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A B S T R A C T

The dynamic relation between CO2 emissions and wind energy in Denmark is analyzed using a fractional
cointegration approach, extended to accommodate covariates. The impact of climate and forces of demand
on the potential of wind power production for emissions abatement is investigated. Emissions decline as
temperature increases. Wind power production increases with precipitation and North Atlantic oscillations.
Aggregate output matters for emissions in a manner consistent with an environmental Kuznets curve (EKC).
Accounting for a seasonal trend, our main estimate of marginal CO2 emissions avoided (MEA) per MWh of
wind energy produced is 0.16 tonnes, based on impulse responses. This estimate of the abatement potential of
wind power is lower than values reported in the literature, but statistically significant, and robust to including
climate and EKC variables. MEA is reduced by about one third by treating electricity prices as endogenous, and
by one quarter by including emissions from combustion of biomass. However, formal exogeneity tests indicate
that the main MEA estimate is not inflated due to left-out general equilibrium effects. Without covariates,
estimated MEA is 0.07, and insignificant.
1. Introduction

The global warming and climate change observed over recent
decades are mainly caused by greenhouse gas (GHG) emissions (Stocker
et al., 2013). The largest component of GHG emissions is carbon dioxide
(CO2) emissions,1 stemming mainly from the combustion of fossil fuels
such as coal, oil, and natural gas for the purpose of energy generation.
In an attempt to address the challenges of climate change, the 2015
Paris Agreement joined by most countries of the world advocates
limiting the global temperature rise to 1.5 ◦C above pre-industrial
levels. According to the Intergovernmental Panel on Climate Change
(IPCC, 2019), this will require cutting global CO2 emissions to net zero
by 2050. One of the policy tools toward meeting these demands, as part
of the rising combat against global warming, is the adoption of clean
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on Climate, Energy, and Resources, 2021, and the 6th Conference on Econometric Models of Climate Change, 2022, in Toulouse, for useful comments, to John
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Aarhus University, for advice and for allowing access to some of the data used in this study, and to Mads Ørnfeldt Nørgård for assistance with the data. Research
support was provided by the Danish Social Science Research Council and the Center for Research in Econometric Analysis of TimE Series (CREATES), which is
funded by the Danish National Research Foundation (grant number DNRF78).
∗ Correspondence to: Aarhus University, Department of Economics and Business Economics, Fuglesangs Allé 4, DK-8210, Aarhus V, Denmark.
E-mail address: bjchristensen@econ.au.dk (B.J. Christensen).

1 Other GHG emissions include methane (CH ) and nitrous oxide (N O).

energy sources, such as wind and solar, as replacements of fossil fuels.
It appears obvious that clean energy adoption should reduce emissions,
as would be implied by a basic engineering analysis, based on a
displacement or dispatch approach. Nevertheless, obtaining a precise,
quantitative measure of the causal effect of clean energy adoption on
emissions is hampered by a number of factors, relating to climate as
well as supply and demand conditions.

In this paper, we conduct a dynamic econometric analysis to assess
the potential role of the adoption of wind energy production for CO2
emissions abatement in Denmark. Wind energy is already important in
Denmark, covering 47% of gross electricity consumption as of 2019.
In the analysis, we account for covariates, including a seasonal trend,
as well as controls for climate and supply and demand conditions.
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We show that this has a strong impact on the results. First, local
climate conditions, including temperature and weather patterns, can
impact the relation between emissions and abatement efforts in several
ways. Temperature changes matter directly for demand for heating
and cooling (air conditioning), and together with climatic parameters
such as turbulence, oscillations, precipitation, sunshine, and air density
determines the efficiency of wind energy generation. Second, changes
in aggregate demand clearly impact emissions. Furthermore, changes
in wind power production can shift power supply, and thus output
(electricity) prices, as well as demand for fossil fuels, and thereby
input (fuel) prices in conventional power production. Third, trends in
series imply a risk of finding a spurious effect, and any potential causal
effect should be allowed sufficient time to set in, hence calling for a
dynamic analysis. Responses to price changes are potential endogenous
mechanisms in the system, with feedback on wind production itself.
Further endogeneity issues arise because wind adoption decisions can
be direct responses to changes in emissions. The desired causal effect
is the full effect of wind adoption on emissions, accounting for these
equilibrium effects, and cannot be estimated by OLS regression of
emissions on wind production, or any engineering method.

We include a seasonal trend, temperature, other climate variables,
and variables capturing supply and demand conditions, in a monthly
frequency analysis of the dynamic relation between CO2 emissions from
total energy production and wind energy produced in Denmark over the
period January, 2005, through December, 2019. Based on a fractional
cointegration analysis, our focus is on long-run persistence and the
dynamic relation in the bivariate system. Previous literature has studied
the relation between CO2 emissions and wind energy using regression

ethods over shorter periods, controlling for temperature and demand.
ccordingly, we extend the fractional cointegration model to account

or explanatory variables, including climate indicators, demand, trend,
nd seasonality. In addition, we consider further extended systems,
ncluding input (fossil fuel) and output (electricity) prices as potentially
ndogenous variables characterizing supply and demand conditions.
rices matter for the incentive to substitute wind energy for conven-
ional power production, and at the same time react to consumer and
roducer supply and demand.

The extension to account for climate variables is important. Local
limatic conditions clearly impact the amount of CO2 emitted, as well

as the relation between emissions and wind power production. Temper-
ature matters both for energy demand, with a direct effect on emissions
unrelated to wind energy, and for efficiency in wind generation. The
effect of temperature on demand stems mainly from demand for heating
and cooling. Global warming in the Northern hemisphere, improved
housing materials, and better insulation have reduced heating demand
and increased demand for air conditioning (Stocker et al., 2013), with
a negative net effect on energy demand in cold countries. In Denmark,
most heating is generated from the burning of coal, natural gas, and
biomass, with only a small fraction covered via by-products (excess
heat) from electricity production, implying a negative direct demand
effect of higher temperature on emissions. The efficiency effect works
in the opposite direction, because higher temperature makes the air
less dense, hence reducing the efficiency of the thermodynamic cycle
used to drive turbines (Cullen, 2013). The total impact of temperature
on emissions is a combination of the direct demand and the indirect
efficiency effects.

Wind generation is affected by other local climatic conditions,
too, including turbulence, oscillations, precipitation, and sunshine. On
stormy days, more wind power is generated, while on calm, sunny
days, the opposite occurs, implying that a mix of wind and solar energy
can complement each other (Jacobson and Delucchi, 2011). Similarly,
ice and snow can damage or slow down wind turbines (Pieralli et al.,
2015). We obtain monthly observations on temperature, precipitation,
and sunshine hours from the Danish Meteorological Institute (DMI),
and on the North Atlantic Oscillation Index (NAOI) from the Climate
2

Prediction Center of the US Government National Weather Service. a
NAOI captures atmospheric variability patterns affecting Northern Eu-
rope, oscillating between positive and negative values associated with
stronger jet stream and decreased storminess, respectively. It depends
on surface sea-level pressure differences between the Southern and
Northern Atlantic regions, and is highly correlated with other measures
of atmospheric circulation, such as dp(abs)24, which is the interdiurnal
pressure-variability index, and with wind speed and storminess (Hanna
et al., 2008).

We include the climate variables among the predetermined explana-
tory variables in the analysis of the relation between CO2 emissions
nd wind energy. The assumption here is that while local climatic
onditions affect local emissions, they are caused by global climatic
onditions, including global emissions, rather than by local emissions.
or example, local temperature is not affected by local emissions, but
ather by accumulated global emissions (Leduc et al., 2016). Further,
s an additional indicator for demand, beside temperature, we in-
lude industrial production, a proxy for aggregate output. The monthly
ndustrial production index is obtained from Eurostat. By adopting

quadratic specification, an environmental Kuznets curve (EKC) is
ccommodated, the hypothesis being that emissions increase at a de-
reasing rate with economic development, here output (Grossman and
rueger, 1995; Holtz-Eakin and Selden, 1995).

Our empirical results indicate a significantly negative relation be-
ween CO2 emissions and wind energy production. We calculate im-
ulse response functions, marginal emissions avoided (MEA) per MWh
f energy produced by wind, and long-run forecasts of emissions and
ind production. From the results, temperature matters more for emis-

ions in its capacity as a driver of demand for heating than through its
ffect on generation efficiency, as emissions decline with rising temper-
ture. Wind power production increases with precipitation and North
tlantic oscillations, both of which signal stormy weather. Aggregate
utput matters for emissions in a manner consistent with the EKC.
ccounting for a seasonal trend, MEA is estimated at 0.16 tonnes of
O2 emissions avoided per MWh of wind energy produced, based on

mpulse responses, which include the long-run equilibrium relation, as
ell as short-run dynamics. This estimate of the abatement potential of
ind power is lower than values reported in the literature, but statis-

ically significant, and robust to including climate and EKC variables.
stimated MEA is reduced further, by about one third, by accounting
or general equilibrium effects operating via electricity prices, and by
ne quarter by including emissions from combustion of biomass. On the
ther hand, including fuel prices as exogenous or endogenous variables
an increase MEA by one quarter, to about 0.20. Formal exogeneity
ests indicate that our main MEA estimate, at 0.16, is not inflated due
o left-out general equilibrium effects. Without covariates, estimated
EA is 0.07, and insignificant.

The paper is laid out as follows. Section 2 discusses the literature,
ow our work relates to this, and our contributions. Section 3 presents
he fractional cointegration model. Section 4 introduces the data and
rovides a preliminary regression analysis. Section 5 discusses the main
mpirical analysis. Section 6 concludes. Additional results are collected
n Appendix A and Appendix B.

. Relation to literature

An early study is Cullen (2013), regressing conventional (coal, nat-
ral gas, nuclear, etc.) power production on wind energy production,
emperature, and demand, using data from the Electricity Reliability
ouncil of Texas (ERCOT) grid over the period 2005–2007. MEA is
erived in terms of a partial derivative, multiplying emissions factors
nto conventional production offset by wind, and estimated at .43.2

2 Henceforth, MEA is stated in tCO2/MWh, i.e., tonnes of CO2 emissions
voided per MWh of energy produced by wind.
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Similarly using ERCOT data, Novan (2015) corrects for potential endo-
geneity of wind production in 2SLS regressions.3 Using data for 2011
from Ireland, Wheatley (2013) accounts for serial correlation by taking
first differences of series, as well as allowing for ARMA(1,1) errors.
Other studies for Ireland address dynamics by allowing for AR(1)
residuals (Di Cosmo and Valeri, 2018a) or wind forecasting errors
(O’Mahoney et al., 2018), or by reporting Newey and West (1987)
standard errors (Oliveira et al., 2019).4

In relation to the regression literature, we similarly compute emis-
sions by applying emissions factors to conventional production, derive
MEA in terms of partial derivatives, and control for temperature and
demand. Instead of high-frequency (e.g., 15-minute in Cullen, 2013)
panel observations on production at the individual generator level over
a short calendar period, we conduct a long-run monthly-frequency
analysis. We handle dynamics much more generally than in the regres-
sion studies, allowing for potential long memory and error correction.
Long memory refers to the feature that emissions and wind energy are
strongly persistent, more so than a stationary ARMA process, as we
document. Cointegration and error correction indicate that these vari-
ables (along with prices, in the extended models) move together in the
long run. Rather than correcting for endogeneity of wind energy in the
emissions equation using 2SLS, we use cointegration to separate causal
from spurious relations, and test for exogeneity in the system analysis.
Here, although the notion of spurious relations is usually associated
with apparent relations (due to nonsense regression results) among unit
root processes that are in fact unrelated, the desired (non-spurious) case
being that they move together in the long run, i.e., cointegrate to a
short-memory process, we consider the similar notion for the stationary
long-memory (fractionally integrated) series in our data.5

Our work is most closely related to that of Christensen et al. (2021)
henceforth CDS), who introduce the fractional cointegration approach
o the relation between the de-seasonalized CO2 and wind energy series,

document a structural break around 2005, derive MEA, and provide
forecasts of both variables through 2050. The structural break coincides
in time with the implementation of the European Union Emissions
Trading Scheme (EU ETS) and the Kyoto Protocol, as well as announce-
ments by policy makers about further investments in wind power, and
so may well be policy driven, with faster rate of reduction in emissions
and increase in wind power after 2005 than before. Therefore, in the
present study, we use 2005 as the starting year of our analysis data set.

We offer a number of incremental contributions on the methodolog-
ical and data sides, relative to CDS. First, in terms of the econometric
model, we include predetermined explanatory variables in the frac-
tional cointegration analysis. These are exploited in several ways that
matter for the application: (i) We include climate variables, which is
important for the assessment of the potential of wind for emissions
abatement; (ii) by including seasonality terms among the predeter-
mined variables, the corresponding adjustments are estimated along
with other model parameters; (iii) motivated by the regression liter-
ature, we control for demand. In contrast, CDS pre-adjust data for
seasonality before estimation, and include climate variables and de-
mand only in a preliminary regression analysis, not in the fractional
cointegration analysis. Further, we account for potentially endogenous
effects of supply and demand operating via prices of inputs (fuels) and
output (electricity) in power production. In terms of data, we add about
two years of observations, as our series are updated through December,
2019, as opposed to November, 2017, in CDS. Moreover, we include
emissions from combustion of waste, and in some of our specifications

3 Siler-Evans et al. (2012) and Kaffine et al. (2013) are related US studies.
4 Other regression studies include Amor et al. (2014) for the Ontario grid,

nd Thomson et al. (2017) for Great Britain.
5 Thus, we consider the apparent relation among long-memory processes as

purious if they do not move together in the long run, and we show graphically
3

hat they do in cases where we detect fractional cointegration.
from combustion of biomass, too, in our emissions measure, in addi-
tion to the CO2 emissions from combustion of fossil fuels for energy
production considered in CDS. Some of our work is organized as a
sensitivity analysis, in order to assess the incremental value of each
of these contributions.

Combustion of waste constitutes a considerable portion of conven-
tional power production in Denmark, alongside combustion of fossil
fuels, and hence the importance of adding emissions from waste burn-
ing to our measure of CO2, relative to CDS. A further fuel combusted for
energy generation is biomass. The role of waste and biomass burning
for emissions and energy production has been studied by Hernandez
et al. (2019),6 using a dynamic displacement approach, rather than
an econometric approach. A displacement approach assumes that the
proposed technology (in our case, wind power) replaces an equal
amount of power generated by the existing system. Static versions
of the approach have been used by wind industry associations, gov-
ernments, and international organizations, e.g., the European Wind
Energy Association (EWEA, Corbetta et al., 2015), the Global Wind
Energy Council (GWEC, 2016), and the Sustainable Energy Authority
of Ireland (SEAI, 2019). Hernandez et al. (2019) suggest a version
with dynamic displacement emission factors (comparable to MEA),
updated periodically according to anticipated changes in the future
generation portfolio. In contrast, our econometric approach uses the
observed time-varying energy mix to imply the emissions series, then
estimates the impact of wind share on this from historical data, in
effect identifying the marginal generator replaced from actual obser-
vations. Further, our estimated effects are accompanied by significance
levels and hypothesis tests, and the approach accommodates potential
endogeneity, such as prices reacting to adoption decisions, none of
which is available in the displacement approach. We compare results
with and without waste and biomass in the emissions measure in our
econometric analysis.

