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Abstract: Huanglongbing (HLB) is the most devastating citrus disease and is associated with three
bacterial species of the genus ‘Candidatus Liberibacter’ transmitted by insect vectors. The early
detection of HLB is based on PCR methods, and it is one of the cornerstones for preventing incursion
into disease-free countries. However, the detection of phytopathogenic bacteria with PCR-based
methods is problematic in surveys that include a variety of samples of different origins. Here, we first
report the proportion of amplifications obtained by two standardized real-time PCR methods for
the diagnosis of HLB in various environmental samples that include plants, psyllid vectors, and
parasitic wasps of the psyllids. The results of 4915 samples showed that 9.3% of them were amplified
by the first rapid screening test and only 0.3% by the more specific tests. Most of the amplifications
were associated with parasitic wasps. We designed the primers external to the target regions of both
real-time PCR protocols to determine if amplifications belonged to one of three ‘Ca. Liberibacter’
species associated with HLB. The bioinformatic analysis of the sequences obtained with these primers
revealed that all these amplifications came from the presence of other prokaryotic organisms in the
samples. The primers developed in this study overcome the problem of undesired amplification
in environmental samples. Thus, they could be used in future survey protocols to prevent the
eradication of negative trees and the generation of unjustified alarms.

Keywords: undesired amplification; 16S; real-time PCR; sequence identity; greening; HLB; Trioza
erytreae; Tamarixia dryi

1. Introduction

Accurate detection is one of the benchmarks of plant bacterial disease management.
The challenge of detection is greater when the target organism cannot be grown under
in vitro conditions, and detection is based only on molecular methods. PCR-based methods
have become essential in detection protocols; however, they present problems of sensitivity,
specificity and robustness in complex environmental samples such as leaves, roots, insects
and soil [1]. Sometimes it is necessary, after designing new primers, to adjust sequences,
reagents and amplification conditions to increase the specificity of the reaction as new
information becomes available [2]. One plant disease that can serve as a paradigm for
detection problems is huanglongbing (HLB), the most devastating disease affecting many
citrus species [3,4].
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HLB is associated with three Gram-negative species of bacteria restricted to phloem
sieve tubes. These bacteria cannot be grown in the laboratory in pure culture at present.
The three presumptive species are ‘Ca. Liberibacter asiaticus’ (CaLas), widespread in Asia
and America, mainly transmitted by Diaphorina citri Kuwayama (Hemiptera: Liviidae) [5,6];
‘Ca. Liberibacter africanus’ (CaLaf), mainly restricted to Africa and transmitted by Trioza
erytreae (del Guercio) [7] (Psylloidea: Triozidae) [8,9]; and ‘Ca. Liberibacter americanus’
(CaLam), only known from Brazil and transmitted by D. citri [10,11]. HLB is not reported.
however, in important citrus producing areas such as Mediterranean countries, Peru or
Australia. In these regions, the disease represents the most serious threat to the citrus in-
dustry. The early detection, eradication of infected trees, and control of vectors are the best
measures to avoid the entry and spread of HLB-associated bacteria. In the case of vectors,
biological and chemical control are the most implemented strategies [12]. Biological control
is mainly based on the use of hymenopteran ectoparasitoids Tamarixia radiata (Waterston)
(Hymenoptera: Eulophidae) and T. dryi (Waterston) against D. citri and T. erytreae, respec-
tively [13–16]. In 2014, T. erytreae was recorded in mainland Europe: northwest Spain and
Portugal along the Atlantic coast, and in recent years it has reached the vicinity of Lisbon.
Following these detections, contingency plans, control, and eradication programs have
been developed in Spain [17] and Portugal to prevent the spread of this vector and achieve
an early detection of HLB-associated bacteria.

