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A B S T R A C T   

Background and purpose: Approximately 65% of moderate-to-severe traumatic brain injury (m-sTBI) patients 
present with poor long-term behavioural outcomes, which can significantly impair activities of daily living. 
Numerous diffusion-weighted MRI studies have linked these poor outcomes to decreased white matter integrity 
of several commissural tracts, association fibres and projection fibres in the brain. However, most studies have 
focused on group-based analyses, which are unable to deal with the substantial between-patient heterogeneity in 
m-sTBI. As a result, there is increasing interest and need in conducting individualised neuroimaging analyses. 
Materials and methods: Here, we generated a detailed subject-specific characterisation of microstructural orga
nisation of white matter tracts in 5 chronic patients with m-sTBI (29 – 49y, 2 females), presented as a proof-of- 
concept. We developed an imaging analysis framework using fixel-based analysis and TractLearn to determine 
whether the values of fibre density of white matter tracts at the individual patient level deviate from the healthy 
control group (n = 12, 8F, Mage = 35.7y, age range 25 – 64y). 
Results: Our individualised analysis revealed unique white matter profiles, confirming the heterogenous nature of 
m-sTBI and the need of individualised profiles to properly characterise the extent of injury. Future studies 
incorporating clinical data, as well as utilising larger reference samples and examining the test–retest reliability 
of the fixel-wise metrics are warranted. 
Conclusions: Individualised profiles may assist clinicians in tracking recovery and planning personalised training 
programs for chronic m-sTBI patients, which is necessary to achieve optimal behavioural outcomes and improved 
quality of life.   
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1. Introduction 

At least 27 million individuals worldwide sustain moderate-severe 
traumatic brain injuries (TBIs) annually that result in death or require 
hospitalisation (James et al., 2019). Interestingly, these moderate to 
severe TBIs (m-sTBIs) account for almost 20% of brain injuries globally 
and results in a heavy burden on healthcare systems (Dewan et al., 
2019). Long-term outcomes after m-sTBI after often poor, with patients 
facing lifelong chronic symptoms (such as cognitive, motor, social and 
psychological deficits.) that are difficult to treat and predict (Dewan 
et al., 2019; Maas et al., 2022). The heterogeneity of the pathophysi
ology within m-sTBI is believed to be a key factor in why it is difficult to 
treat and predict recovery outcomes for individual m-sTBI patients 
(Dadas et al., 2018; Maas et al., 2022). 

Numerous diffusion-weighted MRI (dMRI) studies have demon
strated that m-sTBI is associated with structural white matter changes in 
association/projection/commissural fibre bundles, which play an 
important role in long-term behavioural deficits (see reviews and meta- 
analyses; Roberts et al., 2013; Wallace et al., 2018). For example, one 
study revealed reduced fractional anisotropy (FA) values in 13 major 
white matter tracts (e.g., superior longitudinal fasciculus, genu of corpus 
callosum) in m-sTBI patients, compared to controls (Attyé et al., 2021). 
These reduced values of white matter organisation were associated with 
poor performance on a range of cognitive tasks (i.e., executive function, 
attention, and memory). 

Most of our understanding how white matter is impacted in m-sTBI 
comes from group-based analyses, which fail to reflect changes at an 
individual level. However, this major focus on group-wise comparisons 
of dMRI metrics (i.e., N patients vs M controls) is starting to be ques
tioned. A number of scholars regard individualised profiling (i.e., 1 
patient vs M controls) as a promising response to the challenges posed by 
this heterogeneity (Attyé et al., 2021; Chamberland et al., 2021; Jolly 
et al., 2020; Lv et al., 2021). The goal of individualised profiling is to 
enhance the characterisation of brain alterations in individuals from 
clinically heterogeneous groups, rather than to just focus on how their 
patient cohort as a group departs from healthy controls. 