Some studies have used a dispatch model, an engineering based
refinement of the displacement approach using detailed information
on the structure of the power system and applicable, e.g., for coun-
terfactual scenario analysis. Technologies (generators) are ranked in
a production stack according to marginal cost, and unit commitment,
dispatch, and power flow selected to minimize cost of meeting as-
sumed demand, subject to system constraints, including generator ca-
pacities, network constraints, cost and emission effects of start-up,
shut-down, part-load operation, cycling, ramping, etc. PLEXOS, a com-
mercial power market simulation software solving the unit commitment
and dispatch problems by mixed integer programming, has been used
by governments, e.g., the U.S. Department of Energy, the National Re-
newable Energy Laboratory (NREL, 2013), for the Western interconnec-
tion, consisting of the United States, Canada, and Mexico, and SEAI for
Ireland (Clancy and Gaffney, 2014). Using similar software, Valentino
et al. (2012) find that the adoption of wind can lead to reduction of
emissions in Illinois.

In contrast, in our econometric approach, rather than computing the
cost-minimizing or otherwise optimizing replacement from assumptions
within a dispatch model, we implicitly identify the technology actu-
ally replaced through observed responses in emissions to changes in
wind generation, potentially reflecting changes over time in climatic
and demand conditions, investments, technology, and decision-making
behavior. Again, unlike in the engineering approach, our estimates and
forecasts are accompanied by assessments of uncertainty and hypoth-
esis testing, accounting for potential endogeneity, so the econometric
approach can generate important additional insights.

The bivariate model, with CO2 emissions and wind power produc-
tion as dependent variables, allows an analysis of the relation among
the two, but potentially suffers from an omitted variable problem, with
prices left out. This can lead to endogeneity bias in the estimated

6 For biomass, see also Weldemichael and Assefa (2016).
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emissions abatement effect of wind, and hence the importance of our
extended models, including prices as dependent variables. An increase
in wind power production implies lower demand for fossil fuels, and
thus potentially a drop in fuel prices, partially offsetting the reduction
in fuel demand, and hence mitigating the impact on emissions of the
increase in wind power. The upshot is that the general equilibrium
impact of wind power production on emissions potentially falls short
of the initial estimate that ignores the demand effect, operating via
input (fuel) prices. An analogous effect can enter via output (power)
prices, too. An increase in the supply of wind power production can re-
place some conventional production, but can potentially reduce power
prices, too, in turn increasing power demand. As power production is
increased to meet demand, some of the increase remains conventional,
given the generation mix, thus partially offsetting the reduction in
conventional production. Again, the impact of wind on emissions is
mitigated in equilibrium. The latter effect, through electricity prices,
is emphasized by Abrell et al. (2019) in a regression study of wind
and solar subsidies in Germany and Spain. Similarly, Amor et al.
(2014) and Di Cosmo and Valeri (2018b) regress electricity prices
in Ontario and Ireland, respectively, on wind generation, demand,
and other controls. In a dynamic context, energy prices behave like
commodity prices (Pindyck, 1999, 2001), i.e., neither as random walks
(like financial assets) nor independently across time, so a fractional
model is natural. Accordingly, we include prices of electricity and
fuels in our extended fractional models. Although the above regression
studies include electricity prices, previous literature on emissions has
not considered fuel prices, and all endogeneity issues are ignored in the
engineering (displacement and dispatch) literature.

Our results are consistent with an upward endogeneity bias in
the estimated abatement potential of wind energy from leaving out
electricity prices, or treating these as exogenous. MEA is reduced by
one third when including electricity prices as endogenous variables. In
contrast, including fuel prices as endogenous, or both electricity and
fuel prices as exogenous variables does not reduce MEA.

3. The model

We examine the relation between the emissions and wind energy
production series, allowing for the possibility that they are (fraction-
ally) cointegrated, i.e., that their paths are tied together in a long run
equilibrium relation. Further, we investigate the possible dependence of
this relation on a number of covariates, including climate and demand
variables. To this end, we extend the fractional vector error-correction
model (FVECM𝑑,𝑏) introduced by Granger (1986) and subsequently
studied by Davidson (2002) to accommodate explanatory variables. The
extended model, labeled FVECM-X𝑑,𝑏, is given by

𝛥𝑑𝑌𝑡 = 𝛼𝛽′𝛥𝑑−𝑏𝐿𝑏𝑌𝑡 +
𝑘
∑

𝑗=1
𝛤𝑗𝛥

𝑑𝐿𝑗
𝑐𝑌𝑡 + 𝜀𝑡 , 𝑡 = 1,… , 𝑇 , (1)

where 𝜀𝑡 ∼ 𝑁(0, 𝛴), 𝑌𝑡 = 𝑍𝑡 − 𝜇𝑡 contains the deviations between the
original 𝑝-dimensional data series 𝑍𝑡 and the 𝑝 × 1 vector 𝜇𝑡, which
determines the dependence of 𝑍𝑡 on a number of explanatory variables.
n our base case, 𝑝 = 2, with 𝑍𝑡 = (𝐸𝑡,𝑊𝑡)′, where 𝐸𝑡 and 𝑊𝑡 are the

emissions and wind energy series, respectively. In most of our work, we
measure 𝐸𝑡 as the logarithm of CO2 emissions from energy production,
and 𝑊𝑡 by a logit transform of the share of wind power in total energy
production (see Section 4 for details).

The extension, relative to FVECM𝑑,𝑏, is given by 𝜇𝑡. In our imple-
mentation of the FVECM-X𝑑,𝑏, we focus on the specification

𝜇𝑡 = 𝜇 + 𝜁0𝑡 + 𝜁1 sin(2𝜋𝑡∕12) + 𝜁2 cos(2𝜋𝑡∕12) + 𝛬𝑋𝑡, (2)

where 𝜇 is a 𝑝-vector of constants capturing the influence of initial
values, i.e., non-zero starting points for the first observation on the
process (see Nielsen and Shibaev (2018) in the FCVAR𝑑,𝑏 context), 𝜁𝑖,
4

𝑖 = 0, 1, 2 are 𝑝-vectors of loadings on a set of deterministic terms (linear 𝑏
trend and seasonals), and 𝛬 is a 𝑝×𝑞 matrix of loadings on a 𝑞×1 vector
𝑋𝑡 containing the covariates.

In Eq. (1), the term 𝛥𝑑 is the fractional difference operator,

𝛥𝑑 ∶= (1 − 𝐿)𝑑 =
∞
∑

𝑗=0
(−1)𝑗

(

𝑑
𝑗

)

𝐿𝑗 , (3)

with 𝐿 the (ordinary) lag operator, i.e., 𝐿𝑗𝑌𝑡 = 𝑌𝑡−𝑗 , and 𝐿𝑏 ∶= 1−𝛥𝑏 the
fractional lag operator of Johansen (2008). The long-run dynamics in (1)
are governed by the 𝑝×𝑟 matrices 𝛼 and 𝛽, 0 ≤ 𝑟 ≤ 𝑝. Here, the columns
of 𝛽 are the equilibrium or cointegration vectors, 𝛼 the speeds of error
correction or adjustment to equilibrium, and 𝑟 the cointegration rank.
Short-run dynamics are governed by the 𝑝 × 𝑝 matrices 𝛤𝑗 , 𝑗 = 1,… , 𝑘,
nd 𝛴 > 0 is the positive definite covariance matrix of the error terms
𝑡. The coefficient 𝑑 ≥ 0 determines the order (degree) of long memory
r fractional integration of the series 𝑌𝑡, and 𝑏 the cointegration gap,
≤ 𝑏 ≤ 𝑑, i.e., while 𝑌𝑡 is integrated of order 𝑑, or 𝐼(𝑑), the departure

rom equilibrium or error-correction term 𝛽′𝑌𝑡 is 𝐼(𝑑 − 𝑏). If 𝑑 > 0, the
eries 𝑌𝑡 exhibit long memory, with autocorrelation functions decaying
yperbolically, as opposed to geometrically, as in the stationary ARMA
ase (in which 𝑑 = 0). If, in addition, 𝑏 > 0, then the long memory series
ove together in the long run, in that a linear combination of them,

iven by the error-correction term, exhibits shorter memory than the
riginal series.

The classic cointegrated VECM model studied in Johansen (1991,
995) corresponds to the special case 𝜇𝑡 = 𝜇, 𝑑 = 𝑏 = 𝑐 = 1. For 𝜇𝑡 = 𝜇,
ut 𝑑, 𝑏 free, the resulting FVECM𝑑,𝑏 in (1) is similar to the FVECM𝑑,𝑏
f Granger (1986), and the FCVAR𝑑,𝑏 proposed by Johansen (2008),
ith a slight difference arising in the short-run component for 𝑘 ≥ 1,
s it involves the additional lag operator 𝐿𝑐 , where FVECM𝑑,𝑏 instead
ses the ordinary lag operator, i.e., imposing 𝑐 = 1, and FCVAR𝑑,𝑏
ses 𝐿𝑏, i.e., imposing 𝑐 = 𝑏. As outlined in Carlini and Santucci de
agistris (2019a), imposing 𝑐 = 1 rather than 𝑐 = 𝑏 avoids certain

dentification problems stemming from an over-specified lag structure.
urther identification issues related to the selection of lag length can be
voided by setting 𝑐 to a suitable finite constant, as noted by Carlini and
antucci de Magistris (2019b), who recommend a value 𝑐 = 2. All three
pecifications (𝑐 = 1, 2, 𝑏) coincide for 𝑘 = 0 (no short-run component).
n the FVECM-X𝑑,𝑏, we include the extension involving 𝜇𝑡 from (2),
ccounting for explanatory variables, and find empirically that 𝑘 = 0
uffices in this case. Furthermore, substantive conclusions are robust to
stimation with 𝑘 = 1 and either specification of 𝑐.7

The parameters of the FCVAR𝑑,𝑏 are consistently estimated by max-
mum likelihood (ML), as shown by Johansen and Nielsen (2012). Car-
ini and Santucci de Magistris (2019b) adopt an ML procedure for the
VECM𝑑,𝑏, and we estimate the parameters of the FVECM-X𝑑,𝑏 model
y ML, as well. The estimation is carried out in MATLAB, adapting
he routine written for FCVAR𝑑,𝑏 by Nielsen and Popiel (2018). The
symptotic inference on 𝛽, MEA, and the rank test are based on boot-
trap, and that on the remaining parameters on asymptotic normality,
ith estimated standard errors read off the square-roots of the negative
iagonal elements of the inverse Hessian at the optimum.

. Data and preliminary analysis

Our analysis is based on monthly data over the period January 2005
hrough December 2019. For emissions, we focus on those from energy
roduction. The energy sector is the largest source of CO2 emissions
n Denmark (see the National Inventory Report, Nielsen et al., 2016,
. 82). Furthermore, emissions from energy production is the portion
f total emissions that the adoption of wind energy may have an
mpact on. Thus, we do not consider emissions from transportation,

7 We suppress 𝑐 in the notation FVECM-X𝑑,𝑏, as this is restricted to 1, 2, or
.
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Fig. 1. CO2 emissions composition. The figure reports the composition of CO2 emissions as average over the full sample 2005–2019 (Exhibit a), and over the last year (Exhibit b).
agriculture, or other sources. We compute total CO2 emissions from
energy production in period 𝑡 as

CO2,𝑡 =
𝑆
∑

𝑖=1
𝐶𝑖,𝑡𝐼𝐸𝐹 𝑖,𝑡 , (4)

where 𝐶𝑖,𝑡 is consumption of the 𝑖th fuel type, and 𝐼𝐸𝐹 𝑖,𝑡 the associated
implied emissions factor. In our main analysis, we consider 𝑆 = 4 fuels,
namely, coal, oil, natural gas, and waste. In a sensitivity analysis, we
include solid biomass, as well, so 𝑆 = 5. Monthly data on 𝐶𝑖,𝑡 are
obtained from the Danish Energy Agency (DEA) under the Ministry
for Energy, Utilities and Climate. DEA produces annual and monthly
Energy Accounts of the official energy statistics for the country, which
include data on energy production, consumption, and emissions.8 For
𝐼𝐸𝐹 𝑖,𝑡, the EU ETS conducts fuel analysis based on data from all re-
porting plants to construct IEFs. These are used in Denmark’s National
Inventory Reports (see Nielsen et al., 2016), prepared annually by the
Danish Center for Environment and Energy (DCE), which is responsible
for submitting Denmark’s national emission inventory under the United
Nations Framework Convention on Climate Change (UNFCCC) and the
Kyoto Protocol. Average IEF (including the oxygenation factor) over
the period is 94.17 kg CO2 per GJ for coal,9 79.49 kg/GJ for resid-
ual oil combusted in public electricity and heat generation facilities,
57.381 kg/GJ for natural gas, and 39.06 kg/GJ for non-biodegradable
waste burning.

Fig. 1 shows the composition of emissions, corresponding to (4), for
the full sample period, as well as for the last year, 2019. Most of the
emissions stem from the burning of oil, especially toward the end of the
period. The relative weight of emissions from the burning of coal has
been reduced over the period, and those from waste and, particularly,
biomass increased, with the latter included in the sensitivity analysis,
only.10

Monthly data on 𝑃𝑟𝑜𝑑𝑡, production of electricity (net of electric-
ity used in electricity production), and 𝑊 𝑖𝑛𝑑𝑡, electricity production
from wind energy, are obtained from DEA. The original source is a

8 https://ens.dk/service/statistik-data-noegletal-og-kort/maanedlig-og-
aarlig-energistatistik.

9 1 kg CO2/GJ = 0.0036 tCO2/MWh.
10 It is debatable whether biomass should be considered a clean source, as

it requires replanting of vegetation, for absorption of CO in the future.
5

2

national database known as the ‘Stamdataregisteret’, which contains
information about production for all electricity-producing wind power
production facilities. The monthly wind share, or wind penetration, is
therefore

𝑤𝑡 =
𝑊 𝑖𝑛𝑑𝑡
𝑃𝑟𝑜𝑑𝑡

. (5)

The focus on electricity production is chosen because the data in this
case allow isolating the wind share, which is expected to be close to
that in total energy production.

