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Introduction

The immune responsiveness to vaccination with a T cell dependent antigen is

characterized by the induction of the B cell response, featured by the rapid generation of

plasma cells, which release antigen-specific immunoglobulins with a peak 4-6 days after

immunization, and the progressive induction of a memory long-lasting B cell response,

capable of persisting months or years in the host (1).

Since the SARS-CoV-2 virus emerged in late 2019 much effort has been directed to

the characterization of the immune response elicited by the infection or the vaccination,
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to understand possible differences, the duration over time, and

the capability of recognizing new variants of SARS-CoV-2 that

arise in the population.

Vaccination against SARS-CoV-2 has shown some

peculiarities, since i) it was a mass vaccination across different

ages, ii) it was implemented during the acute phase of the

pandemic, iii) it has seen the use for the first time of new

technologies such as RNA-based vaccines (2). These multi-

factors have made understanding the immune mechanisms

induced by vaccination particularly challenging. Confounding

factors have been recognized in race, gender, age, comorbidities

and immunosuppressive drug treatments (3). For example, age

and immunological disorders, which can induce physiological and

premature immune senescence, respectively, as well as chronic

systemic low-grade inflammation have been considered among

the most impacting factors on immune responsiveness to

vaccination (4–8).

Most of the attention on the COVID-19 vaccination was

initially focused on the vaccine efficacy, a measure of the degree

to which a vaccine prevents disease calculated by comparing a

vaccinated group with a placebo group. The first data on

Moderna and Pfizer mRNA COVID-19 vaccines showed a

promising efficacy around 95% (9, 10). Data on how well

vaccines performed in the real world, vaccine effectiveness,

were accumulated in the months after the beginning of the

vaccination campaigns (11–13). Many works have thus

correlated the protective capacity of SARS-CoV-2 vaccines

with the induction of antibodies and in particular neutralizing

antibodies (14, 15). Analysis of antibody persistence, however,

demonstrated a physiological decline over time, with a greater

FIGURE 1

Workflow for the identification of vaccine-induced spike-specific B ce
specific B cells in blood samples collected from SARS-CoV-2 vaccinat
analysis labelling cells with the fluorescent antigen as probe to identify
applied to explore and visualize multiparametric flow cytometry data (
specific memory B cells can be measured in PBMC by B-cell ELISpot t
sequencing of BCR heavy-chain genes can be performed on whole bl
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drop in the first two months following the administration of the

second vaccine dose (16). The decrease in circulating antibodies

correlated with an increase of SARS-CoV-2 infection among

vaccinated subjects (15, 17), prompting regulatory agencies to

promote booster doses of vaccination order to raise the amount

of circulating antibodies. The effect of the third booster dose

proved particularly effective in some cohorts of fragile subjects,

in whom the response to the first vaccination cycle had appeared

slower and less intense (5, 6, 8, 18, 19). The booster dose also
response, also significantly increasing the levels of antibodies

cross-reactive with new circulating variants of concerns, such as

Delta and Omicron (18). Despite the antibody response is

capable of inducing immediate protection, from the most

severe forms of the disease and death (20), we should carefully

not overlook the characterization, persistence and profiling of

the memory B cell response capable of promoting new waves of

antibody-secreting cells following contact with the virus. The

increasing knowledge of immune mechanisms, together with a

growing interest on the characterization of the T cell response,

has contributed to a growing focus on the study of the cellular

response and its persistence (21, 22). Here, we will provide

insights into the role of the B cell response elicited by SARS-

CoV-2 vaccination, and the different technologies that can be

used to identify vaccine-induced spike-specific B cells,

characterize their phenotype, also through computational

approaches, assess their persistence, measure their effector

capacity to reactivate following antigen encounter, and track

the maturation of their antigenic affinity (Figure 1).

hematic representation of different technologies to detect antigen-
bjects. PBMC can be used for multiparametric flow cytometry
antigen-specific B cells. Computational flow cytometry can be then
es) using specific tools and algorithms. Effector function of spike-
ique upon in vitro restimulation of cells. High-throughput bulk RNA
o unravel the dynamics of the BCR repertoire.
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postvaccination with varying kinetics. Spike-specific cells were

discrimination of RBD-specific clones (double-positives cells)

cross-reactive against variants of concerns, variant specific spike

probes can be used in the staining panel (35). A schematic gating
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reported that no further increase in the SARS-CoV-2-specific

antibody or memory B cell response was observed upon

administration of a second dose to previously infected

individuals, suggesting that only one dose of the mRNA-based

vaccine is necessary to reach peak humoral immunity in

previously infected individuals (26, 29). It has also been shown

that SARS-CoV-2-specific MBC evolve and mature over several

months by the progressive acquisition of somatic mutations in

their variable region genes and a sizable proportion of such

memory cells is able to neutralize all variants of concern (25),

except Omicron (30). Nevertheless, subjects receiving three

doses of an mRNA vaccine have a diverse memory B cell

repertoire that can respond rapidly and produce antibodies

capable of clearing even diversified variants such as

Omicron (17).

