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starvars: An R Package for Analysing
Nonlinearities in Multivariate Time Series
by Andrea Bucci, Giulio Palomba and Eduardo Rossi

Abstract Although linear autoregressive models are useful to practitioners in different fields, often
a nonlinear specification would be more appropriate in time series analysis. In general, there are
many alternative approaches to nonlinearity modelling, one consists in assuming multiple regimes.
Among the possible specifications that account for regime changes in the multivariate framework,
smooth transition models are the most general, since they nest both linear and threshold autoregressive
models. This paper introduces the starvars package which estimates and predicts the Vector Logistic
Smooth Transition model in a very general setting which also includes predetermined variables. In
comparison to the existing R packages, starvars offers the estimation of the Vector Smooth Transition
model both by maximum likelihood and nonlinear least squares. The package allows also to test
for nonlinearity in a multivariate setting and detect the presence of common breaks. Furthermore,
the package computes multi-step-ahead forecasts. Finally, an illustration with financial time series is
provided to show its usage.

1 Introduction

Many economic and financial time series often behave differently during stress periods for the
economic activity. For example, during the subprime mortgage financial crisis, the relationship
between the financial sector and macroeconomic quantities changed justifying the use of a nonlinear
model. The same is also true in the analysis of monetary policy, where positive and negative monetary
policy shocks may have asymmetric effects, or in the investigation of the effectiveness of a fiscal policy,
where some fiscal policy measures may depend on the phase of the business cycle, see for example
Caggiano et al. (2015). When asymmetric effects are observed, the time series may follow different
regimes. In order to understand the dynamics of such processes, Quandt (1958, 1960) firstly proposed
a model where the coefficients of a linear model change in relation to the value of an observable
stochastic variable. Afterwards, these models have been extended to time series analysis. Tong (1978)
and Teräsvirta and Lim (1980) introduced the threshold autoregressive model, while Teräsvirta (1994)
imagined that the transition between regimes could be smooth, which leads to the smooth transition
autoregressive model (STAR) for univariate time series.

Since researchers are often interested in understanding the dynamics of time series in a multivari-
ate framework, regime-switching models have also been extended to include multiple dependent
variables. A vector nonlinear model was introduced by Tsay (1998), who defined a Threshold Vector
Autoregressive (TVAR) model with a single threshold variable controlling the switching mechanism in
each equation. The first vector model with a smooth transition was the smooth transition vector error-
correction model (STVECM) introduced by Rothman, van Dijk, and Franses (2001). In this model, the
same transition function controls the transition in each equation. Camacho (2004) proposed a bivariate
logistic smooth transition model with the possibility to include exogenous regressors and specify a
different transition variable for each equation. For a recent survey of vector TAR and STAR models,
see Hubrich and Teräsvirta (2013). More recently, Teräsvirta and Yang (2014a) presented a modelling
strategy for building a Vector Logistic Smooth Transition Regression (VLSTAR). This strategy includes
linearity and misspecification tests for the conditional mean, and testing the constancy of the error
covariance matrix.

This article summarizes the procedure proposed in Teräsvirta and Yang (2014a) and illustrates the
starvars package in R for estimating and testing of the VLSTAR model with a single transition variable.
Several packages for the estimation of the univariate logistic autoregressive model (LSTAR) are already
present in R. For example, Di Narzo, Aznarte, Stigler, and Tsung-wu (2020) in their tsDyn package
provide functions to estimate and forecast both the STAR and the LSTAR models. Unfortunately, the
tsDyn package, which focuses on nonlinear models in general, only allows for the estimation of a
multivariate Threshold Vector Autoregressive (TVAR) model and does not allow for the inclusion
of exogenous regressors. The RSTAR package, implemented by Balcilar (2016), estimates, forecasts,
and analyses the smooth transition autoregressive model in the univariate case. Another possible
way to model regime switches in a multivariate framework is through the MSBVAR by Brandt (2016),
capable of estimating a Markov-switching autoregressive model. Still, this package does not permit to
evaluate the relationship between the dependent variables and possible explanatory variables.

The here presented R package starvars (Bucci et al., 2022) is conceived for the nonlinear specifica-
tion with a VLSTAR model of the relationship of multivariate time series exhibiting smooth nonlinear
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relationships with both their lags and a set of explanatory variables. Even though this model has been
mainly applied in financial setups, it could be used in all fields in which the nature of the dynamics of
the dependent variables could be conceived somehow nonlinear and, specifically, following a logistic
smooth transition model. The functionalities of the starvars package include: (i) modelling strategy,
such as joint linearity testing of multivariate time series, or detecting the presence of co-breaks, (ii)
estimation and (iii) prediction of the VLSTAR model, (iv) construction of realized covariances from
high and low-frequency financial prices or returns. Two datasets (Realized and techprices) are
included in the R package starvars. The former entails monthly observations for realized co-volatilities
between the S&P 500, the Nikkei, the FTSE and the DAX indexes, the growth rate of the dividend yield
and the earning price ratio, and the first difference of the inflation rate in the U.S., United Kingdom,
Japan and Germany. The latter includes the data used in the example with the daily closing stock
prices of Google, Microsoft and Amazon.

The outline of the paper is as follows. The following sections review the specification of the
VLSTAR model, referring to Teräsvirta and Yang (2014a), and illustrate how to estimate and make
predictions through the starvars package. We then present an empirical application to stock price data,
while the last section concludes.

