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ABSTRACT
This work proposes a new mathematical model describing the 
dynamics of growing bacterial cultures. The model, described by 
a first order non-linear differential equation, as a generalization of 
the logistic equation, was compared with the most studied math-
ematical models. All models were numerically implemented and 
fitted to the experimental data, collected from the incubation of 
a bacterial strain of Pseudomonas fluorescens, to obtain the growth 
parameters. The experimental data showed the lowest fit error for 
both the Baranyi–Roberts and new models, which turned out to be 
equivalent. Simulations of the fitting algorithm were also imple-
mented and repeated for a large number of initial guesses of the 
parameters, chosen in order to test the fitting and convergence 
performances. The innovative feature that makes the new model 
easier to use than Baranyi–Roberts model is definitely its simple and 
manageable analytical form and its good performance in terms of 
convergence time.
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1. Introduction

The modelling of microbial growth is certainly one of the most important goals of 
predictive microbiology [1]. In fact, as a result of growth, the risk associated with the 
presence of a microbial danger (a pathogenic microorganism or a toxic product of its 
metabolism) can increase significantly, both in terms of probability for the consumer of 
contracting a disease and in terms of probability as a food business operator to exceed the 
microbial load limits established by national or international regulations [2,3]. The 
fundamental tools for food industries to predict and control the stages of growth, survival 
and death of bacteria are mathematical models.

Bacteria in nature can be present both in free form (planktonic form) and organized in 
structures called biofilms, which are aggregations of microorganisms, microbial cells, and 
their extracellular material that form thin films adhering to surfaces. These surfaces, 
called support surfaces, can be made up of biological material (such as a leaf or an animal 
tissue) or abiotic material (plastic, glass, etc.). The formation of the biofilm helps the 
bacterial community to protect itself from environmental stresses (such as temperature 
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variations and dehydration), favours the retention of nutrients and creates a real com-
munication between the bacteria [4]. The control of bacterial growth and therefore of 
bacterial biofilm formation is of fundamental importance both in the health sector, for 
the treatment of pathologies (cystic fibrosis, tuberculosis, etc.), the improvement of 
antibiotics, and the safety of medical devices [5], and in the industrial sector, to prevent 
the obstruction and deterioration of the pipelines of the plants (e.g. aqueducts) [6].

The growth of a bacterial culture is characterized by the succession of four phases: lag, 
exponential, stationary and death phases. The lag phase, which can have a variable length 
depending on the type of bacteria and on the changes in the physico-chemical environ-
ment such as temperature, pH, water activity and nutrient availability, is characterized by 
cellular activity but not growth. In fact, before the bacteria start to duplicate, when they 
are transferred in growth conditions different from the starting ones, it is necessary that 
they synthesize all the enzymes and coenzymes necessary for growth; the lag phase is 
therefore an adaptation phase in which there is no cell duplication. After the lag phase, 
bacterial cells enter the exponential phase. This is the time when cells divide by binary 
fission and double in number after each generation time. Metabolic activity is high as 
DNA, RNA, cell wall components and other substances required for growth are gener-
ated for division. The progressive exhaustion of available resources and the accumulation 
of waste products then determine the end of the exponential phase and the entry into the 
stationary phase of growth, in which there is a balance between dividing cells and cells 
that begin to die, hence the number of cells in culture remains constant. As nutrients 
become less available and waste products increase, the number of dying cells continues to 
rise. Finally, in the death phase, the number of living cells decreases exponentially and 
population growth experiences a sharp decline. As dying cells lyse or break open, they 
spill their contents into the environment making these nutrients available to other 
bacteria. This helps the spore-producing bacteria survive long enough for spore produc-
tion. Spores are able to survive the harsh conditions of the death phase and become 
growing bacteria when placed in an environment that supports life [4,7].