A time-dependent modulation of the B cell response

has been observed, with B cell phenotypes changing from

CD27+ IgD+ IgM+ CXCR5+ cells to both IgA+ or IgG+

(CD27+IgD- CD38+CXCR5-CD11c+) 7 days after the second

dose, and then differentiating into MBC (CD27+ IgD-

CD38+CXCR5+CD24+CD11c-) at longer time points (31).
Several distinct antigen-specific MBC populations emerged

Frontiers in Immunology 03
from those recognizing spike domains present in the S2 region

or part of S1 outside the RBD region (32). To identify MBC
318
strategy for identification of B cells subsets and spike-specific B

cells is reported in Figure 2.

Since flow cytometric analysis allows the simultaneous

detection of numerous markers, this permits not only to

identify and quantify spike-specific cells but also to study their

phenotype and changes in molecules expression according to

immune response maturation. All major populations of human

peripheral B cells can be identified using a panel of surface

markers including CD19, CD20, CD21, IgD, CD27, CD38, and

CD24 (36).

Using multiparametric flow cytometry analysis, we and

other groups have identified spike-specific cells in the blood

induced by vaccination with mRNA BNT162b2 vaccine and we

have tracked their persistence up to 6 months after vaccine

administration (31, 32). The presence of molecules specific for

different states of antigen-specific B-cell differentiation, allows to

identify and distinguish plasmablasts, detectable very early after
Role of the B cell response elicited
by vaccination

While a large amount of data has been produced to

characterize the antibody response, the literature aimed at

characterizing the B cell response to vaccination against SARS-

CoV-2 remains rather limited. The study of COVID-19 vaccine

immune responsiveness has become more complicated over

time, as the characterization and monitoring of protective

correlates elicited by vaccination have mixed with those

induced or boosted by the natural infection, and it is unclear

how to discriminate between the two. In fact, it has been

observed an increase in hybrid immunity, in subjects who

have been both infected with and vaccinated against SARS-

CoV-2. This ‘interference’ of viral infection, inter alia with new

circulating variants, on the dynamics of the vaccination-induced

response is now the main focus of many studies (23–25). Besides

a robust SARS-CoV-2-specific antibody response (26, 27),

mRNA-based vaccines induce a robust class-switched memory

B cell (MBC) response that is further enhanced after the second

dose (26, 27). The induction and persistence of spike-reactive

GC B cells within the draining lymph nodes, 30 weeks after

primary vaccination with an mRNA vaccine has been

demonstrated in a clinical study (28). Individuals previously

infected with SAR-CoV-2 and then vaccinated with mRNA-

based vaccine showed a significant increase in the spike-specific

MBC (26, 27). The magnitude of this increase strongly correlates

with the number of pre-existing SARS-CoV-2 MBC, indicating

that MBC are critical in driving a recall response upon re-

exposure to SARS-CoV-2 antigens (26). Other studies have

IgG+ with a mature and resting CD21+ CD27+ phenotype (32).

The B cell response has been recently characterized also in

fragile patients such as hematopoietic cell transplantation

recipients, myelofibrosis patients and people living with HIV,

immunized with mRNA vaccines (6, 8, 33). These studies have

highlighted the crucial role of the third dose in increasing the

frequency of spike-specific B cells, generating a response similar

to the one detected in healthy controls.

Assays to measure the B cell
immune responses

Flow cytometric identification of
spike-specific B cells

Flow cytometric analysis allows the identification of single

cells present in an heterogenous suspension allowing the

identification of rare antigen-specific cells. In the case of

SARS-CoV-2 the biotinylated spike protein, or its receptor

binding domain (RBD), can be used as probes to bind all

antigen-specific B cells. A subsequent step of tetramerization

with fluorescent streptavidin molecules allows detection by flow

cytometric analysis. To increase the specificity of binding, two

fluorescently labelled RBD probes can be simultaneously used

(34). It is also possible to use the full spike or S1 or S2 subunits

towards the RBD domain only, to distinguish spike protein-

specific clones outside the RBD region. Two-dimensional

analysis of spikes versus RBD positive cells will allow the
frontiersin.org
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vaccine administration, from MBC. Modulation of surface