Available HLB detection protocols depend on bacterial and vector species. In Mediter-
ranean countries, the European and Mediterranean Plant Protection Organization (EPPO)
established a diagnostic standard [18], sharing protocols that also appear in the Draft
Annex to ISPM 27: ‘Ca. Liberibacter’ spp. on Citrus spp. (2004-010) of the International
Plant Protection Convention of FAO (IPPC-FAO). In a first step, the recommended protocol
aims at the rapid and sensitive detection of all bacteria of the genus ‘Ca. Liberibacter’ [19]
as a screening test. In a second step, PCR protocols are directed to the specific detection of
CaLas, CaLaf or CaLam in those samples that become positive in the first step [6,11,20–22].
Both stages target sequences of 16S rDNA gene, commonly used worldwide in the PCRs
developed for the detection of the most widespread HLB-associated species, CaLas [23].

Other primers and probes based on other genes, such as rpoB and rplJ/rplK [24–26],
have been designed, but the great advantage of the standard 16S rDNA target is that three
copies are present in the genome of ‘Ca. Liberibacter’ species (CaLspp) [27,28], which favors
the higher sensitivity of the protocol. However, the use of these 16S sequences has the
potential risk of false positive amplifications due to their highly conserved nature [23,29–31].
Other primers, RNRf/RNRr, based on a five-copy ribonucleotide reductase gene (nrdB) [32],
showed higher detection sensitivity than Li et al. [21] for CaLas detection; nevertheless, it is
also a conserved gene among all bacterial species.

In the present study, we developed a methodology for solving the problems of un-
desired amplifications obtained by two real-time PCR protocols for HLB diagnosis [18].
It is based on the results of a survey carried out with more than four thousand samples
that included citrus plant and insect material (psyllids and their parasites). In addition,
we propose a complementary method for accurate discrimination between true and false
positives based on a simple and cheaper conventional sequencing, with the goal of avoiding
false positives.

2. Materials and Methods
2.1. Plant Material

A total of 2783 samples of asymptomatic plants from the Rutaceae family were analyzed
for the diagnosis of HLB (Table 1). Most of them came from surveys conducted in Spain
between 2009 and 2018.

Carrot plant material infected with ‘Ca. Liberibacter solanacearum’ (CaLso) was used
as a positive control for the protocol by Bertolini et al. [19]. Three extracts of healthy
citrus plant material spiked with synthetic dsDNA gBlocks Gene Fragments synthesized by
Integrated DNA Technologies, Inc. (IDT, Iowa, USA) containing the targets of CaLas, CaLam
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and CaLaf in the PCR by Li et al. [21] were used as the respective positive controls. Healthy
plant material from different citrus species, from Instituto Valenciano de Investigaciones
Agrarias, IVIA (Valencia, Spain) greenhouses, were used as negative controls.

Table 1. Analysis of plant and insect samples in the period 2009–2018 for the detection of huanglongbing (HLB)-associated
bacteria by the real-time PCR protocols described by Bertolini et al. [19] and Li et al. [21].

Source Origin Number Total
Samples

Number Positive
Samples by

Bertolini et al. [19]

Number of Positive
Samples by Li et al. [21]

CaLspp CaLam CaLas CaLaf

Plant Citrus sp. Spain 2780 210 0 0 3
Thailand 1 1 1 1 0

Murraya koenegii Netherlands 1 1 0 0 0
Uganda 1 1 1 0 0

Psyllid Trioza erytreae Spain a 1051 9 0 0 0

Parasitoid Tamarixia dryi

South Africa 82 25 0 0 0
Spain a

(Isoline F1) 317 57 0 0 0

Spain a

(Isoline F2–4) 596 142 0 0 2

Spain a

(Isoline F5–9) 86 13 0 0 5

Total 4915 459 2 2 10
a Canary Islands only.

2.2. Insect Material

A total of 2132 insect samples from the classical biological control program developed
to introduce T. dryi into mainland Europe were selected for HLB diagnosis (Table 1).
Of these, 1081 samples were specimens of T. dryi. Eighty-two were collected in Pretoria
(South Africa), and the rest belonged to different generations of the colony established at
Instituto Canario de Investigaciones Agrarias, ICIA (Canary Islands, Spain) (F1; F2–4; F5–9).
The other 1051 samples were T. erytreae individuals obtained from colonies established
in a greenhouse maintained on young lemon trees cv. Eureka grafted on HLB-free Citrus
macrophylla rootstocks at ICIA. The identification of both insect species was performed by
PCR amplification and the sequencing of the mitochondrial COI gene according to Folmer
et al. [33].