It is therefore important to develop mathematical models that predict microbial 
growth and therefore give a quantitative estimate of the changes in a bacterial population 
under certain experimental conditions. Predictive models have been studied in the 
literature, including the logistic model, Baranyi–Roberts, Reparameterized Gompertz 
and Huang models, which describe bacterial growth as a function of time, and this 
paper in particular aims to develop an alternative model capable of predicting bacterial 
growth as a function of time, which is a generalization of the logistic model. In particular, 
the new model improves the logistic model because it manages to overcome the limits of 
the latter and at the same time has a simpler analytical form than the other three most 
studied models. Furthermore, this work aims to elaborate a computational analysis of the 
mathematical models most used to describe the microbial growth and the new model, 
proving that the latter is equivalent to the Baranyi–Roberts model in terms of accuracy. 
Moreover, it has been demonstrated that the analytical simplicity of the model does not 
represent a limit for its efficiency and in particular does not affect its performance in 
terms of convergence of the fitting algorithm.

Hence, the objective of this research was to develop an alternative and more cost- 
effective non-linear mathematical model than those already known in literature, 
which describes the dynamics over time, of a sample of Pseudomonas fluorescens 
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(P.F.) bacteria. The P.F. sample was incubated at room temperature in Tryptic soy 
broth (TSB) culture medium for about 20 h. Since a medium containing a bacterial 
inoculum becomes more and more turbid with the progress of growth, and this 
increase in turbidity is proportional to the number of cells present, optical density 
(OD) measurements were made to monitor the quantitative variation of the biofilm 
and therefore of the biomass [8].

2. Mathematical models

2.1. Growth models in literature

Among the most studied primary models in literature, it is worth mentioning Baranyi– 
Roberts, Reparameterized Gompertz and Huang models. Primary models describe how 
population density changes with time in a specified environment and are depicted as 
microbial growth or death curves.

The Huang model is expressed as 

y tð Þ ¼
ymax

ymax � y0
y0

� �
e� μmaxB tð Þ þ 1

(1) 

B tð Þ ¼ t þ
1
α

ln
1þ e� α t� λð Þ

1þ eαλ

� �

(2) 

or equivalently if the quantity y tð Þ taken into consideration is expressed as the natural 
logarithm of the cell concentration: 

y tð Þ ¼ y0 þ ymax � ln ey0 þ eymax � ey0½ �e� μmaxB tð Þ
n o

(3) 

where t is the time hð Þ, λ is the lag phase duration hð Þ, y tð Þ represents the natural 
logarithm of microorganism count ln CFU=gð Þ in eq. 3ð Þ or the optical density ODð Þ of 
the bacteria in eq. 1ð Þ, which is related to the cell number, depending on the type of the 
considered measured quantity, α is a constant which defines the transition from the lag 
phase to the exponential phase of the growth curve (α ¼ 4Þ, y0 is the initial microorgan-
ism count, ymax is the bacterial count at the stationary phase and μmax is the maximal 
specific growth rate h� 1ð Þ [9].

The Baranyi–Roberts model [10] is expressed as 

y tð Þ ¼
ymax

ymax � y0
y0

e� μmaxA tð Þ þ 1
(4) 

A tð Þ ¼ t þ
1

μmax
ln e� μmaxt þ e� h0 � e� μmaxt� h0
� �

(5) 

or equivalently if the quantity y tð Þ taken into consideration is expressed as the natural 
logarithm of the cell concentration: 
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y tð Þ ¼ y0 þ μmaxA tð Þ � ln 1þ
eμmaxA tð Þ � 1

eymax� y0

� �

(6) 

where h0 is a dimensionless parameter which represents the initial physiological state 
of the cells and it is equals to μmaxλ, and the other variables t; y tð Þ; y0; ymax; and μmax are 
defined as those used in the Huang model [11].

The Reparameterized Gompertz model [1,12] is expressed as 

y tð Þ ¼ y0 þ ymax � y0ð Þe� e
μmaxe

ymax � y0 λ� tð Þþ1

(7) 

where all parameters λ; t; y tð Þ; y0; ymax;and μmax are identical to those used in the Huang 
model.

2.2. New model derivation

The new proposed model describes the evolution over time of a bacteria population, on 
the basis of the following assumptions, which allow to easily use it [13,14].