One study investigated 45 white matter tracts in individual schizo
phrenia patients (N = 322) in comparison to a group of healthy controls 
(N = 195), revealing widespread but highly heterogeneous deviations in 
FA across all tracts (Lv et al., 2021). In addition, another study revealed 
a large degree of inter-individual variability in white matter micro
structure abnormalities in children with copy number variants, high
lighting the need for individualised profiles (Chamberland et al., 2021). 

The above-mentioned studies do not focus on patients with TBI. 
However, heterogeneity in patient profiles is a hallmark characteristic of 
TBI and therefore should no longer be avoided or ignored (Maas et al., 
2022). Recently, it has been suggested that by adopting new methodo
logical approaches (such as single-subject analyses, normative model
ling), we can account for this inherent heterogeneity in TBI specifically. 
Using single-subject analyses to its full potential for the first time, an 
example study was presented in Jolly et al. (2021), who compared 1 
patients vs a reference control group. Through this methodology, they 
examined diffuse axonal injury (DAI) in individual patients with TBI 
using the dMRI tensor-based metric fractional anisotropy. This study 
revealed for the first time the importance of (1) moving beyond con
ventional scans for axonal injury diagnosis as diffuse injuries may not be 
evident on conventional scan sequences and; (2) individualised profiling 
of m-sTBI patients due to large heterogeneity seen within patients. 
Focusing only on differences in group means obscures between-patient 
heterogeneity in the topography of the lesions, type of lesion, tissue 
repair and recovery mechanisms, limiting our understanding of the 
aetiology of TBI and identification of effective rehabilitation and treat
ment (Verdi et al., 2021). 

To the best of our knowledge, only three studies so far have per
formed single-subject analyses in TBI patients (Attyé et al., 2021; Jolly 
et al., 2020; Poudel et al., 2020). One study conducted a subject vs 

reference group (i.e. healthy controls) analysis for the identification of 
traumatic axonal injury in individuals with m-sTBI (Jolly et al., 2020). 
They revealed substantial heterogeneity in tensor-based metrics (e.g., 
FA) across m-sTBI patients. Another study introduced a novel data- 
driven learning framework called TractLearn for quantitative analysis 
of white matter tracts (Attyé et al., 2021). TractLearn overcomes limi
tations of the standard subject-versus-reference-group studies, because 
it uses controls variability as normative reference instead of computing 
average values of the dMRI metrics of controls as reference scores. Using 
TractLearn, this research detected abnormal voxels in a wide array of 
white matter tracts using both tensor (e.g., FA) and constrained spher
ical deconvolution-based (e.g., apparent fibre density, AFD) metrics in 
five mild TBI patients4. Their findings illustrated the ability of Tract
Learn to capture both the variability of the healthy controls (N = 20) and 
the subtle quantitative alterations in a brain bundle at the voxel scale in 
mild TBI patients, all of which did not show visible lesions on standard 
MRI scans. 

In the present study, our overall aim is to implement TractLearn in 
m-sTBI patients with visible focal lesions. We consider TractLearn over 
classical voxel-to-voxel methods since this method can model the bun
dle’s variability better and at the single-subject level (Attyé et al., 2021). 
The aim of the current study is to demonstrate a proof-of-concept of a 
framework framework for generating subject-specific brain profiles of 
our m-sTBI patients in the chronic stage of injury. We define brain 
profiles as profiles of brain imaging measures at the level of the indi
vidual patient (Scarpazza et al., 2020). We use advanced processing 
pipelines to derive different brain metrics to quantify subject-specific 
changes (e.g., white matter organisation; connectome network proper
ties in our recent paper – Imms et al., 2022) and locate these brain 
profiles relative to a reference cohort. This contextual information en
ables us to meaningfully, qualitatively, and quantitatively, assess brain 
damage in single individuals. These resulting single-subject brain pro
files can provide quantitative support and be used by clinicians to the 
classification of neuropathology types. These brain profiles may assist 
clinicians in formulating a neuroscience-guided integrative rehabilita
tion program tailored to individual TBI patients in the future. To this 
end, we will utilise the TractLearn framework to determine whether 
fibre density (FD) values derived from fixel-based analysis (FBA) (Raffelt 
et al., 2015, 2017) of white matter tracts of an individual patient deviate 
from a healthy reference group (N = 12). We have chosen FBA over the 
traditional diffusion tensor approach (as was done in previous research; 

Jolly et al., 2020), as FBA offers greater specificity (Dhollander et al., 
2021; Raffelt et al., 2012; Liang et al., 2021; Mito et al., 2018). 