2.3. DNA Extraction from Plant Material and Insects

For the analysis of the plant material, three biological replicates from each sample
were placed in separate plastic bags and stored at 4 ◦C prior to analysis, according to
EPPO protocol [18]. Midribs of the leaves were crushed into extraction bags (Bioreba),
using a Homex 6 homogenizer (Bioreba), in PBS extraction buffer at 1:5–10 (w/v). A 1.5 mL
aliquot of each crude plant extract was either processed immediately by real-time PCR or
stored at −20 ◦C until use. For the analysis of the insect material, individual specimens
were preserved in 70% ethanol until analysis. Total DNA was obtained from 200 µL of
crude plant extract or insect material using CTAB (Cetyl Trimethyl Ammonium Bromide)
extraction method [18]. The purified DNA was analyzed immediately or preserved at
−20 ◦C until use.
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2.4. Detection of ‘Ca. Liberibacter’ spp.

Two protocols, based on real-time PCRs with targets in the 16S rDNA gene, were
used for the detection of HLB-associated-’Ca. Liberibacter’ spp. following EPPO [18]:
(1) real-time PCR with universal primers and a TaqMan probe for all CaLspp according to
Bertolini et al. [19]; and (2) three real-time PCRs, also using a TaqMan probe, for the specific
identification of CaLaf, CaLam and CaLas, as described by Li et al. [21]. Three replicates
were included for each sample. StepOne Plus (Applied Biosystems, Foster City, CA, USA) or
LightCycler® 480 (Roche) thermocyclers were used for the amplification and management
of data and analyses.

2.5. Verification of Positive Samples

To determine the status of positive with respect to HLB-associated bacteria, a set
of primers for conventional PCR were designed in the 16s rDNA gene: CalsppF-sec,
5′ GAG AGT TTG ATC CTG GCT CA 3′ and CalsppR-sec, 5′ TCC TCT CAG ACC AGC
TAT 3′. To this end, the sequence alignment of ten reference whole genomes CaLspp
available in the databases [34] was performed (accessed on September 2019). The access
numbers of the reference genomes were NC_012985; NC_014774; NC_020549; NC_022793;
NZ_AOFG00000000; NZ_AP014595; NZ_CP004021; NZ_CP010804; NZ_CP019958; NZ_CP0
29348. According to this alignment, these primers amplify a DNA fragment of 266 bp,
including target regions of the two real-time PCR protocols described above (Figure 1).
Primers designed were used only to analyze the positive samples by real-time PCRs [19,21],
not for CaLspp detection. The reaction mixture contained either 0.5 µM of each of the
primers, 0.15 mM of MgCl2, 0.2 mM of dNTPs, 1X of 10x standard reaction buffer and 1 U
of DNA polymerase (Biotools). The PCR protocol consisted of one step of 95 ◦C for 10 min
followed by 45 cycles of amplification (95 ◦C for 15 s and 55 ◦C for 1 min). Conventional
PCR products were purified using the QIAquick PCR Purification Kit (Qiagen), and se-
quencing was performed by Sanger method from two assembled sequences (forward and
reverse). Quality of the chromatograms was determined with the package SangeranalyseR,
tools for Sanger sequencing data [35] in R software [36]. NCBI BLAST search [37] was
used to identify related sequences and homologies. Samples that do not show nucleotide
homology with any CaLspp were named undesirable or undesired amplifications.