● We disregard the possible spatial distribution of the bacterial cells assuming that the 
bacterial population is homogeneous.

● All cells are equally reproductive.
● The reproduction process is continuous.
● Each new cell is immediately fertile.

We consider the following model variables: y� tð Þ is cell concentration, and S the 
concentration of the nutrient. Assuming that the absence of nutrient has a limiting effect 
according to the Monod equation [15–17] the instantaneous specific growth rate μ, 
which can be explained as the instantaneous measure of the birth rate per cell per unit 
time as a function of substrate concentration, is given by: 

μ ¼ μmax
S

Ks þ S
(8) 

where μmax is the maximum specific rate of potential growth h� 1ð Þ, Ks is the ‘half-velocity 
constant’ that is the substrate concentration corresponding to 1

2 μmax, and l ¼ S
KsþS is 

a limiting factor.
Since the culture conditions are adjusted so the substrate concentration is always in 

excess, nutrient limitation can be excluded, hence also to simplify and use the model 
easily, we can neglect the nutrient modelling and we can introduce a simple limiting L tð Þ
which describes the transition from the exponential to the stationary phase, depending 
on the parameter ymax called carrying capacity which stands for the maximum cell 
density [10]:  

L tð Þ ¼ 1 �
y tð Þ
ymax

: (9) 

It should be noted that the maximal specific growth rate μmax is typical of the 
species as it is related to the reproductive mechanism and to the incubation 
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temperature of that species, it increases with temperature in the temperature range 
considered and is accompanied by a decrease in the duration of time for which the 
growth rate is near this maximum, and it depends also on the nature of the 
substrate, instead the carrying capacity ymax depends mainly on the environmental 
conditions but not on temperature, it remains almost constant to the temperature 
range considered [18,19].

Moreover, we introduced the parameter ys that has the function of regulating the 
growth rate of the model while preserving and respecting its mathematical properties 
(such as existence of the inflection point and convergence to the carrying capacity). In 
particular, the parameter ys represents a concentration, and, as shown in Figure 1, it is 
a shift parameter that regulates the duration of the lag phase but also the position of the 
point of maximum growth and therefore of the time and the value of the bacterial 
concentration at which the bacterial growth rate begins to decrease and enters the 
stationary phase. Hence, the model under consideration reads as follows: 

dy tð Þ
dt
¼ μmax y tð Þ � ysð Þ 1 �

y tð Þ
ym

� �

(10) 

and its analytical solution is written as: 

y tð Þ ¼
ym þ ys

ym� y0
y0� ys

� �
e
� μmax

ym � ys
ymð Þt

ym� y0
y0� ys

� �
e
� μmax

ym � ys
ymð Þt
þ 1

(11) 

where ym ¼ ymax:

The Equation (11)can be expressed in the following form: 

yðtÞ ¼
ym þ ysce� μmaxbt

ce� μmaxbt þ 1
(12) 

where y0 ¼ y t0ð Þ is the cell concentration at t ¼ t0 and 

c ¼
ym � y0

y0 � ys
; b ¼

ym � ys

ym
(13) 

are constant. We notice that the proposed model presents the same number of para-
meters as the existing ones, thus it does not introduce any additional complexity from 
a biological or computational point of view.

With simple calculations, it can be shown that the Baranyi–Roberts and the new 
proposed models are both a generalization of the logistic equation, in fact, we can derive 
the logistic equation from both when we assume the parameter λ ¼ 0 in the first and 
ys ¼ 0 in the second [14,20]. It has been verified that the logistic equation has some 
limitations and often fails to model data satisfactorily, so for this reason it has been 
subject to some revisions and refinements over the years [21].