2. Materials and methods 

2.1. Participants 

m-sTBI participants were recruited at St Vincent’s Hospital (H.A.) in 
Melbourne. Inclusion criteria included: (1) age range 18–65 years; (2) 
diagnosed with m-sTBI at the time of injury based on: (i) a Glasgow 
Coma Scale score between 3 and 12 (Teasdale & Jennett, 1974) (ii) loss 
of consciousness longer than 30 min; (iii) Post traumatic Amnesia (PTA) 
longer than 24 h (Rabinowitz and Levin, 2014) and; (iv) positive find
ings of gross injury on MRIs as per evaluation by a neuroradiologist (PB); 
(3) in the chronic phase (>6 months after injury); (4) ambulant or 
independently mobile at the time of recruitment; (5) no known diag
nosed TBI prior to current brain injury and; (6) right-handed as defined 
by the Edinburgh Handedness Inventory (Oldfield, 1971). 

A total of six patients with m-sTBI were recruited for this study. See 
Table 1 for a summary of demographic, injury, and clinical character
istics for the m-sTBI participants. The patients were compared to a 
reference group of 12 healthy controls (HC; age range = 25 – 64 years; 
Mage = 35.70 ± 11.4 years; 8 females). This reference group enabled us 
to meaningfully assess the extent to which each individual TBI patient 
departed from the HC group in terms of fibre density metrics. Healthy 
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controls were recruited via social contacts and were included if they met 
the following criteria: (1) age range 18–65 years; (2) no history of 
neurological or psychiatric disorders; (3) right-handed as defined by the 
Edinburgh Handedness Inventory scale (Oldfield, 1971); (M = 9.92 SD 
= 0.28). Patient TBI2 was excluded from the analyses, due to severe 
head motion in the diffusion MRI data, therefore the final number of 
participants for this study was five. Written informed consent was ob
tained from each participant in accordance with the Helsinki declara
tion, and ethical approval was obtained by the St Vincent’s Hospital 
Human Research Ethics Committee (#250/17). 

2.2. MRI acquisition 

Structural MRI scans were acquired on a 3 T Siemens PRISMA 
scanner with a 64-channel head coil at Murdoch Children’s Research 
Institute in Melbourne, Australia. Single shell diffusion-weighted im
aging was acquired using single-shot echo planar with twice-reinforced 
spin echo and a multi-band acceleration factor of 2 which was obtained 
with 70 contiguous transverse slices (FOV = 260 × 260 mm2, voxel size 
= 2.3 mm isotropic, TR = 3500 ms, TE = 67 ms, A≫P, and TA = 6 min 
17 s. A high angular resolution diffusion imaging (HARDI; Frank, 2001) 
gradient scheme was applied in 64 non-collinear gradient directions, 
maximum b-value of 3000 s/mm2, and seven interleaved b0 images. A 
pair of anterior–posterior (AP) and posterior–anterior (PA) reverse 
phase-encoded images were also collected to correct for geometric dis
tortions (TA = 50 s each). 

Anatomical MRI scans were also acquired using a T1 weighted im
aging (ADNI) protocol with 104 contiguous sagittal slices (A≫P, FOV =
220 × 220 mm2, voxel size = 1.0x1.00x1.50 mm3, TR = 2250 ms, TE =
3.07 ms, flip angle = 9◦, and TA = 5.48 min). These MRI scans were 
inspected and classified by an experienced neuroradiologist (P.B.) 
providing an overall description of the pathology as well as a DAI grade 
using a published grading system (as can be seen in Table 1; Adams 
et al., 1989). 