From a production function point of view, there should be a funda-
mental relation between emissions from electricity production, (4), and
wind share, (5). Total production is

𝑃𝑟𝑜𝑑𝑡 = 𝑊 𝑖𝑛𝑑𝑡 +
𝑆
∑

𝑖=1
𝑃𝑟𝑜𝑑𝑖,𝑡 , (6)

where 𝑃𝑟𝑜𝑑𝑖,𝑡 = 𝛼𝑖,𝑡𝐶𝑖,𝑡 is production using the 𝑖th fuel, for simplicity
writing 𝛼𝑖,𝑡 for the marginal efficiency of the latter. The emissions
efficiency (EE) of the 𝑖th fuel is 𝛾𝑖,𝑡 = 𝐼𝐸𝐹𝑖,𝑡∕𝛼𝑖,𝑡, and aggregate and
complementary EE (AEE and CEE) are

𝛾𝑡 =
𝑆
∑

𝑖=1
𝛾𝑖,𝑡 , 𝛿𝑖,𝑡 =

∑

𝑗≠𝑖
𝛾𝑗,𝑡 , (7)

where EE = AEE − CEE, for each fuel. Because 𝐶𝑖,𝑡𝐼𝐸𝐹𝑖,𝑡 = 𝛾𝑖,𝑡𝑃𝑟𝑜𝑑𝑖,𝑡,
emissions (4) are

CO2,𝑡 =
𝑆
∑

𝑖=1
𝛾𝑖,𝑡𝑃𝑟𝑜𝑑𝑖,𝑡 =

𝑆
∑

𝑖=1

(

𝛾𝑡 − 𝛿𝑖,𝑡
)

𝑃𝑟𝑜𝑑𝑖,𝑡

= 𝛾𝑡
(

1 −𝑤𝑡
)

𝑃𝑟𝑜𝑑𝑡 −
𝑆
∑

𝑖=1
𝛿𝑖,𝑡𝑃𝑟𝑜𝑑𝑖,𝑡 , (8)

where the last equality follows from (5) and (6). By (8), there is a time-
varying nonlinear functional relation between CO2,𝑡 and 𝑤𝑡. It is this
relation that we aim to capture using our econometric approach, includ-
ing fractional cointegration, allowing for persistence and endogeneity
of variables, beyond production function based links.

One implication of (8) is that as wind share approaches unity,
emissions approach zero. This is not imposed in our models which,
therefore, are not expected to apply for 𝑤𝑡 near one, and this is a caveat
regarding our long-term forecasts, for which wind share becomes large
for positive emissions. Still, with the wind share at 47% in Denmark by

https://ens.dk/service/statistik-data-noegletal-og-kort/maanedlig-og-aarlig-energistatistik
https://ens.dk/service/statistik-data-noegletal-og-kort/maanedlig-og-aarlig-energistatistik
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Table 1
Summary statistics. The table reports summary statistics for the monthly data series over the period January, 2005 through December, 2019. ADF regressions include a linear
trend, and a number of lagged first differences selected by AIC (maximum 3 lags). In the ADF regressions, CO2 and industrial production are measured in logarithms, and wind
share by the logit transform (10). The Ljung–Box (LB) tests are computed with 6 lags.

Variable Unit Mean Std.Dev. ADF 𝑝-val ADF∗ 𝑝-val LB 𝑝-val

CO2 1000 tonnes 3820.7 815.05 −11.059 <0.0010 −6.3626 <0.0010 354.13 0.0000
𝑤𝑖𝑛𝑑 𝑠ℎ𝑎𝑟𝑒 Share in energy prod. 0.3285 0.1536 −5.3836 <0.0010 −6.2041 <0.0010 690.70 0.0000
𝑖𝑛𝑑 IPI (2010 = 100) 98.594 9.5090 −2.5039 0.3440 −2.4354 0.3776 850.17 0.0000
𝑡𝑒𝑚𝑝 Degrees ◦C 8.9239 5.8530 −16.297 <0.0010 −6.8362 <0.0010 466.41 0.0000
𝑝𝑟𝑒𝑐𝑖𝑝 mm 64.498 31.279 −6.9294 <0.0010 −9.2570 <0.0010 27.575 0.0001
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 Hours 144.271 81.867 −11.525 <0.0010 −9.4940 <0.0010 375.99 0.0000
𝑁𝐴𝑂𝐼 Index −0.0399 1.1338 −6.371 <0.0010 −7.5366 <0.0010 34.0421 0.0000
𝑐𝑢𝑚𝑢𝑙. CO2 1000 tonnes 377.15 198.41 −1.0663 0.9307 −1.6486 0.7629 986.48 0.0000
𝑐𝑢𝑚𝑢𝑙. 𝑊 𝑖𝑛𝑑 1000 MhW 65.148 45.728 −0.0292 0.9954 0.5754 0.9990 985.98 0.0000
2019, we assume that our models provide a reasonable approximation
over the sample period, and in the not too distant future.

For purposes of empirical estimation, we mostly focus on log emis-
sions,

𝐸𝑡 = logCO2,𝑡 , (9)

with CO2,𝑡 from (4), and

𝑊𝑡 = log
(

𝑤𝑡
1 −𝑤𝑡

)

, (10)

logit of wind share from (5), in our model specifications. Wind share or
production mix is preferred over level of wind generation for interpre-
tation and policy purposes. The log transforms in (9) and (10) avoid
truncated error distributions. Further, the distribution of changes in
emissions depends on the level, and the log transform has a stabilizing
effect on this. For comparison, in addition to our main results, based
on the log emissions and logit wind share specification, we also report
results using raw data on emissions and wind generation, i.e., CO2,𝑡 and
𝑊 𝑖𝑛𝑑𝑡. Misspecification tests reject normality of errors in this case.

As an indicator of demand, and to allow for an EKC, aggregate
output and its square are included in the model. Industrial production
is used as a measure of output, since GDP is not available at monthly
frequency. The monthly industrial production index for Denmark is
retrieved from Eurostat, with base year 2010. Monthly data on tem-
perature (in ◦C), precipitation (in mm), and sunshine (in hours) are
obtained from DMI historic records (Cappelen, 2018), which have been
maintained consistently since 1874 (cf. Cappelen and Jørgensen, 2011).
Monthly NAOI levels are obtained from the Climate Prediction Center
of the US Government National Weather Service.11

Summary statistics are given in Table 1. Sample size is 𝑇 = 180.
Wind penetration (5) averages 33% over the period. The Ljung–Box
test shows strong serial dependence in all series, so augmented Dickey–
Fuller (ADF) regressions are implemented, with CO2 emissions and
ndustrial production (𝑖𝑛𝑑) measured in logarithms, and wind share by
he logit transform (10). From Fig. 2, seasonal patterns are evident in
ll series, as is the negative trend in emissions, 𝐸𝑡, and the positive in
ind energy production, 𝑊𝑡. The very clear seasonal variation might
ide the stochastic properties of the data. Therefore, the ADF tests are
lso implemented on detrended and de-seasonalized data, i.e., after
xtracting the deterministic terms 1, 𝑡, 𝑐𝑜𝑠, and 𝑠𝑖𝑛 by regression. The

series thus filtered are shown in Fig. A.1, and these are the objects
that the stochastic model should describe.12 ADF results for the filtered
series are indicated as ADF* in Table 1. From the results, industrial
production, 𝑖𝑛𝑑, exhibits a unit root, so we will mainly use this variable
in terms of growth rates (log differences) and squares, although we will
include the levels in a preliminary regression, to investigate the EKC.

11 See http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml.
12 The coefficients on trend and seasonals are still estimated jointly with all
ther parameters in the FVECM-X .
6

𝑑,𝑏
The other main variables do not exhibit unit roots, except that we
also include the cumulated CO2 and wind energy series in Table 1, on
the grounds that it is cumulated CO2 in the atmosphere that matters for
our future. The tests fail to reject a unit root for the cumulated series. As
detailed in relation to the fractional analysis in Section 5, we focus on
the emissions and wind energy series without cumulation for modeling
purposes.

4.1. Preliminary regression analysis

We are interested in assessing the dynamic effect of the share of
wind in energy production on CO2 emissions within a time series
framework. Before proceeding to the FVECM-X𝑑,𝑏 analysis, we consider
a preliminary regression analysis, based on the specification

𝐸𝑡 = 𝑎 + 𝑏0𝑡 + 𝑏1 sin(2𝜋𝑡∕12) + 𝑏2 cos(2𝜋𝑡∕12)

+
𝑝
∑

𝑖=1
𝑏𝑒,𝑖𝐿

𝑖𝐸𝑡 +
𝑞
∑

𝑗=1
𝑏𝑤,𝑗𝐿

𝑗𝑊𝑡 + 𝑏′𝑥𝑋𝑡 + 𝜀𝑡 . (11)

This allows for dynamics through the inclusion of lagged emissions and
wind energy, as well as a time trend. The use of wind energy and
lags as regressors to explain emissions follows Cullen (2013) and the
subsequent regression literature.

Results for various specifications using climate and demand vari-
ables in 𝑋𝑡 in (11) appear in Table 2. The baseline regression includes
the trend, seasonals, 𝑝 = 𝑞 = 2 lags, and the EKC variables, to investi-
gate the latter, as they have been studied in the literature. They get the
expected signs, i.e., increasing and concave dependence of emissions
on output, although the coefficients are insignificant. The negative
trend in emissions and seasonality enter significantly, as they do in all
specifications for emissions (baseline and specifications 1 through 3).
The coefficients on wind energy are negative and significant, consistent
with the idea that an increase in wind energy production reduces
emissions. In the baseline specification, the LB statistic is insignificant
at level 5%.

Specification 1 adds the climate variables, which are part of our
main focus. Temperature gets a significantly negative coefficient, con-
sistent with the notion that the direct demand effect dominates the
indirect efficiency effect. The other climate variables are insignificant
for emissions, which is a result in itself. Specification 2 replaces the
EKC with the growth variables, since these are the stationary variables
that will be used in the FVECM-X𝑑,𝑏 analysis, so we examine what
difference this switch makes in a basic regression analysis. It turns out
that squared growth enters significantly, but with a positive coefficient,
in contrast to the expected negative sign on the quadratic portion of the
EKC. Perhaps growth volatility increases emissions more than the EKC
explains anything for Denmark.

LB indicates misspecification for specifications 1 and 2, and also
with more lags included, consistent with the strong persistence, so

ultimately we use the fractional models to handle these residuals. From

http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
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Fig. 2. Variables used for estimation of models.
2), the residuals for the fractional models actually do not include lags
and neither do the cointegrating residuals in standard models without
ovariates). Therefore, specifications 3 and 4 are the regressions of 𝐸
nd 𝑊 without lags, corresponding to (2), i.e., the dependent variable
n the last column is 𝑊𝑡, not 𝐸𝑡. Wind energy production increases
ith precipitation, which signals stormy weather, and is negatively
7

elated to growth and its square. It is the residuals from these last two
specifications that the fractional models will handle, which is, indeed,
necessary, based on the strongly significant LB statistics.13

13 Results of a two stage procedure, directly applying the FVECM without co-
variates to residuals from specifications 3 and 4, are presented in Appendix B,
Table B.3.
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Table 2
Regression results. The table reports parameter estimates (with robust HAC standard errors in parentheses) from the regressions
(11) using the monthly data series over the period January, 2005 to December, 2019. The dependent variable is wind energy
𝑊𝑡 = log(𝑤𝑡∕(1 − 𝑤𝑡)) from (10) in specification 4 (last column), and log emissions 𝐸𝑡 = log(CO2,𝑡) otherwise. The regressors include
lags of 𝐸𝑡 and 𝑊𝑡, a trend, seasonals, temperature, precipitation, sunshine hours, NAOI, EKC variables, and production growth and its
square. The bottom lines report adjusted 𝑅2, the Ljung–Box (LB) statistic for six periods, and the associated 𝑝-value. Superscripts 𝑎, 𝑏,
and 𝑐 indicate significance at level 1%, 5%, and 10%, respectively.

Baseline Spec1 Spec2 Spec3 Spec4

𝑡𝑟𝑒𝑛𝑑 −0.0016
(0.0003)

𝑎 −0.0015
(0.0003)

𝑎 −0.0018
(0.0003)

𝑎 −0.0029
(0.0002)

𝑎 0.0122
(0.0008)

𝑎

sin(2𝜋𝑡∕12) 0.0557
(0.0088)

𝑎 −0.0328
(0.0191)

𝑐 −0.0193
(0.0213)

−0.0122
(0.0248)

0.0257
(0.1086)

cos(2𝜋𝑡∕12) 0.1544
(0.0077)

𝑎 0.0781
(0.0243)

𝑎 0.0808
(0.0282)

𝑎 0.0704
(0.0343)

𝑏 −0.0132
(0.1460)

𝑡𝑒𝑚𝑝𝑡 – −0.0994
(0.0196)

𝑎 −0.0866
(0.0243)

𝑎 −0.0860
(0.0299)

𝑎 0.0684
(0.1128)

𝑝𝑟𝑒𝑐𝑖𝑝𝑡 – −0.0040
(0.0061)

−0.0032
(0.0060)

0.0089
(0.0060)

0.1178
(0.0325)

𝑎

𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒𝑡 – 0.0187
(0.0125)

0.0108
(0.0124)

0.0061
(0.0123)

0.0229
(0.0703)

𝑁𝐴𝑂𝐼𝑡 – −0.0023
(0.0058)

−0.0022
(0.0059)

−0.0043
(0.0066)

0.0474
(0.0289)

log(𝑖𝑛𝑑𝑡) 0.1131
(0.6196)

−0.0553
(0.7119)

– – –

[log(𝑖𝑛𝑑𝑡)]2 −0.1210
(0.6153)

0.0399
(0.7055)

– – –

𝛥 log(𝑖𝑛𝑑𝑡) – – 0.0054
(0.0049)

0.0026
(0.0051)

−0.0757
(0.0332)

𝑏

[𝛥 log(𝑖𝑛𝑑𝑡)]2 – – 0.0108
(0.0037)

𝑎 0.0138
(0.0037)

𝑎 −0.0503
(0.0238)

𝑏

𝐸𝑡−1 0.0037
(0.0023)

−0.0008
(0.0056)

−0.0005
(0.0024)

– –

𝐸𝑡−2 −0.0021
(0.0046)

0.0014
(0.0023)

−0.0006
(0.0039)

– –

𝑊𝑡−1 −0.0387
(0.0109)

𝑎 −0.0354
(0.0101)

𝑎 −0.0313
(0.0102)

𝑎 – –

𝑊𝑡−2 −0.0381
(0.0111)

𝑎 −0.0419
(0.0108)

𝑎 −0.0405
(0.0115)

𝑎 – –

𝑅2
𝑎𝑑𝑗 0.9003 0.9185 0.9193 0.8963 0.8309

LB(6) 10.75 32.776 41.0200 114.22 59.2370
𝑝-value 0.0964 0.0000 0.0000 0.0000 0.0000
a

f

Overall, the results from the preliminary regression analysis are
onsistent with the notions that measuring the impact of wind energy
roduction on emissions is a nontrivial task, that trend, seasonality,
limate, and demand variables apparently matter for the relation, but
hat the basic regression approach is misspecified.14

5. Empirical analysis

The explanation of the somewhat unsatisfactory and inconclusive
regression results that we pursue is that the series are fractionally
integrated, and that a fractional cointegration analysis is warranted.
Table 3 reports exact local Whittle (ELW) estimates of the order 𝑑 of
ractional integration of the variables used in the preceding regression
nalysis, after removing a linear deterministic trend and seasonals,
sing a separate preliminary regression for each series. Results are re-
orted for three different bandwidths, 𝑚. None of the climate or growth
eries appears to exhibit long memory. In contrast, the emissions and
ind energy series 𝐸𝑡 and 𝑊𝑡 exhibit fractional integration, with 𝑑

significantly positive. Thus, pre-filtering is not sufficient to purge these
series for long memory, based on the two largest 𝑚 values. Further, the
estimates of 𝑑 are significantly below unity, i.e., no unit root, consistent
with the ADF results in Table 1. The results in Table 3 are consistent
with a common order 𝑑 for both series.