2 The Vector Logistic Smooth Transition Autoregressive Model

Assuming an n × 1 vector of dependent time series, yt, the multivariate smooth transition model
introduced by Teräsvirta and Yang (2014a) can be written as follows

yt = µ0 +
p

∑
j=1

Φ0,j yt−j + A0xt + Gt (st; γ, c)

µ1 +
p

∑
j=1

Φ1,j yt−j + A1xt

+ εt

= µ0 + Gt (st; γ, c) µ1 +
p

∑
j=1

[
Φ0,j + Gt (st; γ, c)Φ1,j

]
yt−j + [A0 + Gt (st; γ, c) A1] xt + εt, (1)

where µ0 and µ1 are the n× 1 vectors of intercepts, Φ0,j and Φ1,j are square n× n matrices of parameters
with lags j = 1, 2, . . . , p, A0 and A1 are n × k matrices of parameters, xt is the k × 1 vector of exogenous
variables and εt is the innovation. Gt (st; γ, c) is a n × n diagonal matrix of transition function at time
t, such that

Gt (st; γ, c) = diag {G1,t (s1,t; γ1, c1) , G2,t (s2,t; γ2, c2) , . . . , Gn,t (sn,t; γn, cn)} , (2)

where γi and ci are the scale and the threshold parameters for the i-th equation, for i = 1, . . . , n.

In the VLSTAR model, each element of Gt is specified as a logistic function

Gi,t
(
si,t; γi, ci

)
=
[
1 + exp

{
− γi

(
si,t − ci

) }]−1 . (3)

Let B =
[

G−1
t µ0 + µ1 G−1

t Φ0,1 + Φ1,1 G−1
t Φ0,2 + Φ1,2 . . . G−1

t Φ0,p + Φ1,p G−1
t A0 + A1

]′
, by

reformulating Equation (1) as in Teräsvirta and Yang (2014a) and extending for the presence of m
regimes, Equation (1) becomes

yt =

{
m

∑
r=1

Gr−1
t B′

r

}
zt + εt =

[
In G1

t . . . Gm−1
t

]


B1
B2
...

Bm

 zt + εt = G̃t B̃′ zt + εt, (4)

where G̃t is a matrix of dimension n×mn, zt =
[
1 y′t−1 y′t−2 . . . y′t−p x′t

]′
, B̃ is a (1 + k + pn)×

mn matrix and G0
t = In is an identity matrix indicating that no transitions are allowed before the

first change of regime. This equation defines the VLSTAR model with m regimes and p lags for the
dependent variables.

The logistic function in Equation (3) is accordingly modified as follows

Gr
i,t

(
sr

i,t; γr
i , cr

i

)
=
[
1 + exp

{
− γr

i (s
r
i,t − cr

i )
}]−1

, (5)

for i = 1, 2, . . . , n and r = 0, 1, . . . , m − 1.
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Joint linearity test

The VLSTAR specification procedure follows several steps. Firstly, the researcher should test whether
the relationship between yt and zt can be linear. This is crucial, since several nonlinear models, like
smooth transition and switching regression models, are not identified when the data-generating
process is linear. With multivariate dependent variables, linearity can be tested equation by equation,
using the Lagrange Multiplier (LM) test, as proposed by Luukkonen, Saikkonen, and Teräsvirta (1988),
Teräsvirta (1994) and Teräsvirta, Tjøstheim, and Granger (2010), or it may be tested simultaneously, as
introduced by Hubrich and Teräsvirta (2013) and Teräsvirta and Yang (2014b).

The LM type statistic can be computed, as further suggested by Teräsvirta and Yang (2014b), using
a multi-step procedure:

1. estimation of the linear model, i.e. the restricted VLSTAR with γ = 0;

2. save a collection of the residuals (ε̃t) from step 1 to create the residual matrix Ẽ of dimension
T × n;

3. computation of the residual sum of squares matrix, Q = Ẽ′ Ẽ;

4. regression of Ẽ on X and V =
(
v′1, . . . , v′T

)′, where vt =
(

z′tst, z′ts
2
t , . . . , z′ts

d
t

)
and sd

t is the d-th
order Taylor expansion of the logistic function (in our package d = 3, i.e. a third-order Taylor
expansion has been used);

5. creation of the residual matrix, Ξ̃, from step 4 and the residual sum of square matrix, Ξ̃′Ξ̃;

6. computation of the test statistic

LM = T
{

Q−1Q − Ξ̃′Ξ̃
}
= T

(
p − tr

{
Q−1Ξ̃′Ξ̃

})
∼ χ2

dn(np+1). (6)

where tr{·} is the trace of the matrix.

In the R package starvars, the joint linearity test can be performed by using the function VLSTARjoint,
which takes the following arguments.

• y: a data.frame or matrix containing the T observations for the n time series whose linearity
should be tested;

• exo: an optional argument containing a data.frame or matrix of k explanatory variables;

• st: a vector with the observations of the single transition variable (st), or a matrix with a set of
potential transition variables;

• st.choice: when the choice of the transition variable among a set of candidates should be based
on the linearity test, this argument should be set equal to TRUE. In such a case, the variable in
the matrix st which results in a higher LM statistics is the one chosen as the transition variable;

• alpha: a decimal value comprised between 0 and 1 (α ∈ [0, 1]) representing the confidence level,
set to 0.05 by default.