2.3. MRI data processing 

The current study uses a state-of-the-art processing pipeline which 

inherently deals with large focal lesions in m-sTBI patients (Dhollander 
et al., 2021). See (Fig. 1) for a schematic overview of the pipeline. 
Following the figure will be a detailed description of this processing 
pipeline. 

2.3.1. Quality assessment of raw diffusion data 
Prior to analysing the dMRI data, a rigorous quality analysis was 

conducted using ExploreDTI (v4.8.5; Leemans et al., 2009) which helped 
(1) detect potential mistakes which may have occurred when acquiring 
the data; and (2) identify and eliminate artefacts. Once the dMRI scans 
were acquired, raw folders were inspected to detect if the correct 
number of volumes had been acquired. This was the first step to ensure 
that the data had been acquired correctly. Following this, the quality of 
the data was inspected with ExploreDTI through three major steps. First, 
“looping” through each of the raw diffusion weighted images was uti
lised to detect any major movements throughout each participant scans. 
Following this, a colour coded FA map of the raw diffusion weighted 
images was checked to ensure that the direction of the colours were 
correct (i.e., left–right: red, inferior-superior: blue, anterior-posterior: 
green). Next, average residuals and outlier profiles per diffusion 
weighted image were checked to reflect the fit of the diffusion tensor. All 
participants passed the quality analyses and the data was ready for 
further analyses. 

2.3.2. Pre-processing 
MRI data was processed using MRtrix3Tissue (https://3Tissue.gith 

ub.io), a fork of MRtrix3 (Tournier et al., 2019). The pre-processing 
steps included: denoising (Veraart et al., 2016), removal of Gibbs ring
ing (Kellner et al., 2016), and eddy current, motion, and susceptibility 
induced distortion correction with outlier replacement (Andersson and 
Sotiropoulos, 2016; Andersson et al., 2016). The pre-processed diffusion 
weighted images were then upsampled from 2.3 mm to 1.33 mm 
isotropic voxels before the computation of the upsampled brain masks. 
Data was upsampled as per the MRtrix FBA documentation (see https: 
//mrtrix.readthedocs.io/en/0.3.16/workflows/fixel_based_analysis. 
html) as this can increase anatomical contrast and inherently improve 
downstream normalisation and statistics derived from the data (Dyrby 
et al., 2014). 

Table 1 
Summary of Demographic, Injury, and Clinical Characteristics of the six m-sTBI Participants.  

Participant 
ID 

Age (years, 
months)/ sex 

Time since injury 
(years, months) 

Cause MRI scan at time of testing, Lesion location / pathology DAI 
Grade1 

SPRS 
(total)2 

TBI1 45, 3 M 21, 0 Car accident Small area of encephalomalacia in the (R) precentral gyrus 0 48 
TBI2* 49, 10 M 15, 6 Motor bike 

accident 
Large areas of encephalomalacia involving (L, R) anterior and inferior frontal 
lobes, (R) lateral temporal lobe and (R) parietotemporal region extending to the 
(R) posterior frontal lobe. Focal T1 hypointensities in the anteromedial aspect of 
the (L) thalamus. Volume loss and T1 hypointensity on the anterior body and 
genu of the corpus callosum. 

2 30 

TBI3 49, 8F 3, 8 Horse riding 
accident 

Bilateral anterior and inferior frontal encephalomalacia, (R) greater than (L), 
and (R) anterior temporal encephalomalacia. Small deep white matter T2 
hyperintensities medial (R) parietal lobe. Small focal T1 hypointensity in the 
anterior body of the corpus callosum. 

2 31 

TBI4 29, 5F 15, 6 Horse riding 
accident 

Bilateral inferior frontal and (L) anterior temporal encephalomalacia. Small area 
of encephalomalacia (L) superior frontal gyrus. (R) frontal burr hole with 
underlying ventricular drain tract. 