The cumulated CO2 and wind energy series appear fractionally
integrated of order greater than one, rather than unit root processes,
i.e., 𝐼(𝑑), with 𝑑 > 1, as opposed to 𝐼(1), even after removal of the
seasonal trend. Already the (uncumulated) emissions and wind energy
series are long memory processes, 𝐼(𝑑), with 𝑑 > 0. We have not

14 The only insignificant LB statistic is achieved in the baseline specification,
hich includes a unit root regressor.
8
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Table 3
Exact local Whittle (ELW) estimates of the fractional parameter 𝑑. Filtered indicates
detrended and de-seasonalized series. The standard error of 𝑑 is 0.1365 for bandwidth
𝑚 = [𝑇 0.5], 0.1053 for 𝑚 = [𝑇 0.6], and 0.0812 for 𝑚 = [𝑇 0.7].

Variable Filtered

𝑚 = [𝑇 0.5] 𝑚 = [𝑇 0.6] 𝑚 = [𝑇 0.7]

𝐸𝑡 −0.0081 0.2571 0.3775
𝑊𝑡 0.1278 0.2651 0.2705
𝑡𝑒𝑚𝑝𝑡 0.1154 0.1731 0.3070
𝑝𝑟𝑒𝑐𝑖𝑝𝑡 −0.2823 0.1342 −0.0656
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒𝑡 −0.3971 −0.2703 −0.1733
𝑁𝐴𝑂𝐼𝑡 −0.0334 0.0042 0.1272
𝛥 log(𝑖𝑛𝑑𝑡) −0.1566 −0.0683 0.0636
𝛥 log(𝑖𝑛𝑑𝑡)2 0.0675 0.4571 0.0889
𝑐𝑢𝑚𝑢𝑙. CO2 1.2743 1.1732 1.1373
𝑐𝑢𝑚𝑢𝑙. 𝑊 𝑖𝑛𝑑 1.3020 1.2080 1.1426

cumulated them in the subsequent analysis. Policy decisions on wind
energy adoption can impact wind energy production and emissions,
so we look at these two series. Policy decisions cannot directly affect
previously cumulated CO2, only current emissions. It is cumulated CO2
in the atmosphere that matters for our future, presumably globally
cumulated CO2. When cumulating our CO2 series, we get cumulated
Danish CO2 emissions from energy production, not global cumulated
CO2 from all sources. The CO2 emissions series we end up analyzing
(uncumulated, Denmark, energy production) represents the portion of
global cumulated CO2 from all sources that current local wind power
doption policies can directly impact.

Fractional integration of similar order 𝑑 for 𝐸𝑡 and 𝑊𝑡 suggests that
ractional cointegration analysis can be a suitable tool for studying the
elation between the two. Under correct parametric specification of
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Table 4
FVECM-X𝑑,𝑏 results. The table reports the results of estimation of the FVECM-X𝑑,𝑏 using the monthly emissions and wind energy series 𝐸𝑡 and
𝑊𝑡 over the period January, 2005, through December, 2019. The Johansen and Nielsen (2012) test of fractional cointegration takes the value
11.578 (bootstrap 𝑝-value = 0.02078) for 𝑟 = 0, and 0.7819 (bootstrap 𝑝-value = 0.3765) for 𝑟 = 1. The estimated cointegration vector for
𝑟 = 1 is 𝛽 = (1.0000, 0.2684). The bootstrapped confidence interval at 90% for 𝛽2 is (0.0969,0.3975). The bottom panel reports Ljung–Box (LB)
tests for five and ten periods, the associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The maximized value
of the log-likelihood function is 250.261. MEA over 24 months is estimated to 0.1616, with bootstrap confidence interval at 90% given by
(0.0446,0.2253), and standard deviation 0.0607. MEA over 12, 36, and 48 months are 0.1616, 0.1617, and 0.1617, respectively.

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4506 0.0630 7.1512 0.0000 0.4506 0.0630 7.1512 0.0000
𝛼 −0.3314 0.1025 −3.2346 0.0012 −0.2857 0.6327 −0.4515 0.6516
𝛽 1.0000 – – – 0.2684 0.0874 3.0693 0.0021
𝜇 8.4260 0.0374 225.5223 0.0000 −1.6118 0.1654 −9.7438 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0026 0.0004 −6.5650 0.0000 0.0104 0.0017 6.2098 0.0000
sin(2𝜋𝑡∕12) −0.0284 0.0192 −1.4795 0.1390 −0.0438 0.0933 −0.4694 0.6388
cos(2𝜋𝑡∕12) 0.0628 0.0237 2.6555 0.0079 −0.1198 0.1143 −1.0481 0.2946
𝑡𝑒𝑚𝑝 −0.1095 0.0199 −5.5080 0.0000 0.0170 0.0963 0.1766 0.8598
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0046 0.0060 −0.7666 0.4433 0.0946 0.0284 3.3262 0.0009
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0186 0.0129 1.4394 0.1500 −0.0165 0.0612 −0.2701 0.7871
𝑁𝐴𝑂𝐼 −0.0069 0.0053 −1.3061 0.1915 0.0597 0.0252 2.3658 0.0180
𝛥 log(𝑖𝑛𝑑) 0.0040 0.0047 0.8365 0.4029 −0.0912 0.0224 −4.0718 0.0000
[𝛥 log(𝑖𝑛𝑑)]2 0.0067 0.0047 1.4292 0.1529 −0.0108 0.0221 −0.4879 0.6256

Misspecification tests

LB(5) 17.3802 – – 0.0038 1.8981 – – 0.8631
LB(10) 19.4823 – – 0.0345 16.3038 – – 0.0913
Normality 1.3133 – – 0.8591
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long and short run components, the FVECM-X𝑑,𝑏 model can deliver ad-
ditional insights on the dynamics, and the impact of climate, demand,
and other explanatory variables on the relation between 𝐸𝑡 and 𝑊𝑡.

We estimate a bivariate version of (1)–(2), with 𝑌𝑡 = (𝑌𝑡,1, 𝑌𝑡,2)′ =
𝐸𝑡 − 𝜇𝑡,1,𝑊𝑡 − 𝜇𝑡,2)′, and the covariates 𝑋𝑡 given by the climate and
rowth variables. Results appear in Table 4. BIC selects 𝑘 = 0 lagged
hort-run terms, and the LR test fails to reject 𝑘 = 0 against 𝑘 = 1.
n addition, the LR test fails to reject 𝑑 = 𝑏 (𝑝-value 1.000). Thus,
s in classic cointegration, 𝑑 and 𝑏 coincide, although in the present
ase not at unity. This result shows that the paths of emissions and
ind energy are closely tied, i.e., the error-correction term 𝛽′𝑌𝑡 with
𝑡 = 𝑍𝑡−𝜇𝑡 is a weakly dependent or 𝐼(0) process, and departures from
quilibrium short-lived. The same happens for other model variations
n the remainder of the paper, so we present results for the restricted
odels, imposing 𝑑 = 𝑏 (this follows Nielsen and Shibaev, 2018) and
= 0 throughout. The only exception is an FVECM model without

ovariates, not even trend or seasonals, i.e., 𝜇𝑡 = 𝜇 in (2). In this case,
IC and the LR test point to 𝑘 = 1, so we report results imposing this
pecification (Tables 5 and B.1), although this is not a very reasonable
odel, and really only included to illustrate the problems that arise in

he case without covariates. Without covariates, 𝜇𝑡 = 𝜇, the condition
= 𝑏 must be imposed in order for 𝜇 to be identified, because 𝛥𝑑−𝑏𝜇 = 0

or 𝑑 > 𝑏. In principle, with time-varying covariates in (2), we should
ave a chance of estimating coefficients on these for 𝑑 > 𝑏. However,
n our data, the iterations toward the maximum of the log-likelihood
unction force 𝑏 as close to 𝑑 as possible. In the model in Table 4, if

and 𝑏 are estimated separately, both are estimated at 0.4506, the
stimated standard error of 𝑑 − �̂� is 0.3561, and the LR test of 𝑑 = 𝑏
ets 𝑝-value 1.000.

With 𝑑 = 𝑏 and 𝑘 = 0 imposed, the Johansen and Nielsen (2012) test
ndicates fractional cointegration with rank 𝑟 = 1, one cointegrating
elation, based on bootstrapped 𝑝-values. Thus, the estimated model
eported in Table 4 is

𝛥𝑑𝑌𝑡,1
𝛥𝑑𝑌𝑡,2

]

=
[

𝛼1
𝛼2

]

[

1 𝛽2
]

[

𝛥𝑑−𝑏𝐿𝑏𝑌𝑡,1
𝛥𝑑−𝑏𝐿𝑏𝑌𝑡,2

]

+
[

𝜀𝑡,1
𝜀𝑡,2

]

. (12)

ith 𝑘 = 0, the FCVAR𝑑,𝑏 and FVECM𝑑,𝑏 coincide, implying that
he asymptotic inference theory for the former applies (of course, we
nclude covariates, as well, in the FVECM-X𝑑,𝑏). The estimate of 𝑑 is
45 and significantly different from both 0 and 1 at conventional levels.
9

n

his indicates that 𝐸𝑡 and 𝑊𝑡 taken in deviation from the climate and
rowth variables exhibit long memory around the linear and seasonal
rend, as 𝑑 < .5, i.e., in the stationary range. Thus, climate and demand
atter. The effect of a shock persists for a long period of time, reflecting

ong memory (fractional integration), and the series follow paths that
re tied together in the long run, as indicated by the cointegration rank.
n the other hand, there is no unit root, which would be the case 𝑑 = 1,

o the long run equilibrium is more appropriately studied in the FVECM
han in the classic cointegrated VECM. Further, the LB and Doornik and
ansen (2008) tests (bottom panel) show no (or only mild) signs of
isspecification.

The parameter 𝛽2 is estimated to 0.2684, indicating a negative rela-
ion between CO2 emissions and wind energy production in the model
n Table 4. When 𝑊𝑡 increases, 𝐸𝑡 must decrease in order to maintain
he stable equilibrium relation, i.e., to bring the error correction term
r cointegration residual given by 𝛽′𝑌𝑡 = 𝐸𝑡 − 𝜇1,𝑡 + 𝛽2(𝑊𝑡 − 𝜇2,𝑡) back
oward zero, or 𝐸𝑡 toward 𝜇1,𝑡−𝛽2(𝑊𝑡−𝜇2,𝑡), with 𝛽2 > 0. The parameters
overning the adjustment to this equilibrium, 𝛼, are both negative,
lthough only the coefficient for emissions is significant. From the
igns, if either variable is too large, relative to the levels given by the
eterministic trend, seasonal, climate, and growth variables, both will
ubsequently be reduced, with 𝐸𝑡 moving faster toward the equilibrium
han 𝑊𝑡.

Predicted values of each coordinate of 𝜇𝑡 from (2) are plotted
gainst time in Exhibits (a) and (b) of Fig. 3, along with the original
eries 𝐸𝑡 and 𝑊𝑡. Evidently, �̂�𝑡 provides a good fit to the emissions
nd wind energy series, hence indicating the relevance of the explana-
ory variables. From the results in Table 4, the deterministic trend
omponent of 𝜇𝑡 is strongly significant for both 𝐸𝑡 and 𝑊𝑡, as is one
f the seasonal terms for 𝐸𝑡. The results further confirm that higher
emperature reduces emissions, i.e., the direct demand effect dominates
he indirect efficiency effect, and that precipitation and North Atlantic
scillations increase wind power production, consistent with the no-
ion that they signal stormy weather, hence facilitating wind power
roduction. The dominant effect of the demand variables turns out to
e a negative relation between wind energy and industrial production
rowth. Exhibits (c) and (d) of Fig. 3 display the ACFs of the fitted
VECM-X𝑑,𝑏 residuals (�̂�𝑡,1, �̂�𝑡,2) from (12). Almost all autocorrelation
resent in the original data is explained by the estimated model, leaving

early uncorrelated residual series.
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Fig. 3. Predicted 𝜇𝑡 components and residual ACFs. Exhibits (a) and (b) show the 𝐸𝑡 and 𝑊𝑡 series (blue lines) and the predicted values of the associated components of 𝜇𝑡 from
2) (red lines) from the estimated FVECM-X𝑑,𝑏 model (12). Exhibits (c) and (d) show the autocorrelation functions (ACFs) for the fitted residual series �̂�𝑡,1, �̂�𝑡,2 from the estimated
odel, with 95% confidence bands shown in blue.
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Fig. 4 shows the two series, adjusted for covariates, and their cointe-
rating relation. Exhibit (a) shows 𝐸𝑡−�̂�1,𝑡 (blue line) and −𝛽2(𝑊𝑡−�̂�2,𝑡)
red line). Exhibit (b) illustrates the cointegrating relation between
missions and wind energy production, corrected for covariates. The
eries are moving together in the long run, and the error correction
erm does not exhibit the similar long run movements as the two series,
o we interpret the relation as not spurious.