In this case, the residuals ε̃t used in step 2 of the above-mentioned procedure are obtained through
a VAR(p) estimation of the restricted model in step 1. This is done through the VAR function from R
package vars, with an automatically selected number of lags, p.

VLSTARjoint(y, exo, st, st.choice = FALSE, alpha = 0.05)

The function VLSTARjoint returns a list object with a class attribute "VLSTARjoint", for which print
method exists, with three elements: the value(s) of the Lagrange Multiplier value (LM), the p-value(s)
of the test and the critical value.

Furthermore, the specification of the VLSTAR model foresees the definition of the number of
regimes to be used in the model (see Appendix A for further details). The function multiCUMSUM allows
determining the number of common breaks and where they are located.

multiCUMSUM(data, conf.level = 0.95, max.breaks = 7)

The arguments necessary to detect the common breaks are: a matrix of T × n of time series, in the
argument data; the confidence level in conf.level, set by default at 0.95; the number of maximum
common breaks (between 1 and 7) to be identified, through max.breaks. The output is returned in a
list with a class attribute "multiCUMSUM", which can be passed through the print function. The first
element of the returned list object is a matrix with the test statistics ΛT and ΩT (see Equation (18) in
Appendix A for details). The list further reports the index of the common breaks detected and the
correspondent dates, as long as the critical values for both ΛT and ΩT .
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VLSTAR Estimation

As widely discussed in Teräsvirta and Yang (2014a), a VLSTAR model can be estimated through a
nonlinear Least Square (NLS) or a maximum likelihood (ML) model.

In both cases, the optimization algorithm may converge to some local minima, attributing to the
definition of valid starting values of the estimated parameters a special relevance. If there is no clear
indication of the initial values of γ and c, this can be done by implementing a grid search. Thus, a
discrete grid in the parameter space is created to obtain the estimates of B conditionally on each point
in the grid. The initial pairs of γ and c producing the smallest sum of squared residuals are chosen as
initial values. A pair of these parameters for each equation is selected unless common parameters are
assumed. Given their values, the model is linear in parameters.

The searching grid algorithm works as follows:

1. construction of the grid for γ and c, computing the vector of parameters for each point in the
grid;

2. estimation of B̃ in each equation through NLS and computation of the residual sum of squares,
Q;

3. find the pairs of γ and c providing the smallest Q which will be the starting γ0 and c0;
4. estimation of parameters, B̃, via NLS or ML;
5. estimation of γ and c for each equation given the parameters found in step 4;
6. repeat steps 4 and 5 until convergence.

The starvars package allows the user to implement a searching grid algorithm to obtain the initial
values of c and γ. Specifically, the practitioner may obtain initial values through the startingVLSTAR
function among a set of potential values. For example, by providing n.combi= 50, 50 values of γ and
c are combined in a grid of 2500 couples of values as in step 1 of the former procedure. The values of
the grid for γ range from 0 to 100, while the values of c range from minimum to maximum of each
dependent variable.

The startingVLSTAR function requires several arguments. A data.frame or a matrix of dimension
T × n containing the dependent variables of the model, representing y. An optional argument, exo,
contains possible explanatory variables and can be specified as a data.frame or a matrix with the
same length of y and k columns. The lag-order p should be specified as an integer. The number of
regimes in the model is set by the argument m, while the transition variable st of length T is specified
in the argument st. The number of cores used to make parallel computation is specified through the
ncores argument, while the argument singlecgamma works as follows:

• singlecgamma = TRUE: it is assumed a common pair of initial values for the entire model;
• singlecgamma = FALSE: a pair of c and γ is obtained for each of the equations.

startingVLSTAR(y, exo = NULL, p = 1,
m = 2, st = NULL, constant = TRUE,
n.combi = NULL, ncores = 2,
singlecgamma = FALSE)

VLSTAR Estimation via NLS

The NLS estimator is defined as the solution to the following optimisation problem

θ̂NLS = arg min
θ

T

∑
t=1

(
yt − G̃t B̃′zt

)′ (yt − G̃t B̃′zt
)

(7)

where θ is the set of parameters to be estimated.

In the aforementioned algorithm, the vectorization of the NLS estimates of B̃ for step 4, given the
values of γ and c, is equal to:

vec(B̃)NLS =

[
T−1

T

∑
t=1

(
G̃tG̃′

t
)
⊗
(
ztz′t

)]−1 [
T−1

T

∑
t=1

vec
(
zty′tG̃

′
t
)]

. (8)

The estimated errors covariance matrix is given by

Ω̂NLS = T−1Ê′ Ê, (9)

where Ê = (ε̂1, . . . , ε̂n)
′ is a T × n matrix, and ε̂t = yt − G̃t B̃′

NLSzt is a column vector of residuals. This
is used to obtain the first iterative ML estimation in the previous algorithm in step 4.
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VLSTAR Estimation via ML

To estimate a VLSTAR model via ML, it must be assumed that εt ∼ i.i.d.N(0, Ω). In this case, the
model can be represented by the following multivariate conditional density function

f (yt|IT ; θ) = (2π)−
n
2 |Ω|−

1
2 exp

{
−1

2
(
yt − G̃t B̃′ zt

)′ Ω−1 (yt − G̃t B̃′ zt
)}

, (10)

where It is the information set at time t which contains all the exogenous variables xt and all the lags
of yt.