0/1 34 

TBI5 50, 2 M 18, 1 Car accident Two small nonspecific deep white matter T2 hyperintensities in the (R) parietal 
lobe (within normal limits for age). 

0 51 

TBI6 29, 7F 5, 10 Horse riding 
accident 

Small T1 hypointensity in splenium of corpus callosum. Scattered punctate T2 

hyperintensities in both cerebral hemispheres (approx. 6). 
2 44 

1Grading of Diffuse Axonal Injury (DAI) in accordance with a published grading system (Adams et al., 1989): a “0” grade indicates no confirmed DAI present; “1” is 
considered evidence of axonal injury in the white matter of the cerebral hemispheres, the corpus callosum, the brainstem and, less commonly, the cerebellum; “2” 
presence of a focal lesion in the corpus callosum; and “3” is interpreted as presence of a focal lesion in the dorsolateral quadrant or quadrants of the rostral brainstem. 
Anatomical T1-weighted image MRI scans were inspected and classified by an experienced neuroradiologist (P.B.) providing the descriptions of the lesions and DAI 
grading. 2 The Sydney Psychosocial Reintegration Scale (SPRS) measures psychosocial functioning in three domains of participation (Tate, Simpson, Soo, & Lane- 
Brown, 2011). These three domains are (i) occupational activity (i.e. work and leisure), (ii) interpersonal relationships, and (iii) independent living skills. Scores 
result from the sum of all questions and range from 0 to 52 for the overall scale, with higher scores indicating greater psychosocial functioning. * Subject excluded from 
analysis due to excessive motion. Abbreviations: M  = male; F = female; L = left; R = right. 
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Fig. 1. Schematic overview of dMRI framework (A) Raw diffusion images were pre-processed to remove artefacts (noise, Gibbs-ringing, eddy/motion and geometric 
distortion). (B) Single shell 3-tissue constrained spherical deconvolution was then performed on the pre-processed images followed by joint bias field correction and 
intensity normalisation. (C) A study-specific population template was then constructed using HC (cross-sectional data) and m-sTBI patient data. (D) For each HC and 
m-sTBI participant, 72 tracts were generated using TractSeg and fixel-wise fibre density (FD) was computed for each individual tract. (E) TractLearn (which employs 
a manifold learning approach), was then used to detect abnormal voxels in fibre density for the m-sTBI patients when compared to the healthy controls. The results 
are illustrated in radar plots, which show the percentage of damaged voxels, and back-projections of damaged voxels in population template space are finally 
computed. (F) Heat maps of the mean FD of damaged tracts in relation to the mean FD of each tract of the healthy control group. 
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2.3.3. Fibre orientation distribution calculation 
As our m-sTBI patients had large focal lesions, a robust pipeline was 

needed to control for this. We estimated the fibre orientation distribu
tions (FOD) estimations using single-shell 3-tissue constrained spherical 
deconvolution (SS3T-CSD; Dhollander and Connelly, 2016). Research on 
patients with lesions in both MS (Gajamange et al., 2018) and stroke 
(Egorova et al., 2020; Gottlieb et al., 2020) have computed white matter 
FODs using SS3T-CSD which is suggested to be the best current method 
for dealing with lesions (Dhollander et al., 2019; Dhollander et al., 2016; 
Dhollander et al., 2021). Following this, we performed joint bias field 
correction and global intensity normalisation (Raffelt et al., 2015). 

2.3.4. Fibre orientation distribution template construction 
We generated a study specific unbiased FOD template using the FOD 

templates from the (1) five m-sTBI participants and; (2) the 12 cross- 
sectional HC participants, using linear and non-linear registration of 
the FOD image (Raffelt et al., 2011; Raffelt et al., 2012). This method for 
template construction is used in other studies profiling single-subjects 
(Attyé et al., 2021) and is recommended on the MRtrix3 documenta
tion (https://www.mrtrix3.org). This was followed by the registration of 
each FOD image to template space (Dhollander et al., 2021). FOD seg
mentation was then performed to compute fixels at both template-level 
and individual-level (Raffelt et al., 2015; Raffelt et al., 2017). Finally, 
fixels at individual-level were all reoriented to the corresponding fixels 
of the FOD template in order to conduct group comparisons of fixel-wise 
metrics (Raffelt et al., 2011). 

