝𝑡+1(𝜎) =
∑︁
𝜎′
𝑝𝑡(𝜎′)

𝑁∏︁
𝑖=1

1
2{1 + 𝜎𝑖ℱ [𝛽ℎ𝑖(𝜎′)]}. (2.15)

This last result is the probabilistic version of (2.3). Once an initial probability 𝑝0(𝜎) is
given, it establishes a recurrence relation for the probabilistic evolution of the system.
Differentiating equation (2.11) with respect to 𝛽ℎ𝑖(𝜎′) = 𝑥, we have

1
2
𝑑ℱ(𝑥)
𝑑𝑥

= 𝑑

𝑑𝑥

∫︁ 𝑥

0
𝑑𝜁𝜇(𝜁), (2.16)
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so we can make use of the fundamental theorem of calculus to establish the relation
between the activation function and the distribution 𝜇(𝜁) of the threshold noise as

𝜇(𝑥) = 1
2
𝑑ℱ(𝑥)
𝑑𝑥

. (2.17)

In addition, equation (2.11) leads to important properties of the activation function,
namely

ℱ(𝑥) = −ℱ(𝑥), lim
𝑥→±∞

ℱ(𝑥) = ±1. (2.18)

Equation (2.15) is the starting point to solve the dynamics on random graphs, pre-
sented in the next section. This equation establishes that the dynamics is completely de-
scribed by the threshold noise 𝜇(𝜁) in terms of the activation function ℱ [𝛽ℎ𝑖(𝜎)], whose
explicit form is related to the maintenance of detailed balance. When the Ising model
evolving through parallel dynamics obeys detailed balance, the stationary microscopic
probability has the Boltzmann form [45]

𝑝(𝜎) = 1
𝑍

𝑁∏︁
𝑖=1

cosh(𝛽ℎ𝑖(𝜎)), (2.19)

where 𝑍 is the partition function. In general, this result does not hold for any choice
of ℱ [𝛽ℎ𝑖(𝜎)], strongly suggesting that detailed balance fails in such cases. Therefore, in
Chapter 3 we will explore the effects of two different choices of activation function, one
for which equation (2.19) holds, and one for which it does not hold.

2.2 Solution for highly connected random graphs
In this section, we will derive a closed set of dynamical equations that describe the

evolution of the global magnetization at time 𝑡, given by

𝑚𝑡 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

𝑚𝑖,𝑡. (2.20)

The local magnetization at node 𝑖 and time 𝑡 reads

𝑚𝑖,𝑡 =
∑︁

𝜎∈{−1,1}
𝜎𝑝𝑖,𝑡(𝜎), (2.21)

where marginal probability at time 𝑡, 𝑝𝑖,𝑡(𝜎), is obtained from 𝑝𝑡(𝜎) as

𝑝𝑖,𝑡(𝜎) =
∑︁
𝜎∖𝜎𝑖

𝑝𝑡(𝜎). (2.22)

The object 𝑝𝑖,𝑡(𝜎) denotes the probability of observing the state 𝜎 at node 𝑖 and time 𝑡.
The symbol ∑︀𝜎∖𝜎𝑖

denotes summation over all spins except for 𝜎𝑖.
Up to now, we have not specified the explicit form of the coupling strenght 𝐽𝑖𝑗 in the

local fields definition, equation (2.5), responsible for the introduction of disorder in the
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system. The most common type of disorder regards the nature of the pairwise interactions,
achieved by introducing some kind of randomness to 𝐽𝑖𝑗. For instance, we may choose each
𝐽𝑖𝑗 randomly from a gaussian distribution, promoting the coexistence of ferromagnetic
(𝐽𝑖𝑗 > 0) and anti-ferromagnetic (𝐽𝑖𝑗 < 0) interactions in the system, in contrast to the
exclusively ferromagnetic scenario promoted by choosing 𝐽𝑖𝑗 = 𝐽 > 0 for all pairs, where
𝐽 is a constant.

Another kind of disorder, called topological disorder, regards the structure of the
underlying complex network. On its pioneering work [25], Ising presented the analytical
solution of the ferromagnetic one dimensional chain with nearest neighbour interactions in
the absence of external fields, featuring no phase transition. Later, in 1944, Lars Onsager
presented the solution for the two dimensional ferromagnetic nearest neighbour lattice,
or square lattice, that undergoes a continuous phase transition at 𝑇 > 0 in the absence
of external fields [30]. These two equilibrium statistical mechanics examples show the
importance of the lattice structure for phase transitions, while the development of network
science emphasizes the central role of network heterogeneities on dynamical processes in
general [46].

Topological disorder can be introduced in the system if we identify each spin to a node
of a random graph represented by the adjacency matrix 𝐶, that encodes the structure of
the underlying complex network through its elements as

𝐶𝑖𝑗 =

⎧⎪⎨⎪⎩1, if the pair of spins (𝑖, 𝑗) is connected,

0, otherwise.
(2.23)

The complex network is incorporated in the model through a simple modification of the
local fields, namely

ℎ𝑖(𝜎𝑡) =
𝑁∑︁
𝑗=1

𝐽𝑖𝑗𝐶𝑖𝑗𝜎𝑗,𝑡 =
∑︁
𝑗∈𝜕𝑖

𝐽𝑖𝑗𝜎𝑗,𝑡. (2.24)

The neighbourhood of the 𝑖th spin, represented by 𝜕𝑖, is the set of indexes 𝑗 such that
𝐶𝑖𝑗 = 1 and it represents the spins that are coupled to 𝜎𝑖. The number of connections of
a spin, called the coordination number or degree of the spin 𝑖, is defined as

𝐾𝑖 =
𝑁∑︁
𝑗=1

𝐶𝑖𝑗. (2.25)

The vector 𝐾 = (𝐾1, · · · , 𝐾𝑁) contains the degrees of all spins, and its entries are inde-
pendent random variables drawn from the distribution

𝑝𝑘 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

𝛿𝐾𝑖,𝑘. (2.26)

The distribution 𝑝𝑘 is an input of the network model. The mean degree 𝑐 and the variance
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𝛿2 of 𝑝𝑘 are given by

𝑐 =
∑︁
𝑘≥0

𝑘𝑝𝑘, (2.27)

𝛿2 =
∑︁
𝑘≥0

𝑘2𝑝𝑘 − 𝑐2. (2.28)

The literature concerning fully connected systems, i.e., networks where each spin is
connected to all others is vast and the phenomenology of such systems is well known.
Important examples, both in and out of equilibrium, are the fully connected ferromagnet,
or Curie-Weiss model [47] and fully connected gaussian couplings model, Sherrington-
Kirkpatrick spin glass [28, 40]. However, real networks present finite connectivity and
degree fluctuations, since the number of connections per spin changes along the network.
Therefore, the description of real dynamical processes on top of complex networks should
include such features. In this work we address the impact of degree fluctuation, develop-
ing a theory that retains the effect of the network structure and whose non-equilibrium
dynamics can be solved exactly. We consider ferromagnetic coupling strenghts because of
their simplicity, and by doing so, disorder is introduced in the system only through the
degrees 𝐾𝑖. Hence, the local field in our model is given by

ℎ𝑖(𝜎𝑡) = 𝐽

𝑐

∑︁
𝑗∈𝜕𝑖

𝜎𝑗,𝑡, (2.29)

where the scaling with the mean degree 𝑐 ensures extensivity, when 𝑐 → ∞, for the
system’s Lyapunov function [45]

𝐿(𝜎𝑡) = −
𝑁∑︁
𝑖=1

|ℎ𝑖(𝜎𝑡)|𝜎𝑖, (2.30)

once the summation in equation (2.29) is of 𝒪(𝑐). A Lyapunov function is a monotonically
decreasing function that is bounded from below, and which recovers the pseudohamilto-
nian

𝐻(𝜎) = −𝐽

𝑐

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝜕𝑖

𝜎𝑗𝜎𝑖 (2.31)

once the system reached its stationary configuration 𝜎. In addition, we consider simple
undirected networks, where the interaction between two spins is symmetric and without
self-loops (𝐶𝑖𝑖 = 0 for any 𝑖), also called simple undirected networks [14].

Having set up the model, we now proceed to the derivation of the dynamical equations.
From the Markov process (2.15), the marginalization in equation (2.22) becomes

𝑝𝑖,𝑡+1(𝜎) =
∑︁
𝜎′
𝑝𝑡(𝜎′)1

2{1 + 𝜎𝑖ℱ [ℎ𝑖(𝜎′)]}, (2.32)

yielding for the local magnetization (2.21)

𝑚𝑖,𝑡+1 =
∑︁
𝜎′
𝑝𝑡(𝜎′)ℱ [ℎ𝑖(𝜎′)] . (2.33)
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Considering the explicit form of the local field in equation (2.29), we can write

ℎ𝑖(𝜎′) = 𝐽𝐾𝑖

𝑐

⎛⎝ 1
𝐾𝑖

∑︁
𝑗∈𝜕𝑖

𝜎𝑗

⎞⎠ , (2.34)

where the term in parentesis is the magnetization of the neighbourhood 𝜕𝑖. Considering
that the random variables 𝜎𝑗 ∈ 𝜕𝑖 are drawn from a probability distribution 𝑃𝑡(𝜎), from
the law of the large numbers, the convergence

1
𝐾𝑖

∑︁
𝑗∈𝜕𝑖

𝜎𝑗,𝑡 → 𝑢𝑡 (2.35)

is established as 𝑐 → ∞, where 𝑢𝑡 is the average of the probability 𝑃𝑡(𝜎)

𝑢𝑡 =
∑︁
𝜎

𝜎𝑃𝑡(𝜎). (2.36)

Consequently, the local field converges to the heterogeneous mean field

ℎ𝑖(𝜎′
𝑡) → 𝐽𝐾𝑖𝑢𝑡

𝑐
. (2.37)

We call it heterogeneous mean field because it includes the local fluctuations in the network
structure through the degree 𝐾𝑖. The probability 𝑃𝑡(𝜎) of observing a state 𝜎 on the
neighbourhood of an arbitrary spin 𝜕𝑖 is equal to the probability of randomly selecting an
edge with a state 𝜎 at one of its ends, therefore