2.6. Bioinformatic Analysis of the Sequences

Geneious Prime 2020 software (Biomatters Ltd., Auckland, New Zealand) was used
to calculate the match identity of the probe and primer sequences using as reference the
consensus and CaLaf sequences (NZ_CP004021). The consensus sequence was obtained
by a MUSCLE [38] alignment using different bacterial species sequences. These sequences
included, on the one hand, species that showed high identity by BLASTn [37] with the
undesirable amplifications: Sphingomonas sp. (EU567045); Rhizobium spp. (JX566578.1 and
AY599690); one unknown soil bacterium (HQ640720.1); Phyllobacterium sp. (MN810203);
five uncultured Rhizobiales bacteria (HG938317; EU812986, KJ664621; LR642383 and
DQ303365); a Wolbachia sp. endosymbiont of Drosophila simulans Sturtevant, 1919 (CP003883.1);
other two endosymbionts of Porphyroptora polonica L. and Bactericera cockerelli (Šulc) (MT5362
26 and AF263557); Asaia sp. (MN099438) and Ochrobactrum sp. (JX679636). On the other
hand, they included five Ca. Liberibacter/Liberibacter representative sequences: CaLam
(NC 022793); CaLas (CP004005.1); CaLaf (CP004021); ‘Ca. Liberibacter solanacearum’
(CP002371.1); and Liberibacter crescens (CP003789.1).

2.7. Phylogenetic Analysis of the Undesirable Amplifications

Twelve representative samples with undesired amplifications, including citrus plants,
psyllid vectors and parasitoid species, were selected for the phylogenetic analysis. To this
end, fragments of 266 bp obtained with Calspp-sec primers were aligned with sequences
of bacterial species from GenBank that showed high identity in the BLASTn, as described
above. Sequences were aligned with Clustal W Algorithm using Mega X software [39] and
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maximum likelihood tree was obtained selecting the best nucleotide substitution model
according to Mega X [39].
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Figure 1. Partial sequence alignment obtained with the primers designed in this study and positioning
of the primers described by Bertolini et al. [19] (CalsppR/CalsppF), in purple, Li et al. [21] primer
(HLBr) and probe (HLBp), in green and yellow, respectively, within the sequence of ‘Candidatus
Liberibacter’ spp. (CP006604).

3. Results
3.1. Analysis of Plant Samples

Real-time PCR analyses revealed that 213 out of the 2783 plant samples analyzed
(7.65%) were positive by real-time PCR with the ‘Ca. Liberibacter’ spp. protocol proposed
for the first screening [19] (Table 1). Six samples out of 213 also showed amplification signal
with specific HLB primers, but with cycle threshold (Ct) values near the detection limit [21]:
sample IVIA 5029.1 from Citrus sp. was positive for both specific primers designed to
detect CaLam and CaLas; sample IVIA 5029.2 from Murraya koenigii amplified only with
specific primers for CaLam; and sample IVIA 5361 from Citrus unshiu, and P10, P11 and
P48 from Citrus sp. only with specific primers for CaLaf (Table 2).

3.2. Analysis of Insect Samples

Real-time PCR results of T. erytreae samples showed that nine out of 1051 specimens
were positive by the Bertolini et al. PCR [19], representing only the 0.86% of the field
samples and confirming the usefulness of this protocol for the first screening of the HLB
vector. The average Ct value of all insects samples was 33.11, with the minimum value 26.29
and the maximum 35.34. However, the nine samples were negative by Li et al. PCR [21]
(Table 1). In the case of T. dryi, 237 out of 1081 (21.92%) were positive by Bertolini et al. [19]
and five of these samples (0.46%) also were positive by Li et al. [21] near to its detection
limit (Table 1).
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Table 2. Highest sequence identity at the nucleotide level in the GeneBank database of the samples positive by PCR
protocols of Bertolini et al. [19] or Li et al. [21].

Host Origin Sample
Real-Time PCR According to

Bertolini et al. [19]

( x̄ Cts±SD)

Real-Time PCR According to Li et al. [21]

( x̄ Cts±SD) Sequence Analysis by n from Checking Sample Results
(Identity%—GenBank Accession Number)

CaLam CaLas CaLaf

Murraya
koenegii Uganda

IVIA 5020 34.78 ± 0.5 - - - Rhizobium sp. (98%—HG938317)

IVIA 5029.2 35.79± 0.7 37.52± 0.1 - - Sphingomonas sp. (98%—JX174255.1)

Citrus unshiu
Spain

(main land
Spain)

IVIA 5361 35.64± 0.2 - - 36.83± 0.8 Sphingomonas sp. (94%—JX660147)

IVIA 5516 36.22 ± 0.1 - - - Soil bacterium from enrichment culture (100%—HQ640720) *

Citrus spp.