In the first iteration of the algorithm presented in this section, Ω is estimated through Equation (9).
Consequently, the ML estimator of θ is obtained by solving the optimization problem

θ̂ML = arg max
θ

ℓ (yt|It; θ) . (11)

Estimation in the starvars package

In the starvars package, the estimation of a VLSTAR model is handled with the function VLSTAR.
By fitting such a model via this function, a list object with a class attribute "VLSTAR" is obtained.
This function requires the same arguments of the startingVLSTAR function, except for the number of
combinations. In addition, a list of data.frame or matrix containing starting values of c and γ, for
each of the m − 1 logistic functions as in Equation (5), must be passed through the argument starting.
The user can choose the method used to estimate the coefficients among the ‘ML’ and the ‘NLS’
through the specification of the argument method. The argument epsilon is used as a convergence
check while the argument ncores denotes the number of cores used in the parallel optimization of the
objective function.

VLSTAR(y, exo = NULL, p = 1, m = 2, st = NULL, constant = TRUE,
starting = NULL,
method = c('ML', 'NLS'),
n.iter = 500, singlecgamma = TRUE,
epsilon = 10^(-3), ncores = NULL)

The summary method applied to an object derived from the VLSTAR function returns the sample
size, along with the number of estimated parameters, the multivariate log-likelihood calculated as in
Equation (10), and the estimated coefficients. We also provide other generic methods, such as plot,
AIC, BIC and logLok. Similar to what is implemented in the R package vars, the plot function reports
for each equation in the VLSTAR model the observed values of each time series, the fitted values and
the residuals, as well as the autocorrelation and partial autocorrelation functions of the residuals. Since
the logistic function plays a crucial role in VLSTAR models, the plot function shows also the plot of
the logistic function for each dependent variable.

Forecasting a VLSTAR model

Time series prediction using nonlinear models has become widespread in the last few decades, even
if the debate on the usefulness of such forecasts is still open (see Diebold and Nason, 1990; Kock
and Teräsvirta, 2011). The forecasts of the nonlinear model, for more than one step ahead, can be
generalised via numerical techniques. Given a nonlinear model

yt = g (zt, θ) + εt, (12)

where θ is a vector of parameters to be estimated, zt is a combination of lagged values of yt and
exogenous variables xt, and εt is a white noise with zero mean and constant variance σ2, the forecast
of yt+h made at time t is equal to the conditional mean

ŷt+h|t = E {yt+h|It} = E {g(zt+h−1)|It} . (13)

where It is the information set at time t and εt is independent of It−1.

When h = 1, the forecast ŷt+1 = g(zt) is obtained from Equation (13); if h ≥ 2, the prediction can
only be calculated recursively using numerical techniques.

The nonlinearity in the VLSTAR model makes multi-period forecasting more complicated. In fact,
forecasting two steps ahead is not straightforward, since we have

yt+2|t = E (yt+2|It) = E
{[

g(zt+2; θ) + εt+2
]
|It
}

(14)
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and consequently

yt+2|t = E
{[

g(zt+2; θ) + εt+2
]
|It
}
=
∫ +∞

−∞
g(zt+2θ)dΦ(v)dv (15)

where Φ(v) is the cumulative distribution function for εt+1. It follows that to obtain the t + 2 forecast
of y numerical integration would be necessary, while multiple integrations would be required for
longer time horizons; see Lundbergh and Teräsvirta (2007).

The R package starvars can handle both one-step and multi-step-ahead forecasts of an object
with a class attribute "VLSTAR". One-step-ahead forecasts can be easily extended to the multivariate
framework by modifying Equation (4) as follows

yt+1 = G̃t+1 (st+1; γ̂, ĉ) ˆ̃B′zt+1

where ˆ̃B is the matrix of estimated parameters and zt+1 =
[
1, y′t, y′t−1, . . . , y′t−p+1, x′t+1

]′
, while G̃t+1

is calculated using estimated values of γ and c. Multi-step-ahead forecasts are slightly trickier to be
found and several alternatives can be used. As shown in Lundbergh and Teräsvirta (2007) for the
univariate case, multi-step-ahead forecasts can be obtained in three ways: naively, by Monte Carlo
simulation and by bootstrapping. The method predict in the starvars package allows the user to
choose between these methods through the argument method. When the naive method is chosen, the
yt+h forecasts are obtained as follows

yna
t+h = G̃t+h (st+h; γ̂, ĉ) ˆ̃B′zna

t+h

where zna
t+h =

[
1, y′t+h−1, . . . , y′t+h−p, x′t+h

]′
. If the transition variable is the lagged yt−s, with s < h,

the prediction of the i-th element of y is used as a new transition variable, otherwise the new value
of st should be passed through the argument st.new. The index i is specified by the argument
st.num, which denotes the column number of the dependent variable which should be used as a new
transition variable. From Hubrich and Teräsvirta (2013), Kock and Teräsvirta (2011) and Teräsvirta
et al. (2010), we know that these forecasts are biased. Thus, the practitioner may choose the Monte
Carlo method. In this case, εt+1 should be simulated using a properly defined error distribution. Let
B̂1 =