Furthermore, it is possible to verify analytically that they are equivalent, that is, even if 
the parameters do not represent the same quantities, indeed the unit measure of λ and ys 
are time and concentration, respectively, these two parameters are actually related to each 
other. As Figure 2(b) shows, while λ regulates the lag phase, ys models the lag phase 
together with the bacterial growth rate. In fact, according to the Baranyi–Roberts model 
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Figure 1. að Þ Growth rate over cell concentration diagram of a population of Pseudomonas fluorescens. 
bð Þ Cell concentration (blue line) and growth rate (red line) over time diagram of a population of 

Pseudomonas fluorescens. It is assumed for both that y0 ¼ 0:182OD, ymax ¼ 1:095OD, ys ¼ 0:128 and 
μmax ¼ 0:56h� 1.

Figure 2. Cell concentrations (solid-blue lines) and growth rates (dashed-red lines) over time  
að Þ varying the maximal specific growth rate μmax , bð Þ varying ys (chosen in the range 2y0 � ym; y0½ ½).
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the cell concentration dynamics of a bacterial culture is described by the following non- 
linear differential equation [14]: 

dy tð Þ
dt
¼ μmaxα tð Þy tð Þ 1 �

y tð Þ
ymax

� �

(14) 

where 

α tð Þ ¼
e� h0

e� μmaxt þ e� h0 � e� μmaxt� h0
(15) 

and after simple computations we get the following relationship which correlates the 
Equations (10,14,15): 

ys ¼ y0 1 � e� μmaxBR
λ μmaxBR

μmaxNM

 !

(16) 

where y0 is the initial microorganism count, μmaxBR 
and μmaxNM 

are the maximum specific 
rate of potential growth of the Baranyi–Roberts model and the new model, respectively.

From Equation (16) we can verify that the parameters λ and ys of the two models 
4ð Þ � 5ð Þ and 11ð Þ have some properties in common. In fact, assuming that the lag phase 

is quite long, from Equations (4, 5) we get lim
λ!þ1

yBR tð Þ ¼ y0, where yBR tð Þ is the Baranyi– 

Roberts solution. Moreover, from Equation (16) if λ! þ1, it follows that ys ! y0, and 
so lim

ys!y0
yNM tð Þ ¼ y0, where yNM tð Þ is the solution of the new model 11ð Þ. Similarly, if we 

assume the lag phase is very small, we have that lim
λ!0

yBR tð Þ ¼ ymax

ymax� y0
y0

� �
e� μmaxtþ1

, that is the 

logistic equation, and from Equation (16) if λ! 0, it follows, assuming that 
μmaxBR
μmaxNM

ffi 1, 

ys ! 0, therefore lim
ys!0

yNM tð Þ ¼ ymax

ymax� y0
y0

� �
e� μmaxtþ1

¼ lim
λ!0

yBR tð Þ. In conclusion, the two 

models describe similarly long and short lag phases of bacterial growth, which can 
then be considered equivalent.

2.2.1. Analysis of the model
The function y tð Þ, as it is defined in Equation (14, 15) must be positive and must also 
have a positive first derivative, hence it must be monotonically increasing. Moreover, y tð Þ
must have an inflection point that marks the change in the direction of the growth rate of 
the model dy tð Þ

dt defined by Equation (10) [7].
We then determine the definition interval of the parameter ys that satisfies the above 

mentioned properties of y tð Þ.
First of all, for y tð Þ to be defined, should be ys�y0; ymax.
Analysing the first derivative of y tð Þ: 

_y tð Þ ¼
ym � ysð Þ μmaxbce� μmaxbt� �

ce� μmaxbt þ 1ð Þ
2 (17) 

where c; b are defined as 13ð Þ, we have that _y tð Þ � 0$ ys < y0 < ym
Furthermore, studying the second derivative of y tð Þ we observe that: 
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y
::

tð Þ ¼
μmaxb
� �2 ym � ysð Þ c2e� 2μmaxbt � 1

� �
ce� μmaxbt

ce� μmaxbt þ 1ð Þ
4 (18) 

and y:: tð Þ ¼ 0$ t ¼ � 1
μmaxb ln c 

y:: tð Þ � 0$ t � �
1

μmaxb
ln c (19) 

y
::

tð Þ � 0$ t � �
1

μmaxb
ln c (20) 

where _y tð Þ ¼ dy tð Þ
dt and €y tð Þ ¼ d2y tð Þ

dt2 .