𝑃𝑡(𝜎) =
∑︀𝑁
𝑖,𝑗=1 𝐶𝑖𝑗

∑︀
𝜎 𝑝𝑖,𝑡(𝜎′)𝛿𝜎′,𝜎∑︀𝑁

𝑖,𝑗=1 𝐶𝑖𝑗
. (2.38)

Due to equation (2.37), the local fields become independent of 𝜎′, rendering a trivial
summation in equation (2.33), resulting in

𝑚𝑖,𝑡+1 = ℱ
(︃
𝛽𝐽𝐾𝑖𝑢𝑡

𝑐

)︃
. (2.39)

This equation allows to study the dynamics of the local magnetization. By means of the
substitution of this last result in equation (2.20), we obtain the global magnetization

𝑚𝑡+1 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

ℱ
(︃
𝛽𝐽𝐾𝑖𝑢𝑡

𝑐

)︃
, (2.40)

which can be written explicitly in terms of the distribution 𝑝𝑘, equation (2.26), by intro-
ducing a Kronecker’s delta on the degrees as

𝑚𝑡+1 =
∑︁
𝑘≥0

(︃
lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

𝛿𝐾𝑖,𝑘

)︃
ℱ
(︃
𝛽𝐽𝑘𝑢𝑡
𝑐

)︃
=
∑︁
𝑘≥0

𝑝𝑘ℱ
(︃
𝛽𝐽𝑘𝑢𝑡
𝑐

)︃
. (2.41)

By taking the limit of infinite 𝑐 in the equation for the global magnetization, we get

𝑚𝑡+1 =
∫︁ ∞

0
𝑑𝑔𝜈(𝑔)ℱ (𝛽𝐽𝑔𝑢𝑡) , (2.42)
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where 𝜈(𝑔) is the rescaled degree distribution

𝜈(𝑔) = lim
𝑐→∞

∑︁
𝑘≥0

𝑝𝑘𝛿

(︃
𝑔 − 𝑘

𝑐

)︃
. (2.43)

This result shows that the dynamical evolution of the magnetization is conditioned to
the evolution of the unknown parameter 𝑢𝑡. Combining equations (2.36) and (2.38) and
performing the summation over 𝑗, we obtain

𝑢𝑡 =
∑︀
𝑖𝐾𝑖𝑚𝑖,𝑡∑︀
𝑖𝐾𝑖

, (2.44)

which represents the spatial average of the local magnetizations 𝑚𝑖,𝑡 weighted by the
degrees 𝐾𝑖. In the thermodynamic limit 𝑁 → ∞, we use equation (2.39) to write 𝑢𝑡+1 as

𝑢𝑡+1 = 1
𝑐

∑︁
𝑘≥0

𝑘𝑝𝑘ℱ
(︃
𝛽𝐽𝑘𝑢𝑡
𝑐

)︃
, (2.45)

and finally take the limit 𝑐 → ∞ to obtain

𝑢𝑡+1 =
∫︁ ∞

0
𝑑𝑔𝜈(𝑔)𝑔ℱ(𝛽𝐽𝑔𝑢𝑡). (2.46)

Equations (2.42) and (2.46) define a closed set of recurrence relations for the dynamical
behavior of the global magnetization. Note that the order of the limits is important. By
taking first the limit 𝑁 → ∞ and then 𝑐 → ∞, we ensure that 𝑐/𝑁 → 0, allowing
the rescaled degrees 𝐺𝑖 = 𝐾𝑖/𝑐 to fluctuate around the mean value 𝑐. This procedure
corresponds to the scaling 𝑐 ∝ 𝑁𝑎, with 0 ≤ 𝑎 < 1 and this regime defines what we call
the high connectivity limit [36]. The high connectivity limit lies somehow between the
fully connected case (𝑐 ∝ 𝑁) and the sparse case (finite 𝑐). In Appendix A, we present an
alternative derivation of this mean field dynamical set of equations based on the generating
functional formalism [40, 48], a more rigorous and exact method.

Equation (2.39) allows us to derive an equation for the full distribution of local mag-
netizations. Even though the macroscopic magnetization 𝑚𝑡 defines a single path through
phase space, each spin on the heterogeneous network displays a local magnetization that
fluctuates around this global value. The probability distribution 𝒫𝑡(𝑚) of local magneti-
zations at time 𝑡 can be determined straightforwardly from the high connectivity limit of
equation (2.39), namely

𝑚𝑖,𝑡+1 = ℱ(𝐽𝛽𝐺𝑖𝑢𝑡), (2.47)

with 𝐺𝑖 ∼ 𝜈(𝑔). We see that 𝑚𝑖,𝑡+1 is a function of the random variable 𝐺𝑖, and therefore
it is a random variable itself. Since we know the distribution 𝜈(𝑔) og 𝐺𝑖 in the high
connectivity limit, we can use the method of change of variables, presented in Appendix
B, and obtain a general equation for the full distribution of local magnetizations

𝒫𝑡(𝑚) = 𝑇

𝐽𝑢𝑡

⃒⃒⃒⃒
⃒⃒ 𝑑𝑑𝑚ℱ−1 (𝑚)

⃒⃒⃒⃒
⃒⃒𝜈
[︃
𝑇ℱ−1(𝑚)

𝐽𝑢𝑡

]︃
, (2.48)
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which is determined by the explicit choices of the distributions 𝜈(𝑔) and 𝜇(𝜁). The quantity
ℱ−1 is the inverse of the activation function ℱ . The first moment of 𝒫𝑡(𝑚) gives again
the global magnetization

𝑚𝑡 =
∫︁ 1

0
𝑑𝑚′ 𝒫𝑡(𝑚′). (2.49)

Equations (2.15), (2.42), (2.46) and (2.48) are the central results of this work, allowing to
determine the macroscopic evolution of the system, as well as to characterize microstate
probabilities and fluctuations of local magnetizations.

Having introduced the rescaled degree distribution 𝜈(𝑔), equation (2.43), we can define
more precisely what an heterogeneous network is in terms of its relative variance

lim
𝑐→∞

𝛿2

𝑐2 ≡ Δ2, (2.50)

which quantifies the degree fluctuations. A graph is called homogeneous if Δ2 = 0, and
heterogeneous if Δ2 > 0. Even though homogeneous graphs can display degree fluctu-
ations for finite 𝑁 and 𝑐, such fluctuations are irrelevant in the high connectivity limit
because their rescaled distribution 𝜈(𝑔) becomes peaked at the mean value 𝑔 = 1 (which
implies Δ2 = 0). Important examples of homogeneous ensembles are the Erdős-Rényi
and the regular random graphs [15]. Heterogeneous graphs, on the other hand, are those
that display degree fluctuations that are "strong enough" in comparison to 𝑐 to remain
important in the high connectivity limit, giving rise to finite rescaled variance Δ2. This
distinction between heterogeneous and homogeneous complex networks leads to an im-
portant feature of the model. For those degree distributions such that Δ2 = 0, we obtain
𝜈(𝑔) = 𝛿(𝑔 − 1), since 𝐾𝑖 = 𝑐 for any 𝑖, reducing the dynamical equations (2.42) and
(2.46) to a single recurrence relation

𝑚𝑡+1 = ℱ(𝛽𝐽𝑚𝑡). (2.51)

This is the result for fully connected models, but interestingly Δ2 = 0 is not a feature
exclusive to such trivial configuration. The Erdős-Rényi ensemble of random graphs [15]
is an example in which 𝑝𝑘 presents fluctuations, but 𝜈(𝑔) has a vanishing relative variance
(as shown in Appendix C). Therefore, equation (2.51) shows that networks with weak
or no degree fluctuations behave like fully connected ones, establishing the latter as an
universality class for homogeneous systems.

We finish this section with a discussion about the generation of random graphs from
a given degree sequence 𝐾, called configuration models [14], and present a useful approx-
imation for their adjacency matrix in the high connectivity limit that will come in hand
for the simulation results presented in Chapter 3. The simplest algorithm to generate ran-
dom graphs from the configuration model is the pairing model [49]. First, a set of nodes
is generated, each with 𝐾𝑖 connections to perform; then, pairs of nodes are uniformly
chosen and connected. When a pair is connected twice or a loop is generated (a node
connected to itself), this graph is neglected and the process is restarted. As 𝑁 grows, this
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algorithm becomes very slow and inefficient, since lots of trials are neglected, rendering
numerical simulations of large systems very difficult. To obtain an approximation to avoid
the necessity of using sophisticated algorithms to simulate the model, we start by noting
that, through substitution of equation (2.44) in equation (2.37), we can write the local
field as

ℎ𝑖(𝜎𝑡) = 𝐽

𝑁𝑐

∑︀𝑁
𝑗=1 𝐾𝑖𝐾𝑗𝑚𝑗,𝑡(︁
1
𝑁

∑︀𝑁
𝑗=1 𝐾𝑗

)︁ . (2.52)

As 𝑁 grows, 1
𝑁

∑︀𝑁
𝑗=1 𝐾𝑗 → 𝑐, and then taking the limit 𝑐 → ∞ with the rescaling

𝐺𝑖 = 𝐾𝑖/𝑐, we have

ℎ𝑖(𝜎𝑡) → 𝐽

𝑁

𝑁∑︁
𝑗=1

𝐺𝑖𝐺𝑗𝑚𝑗,𝑡. (2.53)

By comparing equation (2.53) with the local field

ℎ𝑖(𝜎𝑡) = 𝐽

𝑐

𝑁∑︁
𝑗=1

𝐶𝑖𝑗𝜎𝑗,𝑡, (2.54)

we see that the entries of the adjacency matrix𝐶 may be replaced, in the high connectivity
limit, by

𝐶𝑖𝑗 = 𝑐

𝑁
𝐺𝑖𝐺𝑗(1 − 𝛿𝑖,𝑗). (2.55)

In Chapter 3 we confirm the equivalence between the configuration model and the fully
connected network defined by the adjacency matrix with elements given by (2.55) through
numerical simulations. Even though a fully connected network is more expensive in terms
of computational memory, simulations are more efficient than the trial and error genera-
tion process of the pairing algorithm.

2.3 Critical exponents of the Ising model
We end this chapter by discussing the concept of critical exponents. Statistical mechan-

ics is concerned with providing a microscopic description of macroscopic thermodynamic
phenomena, and one of its biggest triumphs is the understanding of phase transitions and
critical phenomena [21], both stationary and dynamical [50].