[
µ̂0, Φ̂0,1, . . . Φ̂0,p, Â0

]
and B̂2 =

[
µ̂1, Φ̂1,1, . . . , Φ̂1,p, Â1

]
, the multivariate version of the Monte

Carlo method for h steps ahead is given by

ymc
t+h = B̂′

1zt+h +
1
M

M

∑
m=1

G̃t+h (st+h; γ̂, ĉ) B̂′
2zmc

t+h

where zmc
t+h =

[
1,
(

yt+h−1 + εmc
t+h

)′
, . . . ,

(
yt+h−p + εmc

t+h−p+1

)′
, x′t+h

]′
, εmc

t+h is a vector of errors sam-

pled from a Multivariate Normal distribution with zero mean and covariance matrix Ω̂. In such a case,
the interval forecasts are directly determined from the forecast density. Finally, the bootstrap method
foresees that the multi-step-ahead forecasts are derived from

ybo
t+h = B̂′

1zt+h +
1
B

B

∑
b=1

G̃t+h (st+h; γ̂, ĉ) B̂′
2zbo

t+h

where zbo
t+h =

[
1,
(

yt+h−1 + εbo
t+h

)′
, . . . ,

(
yt+h−p + εbo

t+h−p+1

)′
, x′t+h

]′
, εbo

t+h is sampled from the T × n

matrix of residuals. As in the case of the Monte Carlo method, the interval forecasts are derived from
the forecast density.

predict(object, ..., n.ahead = 1, conf.lev = 0.95, st.new = NULL,
st.num = NULL, newdata = NULL,
method = c('naive', 'Monte Carlo', 'bootstrap'))

The predict method returns a list with a class attribute "vlstarpred" and two elements: a list denoted
with the name forecasts containing the predicted values and the interval forecasts for each of the
steps ahead, and the matrix with the values of y. The print method is applicable to objects of this
class and returns the forecasts with upper and lower interval forecasts. The plot method draws the
time series plots with the interval forecasts in the out-of-sample period.
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3 VLSTAR model compared to other linear and nonlinear models

The here applied VLSTAR model is one of the possible ways of modelling nonlinear relationships.
Alternatively, nonlinearity in a multivariate framework can be modelled through a Threshold Vector
Autoregression (TVAR) or Markov-switching Vector Autoregressive (MSVAR) model. The VLSTAR
and the TVAR models are both based on the assumption that the variable that defines the regime-
switching is observable, while the MSVAR is mainly based on the assumption that regime-switches
are defined by a latent Markov process. When the practitioner has enough information on the factors
that drive the dynamics of the dependent variables, using VLSTAR or TVAR models may reduce the
uncertainty related to the regimes and may produce more accurate predictions than an MSVAR model
(see Hubrich and Teräsvirta, 2013). In other words, the VLSTAR is a model with a continuum of states
where the change between a number of regimes is smooth, the TVAR is mostly conceived to analyse
the dynamics of variables that switch abruptly between the regimes. The VLSTAR model can be seen
as a general version of the TVAR that allows also for the regimes to change smoothly. Indeed, when
γ → ∞ for each regime, the VLSTAR model becomes a TVAR model with well-defined changes of
regimes. Conversely, when γ → 0, the model becomes a simple VAR model.

The starvars package further differs from the tsDyn and the MSBVAR by Brandt (2016) packages,
which permit the estimation of the TVAR and MSVAR models, since it allows the use of exogenous
variables in the estimation set. This is a useful tool since practitioners may control for potential
explanatory variables different from lags of the dependent variable to obtain parameter estimates and
dependent variables predictions.

4 Example

To illustrate how the R package starvars works in practical situations, we present an empirical
application with multivariate time series of stock prices. Starting from the prices of n = 3 stocks of the
tech companies, Amazon, Microsoft and Google, available in the dataset techprices, we model the
monthly realized covariances assuming that their dynamics can be captured by a flexible specification
like the VLSTAR model which nests the linear VAR. First, we construct the n(n + 1)/2 monthly series
of realized covariances and their Cholesky factors which are modelled through VLSTAR. This solves
the problem of obtaining positive semidefinite covariance matrices that can be used in finding optimal
portfolios. Second, from the estimated VLSTAR, we can compute the forecasts of the monthly realized
covariances, see Halbleib-Chiriac and Voev (2011); Bucci et al. (2019); Bucci (2020). In particular,
asset returns co-volatilities tend to be higher when bad news is available. From Figure 1, it is clearly
observable that co-volatilities explode during periods of market turmoil, like the subprime mortgage
crisis in 2007 or the spread of the COronaVIrus Disease 19 (COVID-19) at the beginning of 2020. This
explains why co-volatilities exhibit nonlinear behaviour.
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Figure 1: Plots of realized covariances of the stock returns. The panels report the realized variances
(one stock symbol, i.e. first, third and last panel) and covariances (two symbols, i.e. second, third and
fifth panel) between the considered stocks. ‘GOOG’ is the stock symbol of Google, ‘MSFT’ is the stock
symbol of Microsoft, and ‘AMZN’ is the stock symbol of Amazon. The time series show several peaks
during periods of financial market stress such as the sub-prime mortgage crisis and the COVID-19
pandemic in 2021, which may underline a nonlinear behaviour of co-volatilities.

The techprices dataset used in this example includes the closing prices from January 1st 2005 to
June 16th 2020, for a total of 3,890 observations per series. The dataset can be loaded in the workspace
using

> data("techprices", package = "starvars")

where techprices is a 3, 890 × 3 xts object containing the daily prices. As a first step, we calculate the
realized covariances of stock returns and their Cholesky factors. Since we have already daily prices,
we can only build monthly, quarterly, or yearly realized covariances. To keep the sample of realized
covariances quite large, we calculate monthly realized covariances and their Cholesky factors through
the code (further discussed in Appendix B):

> RCOV <- rcov(techprices, freq = "monthly", make.ret = TRUE, cholesky = TRUE)

from which we obtain a list of two elements in the object RCOV. We are just interested in the Cholesky
factors of the stock returns, thus we save the desired data.frame in the object techchol with a class
"xts".