Thailand IVIA 5029.1 34.48± 0.5 37.89± 0.2 38.47± 0.4 - Sphingomonas sp. (90%—EU567045.2)

Spain
(Canary
Islands)

209R 32.82± 0.3 - - - Bradyrhizobium sp. (93%—AY599690).

209A 35.96± 0.5 - - - Rhizobiales bacterium (96%—LR642383.1)

P10; P11 29.48± 0.7 - - 36.7± 0.3 Phyllobacterium sp. (100%—MN810203)

P15; P16 28.66± 0.7 - - - Phyllobacterium sp. (100%—MN810203)

P 48 37.34± 0.1 - - 36.50± 0.1 Asaia sp. (99%—MN099438.1)

Tamarixia dryi South
Africa

T: 7; 31; 33; 38; 46; 66; 67; 147; 151;
154; 170; 204; 212; 219; 227; 244;

247; 257; 260; 267; 278
34.84± 0.1 - - - Asaia sp. (99%—MN099438.1)

T75 32.76± 0.8 - - - Rhizobium sp. (99%—JX566578.1)

T86 33.47± 0.1 - - - Ochrobactrum sp. (100%—CP015776)

T: 168; 186 35.34± 0.1 - - - Wolbachia endosymbiont of Drosophila sp. (99%—CP034335.1)

T: 540; 555; 567; 575; 576 26.29± 1.7 ND - 35.62± 0.7 Asaia sp. (99%—MN099438.1)

Tryoza erytreae
Spain

(Canary
Islands)

i273 34.51 ± 0.5 - - - Uncultured bacterium. (99%—KJ664621) *

i800; i360 35.31 ± 0.2 - - - Sodalis sp. (91%—MT536226.1)

i487; i502 32.41 ± 0.6 - - - Secondary endosymbiont of Bactericera cockerelli
(91%—AF263557.1)

* bacteria not classified according to available databases [34] (accessed on July 2020).

3.3. Verification of Positive Samples
3.3.1. Sequence Analyses of the Amplified Fragments

A representative selection of 47 positive samples by the real-time PCRs [19,21] was
sequenced in a second round by conventional PCR with the primers designed in this study.
These samples included twelve samples from different Rutaceae plant species, thirty from
T. dry and five from T. erytreae (Table 2) (GeneBank numbers: MW248533-MW248552).
Comparative sequence analyses using BLASTn showed that none corresponded to any
species of ‘Ca. Liberibacter.’ All matched other 16S rDNA genes from other bacteria, so
they were non-target amplifications. With respect to Rutaceae plants, samples IVIA 5029.1,
IVIA 5029.2 and IVIA 5361 showed the best BLASTn match with Sphingomonas sp., with
a sequence identity of 90–98%. Samples IVIA 5020 and IVIA 5516 presented a sequence
identity of 98–100% with soil bacteria from the Rhizobium genus. Sample 209R showed a
93% sequence identity with Bradyrhizobium sp., and sample 209A showed a 94% match
with an uncultured bacterium, both of the same order of the Rhizobiales that includes
Rhizobium. Samples P10, P11, P15 and P16 presented sequence indentities of 100% with
Phyllobacterium sp; while only one sample, P48, showed an identity of 99% with uncultured
Asaia sp. Twenty-six out of the 30 amplified fragments from T. dryi showed a high sequence
identity (99%) also with Asaia sp. (Table 2). Finally, four samples showed homology with
other sequences: two samples with Wolbachia sp. endosymbiont of Drosophila simulans,
one sample with the partial sequence of 16S rDNA gene of Rhizobium sp. 3041, and one
sample with Ochrobactrum pseudogrignonense strain K8. One of the T. erytreae samples,
(i273) showed the best BLASTn match with a non-classified uncultured bacterial isolate
from soil with a sequence identity of 99%. The remainder of the T. erytreae samples best
matched two endosymbionts from other Hemiptera using BLASTn. Specifically, two
samples (i800; i360) showed a sequence identity of 91% with Sodalis sp., an endosymbiont
of Porphyrophora polonica L., and the other two (i487; i502) showed a sequence identity of
89% with a secondary endosymbiont of B. cockerelli.
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Figure 2. Phylogenetic analysis by the Maximum likelihood method of a fragment of 16S ribosomal
DNA gene from those samples that were amplified with Bertolini et al. [19] and Li et al. [21] protocols.
Trees were generated under the Tamura 3 model [40] of nucleotide substitution. Branches are
supported by 1000 bootstrap replicates.