For magnetic systems such as the Ising model, critical phenomena may be described
in terms of the magnetization 𝑚𝑡. The transition between the ordered and the disordered
phase is defined in terms of the stationary value 𝑚 = lim𝑡→∞ 𝑚𝑡. If 𝑚 > 0, a macroscopic
fraction of the spins is aligned and the system is in an ordered ferromagnetic phase, while
for 𝑚 = 0 the system is in a disordered paramagnetic phase. In this section, we present
a brief survey of the critical behavior of the magnetization in the fully connected Ising
model [7]. We focus on the dynamical critical exponent for the relaxation of 𝑚𝑡 to the
stationary value 𝑚, and on the stationaty critical exponent for the dependence of the
value 𝑚 on the rescaled temperature 𝑇𝑐−𝑇

𝑇𝑐
.
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Given a ferromagnetic initial state 𝑇 < 𝑇𝑐 with very small magnetization, after an
abrupt change 𝑇 → 𝑇𝑐 on the temperature of the system, it will relax towards the new
stationary magnetization. After a transient short time regime, sensitive to initial condi-
tions, the long time relaxation of 𝑚𝑡 behaves as a power law [51]

𝑚𝑡 ∝ 𝑡−𝑧1 , (𝑡 ≫ 1), (2.56)

where 𝑚0 > 0 is the initial magnetization and 𝑚 = 0. Considering a fully connected
network and the hyperbolic tangent activation function ℱ(𝑥) = tanh(𝑥), we recover the
Curie-Weiss model [52], whose dynamics is given by (2.51)

𝑚𝑡+1 = tanh(𝛽𝐽𝑚𝑡). (2.57)

The iteration of this equation for long times shows that the magnetization has a power law
decay with 𝑧1 = 1/2. This value for the dynamical critical exponent defines a universality
class for systems with purely dissipative dynamics without a conserved order parameter,
known as “model A” [53].

The stationary critical exponent 𝜆 is defined as the leading term of the Taylor expan-
sion in terms of 𝑇𝑐−𝑇

𝑇𝑐
around zero,

𝑚 ∝
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂𝜆1

. (2.58)

Setting 𝑚𝑡 = 𝑚 in equation (2.57), the stationary transcendental equation for the mag-
netization of the Curie-Weiss model is obtained as

𝑚 = tanh(𝛽𝐽𝑚). (2.59)

By expanding the hyperbolic tangent in a Taylor series in 𝑇𝑐−𝑇
𝑇𝑐

around zero we find that
the leading order term for 𝑇 → 𝑇𝑐 is

𝑚 =
√

3
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2
, (2.60)

so 𝜆1 = 1/2. This is the value for the usual homogeneous mean-field description of Ising
models, and also define a universality class.

Finally, an interesting relation between the correlation length 𝜉, a purely stationary
quantity, and the relaxation time 𝜏 , a purely dynamical quantity. For a temperature
𝑇 ̸= 𝑇𝑐, the system relaxes exponentially fast to the stationary in the form

𝑚𝑡 ∝ 𝑒− 𝑡
𝜏 . (2.61)

The relation between 𝜏 and 𝜉 is described in terms of the dynamical 𝑍 exponent as [54]

𝜏 ∝ 𝜉𝑍 . (2.62)
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Since the correlation length of the Curie-Weiss model diverges as 𝑇 → 𝑇𝑐 from the ferro-
magnetic phase like 𝜉 ∝ |𝑇𝑐 − 𝑇 |−1/2 and the relaxation time as 𝜏 ∝ |𝑇𝑐 − 𝑇 |−1, we have
𝑍 = 2.

In Chapter 3, we investigate the effect of degree fluctuation and noise thresholds in
the general behavior of the system and obtain the critical exponents 𝑧1, 𝜆1 and 𝑍 for the
heterogeneous and arbitrary threshold noise Ising model, as well as their counterparts for
the variance of the local magnetization distribution 𝒫(𝑚).



3 Results and discussion

In the previous chapter we presented the derivation of the fundamental equations
that describe the dynamical behavior of the Ising model on highly connected random
graphs. These equations are valid for generic degree and threshold noise distributions. In
this chapter, we explore in detail the consequences of such equations by choosing specific
forms for the distributions 𝑝𝑘 and 𝜇(𝜁).

Considering the degree distribution, we choose the negative binomial distribution

𝑝𝑘 = Γ(𝛼 + 𝑘)
𝑘!Γ(𝛼)

(︂
𝑐

𝛼

)︂𝑘 (︂ 𝛼

𝛼 + 𝑐

)︂𝛼+𝑘
, (3.1)

whose variance is given by
𝛿2 = 𝑐2

𝛼
+ 𝑐. (3.2)

Here, 𝑐 is the mean degree and 𝛼 > 0 is a parameter that controls 𝛿2. The associated
rescaled degree distribution, also calculated in Appendix C, is given by

𝜈(𝑔) = 𝛼𝛼

Γ(𝛼)𝑔
𝛼−1𝑒−𝛼𝑔, (3.3)

where the variance of 𝜈(𝑔) reads
Δ2 = 1

𝛼
. (3.4)

We note that this is an interesting degree distribution because it allows to interpolate
between homogeneous graphs (𝛼 → ∞ and Δ2 → 0) and heterogeneous graphs (𝛼 → 0
and Δ2 → ∞) by changing a sigle parameter.

We consider two distributions of threshold noise, namely

𝜇ℎ(𝜁) = 1
2[1 − tanh2(𝜁)], (3.5)

𝜇𝜅(𝜁) = 1
2(1 + 𝜁2𝜅)−(1+ 1

2𝜅), (3.6)

with integer 𝜅. A plot of each of these distributions as functions of 𝜁 is presented in figure
3.0.1. The associated activation functions are given by

ℱℎ(𝑥) = tanh(𝑥), (3.7)

ℱ𝜅(𝑥) = 1
2𝑥(1 + 𝑥2𝜅)− 1

2𝜅 . (3.8)

The first reason for these choices is related to the tail of such distributions. As shown
in the left panel of figure 3.0.1, the hyperbolic tangent distribution 𝜇ℎ, equation (3.5), has
an exponential tail, while the algebraic distribution 𝜇𝜅, equation (3.6), decays as a power
law |𝜁|−2𝜅−1 for |𝜁| ≫ 1, presenting a slower tail that increases the probability of stronger
thermal fluctuations. Therefore these distributions allow to explore different heat baths.
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Figure 3.0.1 – Noise distributions, equations (3.5) and (3.6). The left panel presents the
hyperbolic and algebraic, with 𝜅 = 1 and 𝜅 = 2, distributions as a function
of 𝜁. The right panel presents a log-log plot showing the power law decaying
of the algebraic distributions for the same values of the index 𝜅. On the
inset, we pshow a semilog plot showing the exponential decaying of the
hyperbolic distribution.

The second reason has to do with the stationary solution of equation (2.15) for the
microstate probability, as mentioned in Section 2.2. From the heterogeneous mean field
approximation, equation (2.37), we see that the local fields in the high connectivity limit
become independent of the configuration 𝜎′, allowing to directly perform the summation
over states to obtain

𝑝𝑡+1(𝜎) =
𝑁∏︁
𝑖=1

1
2[1 + 𝜎𝑖,𝑡+1ℱ (𝐽𝛽𝐺𝑖𝑢𝑡)]. (3.9)

Setting 𝑢𝑡 = 𝑢 in the last result, we obtain the fixed point value of the microstate proba-
bility

𝑝(𝜎) =
𝑁∏︁
𝑖=1

1
2[1 + 𝜎𝑖ℱ (𝐽𝛽𝐺𝑖𝑢)]. (3.10)

By choosing the hyperbolic tangent threshold noise distribution 𝜇ℎ(𝜁), which corresponds
to the original formulation of the dynamics of Ising spins presented by Glauber [39],
equation (3.9) assumes the form of a Boltzmann distribution, which is a consequence
of detailed balance and thermodynamic equilibrium [45]. From equation (2.19) for the
stationary microstate probability, duplicating the configuration space by introducing a
new set of Ising variables 𝜆𝑖 = ±1 and using equation (2.29) for the local fields, we can
rewrite the probability distribution as

𝑝(𝜎) = 1
𝑍

𝑁∏︁
𝑖=1

∑︁
𝜆

𝑒
𝛽𝐽
𝑐

∑︀𝑁

𝑖,𝑗=1 𝐶𝑖𝑗𝜆𝑖𝜎𝑗 , (3.11)

where the notation ∑︀
𝜆 denotes sum over all 2𝑁 possible configurations of the vector 𝜆.

Since ∑︀𝑖𝐶𝑖𝑗𝜆𝑖 = ∑︀
𝑖∈𝜕𝑗

→ 𝐾𝑖𝑢 for large 𝑐, and using the explicit form of the normalization
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factor, we obtain

𝑝(𝜎) =
∏︀𝑁
𝑖=1 𝑒

𝛽𝐽𝐺𝑖𝜎𝑖𝑢∏︀𝑁
𝑖=1 cosh(𝛽𝐽𝐺𝑖𝑢)

. (3.12)

From the identity

𝑒𝛽𝐽𝐺𝑖𝜎𝑖𝑢 = 1
2[cosh(𝛽𝐽𝐺𝑖𝑢) + 𝜎𝑖 sinh(𝛽𝐽𝐺𝑖𝑢)], (3.13)

we finally recover equation (3.10) for ℱℎ, namely

𝑝(𝜎) =
𝑁∏︁
𝑖=1

1
2[1 + 𝜎𝑖 tanh (𝐽𝛽𝐺𝑖𝑢)]. (3.14)

However, note that the stationary form of the microstate probability is not generally
Boltzmann-like. In fact, this happens for the majority of noise thresholds, strongly indi-
cating the breakage of detailed balance. To explore the consequences of that, we consider
the algebraic threshold noise 𝜇𝜅(𝜁).

In the rest of this chapter, we present results for the stationary and the dynamical
behaviour. The main results are the critical exponents for the global magnetization and
for the variance of the distribution of local magnetizations in both regimes.