> techchol <- RCOV$'Cholesky Factors'

which has dimension T × n(n + 1)/2, where T = 186 and n(n + 1)/2 = 6. Therefore, in our example
there are n(n + 1)/2 = 6 dependent variables.
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The modelling strategy of a VLSTAR model starts with a test for the time series nonlinearities. As
largely explained above, this can be done via the VLSTARjoint function. Since no information about
which variable should be used as a transition variable is available, we let the linearity test choose
among a set of potential variables which are equal to the first lag of the dependent variables. The LM
statistics and the related p-value for a given value of alpha (set equal to 0.05 by default) and for the
chosen transition variable can be obtained simply by running

> st <- lag(techchol,1)[-1]
> VLSTARjoint(techchol[-1,], st = st, st.choice = TRUE)

Joint linearity test (Third-order Taylor expansion)
Transition variable chosen: y5
LM = 158.7 ; p-value = 2.0595e-21
Critical value for alpha = 40.646

The linearity test indicates the presence of nonlinearity in the data, and that the rejection of the
null hypothesis is stronger when the lag of the fifth Cholesky factor, y5, is chosen as the transition
variable. At this point, the practitioner should assess the presence of common breaks among the time
series through the test presented in Appendix A. The test, for a maximum number of breaks equal to 3,
is computed as follows.

> multiCUMSUM(techchol[-1], max.breaks = 3)
============================================================
Break detection in the covariance structure:
Lambda Omega Break Date 1 Break Date 2 Break Date 3
Break 1 11.10 3.93 2009-04-03
Break 2 21.53 9.64 2009-04-03 2007-12-03
Break 3 12.09 6.03 2009-04-03 2007-12-03 2015-07-03
============================================================
Critical values are 2.69 for Lambda and 1.74 for Omega.
2 Break(s) identified with Lambda
2 Break(s) identified with Omega

This function returns significant test statistics for all the breaks for ΛT and ΩT , which both identify a
number of breaks equal to 2. To keep the model parsimonious, we decide to include a single break
and m = 2 regimes in our example.

Given that a nonlinear model would be necessary and that at least a single break is present in the
multivariate time series, a VLSTAR model can be estimated. Before estimating the parameters, we
implement the searching grid algorithm to find starting values of γ and c with 20 potential values
each (400 combinations). Specifying singlecgamma = FALSE we are supposing that each equation has
its own parameters. Once executed the code, a progress bar is shown to inform the user about the
completion of the searching grid algorithm.

> starting <- startingVLSTAR(techchol[-1,], p = 1, m = 2, st = st[,5],
+ n.combi = 20, singlecgamma = FALSE, ncores = 4)

We employ an NLS estimation, with the lag of the fifth Cholesky factor as st, a single lag p = 1,
two regimes m = 2, a number of maximum iterations equal to 30 and a number of cores for parallel
computation equal to 4, and we use the starting values found in the previous step of the procedure
saved in the starting object. Therefore, we show the code used to specify the VLSTAR model as well
as the summary output, and the graphic for the equation of the first Cholesky factor, y1.

> fit.VLSTAR <- VLSTAR(techchol[-1,], p = 1, m = 2, st = st[,5],
+ method = 'NLS', starting = starting, n.iter = 30, ncores = 4)
> summary(fit.VLSTAR)
> plot(fit.VLSTAR, names = "y1")
Model VLSTAR with 2 regimes
Full sample size: 184
Number of estimated parameters: 108 Multivariate log-likelihood: 2272.663
==================================================

Equation y1

Coefficients regime 1
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const y1 y2 y3 y4 y5 y6
8.108*** 0.038 0.135 0.123 0.142 -1.379*** 0.330

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
10.613*** 0.411*** -0.067 0.593*** -1.884*** 0.669** 1.762***

Gamma: 3.0809 c: 3.1603
AIC: 769.78 BIC: 814.79 LL: -370.89

Equation y2

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
0.511 -0.019 0.106 0.250** 0.126 -0.005 0.261

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
6.919*** 0.760*** -0.136 0.177* -0.644*** -1.688*** 0.613***

Gamma: 866.3921 c: 3.5162
AIC: 545.65 BIC: 590.66 LL: -258.83

Equation y3

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
1.015* -0.033 0.053 0.389*** 0.003 0.022 0.295

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
-3.503*** 1.419*** -0.123 0.218* -0.580*** -0.895*** -0.425*

Gamma: 110.8034 c: 3.595
AIC: 571.67 BIC: 616.67 LL: -271.83

Equation y4

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
4.270*** -0.034 -0.046 0.058 0.340** -1.114*** 0.096

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
11.561*** 0.127** 0.166. 0.287*** -0.939*** -0.497*** 1.117***

Gamma: 1.1841 c: 3.4705
AIC: 496.2 BIC: 541.21 LL: -234.1

Equation y5

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
0.367 -0.009 0.061 0.096. -0.012 0.200** 0.158

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
7.756*** -0.695*** -0.337*** 0.290*** -0.418*** 0.639*** 1.269***

Gamma: 100 c: 4.1137
AIC: 351.31 BIC: 396.32 LL: -161.66

Equation y6
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Coefficients regime 1
const y1 y2 y3 y4 y5 y6
2.693*** -0.005 0.005 0.048 0.120. -0.234*** 0.171.