immunoglobulin expression also allows us to study isotypic

switching by assessing the expression of IgA or IgG on the cell

surface. The presence of unswitched cells can be identified
+ + +

A

FIGURE 2

Schematic gating strategy for the identification of spike-specific B cell
parent subset of B cells to be analyzed for the presence of spike-spec
can be selected the not-naïve B cells by excluding the IgD+CD27- cel
CD20- cells c CD38highCD27+ plasmablasts e. (B) Identification of anti
spike versus the RBD domain only g or versus the spike protein of a vi
within CD27 IgD cells, which in most cases include IgD

IgM+ double-positives cells. Plasmablasts, on the other hand,
408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424
can be identified among the CD19low CD20- cells, as positive for

CD38 and CD27. Detection of plasma cells, the terminal stage of

differentiation of plasmablasts, remains more difficult due to

certain functional and technical aspects, such as the lack of

expression of surface BCR, since their fate is to release soluble

antibodies to a specific antigen already recognized and selected.

In this case, antigen-specific cell detection, mediated by

fluorescent pro te ins , lo ses sens i t i v i ty . Moreover ,

cryopreservation of PBMC could induce substantial loss in

marker expression and function of cells, due to osmotic

activity that harms the cells during the cryopreservation and

thawing process. This can impact of the surface detection of

some markers, such as for example the CD138, one of the most

specific molecule for plasma cells identification (37). To
Frontiers in Immunology 04
B

Examples of different strategies that can be used for selecting the
+

optimize detection of this molecule, staining of fresh cells is

recommended (32).

Machine learning analysis of flow
cytometry data

Flow cytometric analysis of cell subsets has traditionally been

performed with “manual gating” based on the measurement of

two parameters visualized on bi-dimensional plots. This

approach is simple and intuitive however, it constitutes a big

source of variability, and when many parameters are

investigated, is not feasible to visualize all the possible bi-

dimensional combinations of marker expression. To overcome

these limitations, novel computational techniques have been

developed in recent years (38), and computational flow

cytometry has been applied in the vaccine field, to characterize

different B and T cell subsets and their functionality (39–41).

The workflow for the automated analysis of cytometric data

includes pre-processing, automated analysis with data-

visualization and result interpretation, each based on the use

pecific-B cells using two fluorescent labelled spike proteins f, the full
riant (var1, h). .
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of specific computational tools (i.e. FlowJo plugins, web services,

and libraries for some of the most common programming
languages such as R and Python) (41). The two most used

blood collection should be carefully chosen, since it has been

B cells.

31, 49, 50). The ELISpot has also been used to determine the

5-month time frame between second and third immunization,

individual B cell clones, elicited by SARS-CoV-2 vaccination.
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approaches to explore and visualize data are dimensionality

reduction and unsupervised clustering. The first one allows

displaying high-dimensional data in a lower-dimensional

space, using two or three surrogate dimensions where each cell

is represented as a dot, as the t-SNE method (42). This approach

has been used for example for visualizing the trajectory of SARS-

CoV-2 vaccine-induced immunity over the course of primary

two-dose vaccination and after the third dose (43). Samples,

clustered based on antibody and memory B cell responses using

uniform manifold approximation and projection (UMAP),

showed that naïve and COVID-recovered individuals clustered

apart from each other at the pre- vaccination and early time

points following the primary vaccination cycle, while began to

converge in UMAP space at later memory time points and were

indistinguishable after the third vaccine dose (43).

Algorithms based on an unsupervised clustering approach

stratify cells with similar marker profiles in clusters, which can

subsequently be interpreted as cell populations. FlowSOM is

considered one of the best high-performance algorithms in

automated identification of cell subsets showing an extremely

fast runtime (44). Unsupervised clustering analysis has been

applied for identifying major B cell populations and SARS-CoV-

2–specific B cells elicited by the mRNA vaccines and

determining their modulation at the different time points

following vaccine administration (31, 32). The analysis has

allowed the identification of different spike-specific B cell

subsets, including naïve cells, unswitched and isotype-switched

MBC and plasmablasts. Correlation between specific clusters of

cells and humoral response is also possible; the analysis has

demonstrated that the frequency of plasmablasts detected 7 days

after the second vaccine dose positively correlated with the

frequency of IgG+ switched MBC clusters measured at day 180
(31, 32).
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require a pre-stimulation step with an antigen-independent