Hence, tf ; yf
� �

¼ � 1
μmaxb ln 1

c ;
ymþysc�

1
c

1þc� 1
c

� �
has the characteristics of an inflection point 

for y tð Þ.
Now let us verify what value ys must assume in order that y tð Þmaintains the inflection 

point. We have already verified that y tð Þ is monotonically increasing if and only if ys < y0, 
and now we want to compute the lower bound of the defining interval of ys.

tf ¼ �
ym

μmax ym� ysð Þ
ln y0� ys

ym� y0

� �
is defined if and only if 2y0 � ym � ys < y0. However, we need 

to analyse two possible cases:

● If 2y0 � ym � 0, the initial condition is quite close to the maximum concentration 
ymax, therefore we can state that ys 2 2y0 � ym; y0½ ½.

● If 2y0 � ym < 0, since ys is a concentration, we can state that ys 2 0; y0½ ½.

The equilibrium points of the autonomous differential equation of the model 10ð Þ are: 
y�1 ¼ ys; y�2 ¼ ym: In order to study the stability of the equilibrium points, let us apply 
a small perturbation to the equilibrium point y�, that is y tð Þ ¼ y� þ ε~y tð Þ, with ε 
arbitrarily small. Linearizing around the equilibrium point, the reproduction function 

f yð Þ ¼ μmax y � ysð Þ 1 � y
ym

� �
can be written as follows: 

f yð Þ ¼ f y� þ ε~y tð Þð Þ ¼ f y�ð Þ þ ε
df y�ð Þ

dy
� ~y tð Þ: (21) 

Therefore, in the neighbourhood of y� it holds that: 

d~y tð Þ
dt
¼

df y�ð Þ
dy
� ~y tð Þ (22) 

which has the following solution: 

~y tð Þ ¼ ~y0e
df y�ð Þ

dy t (23) 

where ~y0 is the initial perturbation.
Since df ysð Þ

dy ¼ μmax 1 � ys
ym

� �
> 0 and df ymð Þ

dy ¼ μmax
ys
ym
� 1

� �
< 0, it follows that ys is an 

unstable equilibrium point, moreover ym is an asymptotically stable equilibrium point 
and it is also an attractor, and its basin of attraction is the interval y0;ym

� �
:
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Another information that allows us to understand the dynamics of the response to 
perturbations around the equilibrium ymax is the characteristic return time tR. In 
fact, it was studied that any enclosed population experiencing density-dependent 
mortality or fecundity will tend to return towards an equilibrium level, and in 
particular, the characteristic return time tR gives us a measure of the rate at which 
this equlibrium is reached [22].

From the equation 23ð Þ with y� ¼ ym we have: 

~y tð Þ ¼ ~y0 e μmax
ys
ym� 1
� �

t (24) 

that is equivalent to 

~y tð Þ ¼ ~y0e�
t

tR (25) 

with 

tR ¼
1

μmax
ym� ys

ym

� � ¼
1

μmaxb
: (26) 

Hence, according to [22], Equation (26) gives us a measure of the rate at which 
this equilibrium point ym is reached. Larger values of μmaxb lead to a more rapid 
approach to ym.

2.2.2. Trend of growth and rate of growth
From Equation (10) it is easy to deduce that the growth rate dy tð Þ

dt is positive, and it 
assumes its maximum value 

vmax ¼ μmax
ym � ysð Þ

2

4ym
(27) 

at the inflection point of y tð Þ, which in this case is obtained from the following 
expression: 

yf ¼
ys þ ym

2
: (28) 

Figure 2(a) shows how by varying the parameter μmax the population growth rate and the 
duration of the lag phase also vary, whereas the ordinate of the inflection point remains 
constant [23].