3.1 Stationary behaviour
The fixed point solutions of the dynamical equations (2.42) and (2.46) are obtained

as 𝑡 → ∞ by setting 𝑢𝑡 = 𝑢

𝑚 =
∫︁ ∞

0
𝑑𝑔𝜈(𝑔)ℱ (𝛽𝐽𝑔𝑢) , (3.15)

𝑢 =
∫︁ ∞

0
𝑑𝑔𝜈(𝑔)𝑔ℱ (𝛽𝐽𝑔𝑢) . (3.16)

These equations generalize those presented in [36], derived through equilibrium methods
[29], and they reduce to the Curie-Weiss mean field equation [47] in the homogeneous
limit 𝛼 → ∞ for ℱℎ(𝑥) (see equation (3.7)). This result reveals another aspect of the
present work, namely the fact that through the dynamical set of equations (3.15) and
(3.16), obtained in the previous chapter, one can analyze stationary states of systems
that do not evolve to thermodynamic equilibrium, which is expected to happen for the
majority of the distributions of threshold noise.

The fixed-point equations (3.15) and (3.16) admit a trivial solution 𝑢 = 𝑚 = 0,
associated to a paramagnetic phase, and by means of the property ℱ(0) = 0, a series
expansion of the self-consistent equation for 𝑢 up to first-order shows that a nontrivial
solution |𝑢| > 0 arises below the critical temperature

𝑇𝑐 = 𝑑ℱ(𝑥)
𝑑𝑥

⃒⃒⃒⃒
⃒⃒
𝑥=0

𝐽(1 + Δ2), (3.17)
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with 𝑥 = 𝛽𝐽𝑔𝑢. In the last result, we made use of the fact that

⟨𝐺⟩ = 𝛼𝛼

Γ(𝛼)

∫︁ ∞

0
𝑑𝑔𝑔𝛼𝑒−𝛼𝑔 = 1, (3.18)

vide integral 3.351.2 of Gradstheyn and Rhyzik’s table of Integrals, Series and Products
[55]. A first interesting characteristic of equation (3.17) is that the tail of the noise thresh-
old is irrelevant for the critical temperature, since equation (3.18) only depends on the
behavior of ℱ(𝑥) near 𝑥 = 0. Besides that, 𝑇𝑐 is finite for finite Δ2, but it diverges in the
heterogeneous limit Δ2 → ∞, in accordance to [34, 35]. In such case, the system lies in a
ferromagnetic phase |𝑚| > 0 for any value of temperature, a feature exclusive to networks
with a infinite number of nodes [33]. In the homogeneous limit Δ2 → 0, equation (3.17)
recovers the Curie-Weiss critical temperature, multiplied by a constant factor given by
the derivative of the activation function at zero. Since in our cases both choices of ℱ give
𝑑ℱ
𝑑𝑥

= 1, they yield the same critical temperature

𝑇𝑐 = 𝐽(1 + Δ2). (3.19)

The phase diagram of the model in the case of a negative binomial degree distribution
is presented in figure 3.1.1. The magnetization profile of equation (2.42) as a function of

Ferromagnetic

Paramagnetic

𝛼 → ∞

0 0.5 1 1.5 2

1

3

5

7

𝛼

𝑇
𝑐
/𝐽

Figure 3.1.1 – Phase diagram for the Ising model on heterogeneous networks in the high
connectivity limit. The rescaled degree distribution is given by equation
(3.3), with relative variance Δ2 = 1

𝛼
. The black solid line represents a con-

tinuous phase transition between ferromagnetic and paramagnetic phases,
while the dashed line represents the fully connected critical temperature,
that meets the solid line at infinity.

temperature is presented in figure 3.1.2, showing that the system undergoes a continuous
phase transition between a ferromagnetic phase (|𝑚| > 0) and a paramagnetic phase
(|𝑚| = 0) at the critical temperature 𝑇𝑐 given by equation (3.19). Once again, the resullts
for the fully connected Ising model arises in the asymptotic limit 𝛼 → ∞.
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Figure 3.1.2 – Magnetization profile in terms of temperature for 𝜇ℎ, equation (3.5) in the
left and 𝜇𝜅 with 𝜅 = 1, equation (3.6), in the right. The parameter 𝛼
determines the relative variance Δ2 = 1

𝛼
. Solid lines are obtained from the

solution of equations (3.15) and (3.16), while circles denote results obtained
through Monte-Carlo simulations with 𝑁 = 104 and 𝑐 = 102. The standard
deviation, given by the vertical bars, is obtained through average over 10
independent simulations on random graphs generated by equation (2.55).

The fixed-point value of 𝑢 also determines the stationary distribution of local magne-
tizations (2.48)

𝒫(𝑚) = 𝑇

𝐽𝑔𝑢

⃒⃒⃒⃒
⃒⃒ 𝑑𝑑𝑚ℱ−1 (𝑚)

⃒⃒⃒⃒
⃒⃒𝜈
[︃
𝑇ℱ−1(𝑚)

𝐽𝑢

]︃
, (3.20)

whose support for 𝑢 > 0 (𝑢 < 0) is the interval 𝑚 ∈ [0, 1] (𝑚 ∈ [−1, 0]). From the inverse
activation function ℱ−1(𝑎𝑥) for each case, given by

ℱ−1
ℎ (𝑎𝑥) = atanh(𝑥)

𝑎
, (3.21)

ℱ−1
𝜅 (𝑎𝑥) = 𝑥

𝑎(1 − 𝑥) 1
2𝜅

, (3.22)

the explicit stationary forms 𝒫(𝑚) for each of the noise distributions 𝜇(𝜁) is obtained
from equations (3.5) and (3.6)

𝒫ℎ(𝑚) = 𝛼𝛼

Γ(𝛼)
𝑇

𝐽 |𝑢|(1 −𝑚2)

[︃
atanh(𝑚)
𝛽𝐽𝑢

]︃𝛼−1

𝑒− 𝑇 𝛼 atanh(𝑚)
𝐽𝑢 , (3.23)

𝒫𝜅(𝑚) = 𝛼𝛼

Γ(𝛼)
𝑇

𝐽 |𝑢|(1 −𝑚2𝜅)1+ 1
2𝜅

[︃
𝑚

𝛽𝐽𝑢(1 −𝑚2𝜅) 1
2𝜅

]︃𝛼−1

𝑒
− 𝑇 𝛼𝑚

𝐽𝑢(1−𝑚2𝜅)
1

2𝜅 , (3.24)

where 𝒫ℎ is the result for the hyperbolic threshold noise distriibution 𝜇ℎ, while 𝒫𝑘 for the
algebraic threshold noise distribution 𝜇𝜅. Interestingly, the behavior for small 𝑚 of both
distributions (3.23) and (3.24) is

𝒫ℎ,𝜅(𝑚) ≃ 𝛼𝛼

Γ(𝛼)
𝑇

𝐽 |𝑢|

(︂
𝑇𝑚

𝐽𝑢

)︂𝛼−1
. (3.25)

Thus, 𝒫(𝑚) has a power law divergence for 𝑚 → 0 when 𝛼 < 1, similarly to what is
observed in other spin models on random graphs [36]. This property reflects the singular
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behavior of 𝜈(𝑔) at 𝑔 = 0 for 𝛼 < 1. For 𝛼 ≥ 1, 𝒫(𝑚) converges to a finite value as
𝑚 → 0. Panels (a) and (b) of figure 3.1.3 illustrate 𝒫(𝑚) as a function of 𝑚 for 𝛼 = 2.5.
The variance of 𝒫(𝑚), Var(𝑚), as a function of the temperature 𝑇 for different values of
𝛼 is presented in panels (c) and (d) of figure 3.1.3. The variance is calculated from the
expression

Var(𝑚) =
∫︁ ∞

0
𝑑𝑔𝜈(𝑔)ℱ2

(︂
𝐽𝑔𝑢

𝑇

)︂
−
[︂∫︁ ∞

0
𝑑𝑔𝜈(𝑔)ℱ

(︂
𝐽𝑔𝑢

𝑇

)︂]︂2
. (3.26)

The variance Var(𝑚) goes to zero for 𝑇 → 0 and 𝑇 → 𝑇𝑐, which implies that the dis-
tribution 𝒫(𝑚) becomes peaked for 𝑚 = 0 and 𝑚 = 1, while for intermediate values of
temperature the variance is finite. In addition, Var(𝑚) vanishes as 𝛼 increases, showing
that degree fluctuations induce fluctuations in the local magnetizations. Also, due to the
interplay between heterogeneity and temperature effects, Var(𝑚) presents a non mono-
tonic dependence on 𝑇 , with a maximum at a certain value of temperature that depends
on 𝛼.
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Figure 3.1.3 – Top row: distribution of local magnetizations for different values of tem-
perature (in fractions of 𝑇𝑐) for 𝜇ℎ (a) and 𝜇1 (b) with 𝛼 = 2.5, obtained
through equations (3.23) and (3.24). Bottom row: Var(𝑚) as a function
of temperature for 𝜇ℎ (c), equation (3.5) and 𝜇1 (d), equation (3.6), ob-
tained through equation (3.26), for different values of the parameter 𝛼. The
variance of the rescaled degree distribution is given by Δ2 = 1

𝛼
.
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In the sequel, we compute the critical exponents that characterize the mean and the
variance of 𝒫(𝑚). By approximating 𝑇𝑐 from the ferromagnetic phase, 𝑚 and Var(𝑚)
vanish as

𝑚 ∝
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂𝜆1

, (3.27)

Var(𝑚) ∝
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂𝜆2

. (3.28)

As shown in Appendix D, by expanding equations (2.42) and (2.46) for the hyperbolic
tangent threshold noise 𝜇ℎ, we obtain

𝑚ℎ ≃ ±

⎯⎸⎸⎷3⟨𝐺2⟩
⟨𝐺4⟩

(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2
, (3.29)

Var(𝑚)ℎ ≃ ±3⟨𝐺2⟩
⟨𝐺4⟩

(⟨𝐺2⟩ − 1)
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂
, (3.30)

where ⟨𝐺𝑛⟩ denotes the 𝑛th moment of the rescaled degree distribution 𝜈(𝑔), given by

⟨𝐺𝑛⟩ =
∫︁ ∞

0
𝑑𝑔𝑔𝑛𝜈(𝑔). (3.31)

The critical exponent for the average magnetization 𝑚ℎ, 𝜆1 = 1/2, is in accordance with
previous results [34, 35] for degree distributions with finite ⟨𝐺4⟩, exhibiting the usual
mean field critical value of equation (2.60) in Section 2.3. The variance vanishes linearly
as 𝑇 → 𝑇𝑐, 𝜆2 = 1, exactly like the variance of the effective field distribution in the replica
symmetric solution of the Sherrington-Kirkpatrick model [28].