2.3.5. Fibre density calculation 
Based on the 2 million tractograms, the FD fixel-metric was calcu

lated in template space for each individual participant as we are inter
ested in microstructural changes of the white matter (Raffelt et al., 
2015). For the TractLearn tool, FD was converted to voxels in order for 
the toolbox to run as it requires a specific form of quantitative data. 
These statistics were utilised for further analyses. 

2.3.6. Tracts of interest construction 
We used the automated TractSeg tool to delineate 72 tracts for the 

individualised profiles (Wasserthal et al., 2018, 2019). TractSeg is a 
novel semi-automated probabilistic tractography tool that directly seg
ments streamlines from tracts in the field of fibre orientation distribution 
function peaks without using common time consuming techniques, such 
as tractography, image registration, or parcellation (Wasserthal et al., 
2018). With this, TractSeg provides fast and accurate segmentation of 72 
white matter tracts, providing a good balance between manual delin
eation and automated atlas-based tracking approaches (Wasserthal 
et al., 2018). Specifically, TractSeg was applied to the study-specific 
FOD population template to delineate the 72 tracts for the individu
alised profiles. 

We conducted rigorous visual quality check inspections of the data. 
Firstly, we visualised the reconstructed tracts derived from TractSeg in 
individual space to check that all 72 tracts were not delineated in regions 
of lesioned tissue. Following this, similar to recent applications of this 
toolbox using FBA, for each individual participant, we warped the tracts 
from subject space into a common population template space to be able 
to compare metrics along each tract more robustly (Attyé et al., 2021; 
Genc et al., 2020). Importantly, we performed a QA check of all tracts for 
each individual patient within the template space to ensure that all 
tracts were anatomically representative. All tracts were generated using 
the default TractSeg pipeline for each individual participant at each time 
point using their individual white matter FODs which were then warped 
into population template space (https://github.com/MIC-DKFZ/ 
TractSeg), apart from upgrading each tract from the default 2000 to 
10,000 streamlines. These tracts were used for further analyses. 

2.4. Individualised profiling statistical analysis 

To develop individualised profiles, our analysis was two-fold. This is 
presented as a proof-of-concept. First, we used the TractLearn toolbox 
(Attyé et al., 2021) (https://github.com/GeodAIsics/TractLearn-Who 
leBrain) to identify damaged white matter tracts from the 72 tracts 
delineated via TractSeg (Wasserthal et al., 2018, 2019. For a given dMRI 
metric, TractLearn detects abnormal voxels for each tract in every pa
tient by using a manifold learning approach to determine which voxels 
deviate from normative healthy control measures (Attyé et al., 2021). A 
Z-score is applied to all voxels in each tract, which indicates a difference 
in the dMRI metric between a patient and the control group. Bonferroni 
correction for multiple comparisons (given by the size of the tract in 
number of voxels) is then applied. The remaining voxels are considered 
statistically significantly damaged. The percentage of damaged voxels 
thus identified within each tract is then computed. In this paper, we used 
the fixel-wise fibre density (FD) metric. TractLearn therefore provided 
us with an estimate of the extent of damage in FD at the subject level for 
each of our patients. We categorised the severity of the extent of damage 
of FD for each tract as either “severe” (>10% damaged voxels), “mod
erate” (1–10% damaged voxels), or “mild” (<1% damaged voxels). 
Please note, these are arbitrary labels of damage severity based on 
damaged tracts seen in mild, moderate, and severe TBI (Wallace et al., 
2018). For visualisation, these damaged voxels were then projected back 
to population template space. (See Fig. 2 for an example radar plot and 
the full list of abbreviations of tracts). 