3.3.2. Phylogenetic Analysis of the Amplifications

The phylogenetic analysis of the fragments that include the target region of the two
real-time PCRs [19,21] confirmed the results obtained by BLASTn searches, demonstrating
that the samples with positive results did not match any species of ‘Ca. Liberibacter’ or even
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the clade of this genus (Figure 2). Sequences of both plant and insect material were shown
to be clustered into groups of several orders such as Rhizobiales and Sphingomonadales,
which include cultured and uncultured bacteria. The insect samples also clustered in the
orders of Rickettsiales and Enterobacterales.

3.3.3. Bioinformatic Analyses of Primers, Probes and Undesired Amplicon Sequences

To understand the results described above, bioinformatic analyses of primers, probes
and undesired amplicon sequences were performed. As shown in Figure 1, the match
identity value of the HLBp probe was 85.3% in the consensus sequence. The match identity
of the samples and the HLBp probe sequence was: 100% for T75, T86, IVIA 5020, i273,
P10, P11, P15, P16, 209A and 209R; 95.4% for T154, T540, P48 and IVIA 5516; 86.3% for
T168, T186, IVIA 5029-1 and IVIA 5029-2; 81.8% for IVIA 5361; and 72.7% for i360, i487,
i502 and i800.

The match identity value of the HLBr primer was 67.3% in the consensus sequence.
In this case, the sample sequence showed match identity values between 87.5 and 50%.
Thus, sample T86 showed a match identity of 87.5%; 83.3% for P10, P11, P15 and P16; 79.1%
for 209A; 75% for IVIA 5020 and i273; 70.8% for 209R and T75; 66.7% for IVIA 5029-1, IVIA
5029-2, T168 and T186; 58.3% for IVIA 5361, T154, T540, i487, i502 and P48; 54.2% for i800;
and 50% for IVIA 5516 and i360 with the HLBp probe sequence.

The match identity value of the CalsppR primer was 69.6% in the consensus sequence.
In this case, the sample sequence showed match identity values between 100 and 57.1%.
Thus, the P10, P11, P15 and P16 samples showed a match identity of 100%; 85.7% for T86;
81% for IVIA 5029-1 and 209R; 76.2% for IVIA 5029-2, T154, T540 and P48; 71.4% for IVIA
5361, IVIA 5516 and 209A; 66.7% for i273; 62% for T168, T186, i487 and i502; and 57.1% for
IVIA 5020, T75, i360 and i800 with the HLBp probe sequence.

Match identity value of the CalsppF primer was 89.9% in the consensus sequence.
Samples T168, i360, i487, i502 and i800 showed a match identity of 100%; 95.5% for IVIA
5020, IVIA 5029-2, T75, T86, T186, P10, P11, P15, P16 and i273; 91% for 209A, 209R, T540
and P48. 86.3% for IVIA 5516 and T154; 81.8% for IVIA 5029-1; and 50% IVIA 5361 with the
HLBp probe sequence.