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
3.648*** 0.383*** -0.138* 0.199*** -0.992*** 0.178** 0.909***

Gamma: 69.405 c: 3.5824
AIC: 324.3 BIC: 369.31 LL: -148.15
==================================================

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

After the execution of the code, a counter with the number of the iteration in the estimation
algorithm is shown until convergence or the maximum number of iterations is reached. Using a laptop
with an Intel® Core™i5-7200U 2.5GHz processor with 16 GB RAM, the searching grid algorithm takes
around 40 seconds to find optimal values of γ and c, while convergence is achieved after 7 iterations
taking around 500 seconds (with the package version 1.1.10). The estimation process could take from a
few minutes to several hours depending on the complexity of the model. The number of parameters
increases with the number of dependent variables, the number of exogenous variables, and the number
of regimes, therefore affecting the optimization problem and the convergence time. For example, the
estimation of the former example with m = 3 regimes takes about an hour and 30 minutes.

The results of the plot function on the Equation of y1 in the VLSTAR object are shown in Figure 2.
It may be noticed from the last panel of the Figure reporting the logistic function that the assumption
of a smoothing regime-switching is realistic.
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Figure 2: Plots of results from VLSTAR estimation for the Equation of y1. The first panel shows the
observed time series (in black) versus the fitted time series (in dashed blue). The second panel shows
the residuals and highlights the zero with a red horizontal line. The left side of the third panel reports
the autocorrelation function of the residuals, while the right side reports the partial autocorrelation
function of the residuals. The fourth panel is about the logistic function that regulates the regime
switches. The residual time series of y1 seems to show poor autocorrelation, while the regime switches
appear to be quite smooth.
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Time series models are usually implemented to make out-of-sample predictions. In our package,
this is possible through the predict method that, applied to objects of class "VLSTAR", returns an object
with a class "vlstarpred". When using the predict function, the argument method = 'bootstrap'
specifies that the aforementioned “bootstrap” method has been used to make predictions, while the
argument n.ahead = 2 denotes that two-step-ahead predictions are obtained. The outcome of the
plot method of the out-of-sample forecasts for the first Cholesky factor is exhibited in Figure 3. The
predictions of the Cholesky factors could be used to obtain a semidefinite positive predicted covariance
matrix by simply inverting the Cholesky decomposition.

> pred.bootstrap <- predict(fit.VLSTAR, n.ahead = 2, st.num = 5, method = 'bootstrap')
> pred.bootstrap
$y1

fcst lower 95% upper 95%
Step 1 8.370493 7.283483 9.457503
Step 2 20.916559 12.878648 28.649321

$y2
fcst lower 95% upper 95%

Step 1 3.131276 2.540087 3.722465
Step 2 6.188201 4.761677 7.948755

$y3
fcst lower 95% upper 95%

Step 1 3.508982 2.874487 4.143478
Step 2 6.631187 4.822495 9.018994

$y4
fcst lower 95% upper 95%

Step 1 5.188099 4.671238 5.70496
Step 2 12.483377 8.961486 15.73787

$y5
fcst lower 95% upper 95%

Step 1 1.794161 1.445520 2.142802
Step 2 3.293723 2.469695 4.301613

$y6
fcst lower 95% upper 95%

Step 1 3.381696 3.057729 3.705664
Step 2 7.258409 6.307594 8.322091

> plot(pred.bootstrap, type = 'single', names = 'y1')
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Figure 3: Out-of-sample predictions of time series y1. The plot shows the observed time series
in-sample (in dashed black), the two-step ahead out-of-sample predictions (in dashed blue), and
their 95% prediction interval (in dashed red). A vertical grey line denotes the end of the in-sample
observations. The predictions of time series y1 highlight that the prediction interval is extremely tight
and that predictions can be nonlinear.

5 Conclusion

This article introduces the R package starvars for modelling, estimating, and forecasting a Vector
Logistic Smooth Transition Autoregressive (VLSTAR) model. We present the model specification in
a general way and illustrate the package usage. In particular, we perform an empirical application
using financial data.

The package allows practitioners in many scientific areas to perform their applied research using
VLSTAR models in a user-friendly environment. The build-in framework permits to analyse non-
linearity of time series and make multi-step-ahead predictions via different methods. Further, the
practitioner may use the starvars package to obtain realized covariances at several frequencies and the
Cholesky decomposition of the related realized covariance matrices.

It should be reminded that the estimation of the parameters in a VLSTAR model strongly depends
on the initial values of the parameter of the logistic. We have observed that sometimes the algorithm
underlying the automatic grid search may lead to unrealistic estimates of the logistic parameters and,
consequently, to not consistent estimates of coefficients. Moreover, the computational time, when
using more than two regimes, might be compromised by a large number of coefficients and a possible
local minimum may be found by the maximization of the log-likelihood. Thus, the suggestion is to
use a limited number of regimes to keep the model as parsimonious as possible.

The code of the package starvars may be improved by using a different transition variable for each
equation or by allowing the estimates of a univariate model. However, in both cases, the estimation
would be reduced to a univariate model for each equation and there are already packages able to do
this.