To get a more complete understanding of the dynamic relation,
e compute the impulse response function (IRF) from wind energy to
missions, and viceversa, based on the estimated FVECM-X𝑑,𝑏 model,
nd shown in Fig. 5, along with bootstrapped 90% confidence bands.
he IRF in the left exhibit, IRF𝑊→𝐸 (𝑖), shows the response after 𝑖
onths, i.e., of 𝐸𝑡+𝑖, 𝑖 = 0,… , 25, to a 𝑊𝑡 impulse, namely, a shock

to 𝜀𝑡,2 from (12) of size one standard deviation, 𝜎𝑊 = 𝜎(𝜀𝑡,2), so
RF𝑊→𝐸 (𝑖) = 𝜎𝑊

𝜕𝐸𝑡+𝑖
𝜕𝜀𝑡,2

, with IRF𝐸→𝑊 (𝑖) defined analogously (in the

right exhibit). From the figure, a positive impulse from either variable
induces a negative response in the other, thus reinforcing that a system
analysis, such as the FVECM-X𝑑,𝑏, is called for. The causal effect of wind
energy on emissions cannot be identified in a regression or engineering
approach.
10

r

The response in the left exhibit in Fig. 5, the reduction in 𝐸𝑡
ollowing an increase in 𝑊𝑡, is the main effect of our concern. The sig-
ificant result confirms the potential of wind energy for CO2 abatement.
he negative response in the right exhibit may indicate that observed
eductions in emissions are viewed as signs of success and encourage
urther investments in green technology. This ties in with the possibility
f endogeneity of the policy response. Below, we fail to reject that wind
nergy is weakly exogenous, but the IRF clearly reveals a reaction,
o the variable does not appear strongly exogenous. The emissions
eduction following an increase in wind energy remains significant for
ore than six months, whereas the wind power production response to

n emissions impulse only remains significant for two months.
To quantify the impact of wind power production on emissions,

e use IRF𝑊→𝐸 (𝑖) for 𝜕𝐸∕𝜕𝑊 , and estimate the proportional impact
f wind penetration 𝑤 from (5) as 𝜕𝐸∕𝜕𝑤 = IRF𝑊→𝐸 (𝑖)∕[𝑤(1 − 𝑤)].
ind penetration 𝑤 averages 32.8% over the period, cf. Table 1, with
𝑊 ∕𝜕𝑤 = 1∕[𝑤(1−𝑤)] averaging 5.561. Combining with the estimated
RF, a one percentage point increase in the share of wind in total energy
roduction is predicted to generate a reduction in CO2 emissions of
he order 0.01% within the first month, and a long-run cumulated
eduction over 24 months of the order 0.11%. To assess the MEA arising
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Fig. 4. Comovement. Exhibit (a) illustrates 𝐸𝑡 − �̂�1,𝑡 (blue line) and −𝛽2(𝑊𝑡 − �̂�2,𝑡) (red line). Exhibit (b) illustrates the cointegrating relation between emissions and wind energy
roduction, corrected for covariates.
Fig. 5. Impulse-response functions from FVECM-X𝑑,𝑏. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.16. The residual standard deviations
are 𝜎𝐸 = 0.0572 and 𝜎𝑊 = 0.2796.
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from the increasing wind power production, the latter result is adjusted
for emission intensity EI = CO2∕𝑃𝑟𝑜𝑑 (see (5) and (9)), i.e.,

MEA = −
24
∑

𝑖=1
IRF𝑊→𝐸 (𝑖)

EI
𝑤(1 −𝑤)

. (13)

ssentially, the adjustment takes the impact from the level of 𝐸𝑡, 𝑊𝑡
o the raw data, CO2,𝑡, 𝑊 𝑖𝑛𝑑𝑡.15 With EI = 1.399 tCO2/MWh over
he period, MEA is estimated at 0.16, in tonnes of CO2 emissions
voided per additional MWh of wind energy produced. Although sys-
em dependent, MEA estimates in the regression literature tend to range
etween 0.3 and 0.7, with some concentration between 0.4 and 0.6,
roadly consistent with the original estimate by Cullen (2013), at 0.43.
learly, our estimate is low, relative to those in the literature. This
ould indicate that additional abatement in Denmark is hard, with
ind penetration already relatively high, but is also consistent with the

15 While EI 𝜕𝑊 ∕𝜕𝑤 = 7.780, the sample average of CO2,𝑡∕[𝑃𝑟𝑜𝑑𝑡𝑤𝑡(1−𝑤𝑡)] is
.791. The persistence in series implies that it makes little difference whether
veraging is before or after using the derivative formula.
11
ossibility of regressions being misspecified, and endogeneity having a
itigating effect on the abatement potential.16

.1. Sensitivity to model specification

Several model variations are summarized in Table 5. If the explana-
ory variables, i.e., the trend, seasonal, climate, and growth variables,
re dropped, then the FVECM-X𝑑,𝑏 from (1)–(2) reduces to a standard
VECM. This is the special case imposing the restriction 𝜇𝑡 = 𝜇 in (2),

controlling only for initial values. Several coefficients on the explana-
tory variables are significant in Table 4, thus indicating the relevance
of the extended model. Results from estimation of the restricted FVECM
appear in Appendix B, Table B.1. The maximized value of the log-
likelihood function drops by more than 120, relative to the FVECM-X𝑑,𝑏
in Table 4, and the LR test rejects the FVECM at all conventional
levels. MEA drops to 0.07 and is insignificant. The results reinforce the
relevance of accounting for explanatory variables in the FVECM-X𝑑,𝑏,
and suggest that the potential of wind energy for CO2 abatement may
understated in the misspecified model.

16 Beside the regression literature, CDS report high MEA, too, at 0.69, using
seasonally pre-adjusted data over the shorter period ending in 2017 and total
IRF (i.e., not around the seasonal trend) from a model without covariates.
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Summary table. For each FVECM-X𝑑,𝑏 model, the table reports estimated 𝑑, with estimated standard error in parenthesis, estimated 𝛽2 and MEA,
with 90% bootstrap confidence intervals in square brackets, maximized value of the log-likelihood function, and 𝑝-value of the LR test of 𝑘 = 0
against 𝑘 = 1.

Feature Table 𝑑 𝛽2 MEA Loglik 𝑘 = 0

Baseline 4 0.4506
(0.0630)

0.2684
[0.0969,0.3975]

0.1616
[0.0446,0.2253]

250.261 0.0988

Only deterministic 6 0.4245
(0.0703)

0.2238
[0.1324,0.2913]

0.1601
[0.0699,0.2583]

205.741 0.1817

Fuel and electricity prices 8 0.4986
(0.0660)

0.2406
[0.1054,0.2980]

0.2040
[0.0944,0.3772]

256.091 0.1649

Only level B.1 0.8136
(0.1219)

0.2581
[0.1923,0.3199]

0.0713
[−0.6877,1.0412]

121.762 0.0015

Raw data B.2 0.4985
(0.0621)

4.2790
[−1.8629,6.7881]

0.0852
[−0.0379,0.1799]

280.942 0.0728

Two stage B.3 0.4120
(0.0632)

0.2866
[0.1885,0.4091]

0.1387
[0.0229,0.2174]

245.563 0.1271

𝑊𝑡 weakly exogenous B.4 0.4377
(0.0540)

0.2667
[0.1474,0.4690]

0.1645
[0.0571,0.2347]

250.160 0.1141

No waste B.5 0.4526
(0.0628)

0.2746
[0.1313,0.3696]

0.1736
[0.0781,0.2741]

249.644 0.0969

Biomass B.6 0.4489
(0.0617)

0.2763
[0.0428,0.3730]

0.1222
[0.0103,0.2212]

263.609 0.0850

Trivar. fuel B.8 0.5883
(0.0629)

0.2456
[0.0684,0.3410]

0.1928
[0.0818,0.3142]

497.424 0.0561

Trivar. electricity B.9 0.5849 0.2351 0.1112 428.251 0.0591

(0.0616) [0.0348,0.4007] [0.0330,0.2900]
Table 6
FVECM-X𝑑,𝑏 results with deterministic terms. The table reports the results of estimation of the FVECM-X𝑑,𝑏 with deterministic terms using the
monthly emissions and wind energy series 𝐸𝑡 and 𝑊𝑡 over the period January, 2005, through December, 2019. The Johansen and Nielsen
(2012) rank test indicates fractional cointegration with 𝑟 = 1 (LR = 12.9504 (bootstrap 𝑝-value = 0.0115) for 𝑟 = 0, LR = 1.1909 (bootstrap
𝑝-value = 0.2751) for 𝑟 = 1). The estimated cointegration vector for 𝑟 = 1 is 𝛽 = (1.0000, 0.2238). The bottom lines report Ljung–Box (LB) tests
for five and ten periods, the associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The maximized value of
the log-likelihood function is 205.741. MEA is estimated to 0.1601, with bootstrap confidence interval at 90% given by (0.0699,0.2583), and
standard deviation 0.0587.

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4245 0.0703 6.0352 0.0000 0.4245 0.0703 6.0352 0.0000
𝛼 −0.4608 0.1469 −3.1377 0.0017 −0.7659 0.7785 −0.9838 0.3252
𝛽 1.0000 – – – 0.2238 0.0527 4.2502 0.0000
𝜇 8.4354 0.0409 206.2506 0.0000 −1.6537 0.1916 −8.6310 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0026 0.0004 −6.9031 0.0000 0.0108 0.0018 6.0889 0.0000
sin(2𝜋𝑡∕12) 0.0681 0.0091 7.5190 0.0000 −0.1168 0.0432 −2.7024 0.0069
cos(2𝜋𝑡∕12) 0.1483 0.0090 16.4997 0.0000 −0.0634 0.0428 −1.4793 0.1391

Misspecification tests

LB(5) 3.7595 – – 0.5845 6.9761 – – 0.2224
LB(10) 5.9018 – – 0.8234 12.6608 – – 0.2433
Normality 4.4342 – – 0.3504
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Estimation of the FVECM-X𝑑,𝑏 on the raw CO2 and wind energy
production data, 𝑍𝑡 = (CO2,𝑡,𝑊 𝑖𝑛𝑑𝑡)′, rather than 𝑍𝑡 = (𝐸𝑡,𝑊𝑡)′ used so
ar, cf. (9)–(10), yields the results in Appendix B, Table B.2. In this case,
he Doornik and Hansen (2008) test of multivariate normality rejects
t the 1% level, in stark contrast to the 𝑝-value of 0.86 in Table 4. With
aw data (Table B.2), the IRFs in Fig. B.2 are insignificant throughout,
eading to a MEA estimate that is low, at 0.09, and insignificant, as
ell. From the results, the log of emissions and logit of wind share

ransformations (9)–(10) render the series amenable to analysis based
n Gaussianity, whereas the present model is misspecified for the raw
ata, hence leading to implausible conclusions.

Table B.3 shows results from a two stage procedure that should be
symptotically close to equivalent to the one stage procedure otherwise
sed. Residuals from specifications 3 and 4 in Table 2 are analyzed us-
ng the standard FVECM without covariates. Thus, the first stage is the
stimation of (2) by ordinary regression, without lags. The dynamics of
he resulting residuals are handled by the fractional model. The effect
f estimated as opposed to correct residuals vanishes asymptotically as
een by repeated use of Cauchy–Schwarz (we are not giving the asymp-
otic derivations). We find that the one stage and two stage procedures
ield very similar results for 𝛼, 𝛽, 𝑑, and MEA. This lends support to the
otion that the two are asymptotically nearly equivalent and, therefore,
hat the one stage procedure is asymptotically well-behaved, since the
wo stage procedure should be so, with the asymptotic theory for the
12

VECM without covariates and 𝑘 = 0 already established.
.2. Weak exogeneity

The negative response of wind energy to emissions in Fig. 5, ex-
ibit (b), may reflect an endogenous policy response, i.e., observed
eductions in emissions encourage further investments in wind power
roduction. Thus, it is relevant to the test the weak exogeneity of 𝑊𝑡
ith respect to 𝐸𝑡. To simplify exposition, consider the FVECM-X𝑑,𝑏 for

𝑘 = 1, 𝑐 = 1, i.e.,
𝑑𝑌𝑡 = 𝛼𝛽′𝛥𝑑−𝑏𝐿𝑏𝑌𝑡 + 𝛤𝛥𝑑𝑌𝑡−1 + 𝜀𝑡, (14)

here

𝑡 =
[

𝑌𝑡,1
𝑌𝑡,2

]

, 𝛼 =
[

𝛼1
𝛼2

]

, 𝛤 =
[

𝛤1
𝛤2

]

, 𝜀𝑡 =
[

𝜀𝑡,1
𝜀𝑡,2

]

,

𝑉 (𝜀𝑡) =
[

𝛺11 𝛺12
𝛺21 𝛺22

]

.

Eq. (14) can be decomposed into a conditional model of 𝑌𝑡,1 given 𝑌𝑡,2,

𝛥𝑑𝑌𝑡,1 = 𝜔𝛥𝑑𝑌𝑡,2+(𝛼1−𝜔𝛼2)𝛽′𝛥𝑑−𝑏𝐿𝑏𝑌𝑡+(𝛤1−𝜔𝛤2)𝛥𝑑𝑌𝑡−1+𝜀𝑡,1−𝜔𝜀𝑡,2, (15)

obtained by adding the first equation of the system in (14) and the
second equation multiplied by −𝜔 = −𝛺12𝛺−1

22 , and a marginal model
for 𝑌𝑡,2, given by

𝛥𝑑𝑌 = 𝛼 𝛽′𝛥𝑑−𝑏𝐿 𝑌 + 𝛤 𝛥𝑑𝑌 + 𝜀 .
𝑡,2 2 𝑏 𝑡 2 𝑡−1 𝑡,2
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The conditional model in (15) contains the same information as the full
model (14) when 𝑌𝑡,2 is weakly exogenous. It can be shown that 𝑌𝑡,2 is
weakly exogenous if 𝛼2 = 0. In this case, the conditional model is given
by

𝛥𝑑𝑌𝑡,1 = 𝜔𝛥𝑑𝑌𝑡,2 + 𝛼1𝛽
′𝛥𝑑−𝑏𝐿𝑏𝑌𝑡 + (𝛤1 − 𝜔𝛤2)𝛥𝑑𝑌𝑡−1 + 𝜀𝑡,1 − 𝜔𝜀𝑡,2.

Weak exogeneity implies that 𝛥𝑑𝑌𝑡,2 does not react to disequilibrium
errors, but to lags of 𝑌𝑡. Johansen (1992) considered the case 𝑑 = 𝑏 = 1,
i.e., weak exogeneity in the CVAR.

Thus, verifying the weak exogeneity of 𝑊𝑡 entails a test on the speed
of convergence coefficient 𝛼2, where the null hypothesis 0 ∶ 𝛼2 = 0
is compared against the alternative 0 ∶ 𝛼2 ≠ 0. From Table 4, we
obtain a 𝑡-statistic of −0.4515, meaning that we fail to reject the null
0. Hence, the statistical evidence suggests that in the FVECM-X𝑑,𝑏,
the variable 𝑊𝑡 can be considered weakly exogenous with respect to
𝐸𝑡, given that the dependence on trend, seasonal, climate, and growth
variables is taken into account.