Instead, as we can see in Figure 2(b), by varying the parameter ys, both the 
population growth rate and the location of the inflection point vary. In particular, 
the inflection point represents the point where the population growth rate starts 
to decrease resulting in the convergence of the total biomass to the carrying 
capacity ymax. As ys increases, the growth becomes slower, indeed the abscissa 
and the ordinate of the inflection point increase. It also affects the lag phase, in 
fact as ys increases, the lag phase increases.
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3. Materials and methods

3.1. Bacteria sample

The analysed models were numerically implemented by comparing them with the 
experimental data obtained using Pseudomonas fluorescens bacteria samples pur-
chased from the collection of the Leibniz Institute DSMZ – German Collection of 
Microorganisms and Cell Cultures (Braunschweig, Germany). These are rod- 
shaped gram-negative strains, which secrete a yellow-green fluorescent pigment 
which can be applied to study the influence of antibacterial agents on bacterial 
proliferation in static conditions [24,25]. For growth curve determination, some 
bacterial suspensions were collected and transferred to Petri dishes containing 
nutrient agar to permit the growth of bacterial colonies. P.F. was incubated at 
room condition (21–22°C) under a laminar chamber till the evident formation of 
colonies on the agar plate and stored at 4°C until used. A loopful of bacterial 
biomass was transferred from the nutrient agar plate to a volume of 30 g/L 
Tryptic soy broth (TSB) as a bacterial medium for 24 h at room temperature (R. 
T.). Bacteria stocks were centrifuged for 10 min at 4000 rpm. The supernatant was 
discarded, and desired media such as TSB was added to the test sample. Three 
replicates of each sample were prepared for this study.

3.2. Bacterial growth curve measurements

The growth curve measurements were performed by measuring the OD of the 
bacteria sample, which is related to bacterial concentrations in cultures [26]. Before 
analysis, their initial optical density (OD) was adjusted identically for all replications. 
Then, average values of OD for Pseudomonas fluorescens strain at 570 nm were 
recorded every 30 min for the first 8 h and then every 60 min, with a gap of 7 h, 
for the last 6 h (plateau reached) to monitor bacterial growth. Finally, the obtained 
control and sample curves were compared. Absorbance growth results from bacteria 
growth.

4. Results and discussion

4.1. Fitting algorithm and model parameter estimation

The developed model was numerically implemented in Matlab and used to fit the 
experimental data in order to estimate the model parameters ys; ymax and μmax. A non- 
linear least square fitting, using the optimization function lsqnonlin, based on the 
Levenberg-Marquardt algorithm, was used to adjust the model’s unknown parameters 
aiming at minimizing the error function, which is the mean squared value of the relative 
error between the observed growth data and the results of the numerical analysis [27]. 
For # ¼ ys; ymax; μmax

� �
the error function is expressed as 

E #ð Þ ¼
1
N

XN

i¼1

yi � ŷi #ð Þ

yi

� �2

: (29) 
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In Equation (29) yi is the experimental measurement of bacterial concentration at 
time ti, ŷi #ð Þ represents the bacterial concentration predicted by the model at 
same time ti and N is the number of measurements collected during the 
experiments.

Figure 3 shows the result of the model fitting, in which the experimental data concern 
the variation of the optical density of a P.F. sample, with initial OD about 0.182, during an 
incubation interval of about 20 h. In particular, as can be seen from Figure 3, the 
experimental measurement has a gap where the data is missing, due to the instrument 
and the manual measurement technique used to collect the experimental data which 
therefore lead to an interruption of the measurement process, nevertheless using the 
parameters estimated by the fitting algorithm, the model was used to simulate the trend 
of the experimental data in that data gap. It can be seen from Figure 3, despite the lack of 
a part of the data, the model, like the others studied, is able to predict satisfactorily the 
experimental data.

Figure 4 shows that the growth data of Pseudomonas fluorescens on TSB culture, at 
storage room temperature of about 22°C, were also fitted to the other three known 
models: Baranyi–Roberts, Reparameterized Gompertz and Huang models, to compare 
the estimated model parameters and the statistical parameters for model validation with 
the proposed new model.