In the second analysis, for every individual patient, we calculated the 
mean FD of each whole tract that was moderately or severely damaged 
(as quantified by TractLearn in the previous step). FD was also calcu
lated for the reference HC group to generate reference points for com
parisons against each individual TBI patient. We then estimated the 99% 
confidence intervals (CIs) and the mean FD of each tract for the HC 
group. Subsequently, we classified the profiles of the patients in line 
with previous normative work (Lv et al., 2021), whereby FD of the tract 
of the patient is classified as either “normal” (if the FD value of the tract 
falls within the 99% CI of the HC), “supra-normal” (greater than the 99% 
CI of the HC), or “infra-normal” (lower than the 99% CI of the HC). This 
provides an overall measure representative of FD loss in tracts relative to 
controls. 

3. Results 

Patient TBI1 presented with the highest number of injured tracts (39 
tracts; 3 severe, 18 moderate, 18 mild), most notably in the corpus 
callosum (segments 1, 4, 5 - moderate), thalamo postcentral (severe), 
fornix (severe), and CST (moderate), with some of the tracts including at 
least 10% damaged voxels. When assessing whole tract FD, we observed 
between 10 and 35% FD loss, relative to the HC mean, in infra-normal 
tracts. Interestingly, despite having a low DAI grade (score of 0 on the 
Adam’s system), patient TBI1 presented with moderate damage not 
visible on conventional scanners. Finally, despite a wide array of 
damaged tracts, patient TBI1 self-reported a high psychosocial func
tioning since their injury on the Sydney Psychosocial Reintegration 
Scale (SPRS). 

TractLearn results for patient TBI3 showed a significant number of 
damaged voxels (12 tracts: 2 severe, 2 moderate, 8 mild). The moder
ately and severely damaged tracts, include the whole corpus callosum 
(severe), segment 1 (rostrum) of the corpus callosum (moderate), right 
thalamo-premotor (moderate), and right striato-fronto-orbital tract 
(severe). All these tracts were also found infra-normal in terms of whole 
tract FD, with an 8 to 30% FD loss, relative to the reference group. 
Despite having a moderate to severe diffuse axonal injury grade (score of 
2 on the Adam’s system), patient TBI3 presented with damage to 16% of 
the 72 tracts examined, with most of them mildly damaged. Also, patient 
TBI3 self-reported a moderate psychosocial functioning since their 
injury on the SPRS which showed correspondence with their relatively 
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low number of damaged tracts. 
As per the radar plot for patient TBI4, this patient showed a higher 

number of damaged voxels in 8 tracts, including the corticospinal tract, 
bilaterally (mild), fornix (severe), right anterior thalamic radiation 
(mild), corpus callosum (whole CC, moderate), left fronto-pontine tract 
(mild), and left striato-occipital tract (mild). The corpus callosum and 
fornix showed an infra-normal 10–20% FD decrease relative to controls. 
Patient TBI4 showed overlap between the diffuse axonal injury grade 
(score of 0/1 on the Adam’s system) and the limited number of damaged 
tracts detected. Patient TBI4 also self-reported moderate psychosocial 
functioning since their injury on the SPRS, which aligned with a small 
percentage (i.e., 11%) of significantly damaged tracts. 

The TractLearn results for patient TBI5 revealed a high number of 
voxels with significant altered FD in 20 white matter tracts, including 
the corpus callosum (whole CC moderate damage, mild damage in 
segments 5–7), optic radiations (mild to moderate damage), striato- 
occipital bundles (mild-moderate damage), corticospinal tract (moder
ate) and thalamic post central bundles (moderate). Except for the right 
thalamic postcentral bundle, the moderate-and-severely damaged tracts 
can be classified as infra-normal (5–30% FD loss). Interestingly, despite 
the low diffuse axonal injury grade (score of 0 on the Adam’s system), 
patient TBI5 presented with a wide array of mild damage not visible on 
conventional scanners. In addition, patient TBI 5 self-reported high 
psychosocial functioning since their injury on the SPRS despite 28% of 
tracts showing at least mild damage. 