Results for the restricted FVECM-X𝑑,𝑏 imposing 𝛼2 = 0 appear
in Appendix B.4, Table B.4. Estimates and significance of all other
parameters are similar to those for the unrestricted model in Table 4.
The difference in log-likelihood values confirms the result from the 𝑡-
est, that 𝑊𝑡 is weakly exogenous. IRFs with this restriction imposed
re shown in Fig. B.4, Appendix B.4. While the restricted emissions re-
ponse to changes in wind energy (left exhibit) mirrors the unrestricted
n Fig. 5, the wind energy response to emissions, right exhibit, now
emains significant for six months, too, as opposed to only two in Fig. 5.
hus, accounting for the weak exogeneity of wind energy leaves the
RF from emissions to wind energy as long-lived as the reverse IRF.
orrespondingly, MEA is estimated slightly higher than in the unre-
tricted model. The results are consistent with the notion that policy
akers exercise discretion, and that treating wind energy production
ecisions as exogenous shifts captures this better than leaving them
ndogenous, corresponding to a feedback rule. Thus, the policy tool
ppears more powerful, based on the restricted estimation. Still, as the
esulting increase in MEA is only marginal, the main conclusion from
he exogeneity analysis is that the unrestricted FVECM-X𝑑,𝑏 delivers
eliable inference.

.3. Sensitivity to emissions measure

Combustion of waste constitutes a considerable portion of conven-
ional power production in Denmark, alongside combustion of fossil
uels, and we include emissions from waste burning in our measure of
O2. Since this represents an innovation, relative to CDS, we compare
esults with and without emissions from waste burning included. Re-
ults with waste burning excluded, i.e., using CO2,𝑡 with 𝑆 = 3 from (4)
n 𝐸𝑡 from (9), are in Appendix B.5, Table B.5. Based on these, MEA
s estimated at 0.17. Parameter estimates and significance are similar
o those in Table 4, in which waste burning is included, with MEA
stimated at 0.16. The slightly lower emissions abatement potential of
ind energy indicated when including waste burning is consistent with

he latter being the cleaner, but frequently the marginal generation
ethod.

Biomass fuels are combusted for energy generation, too. They are
sually included in a country’s energy and CO2 emissions accounts
or information, only, as consumption is assumed to equal regrowth.
owever, it is debatable whether to consider biomass a renewable

ource. It can be argued to be CO2-neutral in the long run, but this
equires replanting of vegetation to absorb CO2 in the future. Den-
ark is importing biomass for combustion, e.g., wood pellets from
astern Europe, and has been criticized for burning biomass from
ountries where forest replanting is not always regulated. If trees are
ot replanted abroad, importing biomass contributes to the problem of
arbon leakage, i.e., that reductions in emissions in one country can
13

ead to increases in another.
As a first gauge of the importance of this issue for the abatement
otential of wind energy, we construct an expanded emissions measure,
ith emissions from the burning of biomass included, i.e., using CO2,𝑡

with 𝑆 = 5 from (4) in 𝐸𝑡 from (9). Data on consumption, 𝐶5,𝑡, are
obtained from DEA. For the emissions factor, 𝐼𝐸𝐹5,𝑡, since emissions
from biomass are not part of the official statistics, we estimate a figure
based on values indicated by IPCC in their GHG guidelines.17 IPCC
indicates 29.9 kg/GJ for solid biomass, and 30.6 kg/GJ for gas biomass.
As our consumption measure from DEA actually includes solid biomass,
biogas, and solar, with most of the weight on solid biomass (wood
pellets), we use 𝐼𝐸𝐹5,𝑡 = 30.0.

Results with emissions from the burning of biomass included are
in Table B.6. Again, they are similar to those without biomass in
Table 4. From the IRF based on the results including biomass, MEA
is estimated at 0.12. This reinforces that including a relatively clean,
but frequently marginal generation method in the emissions measure
reduces the estimated abatement potential of wind energy.

Of course, if carbon leakage exists, it should be addressed by includ-
ing all relevant emissions in the official statistics. Based on our findings,
this will not necessarily make the abatement potential of wind energy
look stronger, but this is a measurement problem. The true potential
is best identified by including all relevant sources in the emissions
measure. Indeed, if the carbon leakage problem is severe, the IPCC
figures might be understated. In this case, the burning of biomass will
count as less clean if carbon leakage is fully accounted for, and this can
be expected to bring estimated MEA back up toward the value of 0.16
based on the results in Table 4. The latter still appear relatively robust,
judging from the results of varying the emissions variable.

5.4. Long-term forecasting

Results from estimation of the FVECM-X𝑑,𝑏 including only the de-
terministic terms (trend and seasonals) in 𝜇𝑡 are given in Table 6.
Exclusion of 𝑋𝑡 corresponds to the restriction 𝛬 = 0 on (2). Comparing
the results in Tables 4 and 6, log-likelihood decreases by more than 40,
and the LR test rejects the restriction, i.e., climate and growth variables
matter. On the other hand, the LB and normality tests in Table 6 show
no sign of misspecification whatsoever, and the possibility to include
deterministic variables in FVECM-X𝑑,𝑏 provides a potentially powerful
tool, so we explore this model a bit further.

Three of the four seasonality terms are significant at conventional
levels in the model with deterministic terms, compared to only one
in the model with further covariates. In both models, the speed of
adjustment coefficients 𝛼 are negative, with only that for emissions
significant, but estimates are larger in magnitude in the model with
deterministic terms, and the IRFs, shown in Fig. 6, more significant
than those in Fig. 5. The resulting MEA is 0.16 with deterministic terms,
confirming the value with climate and growth variables included.

Long-term forecasts and associated confidence bands are shown in
Fig. 7. Transforming back to CO2 and wind share in energy produc-
tion 𝑤𝑡 using the exponential and logistic (inverse logit), cf. (9)–(10),
the 95% confidence intervals for CO2 emissions by 2030 and 2050
are [1963.9, 2772.2] and [1071.2, 1526.0], respectively, in thousands of
tonnes, and those for the wind share [0.726, 0.946] and [0.970, 0.996].

The Danish government has announced goals of 70% reduction in
greenhouse gas (GHG) emissions by 2030, relative to the UN base year
of 1990 levels, and 100% no-fossil energy production (corresponding to
𝑤𝑡 = 1) by 2050, in accordance with the 2015 Paris Agreement joined
by most countries of the world. By 2019, the reduction in CO2 emissions
relative to 1990 was already 34%. However, the 2030 confidence
interval corresponds to reductions between 37% and 56%, indicating
that the country is not yet on track to meet the 2030 goal with respect

17 Revised 1996 IPCC Guidelines for National Greenhouse Inventories:
Workbook, Module 1, Energy.
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Fig. 6. Impulse-response functions from FVECM-X𝑑,𝑏 with deterministic terms. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.16.
Fig. 7. Long-term forecasts of 𝐸𝑡 and 𝑊𝑡 based on FVECM-X𝑑,𝑏 with deterministic terms. In red the 95% confidence band. In black the observed series.
o CO2 emissions (there are other GHGs). For wind share, the 2050
onfidence band nearly reaches unity, which would achieve the policy
oal by wind alone, and there are other no-fossil sources, such as solar
nd, depending on definitions, waste burning, and biomass.18

For comparison, we also estimate a VAR(2) model with the same
eterministic terms (trend and seasonals). Results from estimation of
he VAR(2) model are given in Appendix B.6, Table B.7, IRFs are shown
n Fig. B.7, and long-term forecasts in Fig. B.8. The VAR(2) IRFs are
oorly estimated and insignificant. The upshot is a lower MEA, at
.08. As the long memory properties are significant in the FVECM-
𝑑,𝑏, the results support the notion that ignoring fractional integration,
hen present, can lead to understatement of the emissions abatement
otential of wind energy.

18 In fact, for wind share near unity, emissions should be zero, cf. (8), a
estriction not imposed on the fractional model.
14
5.5. Fuel and electricity prices

An increase in wind power production can potentially cause a drop
in fuel prices, hence mitigating the impact on emissions of the increase
in wind power. Similarly, an increase in the supply of wind power
production can potentially reduce power prices, which can partially
offset the reduction in conventional production stemming from the
increase in wind energy. Thus, the general equilibrium impact of wind
power production on emissions potentially falls short of estimates that
ignore the supply and demand effects operating via input (fuel) or
output (power) prices. To investigate this possibility, we include prices
in the analysis. Although electricity prices have been considered in the
regression literature, e.g., Amor et al. (2014), Di Cosmo and Valeri
(2018b), and Abrell et al. (2019), fuel prices have not been considered.
Here, we include the world fuel price index (WFPI), obtained from
IndexMundi, as 𝑓𝑢𝑒𝑙 = log(WFPI), and EL, the electricity spot price
index in Denmark, obtained from Nord Pool, as 𝑒𝑙 = log(EL), among
the covariates in the FVECM-X .
𝑑,𝑏
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Table 7
Summary statistics for fuel and electricity prices. The table reports summary statistics for the monthly data series over the period January, 2005 through December, 2019. Raw
refers to estimates of the fractional parameter 𝑑 obtained by ELW estimation on the original series, while Filt indicates estimation on the detrended and de-seasonalized series.

he standard errors of 𝑑 are 0.1053 with 𝑚 = [𝑇 0.6] and 0.0812 with 𝑚 = [𝑇 0.7].
Variable Monthly 𝑑 Ljung–Box

Mean Std.Dev. ADF 𝑝-val Raw (0.6) Raw (0.7) Filt (0.6) Filt (0.7) stat 𝑝-value

𝑓𝑢𝑒𝑙𝑡 4.5028 0.2979 −2.8116 0.1953 0.9159 1.1559 0.9691 1.1393 737.84 0.0000
𝑒𝑙𝑡 38.959 10.988 −3.5203 0.0405 0.7843 0.8185 0.8517 0.7595 429.24 0.0000
Table 8
FVECM-X𝑑,𝑏 with fuel and electricity prices. The table reports the results of estimation of the FVECM-X𝑑,𝑏 with fuel and electricity prices using
the monthly emissions and wind energy series 𝐸𝑡 and 𝑊𝑡 over the period January, 2005, through December, 2019. The Johansen and Nielsen
(2012) rank test indicates fractional cointegration with 𝑟 = 1 (LR = 14.184 (bootstrap 𝑝-value = 0.0067) for 𝑟 = 0, LR = 0.7534 (bootstrap
𝑝-value = 0.3853) for 𝑟 = 1). The estimated cointegration vector for 𝑟 = 1 is 𝛽 = (1.0000, 0.2406). The bottom lines report Ljung–Box (LB) tests for
five and ten periods, the associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The value of the log-likelihood
function is 256.091. MEA is estimated to 0.2040, with bootstrap confidence interval at 90% given by (0.0944,0.3772).

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4986 0.0660 7.5572 0.0000 0.4986 0.0660 7.5572 0.0000
𝛼 −0.3825 0.0997 −3.8354 0.0001 −0.2502 0.6088 −0.4110 0.6811
𝛽 1.0000 – – – 0.2406 0.0527 4.5639 0.0000
𝜇 8.4107 0.0398 211.2191 0.0000 −1.5212 0.1828 −8.3237 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0025 0.0004 −5.6746 0.0000 0.0100 0.0020 5.0305 0.0000
sin(2𝜋𝑡∕12) −0.0150 0.0199 −0.7558 0.4498 −0.1322 0.0955 −1.3846 0.1662
cos(2𝜋𝑡∕12) 0.0718 0.0237 3.0250 0.0025 −0.1854 0.1131 −1.6386 0.1013
𝑡𝑒𝑚𝑝 −0.1003 0.0201 −4.9965 0.0000 −0.0514 0.0960 −0.5353 0.5925
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0033 0.0059 −0.5559 0.5783 0.0872 0.0274 3.1803 0.0015
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0192 0.0126 1.5195 0.1286 −0.0155 0.0588 −0.2637 0.7920
𝑁𝐴𝑂𝐼 −0.0053 0.0052 −1.0202 0.3076 0.0555 0.0246 3.5515 0.0238
𝛥 log(𝑖𝑛𝑑) −0.0040 0.0074 −0.5380 0.5906 −0.0301 0.0344 −0.4507 0.3811
[𝛥 log(𝑖𝑛𝑑)]2 0.0040 0.0047 0.8477 0.3966 0.0024 0.0218 0.1115 0.9112
𝛥𝑒𝑙 0.0126 0.0063 2.0127 0.0441 −0.0780 0.0288 −2.7057 0.0068
𝛥𝑓𝑢𝑒𝑙 −0.0049 0.0053 −0.9110 0.3623 −0.0001 0.0250 −0.0034 0.9973

Misspecification tests

LB(5) 14.5412 – – 0.0125 1.2219 – – 0.9428
LB(10) 18.7034 – – 0.0442 14.9629 – – 0.1334
Normality 3.6542 – – 0.4548
Fig. 8. Price variables: World fuel price index 𝑓𝑢𝑒𝑙 and Danish electricity spot price index 𝑒𝑙.
15
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Fig. 9. Impulse-response functions from FVECM-X𝑑,𝑏 including fuel and electricity prices among covariates. In gray the bootstrapped 90% confidence bands. MEA over 24 months
is estimated to 0.20.
Summary statistics for the fuel and electricity price indices are given
in Table 7. The two series are plotted in Fig. 8. Both are strongly
persistent, more so than emissions and wind energy.

Results of including the price indices in first differences as explana-
tory variables in the estimation of the FVECM-X𝑑,𝑏 appear in Table 8.
As expected, higher wind energy is associated with lower electricity
prices and emissions, whereas fuel prices enter insignificantly in this
estimation. IRFs are shown in Fig. 9. MEA is now 0.20, higher than the
value based on Table 4 and Fig. 5, at 0.16. This suggests that the latter
estimate of the impact of wind power production on emissions is not
inflated by leaving out effects operating via prices.

Most of the earlier findings for the covariates carry over. Thus,
higher temperature reduces emissions, and higher precipitation and
North Atlantic oscillations are associated with more wind energy pro-
duction. Industrial production growth loses its significance for wind
energy, which makes sense, and is consistent with the notion that
electricity prices are required in the specification.