Table 1 shows the modelled growth parameters and some statistical parameters 
calculated for the validation of the model: root mean square error (RMSE), sum of 
squared errors (SSE), accuracy factor (Af) and the bias factor (Bf). The root mean square 
error is given by: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 yi � ŷi
� �2

N

s

(30) 

Figure 3. Results of the model fitting of the growth of Pseudomonas fluorescens inoculated with TSB 
culture at room temperature (about 22°C). The x-markers are the measured data during the growth of 
P.F. sample, o-markers are the data predicted by the model.
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it measures the average magnitude of the error, that is, it provides information on how 
close the predicted data are to the observed values. The RMSE of the new model is 0.0072, 
and being very small, in particular almost close to zero, indicates that the fit is good. The 
comparison between the measured and predicted data was based also on the accuracy 
and bias factors. The accuracy and bias factors provide an indication of the average 
deviation between the model predictions and observed results [28] and their closeness to 
a value of 1 is an effective and practical measure of predictive model validity. These 
statistical characteristic indices are expressed as follows: 

Af ¼ 10

PN

i¼1
log ŷi=yi

� �

N Bf ¼ 10

PN

i¼1
log ŷi=yi

� ��
�
�

�
�
�

N (31) 

where yi is the value of the data experimentally measured, ŷi is the value predicted by the 
model at the same time ti as the data were measured and N is the number of measure-
ments. Table 1 shows the Af and Bf values for the new model which are 1:012 and 0:9967 
respectively, indicating how the model fits satisfactorily with the experimental data.

As shown in Table 1 all the statistical parameters analysed (RMSE, MSEP, Af, Bf) show 
larger values for the Gompertz and Huang models, moreover they assume the same 
values for our new proposed model and Baranyi–Roberts model. Hence, the latter two 

Figure 4. Comparison of results of the three models fitting of the growth of Pseudomonas fluorescens 
inoculated with TSB culture at room temperature (about 22°C). The x-markers are the measured data 
during the growth of P.F. sample, o-markers are the data predicted by the model.

Table 1. Estimated parameters of the four different growth models for P.F.
μmax ymax λ ys RMSE SSE Af Bf

New model 0.567 1.095 ─ 0.128 0.0072 0.0012 1.012 0.9967
Baranyi–Roberts model 0.496 1.095 2.214 ─ 0.0072 0.0012 1.012 0.9967
Gompertz model 0.116 1.105 1.918 ─ 0.0124 0.0037 1.027 0.9917
Huang model 0.403 1.101 1.076 ─ 0.0148 0.0053 1.033 0.9863
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models were more suitable for analysing the growth curve than the Reparameterized 
Gompertz and Huang models, as shown in Table 1 and Figures 3, 4. In particular, by 
comparing the fitting results and the statistical parameters in Table 1, we can conclude 
that the new model and the Baranyi–Roberts model have the same accuracy in terms of 
prediction of the experimental data and therefore the analytical simplicity of the new 
model does not affect its performance.

4.2. Model validation

The developed new model was used to simulate the microbial growth of other bacterial 
strains in response to different environmental conditions, i.e. the culture environment 
and the incubation temperature. A comparison of the experimental data, obtained at two 
different temperatures, 20°C and 25°C, respectively, from the bacterial growth of 
Pseudomonas spp. in which culture four bacterial strains were combined, 
P. fluorescens, P. miguale, P. tolaasii and P. agarici [29], and of the predictions of the 
new model are shown in Figures 5, 6. The Pseudomonas spp. strains were incubated in 
Agaricus bisporus fruiting bodies.

In particular, as shown in Figures 5, 6, the experimental data of the bacterial growth 
are represented by the natural logarithm of microorganism count ln CFU=gð Þ as 
a function of time.

In both cases the model can fit satisfactorily the experimental data with a root mean 
square error of 0.0039 and 0.0105 for data obtained at 20°C and 25°C respectively and can 
be used to analyse the bacterial growth curves of various bacterial strains at different 
incubation temperatures.

It has been verified that even in the absence of a part of the experimental data, such as 
those in Figure 3, the model satisfactorily predicts the experimental data, managing to 
simulate the missing data.