6 Availability

The here presented package is written using S4 classes and provides methodology such as coef, plot,
AIC, BIC, logLik, summary and print to analyze the results. The R package starvars is available from
the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=starvars
and on GitHub at https://github.com/andbucci/starvars.
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7 Appendix A: Testing for common breaks

If the linearity hypothesis is rejected, the researcher should determine the number of regimes of the
dependent variable. To this end, the procedure introduced by Bai and Perron (1998, 2003) may be
implemented. In presence of multivariate time series, it may happen that sudden shocks, such as
market crashes, financial crises, or interventions of policymakers, result in a structural break in the
mean of the observed time series (see Bai et al., 1998). At the same time, the interest of the researcher
may be directed to changes in the structure of the conditional correlations (see Barassi et al., 2020; Aue
et al., 2009). To detect the presence of structural breaks in the co-movements of the n time series, Aue,
Hörmann, Horváth, and Reimherr (2009) introduced a test on the structure of the covariances. Here,
we attempt to summarize the procedure1.

Let (yt : t ∈ Z) be a sequence of n time series, with E[yt] = µ and E[|yt|2] < ∞, where | · | denotes
the Euclidean norm in ℜn, then the null hypothesis in a test for structural breaks in the co-volatilities
process is given by

H0 : Cov(y1) = . . . = Cov(yT)

where T is the number of observations. This means that the covariances are constant over the observed
period. A common alternative hypothesis would be that there is at least one change in the covariance
structure which corresponds to the presence of at least one common break.

Provided that E[yt] = 0, the test statistic is based on the constancy of the expected values
E[vech(yty′t)] for t = 1, . . . , T under H0. As a consequence, from the estimates of E[vech(yty′t)] on j
observations (with j < T), a traditional cumulative sum (CUSUM) statistic can be constructed as

Sj =
1√
T

(
j

∑
t=1

vech[yty′t]−
j
T

T

∑
t=1

vech[yty′t]

)
, with j = 1, . . . , T. (16)

Let ỹt = yt − yT , where yT =
1
T

T

∑
t=1

yt, if the zero mean assumption does not hold, i.e. E[yt] ̸= 0, then

Sj can be replaced by

S̃j =
1√
T

(
j

∑
t=1

vech[ỹt ỹ′t]−
j
T

T

∑
t=1

vech[ỹt ỹ′t]

)
, with j = 1, . . . , T. (17)

Given the long-run covariance estimator Σ̂T , the test statistics are

ΛT = max
1≤j≤T

S′
jΣ̂

−1
T Sj and ΩT =

1
T

T

∑
j=1

S′
jΣ̂

−1
T Sj (18)

as well as

Λ̃T = max
1≤j≤T

S̃′
jΣ̂

−1
T S̃j and Ω̃T =

1
T

T

∑
j=1

S̃′
jΣ̂

−1
T S̃j.

For the critical values of these statistics, it should be referred to Aue, Hörmann, Horváth, and Reimherr
(2009).

Once the null hypothesis can be rejected, the researcher should find the location of both the
breakpoint and the breakpoint fraction θ whose estimation is given by

θ̂ =
1
T

arg max
1≤j≤T

S′
jΣ̂

−1
T Sj. (19)

This can be repeated for each partition of the entire sample to obtain the optimal number and location
of common breaks. On the basis of what is found with the test on common breaks, the number of
regimes of the VLSTAR model can be assessed and parameters estimation can be performed.

8 Appendix B: Realized covariances construction

Along with the specification of a VLSTAR model, the R package starvars allows the user to calculate a
non-parametric measure of volatility in the multivariate framework, such as the realized volatility (see
Andersen et al., 2001, 2003; Barndorff-Nielsen and Shephard, 2002, for the theoretical fundamentals).
Given a vector of stock returns, rτ sampled at a given frequency, τ, the realized covariance matrix,

1See the original paper by Aue, Hörmann, Horváth, and Reimherr (2009) for the technical details.
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RCt observed at a lower frequency t is simply given by

RCt =
Nt

∑
τ=1

rτr′τ (20)

where Nt is the number of observations in the t-th period and t = 1, . . . , T.

The function rcov in the package starvars returns the lower triangular of RCt starting both from
stock prices or returns, and to calculate it for different frequencies.

rcov(data, freq = c('daily', 'monthly', 'quarterly', 'yearly'),
make.ret = TRUE, cholesky = FALSE)

The function consists of several arguments. An object of class "xts" with the values of stock prices
or returns on which the realized covariances should be calculated. The frequency of t, which could
be daily, monthly, quarterly or yearly. The boolean argument make.ret denotes whether the data
passed as input in the argument data should be converted to returns, if TRUE the returns are calculated.
Finally, since a wide strand of the literature relies on the Cholesky factors of RCt to make inference or
predictions (see Becker, Clements, and O’Neill, 2010; Halbleib-Chiriac and Voev, 2011; Bucci, Palomba,
and Rossi, 2019; Bucci, 2020, for example), the function also allows the user to calculate the Cholesky
factors, Lt, such that

RCt = LtL′
t.

This can be done by setting the argument cholesky equal to TRUE. If make.ret is set equal to TRUE, the
output of the function rcov contains an element of class "xts" with the returns.

When cholesky = TRUE, the output of the rcov function is a list containing the T × n(n + 1)/2
xts object from the vectorization of the realized covariance matrices, given by vech(RCt), and the
T × n(n + 1)/2 of the vectorization of Lt, given by vech(Lt), otherwise it includes only the series of
realized covariances.
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