Finally, the possibility remains that a mitigating general equilibrium
effect on the impact of wind power production on emissions enters via
the endogeneity of prices. To examine this issue, we consider trivariate
models including prices as endogenous variables. This allows testing
the weak exogeneity of the price indices. Further, it allows computing
IRFs between emissions and prices. This can be of interest for policy
analysis. For example, turbines were subsidized in Denmark during
the period under study. Subsidies can lead to more production and,
e.g., export of electricity. In order to replace fossil fuels by renewables,
a general tax on emissions is a better policy tool than subsidies, as
it offers the decision maker a choice among alternatives, rather than
steering the choice to the subsidized technology. The power of the
taxation tool can potentially be investigated via IRFs with respect to
prices.

Results from the trivariate model expanded with the filtered (by
𝛥0.6) world fuel price index are in Table B.8 in Appendix B.7, and those
from the model expanded with filtered (by 𝛥0.3) electricity prices in
Table B.9. The filtering reflects that the order of fractional integra-
tion appears about 0.6 and 0.3 higher for fuel and electricity prices,
respectively, relative to emissions and wind energy. In each case, the
hypothesis of weak exogeneity of the price index is not rejected. This
lends support to the specification in Table 8. Still, if the possibility
of endogenous electricity prices is left open, the results indicate a
reduction in MEA of the order one third, to 0.11, due to the general
16

equilibrium effect.
On the methodological side, the analysis reinforces the generality
of the approach, including the feasibility of the trivariate FVECM-
X𝑑,𝑏, and the endogeneity tests. On the substantive side, test results
indicate that the received estimates of the potential of wind energy for
emissions abatement are not inflated due to left-out general equilibrium
effects. Should electricity prices be endogenous, after all, the indicated
mitigation effect on the abatement potential of wind energy adoption
is of the order one third.

6. Conclusion

We offer an analysis of the dynamic relation between CO2 emissions
and wind energy in Denmark. As both series are strongly persistent,
we pursue a fractional cointegration approach, and show that the
series follow paths that are tied together in the long run. By including
covariates, we are able to investigate the impact of climate and forces
of demand on the potential of wind power production for emissions
abatement. Local climate conditions matter for the efficiency of wind
power generation. Temperature plays a dual role, as it matters for the
demand for heating and cooling, as well as for efficiency in generation,
through air density. From the results, the former dominates the impact
on emissions, which decline as temperature increases. Wind power
production increases with precipitation and North Atlantic oscillations,
both of which signal stormy weather. Further demand indicators, beside
temperature, include aggregate output, which matters for emissions
in a manner consistent with an environmental Kuznets curve (EKC),
and prices of conventional inputs (fuels) and output (power). When
controlling for prices, higher wind energy is associated with lower elec-
tricity prices. Accounting for a seasonal trend, marginal CO2 emissions
avoided (MEA) per MWh of wind energy produced are estimated at 0.16
tonnes, based on impulse responses. This estimate of the abatement
potential of wind power is lower than values reported in the literature,
but statistically significant, and robust to including climate and demand
variables. Estimated MEA is reduced by about one third by treating
electricity prices as endogenous, and by one quarter by including
emissions from combustion of biomass. However, formal exogeneity
tests indicate that the main MEA estimate, at 0.16, is not inflated due
to left-out general equilibrium effects operating via prices of conven-
tional inputs (fossil fuels) and output (electricity) in power production.

Without covariates, estimated MEA is 0.07, and insignificant.
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Appendix A. Deseasonalized data
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See Fig. A.1.
Appendix B. Model specifications

B.1. FVECM𝑑,𝑏;𝑐 with no exogenous variables

See Fig. B.1 and Table B.1.

.2. Raw data

See Fig. B.2 and Table B.2.

.3. Two stage estimation
See Fig. B.3 and Table B.3.
Fig. A.1. Variables used for estimation of models in deviation from trend and seasonal terms.
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Fig. B.1. Impulse-response functions from FVECM. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.0713.

Fig. B.2. Impulse-response functions from FVECM-X𝑑,𝑏 using raw data. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.0852.

Fig. B.3. Impulse-response functions from FVECM-X𝑑,𝑏 with two step procedure. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.1387.
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Table B.1
FVECM results. The table reports the results of estimation of the FVECM using the monthly emissions and wind energy series 𝐸𝑡 and 𝑊𝑡 over
the period January, 2005, through December, 2019. The Johansen and Nielsen (2012) rank test indicates fractional cointegration with 𝑟 = 1
(LR = 17.893 for 𝑟 = 0, LR = 3.263 for 𝑟 = 1). The estimated cointegration vector for 𝑟 = 1 is 𝛽 = (1.0000, 0.2581). The bottom lines report
Ljung–Box (LB) tests for five and ten periods, the associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The
maximized value of the log-likelihood function is 121.762. The lag length is 𝑘 = 1, as selected by BIC, and the LR test of 𝑘 = 0 gets 𝑝-value
0.0015. MEA is estimated to 0.0713, with bootstrap confidence interval at 90% given by (−0.6877,1.0412).

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.8136 0.1219 6.6737 0.0000 0.8136 0.1219 6.6737 0.0000
𝛼 −0.1377 0.0837 −1.6454 0.0999 −0.7187 0.2311 −3.1105 0.0019
𝛽 1.0000 – – – 0.2581 0.0389 6.6339 0.0000
𝜇 8.3692 0.0751 111.3707 0.0000 −1.3171 0.2789 −4.7223 0.0000
𝛤1,∶ 0.0787 0.0608 1.2945 0.1955 0.0130 0.0094 1.3850 0.1661
𝛤2,∶ −0.1396 0.1300 −1.0736 0.2830 −0.1093 0.0349 −3.1316 0.0017

Misspecification tests

LB(5) 42.8612 – – 0.0000 6.7062 – – 0.2434
LB(10) 128.0273 – – 0.0000 12.8876 – – 0.2300
Normality 12.7601 – – 0.0125
Table B.2
FVECM-X𝑑,𝑏 results using raw data. The table reports the results of estimation of the FVECM-X𝑑,𝑏 using the original monthly emissions (CO2)
and wind energy (𝑊 𝑖𝑛𝑑) series over the period January, 2005, through December, 2019. The Johansen and Nielsen (2012) rank test indicates
fractional cointegration with 𝑟 = 1 (LR = 5.2089 for 𝑟 = 0, LR = 2.2562 for 𝑟 = 1). The estimated cointegration vector for 𝑟 = 1 is
𝛽 = (1.0000, 4.279). The bottom lines report Ljung–Box (LB) tests for five and ten periods, the associated 𝑝-values, and the Doornik and Hansen
(2008) test of multivariate normality. The maximized value of the log-likelihood function is 280.942. MEA is estimated to 0.0852, with bootstrap
confidence interval at 90% given by (−0.0379,0.1799).

CO2 𝑊 𝑖𝑛𝑑𝑡
Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4985 0.0621 8.0296 0.0000 0.4985 0.0621 8.0296 0.0000
𝛼 −0.1561 0.0843 −1.8509 0.0642 0.0060 0.0232 0.2604 0.7945
𝛽 1.0000 – – – 4.2790 2.7971 1.5298 0.1261
𝜇 4.5927 0.1606 28.6014 0.0000 0.1912 0.0418 4.5698 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0102 0.0018 −5.7683 0.0000 0.0020 0.0005 4.5169 0.0000
sin(2𝜋𝑡∕12) −0.1700 0.0795 −2.1393 0.0324 −0.0117 0.0181 −0.6479 0.5171
cos(2𝜋𝑡∕12) 0.1877 0.0977 1.9198 0.0549 −0.0278 0.0221 −1.2584 0.2082
𝑡𝑒𝑚𝑝 −0.4955 0.0816 −6.0739 0.0000 0.0030 0.0184 0.1620 0.8713
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0148 0.0244 −0.6046 0.5455 0.0185 0.0054 3.4388 0.0006
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0915 0.0524 1.7449 0.0810 −0.0036 0.0116 −0.3140 0.7535
𝑁𝐴𝑂𝐼 −0.0345 0.0217 −1.5898 0.1119 0.0095 0.0048 1.9733 0.0485
𝛥 log(𝑖𝑛𝑑) 0.0104 0.0194 0.5384 0.5903 −0.0168 0.0043 −3.9115 0.0001
[𝛥 log(𝑖𝑛𝑑)]2 0.0351 0.0191 1.8372 0.0662 0.0014 0.0043 0.3273 0.7435

Misspecification tests

LB(5) 14.4687 – – 0.0129 5.1168 – – 0.4018
LB(10) 18.4732 – – 0.0475 17.2946 – – 0.0681
Normality 13.4131 – – 0.0094
Table B.3
FVECM results using residuals. The table reports the results of estimation of the FVECM using the residuals from the regressions of the monthly
emissions and wind energy series 𝐸𝑡 and 𝑊𝑡 on the covariate specification 𝜇𝑡 from (2) over the period January, 2005, through December,
2019. The Johansen and Nielsen (2012) rank test indicates fractional cointegration with 𝑟 = 1 (LR = 11.151 for 𝑟 = 0, LR = 0.9021 for 𝑟 = 1).
The estimated cointegration vector for 𝑟 = 1 is 𝛽 = (1.0000, 0.2866). The bottom lines report Ljung–Box (LB) tests for five and ten periods, the
associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The maximized value of the log-likelihood function is
245.563. MEA is estimated to 0.1387, with bootstrap confidence interval at 90% given by (0.0229,0.2174).

𝑌1,𝑡 𝑌2,𝑡
Estimates

𝑑 0.4120 0.0632 6.5205 0.0000 0.4120 0.0632 6.5205 0.0000
𝛼 −0.3292 0.1125 −2.9269 0.0034 −0.4690 0.6382 −0.7349 0.4624
𝛽 1.0000 – – – 0.2866 0.0694 4.1274 0.0000
𝜇 −0.0341 0.0296 −1.1506 0.2499 0.1414 0.1171 1.2078 0.2271

Misspecification tests

LB(5) 16.2438 – – 0.0062 1.2053 – – 0.9444
LB(10) 19.0000 – – 0.0403 14.7352 – – 0.1420
Normality 2.2580 – – 0.6884
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Table B.4
FVECM-X𝑑,𝑏 results imposing 𝛼2 = 0. The table reports the results of estimation of the FVECM-X𝑑,𝑏 using the monthly emissions and wind energy
series 𝐸𝑡 and 𝑊𝑡 over the period January, 2005, through December, 2019. The restriction 𝛼2 = 0 is imposed. The Johansen and Nielsen (2012)
rank test indicates fractional cointegration with 𝑟 = 1 (LR = 11.5778 for 𝑟 = 0, LR = 0.7819 for 𝑟 = 1). The estimated cointegration vector
is 𝛽 = (1.0000, 0.2667). The bottom lines report Ljung-Box (LB) tests for five and ten periods, the associated 𝑝-values, and the Doornik and
Hansen (2008) test of multivariate normality. The maximized value of the log-likelihood function is 250.160. MEA is estimated to 0.1645, with
bootstrap confidence interval at 90% given by (0.0571,0.2347).

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4377 0.0540 8.1098 0.0000 0.4377 0.0540 8.1098 0.0000
𝛼 −0.3593 0.1023 −3.5125 0.0004 0.0000 – – –
𝛽 1.0000 – – – 0.2667 0.0770 3.4636 0.0005
𝜇 8.4281 0.0359 234.4486 0.0000 0.2662 0.0548 4.8577 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0026 0.0004 −6.7994 0.0000 0.0104 0.0017 6.0206 0.0000
sin(2𝜋𝑡∕12) −0.0287 0.0192 −1.4959 0.1347 −0.0511 0.0917 −0.5573 0.5773
cos(2𝜋𝑡∕12) 0.0623 0.0236 2.6344 0.0084 −0.1266 0.1130 −1.1199 0.2627
𝑡𝑒𝑚𝑝 −0.1096 0.0199 −5.5014 0.0000 0.0093 0.0944 0.0981 0.9219
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0048 0.0060 −0.7891 0.4301 0.0943 0.0283 3.3276 0.0009
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0183 0.0130 1.4101 0.1585 −0.0158 0.0609 −0.2594 0.7954
𝑁𝐴𝑂𝐼 −0.0068 0.0053 −1.2749 0.2023 0.0594 0.0252 2.3604 0.0183
𝛥 log(𝑖𝑛𝑑) 0.0039 0.0047 0.8299 0.4066 −0.0916 0.0223 −4.1080 0.0000
[𝛥 log(𝑖𝑛𝑑)]2 0.0069 0.0047 1.4837 0.1379 −0.0107 0.0221 −0.4833 0.6289

Misspecification tests

LB(5) 17.5275 – – 0.0036 1.9334 – – 0.8583
LB(10) 19.5927 – – 0.0333 15.9917 – – 0.0999
Normality 1.3278 – – 0.8566
Fig. B.4. Impulse-response functions from FVECM-X𝑑,𝑏 model with 𝛼2 = 0. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.1645.
B.4. Weak exogeneity of 𝑊𝑡

See Fig. B.4 and Table B.4.

B.5. Sensitivity to emissions measure

See Figs. B.5 and B.6 and Tables B.5 and B.6.

B.6. Long-term forecasting

See Figs. B.7 and B.8 and Table B.7.
20
B.7. Input and output prices

See Figs. B.9 and B.10 and Tables B.8 and B.9.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2023.106821.
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Fig. B.5. Impulse-response functions from FVECM-X𝑑,𝑏 model without CO2 from waste. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to
0.1736.

Fig. B.6. Impulse-response functions from FVECM-X𝑑,𝑏 model with biomass. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.1222.

Fig. B.7. Impulse-response functions from VAR(2) model with deterministic terms. In gray the bootstrapped 90% confidence bands. MEA over 24 months is estimated to 0.0750.
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Table B.5
FVECM-X𝑑,𝑏 results excluding emissions from waste burning. The table reports the results of estimation of the FVECM-X𝑑,𝑏 using the monthly
CO2 emissions series 𝐸𝑡 (excluding emissions from waste burning) and wind energy series 𝑊𝑡 over the period January, 2005, through December,
2019. The Johansen and Nielsen (2012) rank test indicates fractional cointegration with 𝑟 = 1 (LR = 13.0002 for 𝑟 = 0, LR = 0.6723 for 𝑟 = 1).
The estimated cointegration vector for 𝑟 = 1 is 𝛽 = (1.0000, 0.2746). The bottom lines report Ljung–Box (LB) tests for five and ten periods, the
associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The maximized value of the log-likelihood function is
249.644. MEA is estimated to 0.1736, with bootstrap confidence interval at 90% given by (0.0781,0.2741).