Figure 5. Comparison of experimental data and of the new model prediction for the bacterial growth 
of Pseudomonas spp. on Agaricus bisporus fruiting body incubated at temperature of 20°C.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 181



4.3. Performance comparison of Baranyi–Roberts and new models

We have verified that the new proposed model and the Baranyi–Roberts model provide 
equivalent fitting results, both in terms of estimated model parameters and statistical 
parameters for measuring the goodness of the model. Furthermore, by comparing the 
expressions of the two models, Equations (4–6) and Equations (14,15) one immediately 
realizes that the new proposed model is much simpler, more intuitive, and easier to use 
than the Baranyi–Roberts model and therefore the probability of making computational 
errors will be less. This is definitely an aspect that makes us prefer the new model over the 
others already known.

Another aspect to be analysed in order to assess the efficiency of the models concerns 
the evaluation of their performance in terms of convergence of the fitting algorithm. The 
convergence speed of the fitting algorithm according to the two analytical models was 
evaluated by implementing fitting algorithms with initial guesses of the parameters 
uniformly distributed in intervals like I μmax; εμmax

� �
where εμmax 

is a fixed percentage of 
variation of the parameter μmax and the same for the other parameters. The goal was to 
calculate the number of iterations required by the fitting algorithm, according to each 
model, to converge to the solution starting from initial guesses chosen randomly and so 
trying to simulate the greatest number of cases that can actually occur when making 
a choice on the initial parameters.

Figure 7 shows the results obtained by 10.200 simulation runs, considering each 
implementation of the fitting algorithm with different initial guesses, each chosen 
assuming a maximum error of 40% with respect to the estimated parameters. The 
distributions corresponding to the number of iterations necessary for the convergence 
of the fitting algorithm for each of the two models are also shown. As can be seen from 
Figure 7, the distribution of the data relative to the new model is slightly shifted to the left 
with respect to the distribution of Baranyi–Roberts model, it has an average of about 11 

Figure 6. Comparison of experimental data and of the new model prediction for the bacterial growth 
of Pseudomonas spp. on Agaricus bisporus fruiting body incubated at temperature of 25°C.
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iterations and the largest number of analysed cases converges with a number of iterations 
less than or equal to this average, however both the two models converge with a rather 
small number of iterations. Hence, following this analysis we have verified that the 
simplicity of the new model does not even affect the performance in terms of conver-
gence of the fitting algorithm, therefore both models show satisfactory results and 
therefore a rapid convergence.

5. Conclusions

In this work the authors proposed a new mathematical model to predict the growth 
of Pseudomonas fluorescens. The new proposed model was studied and compared 
with the models known and studied in literature. The developed model was 
numerically implemented in Matlab and used to fit the experimental data obtained 
by incubating a bacterial strain of P.F. with TSB culture for about 20 h. By 
comparing the error of the fitting algorithm and the estimated parameter values 
of the models, we verified that the new model and the Baranyi–Roberts model fit 
satisfactorily to the initial data with a lower root mean square error than the other 
two considered models. In particular, it has been verified that the new model and 
the Baranyi–Roberts model are equivalent both from a numerical and theoretical 
point of view, and although the two parameters ys for the new proposed model and 
λ for Baranyi–Roberts model represent different quantities we have shown that 
there is a relationship between the new parameter introduced by the proposed 
model and the lag phase parameter λ used in the other three models, being able 
to conclude that the shift parameter ys is able to model the lag phase together with 
the bacterial growth rate in a very satisfactory way.

Figure 7. Distribution of the number of iterations of the fitting algorithm to converge to the solution 
for the new model (blu line) and the Baranyi–Roberts model (red line).
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We have also demonstrated that the new model and the Baranyi–Roberts model both 
show satisfactory performances in terms of convergence speed of the fitting algorithm, 
therefore we can conclude that the new developed model is a generalization of the logistic 
model and therefore manages to overcome the limitations of this last but at the same time 
its simple and intuitive analytical expression does not affect its performance in terms of 
accuracy and convergence of the fitting algorithm which are almost equivalent to those of 
the Baranyi–Roberts model.
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