For the algebraic noise threshold, the series expansion in powers of 𝑢 contains divergent
terms so it must be done in powers of 𝑢2𝜅. This change of variables, also presented in
Appendix D, leads to the expressions

𝑚𝜅 ≃ ±
(︃

2𝜅⟨𝐺2⟩
⟨𝐺2+2𝜅⟩

)︃ 1
2𝜅 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2𝜅

, (3.32)

Var(𝑚)𝜅 ≃ ±
(︃

2𝜅⟨𝐺2⟩
⟨𝐺2+2𝜅⟩

)︃ 1
𝜅

(⟨𝐺2⟩ − 1)
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
𝜅

, (3.33)

valid whenever ⟨𝐺2+2𝜅⟩ is finite. Thus, the critical exponents are 𝜆1 = 1/2𝜅 and 𝜆2 = 1/𝜅.
Remarkably, we see that the critical exponents of long-ranged mean-field Ising systems are
sensitive to the tails of the distribution of threshold noise and that 𝜅 = 1 reproduces the
critical behaviour of 𝜇ℎ(𝜁). Equations (3.32) and (3.33) are compared with the numerical
solution of the fixed point equations (3.15) and (3.16) in figure 3.1.4, showing excellent
agreement.

3.2 Dynamical behaviour
Equations (2.42), (2.46) and (2.48) describe the macroscopic dynamics of the system

given a set of initial conditions for the local magnetizations 𝑚1,0, · · · ,𝑚𝑁,0 and 𝑢0. We
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Figure 3.1.4 – Global magnetization 𝑚 and variance of 𝒫(𝑚) as a function of the reduced
temperature 𝑇−𝑇𝑐

𝑇𝑐
for a random graphs with negative binomial degree dis-

tribution with variance Δ2 = 1
𝛼
. Symbols denote the solution of the fixed

point equations (3.15) and (3.16), while dashed lines represent the analytic
expressions (3.32) (left) and (3.33) (right), for the algebraic threshold noise
distribution 𝜇𝜅, equation (3.6), with different values of 𝜅 and 𝛼 = 1.

consider homogeneous initial conditions 𝑚𝑖,0 = 𝑚0, for any 𝑖, implying that 𝑢0 = 𝑚0 from
equation (2.44). Figure 3.2.1 illustrates the evolution of the global magnetization in the
ferromagnetic phase for 𝑇 = 𝑇𝑐/2. Dashed lines represent the iterative map of equations
(2.42) and (2.46), while symbols are the results obtained from simulations of the micro-
scopic dynamics given by equation (2.3). The theoretical results and the simulations are
in excellent agreement. A comparison between dynamics for the configuration model and
for the equivalent fully connected graph, generated through equation (2.55), is presented
in the inset for a large network. As mentioned in Chapter 2, the equivalence between
these two models leads to a practical advantage, since it is computationally cheaper to
simulate a fully connected weighted network than the correspondent configuration model
for large 𝑐, as well as it suggests a relation between the adjacency matrix eigenspectrum
and the dynamical process happening on top of the network, being the former the context
in which this equivalence was formally proven [56].

First, we characterize the dynamical behavior at the critical temperature, in terms
of the dynamical critical exponent for the magnetization, introduced in Section 2.3. We
also compute the analogous dynamical exponent for the variance of 𝒫(𝑚). For long times
𝑡 ≫ 1, 𝑚𝑡 and Var(𝑚𝑡) behave as

𝑚𝑡 ∝ 𝑡−𝑧1 , (3.34)

Var(𝑚𝑡) ∝ 𝑡−𝑧2 . (3.35)

Figures 3.2.2 and 3.2.3 illustrate, respectively, the dynamics of 𝑚𝑡 and Var(𝑚𝑡) at 𝑇 = 𝑇𝑐,
for different initial conditions and different threshold noise distributions. After an initial
transient behavior, which depends on the initial condition, the quantities display the
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Figure 3.2.1 – Dynamics of the global magnetization in the ferromagnetic phase for 𝑇 =
𝑇𝑐

2 and 𝛼 = 0.625. Dashed lines represent the solution of the iterative
equations (2.42) and (2.46) for the negative binomial degree distribution,
while symbols denote numerical simulations obtained from equation (2.3).
The vertical bars are the standard deviation obtained from 10 simulations
of a graph generated according to equation (2.55) with 𝑁 = 104 and 𝑐 =
102. The main panel shows a comparison between our theoretical equations
and simulations for different threshold noise distributions, while the inset
presents a comparison between the dynamics with the configuration model
and the equivalent fully connected configuration (2.55) for the hyperbolic
threshold noise 𝜇ℎ, equation (3.5).

following asymptotic behavior

𝑚
(ℎ)
𝑡 ∝ 𝑡−

1
2 , Var(𝑚𝑡) ∝ 𝑡−1, (3.36)

𝑚
(𝜅)
𝑡 ∝ 𝑡−

1
2𝜅 , Var(𝑚𝑡)(𝜅) ∝ 𝑡−

1
𝜅 . (3.37)

The dynamical exponents for the hyperbolic threshold noise, namely 𝑧1 = 1/2 and
𝑧2 = 1, are in accordance with the mean field dynamical exponents for purely dissipative
systems with no conserved order parameter [51, 57]. Interestingly, similar to the results
for the stationary regime, the dynamical exponents, 𝑧1 = 1/2𝜅 and 𝑧2 = 1/𝜅, depend
on the tails of the algebraic distribution of threshold noise, which is in contrast with the
usual mean-field results. We also see that the dynamical critical exponents have the same
values as their stationary counterparts, for both distributions of the threshold noise (see
equations (3.29-3.33)). In figure 3.2.4 we confirm that the universal long time exponents
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Figure 3.2.2 – Dynamics of the global magnetization 𝑚𝑡 at the critical temperature
𝑇 = 𝑇𝑐, obtained from equations (2.42) and (2.46), for 𝛼 = 1 and (a)
hyperbolic, (b) 𝜅 = 1, (c) 𝜅 = 2 and (d) 𝜅 = 3 algebraic threshold noise
distributions. Symbols denote the values for different initial magnetizations
and the dashed lines are the slopes of the magnetization for long time be-
havior, 𝑧1 = 1/2 for 𝜇ℎ and 𝑧1 = 1/2𝜅 for 𝜇𝜅.

are independent of degree distributions by presenting the long time behavior of 𝑚𝑡 and
Var(𝑚𝑡) for different distributions of the threshold noise and different values of 𝛼.

Finally, we study the effect of degree fluctuations and of the threshold noise on the
dynamics inside each phase. For a given initial condition 0 < 𝑚0 < 1, the system relaxes
exponentially fast to the stationary magnetization 𝑚 in the long time regime as

|𝑚𝑡 −𝑚| ∝ 𝑒− 𝑡
𝜏 , (3.38)

where 𝜏 is the relaxation time, a measure of how long it takes for the system to reach
its stationary state. In general, 𝜏 is a function of 𝛼 and 𝑇 . Figure 3.2.5 shows 𝜏(𝛼) for
fixed 𝑇/𝐽 = 2 and 𝜏(𝑇 ) for fixed 𝛼 = 1. We see that 𝜏(𝛼) ∝ |𝛼 − 𝛼𝑐|−1 and 𝜏(𝑇 ) ∝
|𝑇 − 𝑇𝑐|−1, approaching the critical point from any phase independently of the noise
threshold, showing that 𝑍 = 2 for the dynamical critical exponent. Thus, the dynamical
critical exponent that governs the divergence of the relaxation time is given by 𝑍 = 2,
independently of the degree distribution and the threshold noise distribution. This result
agrees with the satandard mean-field critical behaviors.
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Figure 3.2.3 – Variance of local magnetizations Var(𝑚𝑡) at the critical temperature 𝑇 =
𝑇𝑐, obtained from equation (3.26), for 𝛼 = 1 and (a) hyperbolic, (b) 𝜅 = 1,
(c) 𝜅 = 2 and (d) 𝜅 = 3 algebraic noise thresholds. Symbols denote the
values for different initial magnetizations and the dashed line denote the
slopes that characterize the long time behaviors, 𝑧2 = 1 for 𝜇ℎ, equation
(3.5), and 𝑧2 = 1/𝜅 for 𝜇𝜅, equation (3.6).
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Figure 3.2.4 – Long time dynamics of the global magnetization 𝑚𝑡, obtained from equa-
tions (2.42) and (2.46) and of the variance of 𝒫𝑡(𝑚), Var(𝑚), from equation
(3.26), for 𝜇ℎ, (a) and (c), and 𝜇𝜅, (b) and (d), with 𝜅 = 1. All magnetiza-
tion curves have slope equal to 1/2, while Var(𝑚) curves have slope equal
to 1. The system is defined over a random graph with a negative binomial
degree distribution, equation (2.43), with variance Δ𝜈 = 1

𝛼
.
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Figure 3.2.5 – Relaxation time 𝜏 as a function of 𝛼 for fixed 𝑇 = 2𝐽 and 𝛼𝑐 = 1, (a)
and (b), and as a function 𝑇 for fixed 𝛼 = 1 with 𝑇𝑐 = 2𝐽 , (c) and (d),
according to equation (3.19) for different noise thresholds. All curves have
slope equal to 1. The system is defined over a random graph with a negative
binomial degree distribution, equation (2.43), with variance Δ𝜈 = 1

𝛼
.



4 Conclusion

In conclusion, we presented an exact solution for the dynamics of the Ising model on
heterogeneous and highly connected complex networks, with an arbitrary threshold noise
distribution. Based on the Markov process associated to the spin update rule known as
parallel Glauber dynamics, equation (2.3), we make use of the law of large numbers to
obtain a set of dynamical equations for the global magnetization of the system, equations
(2.42) and (2.46), alternatively derived through the consolidated generating functional
approach in Appendix A. In addition, we derived the full distribution of local magnetiza-
tions for each time step of the discrete dynamics, equation (2.48). The generality of the
formalism allows to characterize both dynamical and stationary phenomena in terms of
any degree distribution with non-diverging moments and to explore the role of the heat
bath in the dynamics, emulated by the threshold noise distribution.