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4526 0.0628 7.2047 0.0000 0.4526 0.0628 7.2047 0.0000
𝛼 −0.3522 0.1040 −3.3866 0.0007 −0.3152 0.6327 −0.4982 0.6183
𝛽 1.0000 – – – 0.2746 0.0690 3.9783 0.0001
𝜇 8.4275 0.0381 221.1002 0.0000 −1.6086 0.1639 −9.8166 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0027 0.0004 −6.7365 0.0000 0.0104 0.0017 6.2157 0.0000
sin(2𝜋𝑡∕12) −0.0283 0.0193 −1.4664 0.1425 −0.0424 0.0930 −0.4555 0.6488
cos(2𝜋𝑡∕12) 0.0641 0.0238 2.6905 0.0071 −0.1186 0.1140 −1.0397 0.2985
𝑡𝑒𝑚𝑝 −0.1097 0.0200 −5.4787 0.0000 0.0187 0.0961 0.1946 0.8457
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0046 0.0061 −0.7593 0.4477 0.0948 0.0284 3.3372 0.0008
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0187 0.0130 1.4317 0.1522 −0.0171 0.0611 −0.2793 0.7800
𝑁𝐴𝑂𝐼 −0.0070 0.0054 −1.3023 0.1928 0.0596 0.0252 2.3689 0.0178
𝛥 log(𝑖𝑛𝑑) 0.0041 0.0048 0.8627 0.3883 −0.0906 0.0224 −4.0518 0.0001
[𝛥 log(𝑖𝑛𝑑)]2 0.0065 0.0047 1.3764 0.1687 −0.0110 0.0220 −0.4988 0.6179

Misspecification tests

LB(5) 16.9580 – – 0.0046 1.9044 – – 0.8622
LB(10) 18.8572 – – 0.0421 16.3114 – – 0.0911
Normality 1.1779 – – 0.8817
Table B.6
FVECM-X𝑑,𝑏 results with emissions from biomass. The table reports the results of estimation of the FVECM-X𝑑,𝑏 using the monthly CO2 emissions
series 𝐸𝑡 (including emissions from the combustion of biomass) and wind energy series 𝑊𝑡 over the period January, 2005, through December,
2019. The Johansen and Nielsen (2012) rank test indicates fractional cointegration with 𝑟 = 1 (LR = 8.3516 for 𝑟 = 0, LR = 1.2577 for 𝑟 = 1).
The estimated cointegration vector for 𝑟 = 1 is 𝛽 = (1.0000, 0.2763). The bottom lines report Ljung–Box (LB) tests for five and ten periods, the
associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. The maximized value of the log-likelihood function is
263.609. MEA is estimated to 0.1222, with bootstrap confidence interval at 90% given by (0.0103,0.2212).

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.4489 0.0617 7.2755 0.0000 0.4489 0.0617 7.2755 0.0000
𝛼 −0.2307 0.0910 −2.5362 0.0112 −0.2466 0.6122 −0.4028 0.6871
𝛽 1.0000 – – – 0.2763 0.0681 4.0573 0.0001
𝜇 8.4747 0.0351 241.7878 0.0000 −1.6397 0.1650 −9.9387 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0020 0.0004 −5.2966 0.0000 0.0106 0.0016 6.4196 0.0000
sin(2𝜋𝑡∕12) −0.0306 0.0179 −1.7123 0.0868 −0.0454 0.0935 −0.4860 0.6269
cos(2𝜋𝑡∕12) 0.0481 0.0220 2.1805 0.0292 −0.1202 0.1147 −1.0478 0.2947
𝑡𝑒𝑚𝑝 −0.1024 0.0185 −5.5407 0.0000 0.0139 0.0966 0.1437 0.8858
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0065 0.0056 −1.1729 0.2408 0.0944 0.0286 3.3053 0.0009
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0165 0.0120 1.3795 0.1678 −0.0144 0.0614 −0.2344 0.8147
𝑁𝐴𝑂𝐼 −0.0078 0.0049 −1.5814 0.1138 0.0584 0.0254 2.3019 0.0213
𝛥 log(𝑖𝑛𝑑) 0.0049 0.0044 1.1087 0.2675 −0.0923 0.0225 −4.0968 0.0000
[𝛥 log(𝑖𝑛𝑑)]2 0.0065 0.0044 1.4949 0.1349 −0.0102 0.0223 −0.4593 0.6460

Misspecification tests

LB(5) 16.2654 – – 0.0061 1.9282 – – 0.8590
LB(10) 18.2968 – – 0.0502 16.4303 – – 0.0880
Normality 1.9788 – – 0.7397
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Table B.7
VAR results. The table reports the results of estimation of the VAR(2) model with deterministic terms using the monthly emissions and wind
energy series 𝐸𝑡 and 𝑊𝑡 over the period January, 2005, through December, 2019. The bottom lines report Ljung–Box (LB) tests for five and
ten periods, the associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate normality. MEA is estimated to 0.0750.

𝐸𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝐸𝑡−1 0.2237 0.1808 1.2369 0.2161 −0.0327 0.0178 −1.8397 0.0658
𝑊𝑡−1 −0.3222 0.3979 −0.8096 0.4182 0.3140 0.1809 1.7353 0.0827
𝐸𝑡−2 0.0849 0.0974 0.8719 0.3833 −0.0311 0.0197 −1.5775 0.1147
𝑊𝑡−2 0.2240 0.3951 0.5669 0.5708 0.2036 0.0874 2.3298 0.0198
𝜇 8.4845 0.0229 370.3726 0.0000 −1.8894 0.1185 −15.9432 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0029 0.0002 −13.5924 0.0000 0.0121 0.0011 11.3598 0.0000
sin(2𝜋𝑡∕12) 0.0670 0.0101 6.6095 0.0000 −0.1153 0.0479 −2.4077 0.0161
cos(2𝜋𝑡∕12) 0.1470 0.0101 14.5984 0.0000 −0.0567 0.0474 −1.1966 0.2314

Misspecification tests

LB(5) 4.5291 – – 0.4760 2.9510 – – 0.7075
LB(10) 7.0189 – – 0.7237 7.5164 – – 0.6760
Normality 4.4493 – – 0.3486
Fig. B.8. Long-term forecasts of 𝐸𝑡 and 𝑊𝑡 based on the VAR(2) with deterministic terms. In red the 95% confidence band. In black the observed series.
Table B.8
Trivariate FVECM-X𝑑,𝑏 with filtered fuel price index. The table reports results of the estimation of the trivariate FVECM-X𝑑,𝑏 with filtered fuel price index using the monthly emissions
(CO2), fuel price, and wind energy series 𝐸𝑡, 𝛥0.6𝑓𝑢𝑒𝑙𝑡, and 𝑊𝑡 over the period January, 2005, through December, 2019. The Johansen and Nielsen (2012) rank test indicates
ractional cointegration with 𝑟 = 2 (LR = 21.309 for 𝑟 = 0, LR = 5.377 for 𝑟 = 1, LR = 1.178 for 𝑟 = 2). The estimated cointegration vectors for 𝑟 = 2 are 𝛽′1 = (1.0000, 0.0000, 0.2456)
nd 𝛽′2 = (0.0000, 1.0000, 0.4846). The bottom lines report Ljung–Box (LB) tests for five and ten periods, the associated 𝑝-values, and the Doornik and Hansen (2008) test of multivariate
ormality. The maximized value of the log-likelihood function is 497.424. MEA is estimated to 0.1928, with bootstrap confidence interval at 90% given by (0.0818,0.3142). The
ald test of the null of weak exogeneity of fuel prices, (𝛼𝑓𝑢𝑒𝑙,1 , 𝛼𝑓𝑢𝑒𝑙,2)′ = 0, takes the value 1.0897 (𝑝-value 0.5799).

𝐸𝑡 𝛥0.6𝑓𝑢𝑒𝑙𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.5883 0.0629 9.3461 0.0000 0.5883 0.0629 9.3461 0.0000 0.5883 0.0629 9.3461 0.0000
𝛼1 −0.4649 0.1085 −4.2840 0.0000 0.0455 0.1208 0.3762 0.7068 −0.1183 0.5529 −0.2140 0.8305
𝛼2 0.0832 0.0477 1.7430 0.0813 −0.0595 0.0488 −1.2202 0.2224 −0.4634 0.2359 −1.9647 0.0495
𝜇 8.4284 0.0305 276.0004 0.0000 −0.0481 0.0502 −0.9590 0.3376 −1.6255 0.1404 −11.5785 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0025 0.0004 −7.1055 0.0000 0.0002 0.0006 0.2769 0.7819 0.0104 0.0016 6.5610 0.0000
sin(2𝜋𝑡∕12) −0.0270 0.0197 −1.3729 0.1698 0.0023 0.0209 0.1079 0.9141 −0.0529 0.0940 −0.5632 0.5733
cos(2𝜋𝑡∕12) 0.0641 0.0240 2.6755 0.0075 −0.0093 0.0252 −0.3711 0.7105 −0.1271 0.1147 −1.1075 0.2681
𝑡𝑒𝑚𝑝 −0.1081 0.0201 −5.3656 0.0000 −0.0030 0.0210 −0.1448 0.8849 0.0071 0.0962 0.0740 0.9410
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0043 0.0060 −0.7192 0.4720 0.0009 0.0061 0.1492 0.8814 0.0960 0.0283 3.3907 0.0007
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0189 0.0129 1.4571 0.1451 0.0148 0.0132 1.1260 0.2602 −0.0164 0.0609 −0.2691 0.7878
𝑁𝐴𝑂𝐼 −0.0068 0.0053 −1.2800 0.2005 0.0081 0.0055 1.4754 0.1401 0.0599 0.0252 2.3745 0.0176
𝛥 log(𝑖𝑛𝑑) 0.0036 0.0048 0.7516 0.4523 0.0266 0.0051 5.2320 0.0000 −0.0862 0.0231 −3.7328 0.0002
[𝛥 log(𝑖𝑛𝑑)]2 0.0066 0.0048 1.3968 0.1625 −0.0108 0.0049 −2.1988 0.0279 −0.0122 0.0228 −0.5352 0.5925

Misspecification tests

LB(5) 18.1072 – – 0.0028 2.5239 – – 0.7729 2.1816 – – 0.8235
LB(10) 20.2186 – – 0.0273 11.2181 – – 0.3408 15.7804 – – 0.1061
Normality 10.4333 – – 0.1075
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Fig. B.9. Impulse-response functions of CO2 emissions and wind energy from the trivariate FVECM-X𝑑,𝑏 with filtered fuel price index. In gray the bootstrapped 90% confidence
bands. MEA over 24 months is estimated to 0.1928.
Table B.9
Trivariate FVECM-X𝑑,𝑏 with filtered electricity prices. The table reports the results of estimation of the trivariate FVECM-X𝑑,𝑏 with filtered electricity prices using the monthly
emissions (CO2), electricity price, and wind energy series 𝐸𝑡, 𝛥0.6𝑒𝑙𝑡 and 𝑊𝑡 over the period January, 2005, through December, 2019. The Johansen and Nielsen (2012) rank
test indicates fractional cointegration with 𝑟 = 2 (LR = 25.960 for 𝑟 = 0, LR = 9.033 for 𝑟 = 1, LR = 2.113 for 𝑟 = 2). The estimated cointegration vectors for 𝑟 = 2 are
𝛽′1 = (1.0000, 0.0000, 0.2351) and 𝛽′2 = (0.0000, 1.0000, 0.6719). The bottom lines report Ljung–Box (LB) tests for five and ten periods, the associated 𝑝-values, and the Doornik and
Hansen (2008) test of multivariate normality. The maximized value of the log-likelihood function is 428.251. MEA is estimated to 0.1112, with bootstrap confidence interval at
90% given by (0.0330,0.2900). The Wald test of the null of weak exogeneity of electricity prices, (𝛼𝑒𝑙,1 , 𝛼𝑒𝑙,2)′ = 0, takes the value 1.4558 (𝑝-value 0.4853).

𝐸𝑡 𝛥0.3𝑒𝑙𝑡 𝑊𝑡

Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val Est. Std.Err. 𝑡-stat 𝑝-val

Estimates

𝑑 0.5849 0.0616 9.4974 0.0000 0.5849 0.0616 9.4974 0.0000 0.5849 0.0616 9.4974 0.0000
𝛼1 −0.4816 0.1107 −4.3487 0.0000 0.0204 0.2106 0.0966 0.9230 0.1683 0.5652 0.2978 0.7659
𝛼2 0.0748 0.0398 1.8779 0.0604 0.0744 0.0764 0.9738 0.3302 −0.5792 0.1911 −3.0316 0.0024
𝜇 8.4291 0.0322 261.8015 0.0000 −0.0850 0.0909 −0.9352 0.3497 −1.6319 0.1405 −11.6161 0.0000
𝑡𝑟𝑒𝑛𝑑 −0.0025 0.0004 −5.9132 0.0000 0.0008 0.0012 0.6124 0.5403 0.0104 0.0019 5.5936 0.0000
sin(2𝜋𝑡∕12) −0.0272 0.0196 −1.3904 0.1644 −0.1873 0.0338 −5.5452 0.0000 −0.0619 0.0935 −0.6621 0.5079
cos(2𝜋𝑡∕12) 0.0656 0.0242 2.7125 0.0067 −0.0864 0.0409 −2.1132 0.0346 −0.1683 0.1149 −1.4638 0.1432
𝑡𝑒𝑚𝑝 −0.1083 0.0201 −5.3956 0.0000 −0.1267 0.0336 −3.7650 0.0002 −0.0041 0.0955 −0.0425 0.9661
𝑝𝑟𝑒𝑐𝑖𝑝 −0.0040 0.0060 −0.6657 0.5056 −0.0163 0.0098 −1.6716 0.0946 0.0936 0.0281 3.3349 0.0009
𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 0.0196 0.0129 1.5163 0.1294 0.0092 0.0209 0.4390 0.6607 −0.0329 0.0608 −0.5404 0.5889
𝑁𝐴𝑂𝐼 −0.0074 0.0053 −1.3866 0.1656 −0.0117 0.0088 −1.3282 0.1841 0.0660 0.0250 2.6427 0.0082
𝛥 log(𝑖𝑛𝑑) 0.0050 0.0049 1.0107 0.3121 0.0842 0.0079 10.7080 0.0000 −0.1087 0.0233 −4.6617 0.0000
[𝛥 log(𝑖𝑛𝑑)]2 0.0057 0.0047 1.2244 0.2208 0.0178 0.0078 2.2646 0.0235 −0.0044 0.0219 −0.2010 0.8407

Misspecification tests

LB(5) 19.0622 – – 0.0019 0.5568 – – 0.9899 1.8582 – – 0.8684
LB(10) 20.9494 – – 0.0214 4.1951 – – 0.9381 18.5798 – – 0.0459
Normality 21.5205 – – 0.0015
Fig. B.10. Impulse-response functions of CO2 emissions and wind energy from the trivariate FVECM-X𝑑,𝑏 with filtered electricity price index. In gray the bootstrapped 90%
confidence bands. MEA over 24 months is estimated to 0.1112.
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