4. Discussion

Accurate and reliable diagnosis, detection, and identification techniques are key ele-
ments in the prevention, regulation, and management of the bacterial diseases of plants.
A suitable early detection protocol will help to preserve the crops free of pathogenic bac-
teria and to allow rapid and appropriate responses when they are already present, even
in low concentration. Knowledge of how a real-time PCR protocol performs in routine
analysis will permit its adequate integration into diagnostic schemes, with the correct
interpretation of results, and the design of optimal risk management strategies [41]. Ac-
curacy, sensitivity, and specificity, speed, economy-sustainability, and ease of use are the
main characteristics that a detection protocol must meet and knowing the advantages and
drawbacks of those used in large-scale surveys is necessary. In this study, we have shown
that specificity is particularly important when dealing with varied environmental samples,
which have a diverse microbiota that can be mistaken for the target and produce false
positive results. There is an increasing number of tools to design specific primers and a
growing number of sequences available in databases. However, the absolute specificity of
primers or probes is very difficult to achieve and even to predict. In fact, it is estimated
that there are between 0.8 and 1.6 million prokaryotic operational taxonomic units (OTUs)
worldwide [42]. Therefore, in the design of primers and probes, it is important to take
into account both the available sequence databases and the empirical evidence from ex-
perimental studies. Extensive surveys and reliable analytical methods are required to
demonstrate and confirm the absence of HLB-associated bacteria. In many Mediterranean
countries, this work is being carried out using the methodology described for the analysis
of plants and vector specimens [19,21,43]. To date, the HLB has not been reported in these
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areas, but this situation is subject to change, and optimal detection tools are needed. In
the present work, an extensive analysis of Rutaceae host plants, insect vectors and parasitic
wasps was carried out following the EPPO protocol for the detection of HLB-associated
‘Ca. Liberibacter’ spp. [18], using two real-time PCRs targeting the 16S rDNA gene [19,21].
Percentages of 7.65 and 2.81% of the field citrus samples analyzed, from different origins,
showed the positive amplification with the genus-specific and species-specific primers,
respectively [19,21]. In the case of the T. erytreae analysis, less than 1% of the samples were
amplified in the first screening method and none by the PCR specific protocols, confirming
the results obtained in previous intensive surveys carried out in Spain [43]. The greatest
number of amplifications with universal genus primers (21.92%) was obtained in the analy-
sis of specimens of the parasitoid T. dryi, which was not previously tested by the authors
of the different evaluated protocols [19,21]. This result could be due partly to the genetic
relationship of the analyzed specimens, all of them with South African origin. Only 2.95%
tested positive for one of the species-specific protocols [21].

The genus-specific 16S rDNA primers [19] are included in the protocol because of
their high sensitivity. In non-HLB endemic areas, it is likely that the pathogenic bacterial
population is well below 1.7 cells per phloem cell, which is the concentration assumed in
symptomatic plants [44], while the Ct values of asymptomatic samples are expected to
have Ct values no less than 35 [23]. In the present study, the amplification signals were
generally obtained at Ct values above 35. Although these late values could indicate the
presence of the target sequence at low concentration, in more than 97% of these samples,
no amplification was obtained in the second step with the species-specific primers. In a
recent work on detection of CaLas, Ct values greater than 35 are thought to be due to
non-specific sequences of unknown bacteria [23]. Therefore, the signal obtained in the first
stage in 9.34% of the samples suggested undesired amplifications of non-target bacteria
with homologies in part of the target sequence of the HLB-associated bacteria.

The lower specificity of the 16S rDNA assay has been described as its main draw-
back [29,45]. This is because homologies with sequences from host and/or citrus-associated
endophyte organisms [46] compromise a reliable and specific diagnosis of HLB. The verifi-
cation step developed in this study showed that all positives samples obtained according
to the workflow based on two real-time PCRs [19,21] were non-target amplifications not
corresponding to the species of ‘Ca. Liberibacter’. Among the organisms identified in the
analyses of plant samples, it should be noted that Sphingomonas is a genus comprising
more than 55 species, some of which inhabit the soil and rhizosphere [47]. Interestingly,
the other genus identified in the order Rhizobiales, Phyllobacterium, was phylogenetically
close to ‘Ca. Liberibacter’ [48], and also contains species related to leaves and roots of
plants [49]. Since phylogenetic relationships have been found between some metabolically
diverse species of Rhizobiales, such as CaLas and Agrobacterium tumefaciens [50,51], it is
believed that ‘Ca. Liberibacter’ evolved from a common ancestor through diversification
and reduction processes, which occurred during the adaptation to the host [52].