Both dynamical and stationary results are validated by numerical simulations, based
on the stochastic single spin update rule. The results for the dynamics presented in the
inset of figure 3.2.1 show the equivalence, in the high connectivity limit, between the
interaction matrix of the Ising model on configuration graphs and the fully connected
weighted ensemble, given by relation (2.55). This equation allows to simulate large net-
works without the necessity of more sophisticated algorithms to generate random graphs.

We presented results for the negative binomial degree distribution, equation (3.1),
whose high connectivity limit is characterized solely by the variance of the rescaled de-
gree distribution Δ2 = 1

𝛼
. By making this choice, we are able to easily interpolate between

heterogeneous and homogeneous regimes through variation of the parameter 𝛼 > 0. We
have shown that the system undergoes a continuous phase transition between ferromag-
netic and paramagnetic phases, and that the critical temperature is independent of the
tail of the threshold noise distribution, being affected only by its behavior near zero. As
the variance of the rescaled degree distribution vanishes (𝛼 → ∞), we recover the well
known behavior of fully connected systems, which defines a universality class for homoge-
neous networks. In the strongly heterogeneous limit, as Δ2 → ∞ (or 𝛼 → 0), the critical
temperature diverges, therefore the system lies in a ferromagnetic phase for any finite
value of temperature.

The reasons for the specific choices of threshold noise distribution, equations (3.5) and
(3.6), were two. The first is related to the slow tail of the algebraic distribution. Through
comparison with the fast exponential decaying of the hyperbolic threshold noise, we in-
vestigated the effects of strong thermal fluctuations, promoted by the slower power law
tail of the algebraic noise threshold. The second reason concerns the stationary microstate
distribution and detailed balance. When the stationary form of the microstate probability
is not Boltzmann-like, which is the case for most choices of threshold noise distribution,
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detailed balance does not hold. By deriving the explicit form of the stationary microstate
probability in the high connectivity limit, equation (3.10), we show that it is Boltzmann-
like for the hyperbolic tangent case, while it is not for the algebraic one. The fact that
our theory allows to study systems for which detailed balance does not hold is an impor-
tant result, since one can use the fixed point limit of the dynamical equations to study
stationary states that are not accessible to equilibrium statistical mechanics.

We focused on the characterization of critical phenomena, both stationary and dynam-
ical, in terms of critical exponents. We obtained the stationary critical exponents for the
global magnetization and for the variance of the local magnetizations, as 𝑇 → 𝑇𝑐. For the
hyperbolic threshold noise, detailed balance holds and we recover the usual mean-field
critical exponents, while for the algebraic threshold the critical exponents are explicit
functions of the natural parameter 𝜅, that controls the tail of the noise distribution. Since
fluctuations in the local magnetizations are not present in homogeneous ferromagnetic
Ising models, we compare the critical exponents for Var(𝑚) with the fully connected spin
glass, or Sherrington-Kirkpatrick model. Our results show that the variance of 𝒫(𝑚) van-
ishes linearly with the rescaled temperature 𝑇𝑐−𝑇

𝑇
for the hyperbolic activation, exactly

as the variance of the distribution of local fields for the replica symmetric solution of the
aforementioned model. As happened to the global magnetization, the algebraic threshold
noise distribution induce tail dependence on the critical exponents of Var(𝑚).

Regarding dynamical critical phenomena, we obtained the long time exponents for
the relaxation of the global magnetization, 𝑚𝑡, and for Var(𝑚𝑡). Again, the hyperbolic
threshold noise distribution promotes the same exponents as usual homogeneous mean-
field theories, while the algebraic distribution introduces tail dependence. Finally, we
characterized the divergence of the relaxation time as |𝑇 → 𝑇𝑐| and as |𝛼 → 𝛼𝑐|. In both
cases, the power law divergence is linear, in accordance with previous results that relate
𝜏 to the stationary correlation length 𝜉.

As open problems and future perspectives, our work raises some interesting questions.
Since our derivation is based on the law of large numbers, degree distributions with
divergent moments, such as scale free networks, are not contemplated a priori, so it would
be interesting to investigate such cases. Another natural generalization of our theory would
be the sequential version of the dynamics, that allows to investigate short time behavior
and its closer to physical phenomena.

Overall, our work introduces a family of Ising models on random graphs that retain
the effect of both topological structure and noise distribution, and whose non-equilibrium
dynamics can be solved exactly, presenting insights on the network effect on the dynamics
representing a step further in the direction of the understanding of real complex network
phenomena, where finite connectivity and degree fluctuations are of vital importance.
Through characterization of critical exponents, our results show that the details of the
microscopic evolution are relevant factors in determining critical phenomena in non equi-
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librium systems and that detailed balance recovers usual mean field behavior.



Appendices



A Generating functional formalism

In this appendix we present the derivation of the dynamical map given by equations
(2.42) and (2.46) through the consolidated generating functional method [40] or Martin-
Siggia-Rose path integral formalism [48]. The standart approach of this derivation is to
consider the configuration model [42, 58], but the equivalence relation between this model
and the fully connected adjacency matrix given by (2.55) in Chapter 2 allow to a more
straightforward derivation, so we will adopt it here.

Considering the evolution of the state vector 𝜎 through phase space, from an initial
time set to 0 to a final time 𝑡, the generating functional 𝑍[𝜓] is given by

𝑍[𝜓] =
⟨
𝑒−𝑖

∑︀𝑡

𝑠=0 𝜓𝑠·𝜎𝑠

⟩
, (A.1)

where ⟨· · · ⟩ denote phase space average and 𝜓 is an auxiliary field that yield the all
moments of the spin variables, in particular the magnetization

𝑚𝑡 = lim
𝑁→∞

𝑖

𝑁

𝑁∑︁
𝑗=1

𝜕

𝜕𝜓𝑗,𝑠
𝑍[𝜓]

⃒⃒⃒⃒
{𝜓𝑠}=0

, (A.2)

where {𝜓𝑠} = 0 denotes 𝜓𝑗,𝑡 = 0 for any 𝑗 and 𝑡. For a discrete path of the spin system,
this average is written in terms of the transition matrix elements (2.14) as

𝑍[𝜓] =
∑︁
𝜎0···𝜎𝑡

𝑝(𝜎0)
𝑁∏︁
𝑗=1

𝑒−𝑖
∑︀𝑡

𝑠=0 𝜓𝑗,𝑠𝜎𝑗,𝑠

𝑡−1∏︁
𝑠=0

1
2{1 + 𝜎𝑗,𝑠+1ℱ [𝛽ℎ𝑗(𝜎𝑠)]}. (A.3)

To introduce the analytical forms of the local fields (2.5) with an extra term 𝐺𝑗𝜃𝑗,𝑠, we
use the Dirac-𝛿 integral identities

1 =
∫︁ ⎛⎝ 𝑁∏︁

𝑗=1

𝑡−1∏︁
𝑠=0

𝑑ℎ𝑗,𝑠𝑑ℎ̂𝑗,𝑠
2𝜋 𝑒

𝑖ℎ̂𝑗,𝑠

[︁
ℎ𝑗,𝑠− 𝐽

𝑐

∑︀
𝑙∈𝜕𝑗

𝜎𝑙,𝑠−𝐺𝑗𝜃𝑗,𝑠

]︁⎞⎠ , (A.4)

where the single integral symbol denotes integration over ℎ and ℎ̂ from −∞ to +∞. This
additional term in the local fields will be used later to get rid of spurious order parameters.
Since

𝐽

𝑐

∑︁
𝑙∈𝜕𝑗

𝜎𝑙,𝑠 = 𝐽

𝑐

𝑁∑︁
𝑙=1

𝐶𝑗𝑙𝜎𝑙,𝑠 = 𝐽

𝑁
𝐺𝑗

𝑁∑︁
𝑙=1

𝐺𝑙𝜎𝑙,𝑠, (A.5)

where we made use of the high-connectivity equivalence (2.55), topological disorder is
explicitly introduced in the generating functional through local fields, resulting in

𝑍[𝜓] =
∑︁
𝜎0···𝜎𝑡

𝑝(𝜎0)𝑒−𝑖
∑︀𝑁

𝑗=1

∑︀𝑡

𝑠=0 𝜓𝑗,𝑠𝜎𝑗,𝑠×

×
∫︁ ⎛⎝ 𝑁∏︁

𝑗=1

𝑡−1∏︁
𝑠=0

𝑑ℎ𝑗,𝑠𝑑ℎ̂𝑗,𝑠
4𝜋 𝑒𝑖ℎ𝑗,𝑠ℎ̂𝑗,𝑠

⟨
𝑒− 𝑖

𝑁
ℎ̂𝑗,𝑠𝐽𝐺𝑗

∑︀𝑁

𝑙=1 𝐺𝑙𝜎𝑙,𝑠−𝑖𝐺𝑗 ℎ̂𝑗,𝑠𝜃𝑗,𝑠 [1 + 𝜎𝑗,𝑠+1ℱ(𝛽ℎ𝑗,𝑠)]
⟩
𝐺

⎞⎠ ,
(A.6)
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where the average over 𝐺 = (𝐺1, . . . , 𝐺𝑁) is taken in order to count for all possible
realizations of the network. In the previous expression, sites are coupled through the
rescaled degrees, so in order to proceed with the evaluation of the average, we decouple
them by introducing the parameters

𝑢𝑠 = 1
𝑁

∑︁
𝑗=1

𝐺𝑗𝜎𝑗,𝑠, (A.7)

𝑣𝑠 = 1
𝑁

∑︁
𝑗=1

𝐺𝑗ℎ̂𝑗,𝑠, (A.8)

via integral identities similar to (A.4), yielding the compact form

𝑍[𝜓] =
∫︁ (︃

𝑡−1∏︁
𝑠=0

𝑁2𝑑𝑢𝑠𝑑�̂�𝑠𝑑𝑣𝑑𝑣𝑠
4𝜋2

)︃
𝑒𝑁Φ(𝑢,�̂�,𝑣,𝑣), (A.9)

with

Φ(𝑢, �̂�, 𝑣, 𝑣) = 𝑖
𝑡−1∑︁
𝑠=0

[�̂�𝑠𝑢𝑠 + 𝑣𝑠𝑣𝑠 − 𝐽𝑢𝑠𝑣𝑠]+

+ 1
𝑁

𝑁∑︁
𝑗=1

ln

⎧⎨⎩∑︁
�⃗�

𝑒−𝑖
∑︀𝑡

𝑠=0 𝜓𝑗,𝑠𝜎𝑠

∫︁ 𝑡−1∏︁
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠
2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)