polyclonal activator in order to promote the differentiation

into ASC (48). When performing ELISpot, the timing of the
previously demonstrated that antigen-specific ASC peak in

peripheral blood around day seven post immunization and

then rapidly decrease to become undetectable after 2 weeks,

while functional MBC increase from 3 to 6 months post

vaccination and then persist at a steady level for long periods

of time after immunization as circulating antigen-experienced
The ELISpot technique has been successfully employed to

quantify spike-specific ASC or memory B cells induced by

SARS-CoV-2 vaccination. We and others have studied the

frequency of spike-specific antibody-secreting cells in PBMC

upon restimulation to quantify SARS-CoV-2 specific memory

MBC response up to 6 months following mRNA vaccination (26,
presence of cells secreting IgG or IgA antibodies against spike

protein in bone marrow aspirates collected 29 weeks after

vaccination, that were detected in 82% of patients (28). Liu

and colleagues characterized spike- and RBD-specific MBC

upon inactivated SARS-CoV-2 vaccine administration,

showing that MBC persisted despite a decreasing trend over a
and that the third dose significantly increased the antigen-

specific MBC (51).

BCR repertoire

Next-generation sequencing approaches to study B cell

receptor (BCR) heavy chain repertoires have been used for the

dynamic characterization of the B cell response, at the level of
Following antigen exposure further diversification of the

repertoire occurs, through somatic hypermutation and

513

514

515
516
B cell ELISPOT
subsequent selection of high-affinity clones within the

germinal centers (52).
Deep sequencing supported by state of the art platforms can

different vaccine platforms (57). Recently, the BCR repertoire

517

518

519

520

521

522

523

524

525

526

527

528

529

530
In peripheral blood samples it is possible to detect antibody

secreting cells (ASCs) directly ex vivo, or to identify antigen-

specific MBC by restimulating peripheral blood mononuclear

cells (PBMC) to drive their differentiation into ASCs. Owing to

its high sensitivity, enzyme-linked immune absorbent spot

(ELISpot) assay is especially useful for detecting and

enumerating discrete populations of active cells (i.e. antigen-

specific cells) and represents therefore an important

complement to conventional serology in profiling B cell

responses to vaccination. The B cell ELISpot has proven to be

an important method for both the detection of IgG-producing B

cells (45) and antigen-specific memory B cells (46, 47). Whereas

ASCs can be examined directly without in vitro activation, MBC
be applied to unravel the dynamics of the BCR repertoire.

Several tools and softwares, equipped with V(D)J gene

alignment, CDR3 sequence identification, mutation

frequencies, have been developed for BCR sequence analysis,

and are described in detail elsewhere (53, 54). The analysis of

BCR heavy-chain genes can be performed on bulk B cells (55),

specific B cell subsets (56) or single-cell (25). Data allow to track

and characterize the molecular phenotype and clonal evolution

of spike-specific MBC clones from early time points after vaccine

administration to longer time points. The approach can be

instrumental for highlighting differences between responses to

natural infection and vaccination (55) and for comparing
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approach has been employed to study the RBD-specific MBCs

affinity toward multiple viral variants (25, 30).

Conclusions

After about 20 months from the beginning of the vaccination

campaign, milestones in the knowledge of the immunological

mechanisms underlying immune responsiveness to SARS-CoV-

2 vaccination have been reached, although many different factors

can impact on the analysis. Moreover, the overlapping of

vaccination and infection, contracted before, during or after

the last vaccine dose, has altered the dynamics and the

magnitude of the response, and open questions remain on

how the immune system will respond on its next encounter

with the virus, and how the first exposure, whether it was

vaccination or infection, may influence the response. Some

studies have robustly correlated the SARS-CoV-2 vaccination

efficacy with in vitro neutralizing and binding antibodies,

supporting the use of post-immunization antibody titers as the

basis for establishing a correlate of protection for COVID-19

vaccines (14, 58). Nevertheless, considering the physiological

decline of circulating antibodies overtime, the lack of a threshold

value for protection from infection, and the rapid appearance of

novel viral variants, the measurement of MBC can be evaluated

as an indicator of potentially antibody-producing cells upon

antigen encounter.

Therefore, beyond the follow-up of the antibody response, it

has become evident that knowledge of the B cell response, that is

the cellular biology underpinning the antibody response, is

crucial for understanding how vaccinated people will respond

to repeated booster doses or infection. Different technologies

aimed to identify, quantify, and measure the spike or RBD

specific B cells, monitor their persistence, their evolution, their

functionality upon antigen encounter, are available for
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