In the insect analyses, the amplification with genus-specific 16S rDNA primers was
obtained in less than 1% of T. erytreae specimens, in line with a previous work [43]. However,
more than 20% were obtained in the case of the parasitic wasp. Of the T. dryi fragments
selected for sequencing, more than 86% showed a 99% sequence identity with an uncultured
Asaia sp., a genus whose species is frequently associated with plants and insects [53,54], and
in fact, this bacterial species also was identified in a citrus sample (P48). From wasp samples,
19% also were amplified with the CaLaf specific primers. Although the match identity of
CaLaf primers and the probe described by Li et al. [21] was lower than the genus-specific
primers described by Bertolini et al. [19], some non-target amplifications could be expected.
Other selected spurious amplicons of T. dryi showed 100% identity with Ochrobactrum
pseudogrignonense, a bacterium that can be associated with an insect as an endosymbiont,
since the isolation of Ochrobactrum sp. has been reported from the intestinal region of
termites, where it participates in the degradation of hemicelluloses [55]. Two other samples
of T. dryi revealed sequences like those of the endosymbiont Wolbachia sp., a group of alpha-
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proteobacteria that infect a wide range of insects and filarial nematodes [56]. Wolbachia
sp. has been described recently in T. dryi from Kenya [57]. The association of T. dryi
with Wolbachia sp. might have important consequences for the classical biological control
program, because this bacteria can affect the reproduction of its host [58]. Moreover, a better
understanding of the multitrophic interactions between citrus, psyllids, endosymbionts
and pathogens could lead to developing more effective management strategies [56,59,60].

Our results show that the non-target amplifications matched the primers and probes.
Since the target is a small fragment of a highly conserved gene, 16S rDNA, the probability
of finding it in prokaryotes that share habitat with HLB-associated bacteria is high, both in
citrus and insect hosts. Diagnosis by PCR is based on specific and discriminating sequence
signatures. Specificity can be inferred from the comparison of sequences, but discrimination
requires empirical evidence [61]. Today, the availability of several ‘Ca. Liberibacter’
genomes allows redefining in silico the specificity of the 16S rDNA oligonucleotides. This
study shows different bacterial species that share the same habitat as the target organisms
(Calspp) and should be considered in the future for the discrimination sequence signatures
in the HLB detection by PCR.

Complete genomic sequences of more CaLas, CaLaf and CaLam strains will allow
systematic screening of unique genes of HLB-associated bacteria across the genome [26].
Recently, by whole genome sequencing, a missing nucleotide G was identified in the
sequence of the forward primer by Li et al. [21,23]. This made it impossible to distinguish
the low CaLas-titer (Ct > 30) from the absence of CaLas in the samples of citrus fruits and
the psyllid vector, D. citri [23]. Due to the complexity, the lack of enough knowledge of the
plant and insect microbiome, and the limited number of sequences available in the current
nucleotide sequence databases of the all HLB-associated ‘Ca. Liberibacter’ species, it is
not feasible to filter all the possible sequences bioinformatically that could result in false
positives. Therefore, a good strategy is to identify undesired amplifications empirically,
by combining different sets of primer pairs using a consensus approach [62]. This in silico
re-evaluation of the specificity of primers and probes is applicable to many pathogenic
bacteria [61], particularly in complex samples such as plant and insect vectors. Sample
DNA can be a template for non-specific binding of CaLas primers, forming non-specific
products. In the same way host tissues may contain elements that affect the efficiency
of the qPCR reaction contributing to the variability of the result, as observed in other
environmental samples [63,64].

The accurate identification of HLB-associated bacteria is necessary in all areas where
the disease is a major threat to facilitate early identification in plants, insect vectors, and
biocontrol agents. Accurate diagnosis assists in the management of HLB-affected trees
and the development of HLB-free nursery materials [23,24]. Reliable diagnosis and the
differentiation of HLB-associated species also are essential to reduce the spread of this
disease through international trade, as well as to minimize the economic impact of possi-
ble false positive diagnoses, in particular in non-affected citrus-producing areas such as
European Union countries [27]. Although detection based solely on a fragment of the 16S
rDNA gene is a valid approach for the rapid screening of samples due to its high sensitivity,
for accurate results, the proposed protocol for the sequencing of the amplicons obtained
is recommended. Any positives obtained in general surveys should be confirmed with
sequence data. That will allow the reliable identification of non-target bacteria and prevent
false positive results.
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