⟩
𝐺

⎫⎬⎭, (A.10)

where

ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠) = 𝑒𝑖ℎ̂𝑠[ℎ𝑠−𝐺𝜃𝑗,𝑠]−𝑖𝐺(�̂�𝑠𝜎𝑠+𝑣𝑠ℎ̂𝑠) 1
2 [1 + 𝜎𝑠+1ℱ(𝛽ℎ𝑠)] . (A.11)

The index omission in last equation is due to the fact that for every site, we carry sum-
mations over all possible values of 𝜎 and integrate over all possible values of ℎ̂, ℎ and 𝐺,
therefore the generating functional is site dependent only through the auxiliary fields 𝜓𝑠

and 𝜃𝑠. In the thermodynamic limit, equation (A.9) can be evaluated by the saddle point
method as

lim
𝑁→∞

𝑍[𝜓] = 𝑒𝑁Φ* , (A.12)

being Φ* the functional (A.10) evaluated at the saddle point of the manifold spammed
by the order parameters, where by definition, differentiation with respect to coordinates
is zero. Making use of this fact, together with the normalization condition 𝑍[𝜓 = 0] = 1,
differentiation of (A.12) with respect to order parameters yields

�̂�𝑡 = 𝐽𝑣𝑡, (A.13)

𝑣𝑡 = 𝐽𝑢𝑡. (A.14)

Similarly, differentiation with respect to conjugate order parameters in the limit of 𝜓,𝜃 →
0 yields

𝑢𝑡 =
∑︀
�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)𝐺𝜎𝑡

⟩
𝐺∑︀

�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)

⟩
𝐺

, (A.15)

𝑣𝑡 =
∑︀
�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)𝐺ℎ̂𝑡

⟩
𝐺∑︀

�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)

⟩
𝐺

, (A.16)
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and from equation (A.2), the magnetization is obtained as

𝑚𝑡 =
∑︀
�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)𝜎𝑡

⟩
𝐺∑︀

�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)

⟩
𝐺

. (A.17)

To obtain the explicit forms of 𝑢𝑡 and 𝑚𝑡, we must be able to carry out the averages
involving ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠). Until now, all we did was conveniently multiply the original defi-
nition of the generating functional by one, therefore equations (A.9) and (A.1) are equals,
and since the latter is not a function of 𝜃, the following identity holds

𝜕

𝜕𝜃𝑗,𝑡
𝑍[𝜓] =

∑︀
�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)𝐺ℎ̂𝑡

⟩
𝐺∑︀

�⃗�

∫︀ ∏︀𝑡−1
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠

2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)

⟩
𝐺

= 0, (A.18)

rendering 𝑣𝑡 = 0 for any 𝑡. This result in yields the normalization

∑︁
�⃗�

∫︁ 𝑡−1∏︁
𝑠=0

𝑑ℎ𝑠𝑑ℎ̂𝑠
2𝜋

⟨
ℳ(ℎ𝑠, ℎ̂𝑠, 𝜎𝑠)

⟩
𝐺

= 1, (A.19)

that allow the determination of 𝑢𝑡 and 𝑚𝑡 as

𝑢𝑡 =
⟨
𝐺ℱ(𝛽𝐽𝐺𝑢𝑡−1)

⟩
𝐺
, (A.20)

𝑚𝑡 =
⟨
ℱ(𝛽𝐽𝐺𝑢𝑡−1)

⟩
𝐺
. (A.21)

Since the variables 𝐺 are sorted from 𝜈(𝑔), changing 𝑡 → 𝑡+ 1 yields the dynamical map
given by (2.46) and (2.42).



B Change of variables

In this appendix, we discuss in more detail the method to obtain the distribution of a
function of a random variable, known as change of variables.

Let 𝑋 be a random variable drawn from a known distribution 𝑓𝑋(𝑥), and 𝑌 = ℱ(𝑋)
a function of 𝑋. Immediatly, we can establish the following identity

𝑝(𝑋 = 𝑥) = 𝑝(ℱ(𝑋)) = ℱ(𝑥)) = 𝑝(𝑌 = 𝑦). (B.1)

Since 𝑃 (𝑋 = 𝑥) = 𝑓𝑋(𝑥)𝑑𝑥, follows from the identity that

𝑓𝑋(𝑥)𝑑𝑥 = 𝑓𝑌 (𝑦)𝑑𝑦, (B.2)

and therefore

𝑓𝑌 (𝑦) =

⃒⃒⃒⃒
⃒⃒𝑑𝑥𝑑𝑦

⃒⃒⃒⃒
⃒⃒𝑓𝑋(𝑥), (B.3)

where the absolute value is taken in order to count for substitutions of the form 𝑌 =
ℱ(𝑋) = −𝑋. Now, since 𝑥 = ℱ−1(𝑦) by definition, where ℱ−1 is the inverse of ℱ , we
may write the last equation as

𝑓𝑌 (𝑦) =

⃒⃒⃒⃒
⃒⃒ 𝑑𝑑𝑦ℱ−1(𝑦)

⃒⃒⃒⃒
⃒⃒𝑓𝑋 [ℱ−1(𝑦)]. (B.4)

Finally, from the property of inverse functions

ℱ−1(𝑎𝑥) = 1
𝑎

ℱ−1(𝑥), (B.5)

we have

𝑓𝑌 (𝑦) = 1
𝑎

⃒⃒⃒⃒
⃒⃒ 𝑑𝑑𝑦ℱ−1(𝑦)

⃒⃒⃒⃒
⃒⃒𝑓𝑋

[︃
ℱ−1(𝑦)
𝑎

]︃
. (B.6)

Now, recalling equation (2.47), namely

𝑚𝑖,𝑡+1 = ℱ(𝐽𝛽𝐺𝑖𝑢𝑡), (B.7)

we see that the local magnetization of spin 𝑖 at time 𝑡 + 1 is a function of the random
variable 𝐺𝑖, drawn from the known distribution 𝜈(𝑔). From equation (B.6), identifying
𝑎 = 𝛽𝐽𝑢𝑡, 𝑥 = 𝑔 and 𝑦 = 𝑚, equation (2.48) for the distribution of local magnetizations
𝒫𝑡(𝑚) is recovered.



C Rescaled degree distributions

In this appendix, we present the derivation of the rescaled distributions of the Erdős-
Rényi ensemble and for the configuration model with negative binomial degree distribu-
tion.

The Erdős-Rényi model consists of random graphs denoted by 𝐺(𝑁, 𝑝), where 𝑁 is the
number of edges and 𝑝 is the probability that an arbitrary pair of nodes is connected. For
finite 𝑁 , the degree distribution 𝑝(ER)

𝑘 of a random graph of this ensemble is the binomial
distribution [14]

𝑝
(ER)
𝑘 =

(︃
𝑁 − 1
𝑘

)︃
𝑝𝑘(1 − 𝑝)𝑁−1−𝑘, (C.1)

where
(︁
𝑦
𝑥

)︁
is the binomial coefficient. Fixing 𝑐 = 𝑁𝑝 as constant, in the thermodynamic

limit, the binomial distribution converges to the Poisson’s distribution, yielding

𝑝
(ER)
𝑘 = 𝑐𝑘𝑒−𝑐

𝑘! . (C.2)

Now, from the definition of the rescaled distribution, equation (2.43), we have

𝜈(𝑔)(ER) = lim
𝑐→∞

∑︁
𝑘≥0

𝑐𝑘𝑒−𝑐

𝑘! 𝛿

(︃
𝑔 − 𝑘

𝑐

)︃
. (C.3)

Through the integral form of Dirac’s delta,

𝛿(𝑥− 𝑦) = 1
2𝜋

∫︁ ∞

−∞
𝑑𝜔𝑒−𝑖𝜔(𝑥−𝑦), (C.4)

we may write

𝜈(𝑔)(ER) = lim
𝑐→∞

1
2𝜋

∫︁ ∞

−∞
𝑑𝜔𝑒𝑖𝜔𝑔𝑒−𝑐∑︁

𝑘≥0

𝑐𝑘

𝑘!𝑒
−𝑖𝜔𝑘

𝑐 . (C.5)

This summation can be directly solved, noting that

∑︁
𝑘≥0

𝑐𝑘

𝑘!𝑒
−𝑖𝜔𝑘

𝑐 =
∑︁
𝑘≥0

1
𝑘!
(︁
𝑐𝑒

−𝑖𝜔
𝑐

)︁𝑘
= 𝑒𝑐𝑒

−𝑖 𝜔
𝑐 , (C.6)

resulting in
𝜈(𝑔)(ER) = lim

𝑐→∞

1
2𝜋

∫︁ ∞

−∞
𝑑𝜔𝑒𝑖𝜔𝑔𝑒−𝑐𝑒𝑐𝑒

−𝑖 𝜔
𝑐 . (C.7)

By considering 𝑐 large we may approximate

𝑒−𝑖𝜔
𝑐 ≈ 1 − 𝑖𝜔

𝑐
, (C.8)

obtaining the final form

𝜈(𝑔)(ER) = 1
2𝜋

∫︁ ∞

−∞
𝑑𝜔𝑒−𝑖𝜔(𝑔−1) = 𝛿(𝑔 − 1), (C.9)
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so we see that, in the high connectivity limit, by first taking 𝑁 → ∞ and then 𝑐 → ∞,
the Erdős-Rényi ensemble is homogeneous, once its rescaled degree distribution is a Delta
distribution, with null variance Δ2

ER = 0.
Now for the negative binomial configuration graph, the form of the degree distribution

at the thermodynamic limit is equation (2.26), namely

𝑝
(NB)
𝑘 = Γ(𝛼 + 𝑘)

𝑘!Γ(𝛼)

(︂
𝑐

𝛼

)︂𝑘 (︂ 𝛼

𝛼 + 𝑐

)︂𝛼+𝑘
. (C.10)

Its rescaled degree distribution can be written as

𝜈(𝑔)(NB) = 𝛼𝛼

Γ(𝛼) lim
𝑐→∞

∑︁
𝑘≥0

𝑐𝑘

(𝛼 + 𝑐)𝛼+𝑘
Γ(𝛼 + 𝑘)

𝑘! 𝛿

(︃
𝑔 − 𝑘

𝑐

)︃
, (C.11)

and again making use of the Dirac’s delta identity (C.4), we have

𝜈(𝑔)(NB) = 𝛼𝛼

Γ(𝛼)
1

2𝜋

∫︁ ∞

−∞
𝑑𝜔𝑒𝑖𝜔𝑔 lim

𝑐→∞
(𝛼 + 𝑐)−𝛼∑︁

𝑘≥0

[︃
𝑐𝑒−𝑖𝜔

𝑐

(𝛼 + 𝑐)

]︃𝑘 Γ(𝛼 + 𝑘)
𝑘! . (C.12)

Using the integral definition of the gamma function,

Γ(𝑥) =
∫︁ ∞

0
𝑑𝛾 𝛾𝑥−1𝑒−𝛾, (C.13)

the summation on the previous equation may be written as

∫︁ ∞

0
𝑑𝛾𝛾𝛼−1𝑒−𝛾 ∑︁

𝑘≥0

1
𝑘!

[︃
𝛾𝑐𝑒−𝑖𝜔

𝑐

(𝛼 + 𝑐)

]︃𝑘
=
∫︁ ∞

0
𝑑𝛾𝛾𝛼−1𝑒−𝛾𝑒

𝛾𝑐𝑒
−𝑖 𝜔

𝑐

(𝛼+𝑐) , (C.14)

whose solution, vide integral 3.351.1 Gradstheyn and Rhyzik’s table of Integrals, Series
and Products [55] is

∫︁ ∞

0
𝑑𝛾𝛾𝛼−1𝑒−𝛾𝑒

𝛾𝑐𝑒
−𝑖 𝜔

𝑐

(𝛼+𝑐) = Γ(𝛼)
(︂

𝛼 + 𝑐

𝛼 + 𝑐− 𝑐𝑒−𝑖𝜔
𝑐

)︂𝛼
. (C.15)

Combining the last result with equation (C.12), we have for the rescaled degree distribu-
tion

𝜈(𝑔)(NB) = 𝛼𝛼

2𝜋

∫︁ ∞

−∞
𝑑𝜔(𝛼 + 𝑐− 𝑐𝑒−𝑖𝜔

𝑐 )−𝛼𝑒𝑖𝜔𝑔, (C.16)

and by making use of the same approximation for large 𝑐, equation (C.8), we have

𝜈(𝑔)(NB) = 𝛼𝛼

2𝜋 lim
𝑐→∞

∫︁ ∞

−∞
𝑑𝜔

𝑒𝑖𝜔𝑔

(𝛼 + 𝑖𝜔)𝛼 = 𝛼𝛼

Γ(𝛼)𝑔
𝛼−1𝑒−𝛼𝑔, (C.17)

vide integral 3.382.7 of Gradstheyn and Rhyzik’s table of Integrals, Series and Products
[55], recovering (3.3). Being ⟨𝐺⟩ = 1, as shown in equation (3.18), the variance of the
rescaled distribution is given by

Δ2
NB = 𝛼𝛼

Γ(𝛼)

∫︁ ∞

0
𝑑𝑔𝑔𝛼+2𝑒−𝛼𝑔 − 1. (C.18)
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Integrating by parts, we have

Δ2
NB = 𝛼𝛼

Γ(𝛼)

⎡⎣−𝑔𝛼+1𝑒−𝛼𝑔

𝛼

⃒⃒⃒⃒
⃒⃒
∞

0

+ 𝛼 + 1
𝛼

⟨𝐺⟩

⎤⎦− 1 = 1
𝛼
, (C.19)

recovering the result in equation (3.4). Therefore, we see that the negative binomial en-
semble of configuration graphs is heterogeneous for finite 𝛼, and homogeneous in the limit
of 𝛼 going to infinity.



D Heterogeneous stationary critical expo-
nents

In this appendix, we present the derivation of the stationary critical exponents for
the hyperbolic activation, equations (3.29) and (3.30), and for the algebraic activation,
equations (3.32) and (3.33).

For the hyperbolic activation ℱℎ, equation (3.7), we consider the second higher order
on its Taylor expansion, namely

tanh(𝑥) ≃ 𝑥− 𝑥3

3 , (D.1)

to write equation (2.46) as

𝑢 ≃
∫︁ ∞

0
𝑑𝑔 𝑔𝜈(𝑔)

[︂
𝛽𝐽𝑔𝑢− 1

3(𝛽𝐽𝑔𝑢)3
]︂
. (D.2)

In terms of the moments of the distribution 𝜈(𝑔), we may simplify this equation to

1 ≃ 𝛽𝐽⟨𝐺2⟩
[︃
1 − ⟨𝐺4⟩

3⟨𝐺2⟩
(𝛽𝐽𝑢)2

]︃
. (D.3)

Now, through the identity
𝑇 =

(︂
1 + 𝑇 − 𝑇𝑐

𝑇

)︂
𝑇𝑐, (D.4)

we make use of the explicit form of the critical temperature, equation (3.19), to write

𝑢 = 1
𝛽𝐽

(︃
3⟨𝐺2⟩
⟨𝐺4⟩

)︃ 1
2 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2
. (D.5)

As 𝑢 → 0, 𝛽𝐽 → (1 + Δ2
𝜈)−1 = ⟨𝐺2⟩−1, yielding

𝑢 ≃
(︃

3⟨𝐺2⟩3

⟨𝐺4⟩

)︃ 1
2 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2
. (D.6)

Performing the same expansion up to the second higher order of the hyperbolic tangent
in the fixed point expression for the magnetization, equation (2.42), we have

𝑚 ≃ 𝛽𝐽𝑢− ⟨𝐺3⟩
3 (𝛽𝐽𝑢)3, (D.7)

where we made use of the fact that ⟨𝐺⟩ = 1, as shown in equation (3.18). For very small
𝑢, the last equation is dominated by the term of 𝒪(𝑢), that through subistitution of (D.6)
results in

𝑚 ≃
(︃

3⟨𝐺2⟩
⟨𝐺4⟩

)︃ 1
2 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2
, (D.8)
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yielding the critical exponent presented in equation (3.29).
To determine the critical exponent for the variance Var(𝑚), given by equation (3.26),

we proceed similarly. Again, through the second higher order of the Taylor expansion of
the hyperbolic tangent, we have

Var(𝑚) ≃ (𝛽𝐽𝑢)2(⟨𝐺2⟩ − 1) − 2
3(𝛽𝐽𝑢)4⟨𝐺4⟩ + 1

9(𝛽𝐽𝑢)6⟨𝐺6⟩. (D.9)

As 𝑢 → 0 and (𝛽𝐽 → 1 + Δ2
𝜈)−1 = ⟨𝐺2⟩−1, we consider the smaller order in 𝑢 only and

make use of equation (D.6) to finally obtain

Var(𝑚) ≃
(︃

3⟨𝐺2⟩
⟨𝐺4⟩

)︃
(⟨𝐺2⟩ − 1)

(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂
, (D.10)

as given in equation (3.33).
For the algebraic activation ℱ𝜅, we must perform the Taylor expansion in the variable

𝑢2𝜅 in equation (2.46), in order to avoid the divergences of the expansion in the variable
𝑢. By doing so, the second higher order of the expansion yields

𝑢 ≃ 𝛽𝐽𝑢
∫︁ ∞

0
𝑑𝑔 𝑔2𝜈(𝑔)

[︂
1 − 1

2𝜅(𝛽𝐽𝑔𝑢)2𝜅
]︂
. (D.11)

In terms of the moments of 𝜈(𝑔), we have

1 ≃ 𝛽𝐽⟨𝐺2⟩
[︃
1 − ⟨𝐺2+2𝜅⟩

⟨𝐺2⟩
(𝛽𝐽𝑢)2𝜅

2𝜅

]︃
. (D.12)

From the identity in equation (D.4), we have

𝑢 ≃ 1
𝛽𝐽

(︃
2𝜅⟨𝐺2⟩
⟨𝐺2𝜅+2⟩

)︃ 1
2𝜅 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2𝜅

, (D.13)

and again, as 𝑢 → 0 and 𝛽𝐽 → (1 + Δ2
𝜈)−1 = ⟨𝐺2⟩−1, we obtain

𝑢 ≃
(︃

2𝜅⟨𝐺2⟩2𝜅+1

⟨𝐺2𝜅+2⟩

)︃ 1
2𝜅 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2𝜅

. (D.14)

Perfotming the same expansion in the variable 𝑢2𝜅 on the fixed point equation for 𝑚,
equation (3.15) for ℱ𝜅, we obtain

𝑚 ≃ 𝛽𝐽𝑢− 1
2𝜅(𝛽𝐽𝑢)2𝜅⟨𝐺2𝜅⟩. (D.15)

The smaller order of the last equation determines the critical exponent for the magneti-
zation, through substitution of equation (D.14), as

𝑚 ≃
(︃

2𝜅⟨𝐺2⟩
⟨𝐺2+2𝜅⟩

)︃ 1
2𝜅 (︂𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
2𝜅

, (D.16)

as presented in equation (3.32).
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For the critical exponent of Var(𝑚), we have from equation (3.26)

Var(𝑚) ≃ (𝛽𝐽𝑢)2(⟨𝐺2⟩ − 1) − 1
𝜅

(𝛽𝐽𝑢)2𝜅+2⟨𝐺2𝜅+2⟩ + 1
4𝜅2 (𝛽𝐽𝑢)4𝜅+2⟨𝐺4𝜅+2⟩, (D.17)

where once more we considered the second order of the Taylor expansion in the variable
𝑢2𝜅. Making use equation (D.14) as 𝑢 → 0 and 𝛽𝐽 → (1 + Δ2

𝜈)−1 = ⟨𝐺2⟩−1, the smaller
order of the last equation yields the critical exponent for Var(𝑚)

Var(𝑚) ≃
(︃

2𝜅⟨𝐺2⟩
⟨𝐺2+2𝜅⟩

)︃ 1
𝜅

(⟨𝐺2⟩ − 1)
(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂ 1
𝜅

, (D.18)

as shown in equation (3.33).
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