Patient TBI6 presented only with damaged voxels in the left striato- 
occipital fibre bundle (mild). Example TractLearn radar plots are 

presented in (Fig. 2), and FD heatmaps are presented in (Fig. 3). In 
addition, the back projections of moderate to severely damaged tracts 
allowed to identify the location of altered voxels within each bundle 
using FD, as illustrated in (Fig. 4) for TBI1 and TBI3 patients. Despite 
having a moderate to severe diffuse axonal injury grade (score of 2 on 
the Adam’s system), patient TBI6 presented with moderate damage in 
only 1/72 tracts. Also, TBI6 self-reported relatively high psychosocial 
functioning since their injury on the SPRS which aligns with the limited 
number of damaged tracts,Fig. 5. 

4. Discussion 

The present study provides a proof-of-concept study of TractLearn in 
five patients with m-sTBI to characterize patient-specific FD loss pat
terns in comparison to healthy controls. These results provide further 
evidence of the benefits of characterising abnormalities at the patient 
level when dealing with highly heterogeneous populations. First, we will 
discuss our observations from these individualised profiles followed by 
discussion of key ideas to improve individualised profiles of tract- 
specific white matter. 

4.1. Individualised profiling of white matter microstructure 

The individual profiles showed substantial variation across partici
pants, ranging in number from one damaged tract in one patient (i.e., 
patient TBI6) to 39 damaged tracts in another (i.e., patient TBI1). The 
secondary analysis of tract-wide FD provides further insights into the 

Fig. 2. Example TractLearn radar plots for damaged tract profiles alongside the full list of abbreviations of tracts as described and delineated through TractSeg. 
Numbers in the plots represent percentage of voxels within tract that is damaged. 
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highly heterogeneous damage across m-sTBI patients. First, this analysis 
revealed up to nearly 40% tract-wide FD loss in patients relative to 
controls. Moreover, inspection of the heatmaps vis-à-vis the radar plots 
show that the extent of statistically detectable (by TractLearn), localised 
damage is not the whole story: tracts relatively spared in terms of extent 
of damage, may still exhibit a sizable amount of FD loss when considered 
as a whole. In the most salient case, the left uncinate fasciculus in patient 
TBI1 exhibited close to 40% FD loss tract-wise; however, the extent of 
damage to this tract was only 1.25%. This may mean a tract-wise loss of 

FD not detectable at the voxel level and/or a very substantial FD loss in 
the voxels detected as damaged that disproportionally affected the tract- 
wise metric. TractLearn and the tract-wide analysis therefore offer 
complementary information necessary to more fully characterise the 
damage sustained by white matter tracts. Together, these results high
light the variability and heterogeneity that is intrinsic to m-sTBI pa
tients, which is consistent with reports from previous group-based 
studies (Han et al., 2017; Strangman et al., 2010; Verhelst et al., 2019). 

On the other hand, there were tracts which seem to be more 

Fig. 3. TractLearn profiles of all m-sTBI patients, presenting the percentage of damaged voxels of FD in various tracts using TractLearn. Numbers of damage denote 
the severity of the damage; blue = mild, yellow = moderate, red = severe. 
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frequently vulnerable as they were damaged across multiple partici
pants. They include various segments of the corpus callosum (CC), the 
fornix as well as thalamo-postcentral tracts. This is in line with previous 
research (Wallace et al., 2018; Caeyenberghs et al., 2011). Studies uti
lising tensor-based metrics, for example, showed the CC as a vulnerable 
tract to long-term damage following m-sTBI26. This is common in m-sTBI 
patients in the chronic phase, who are prone to neurodegeneration of the 
white matter (Poudel et al., 2020), most likely as a result of secondary 
injury mechanisms, such as (Wallerian) degeneration (Koliatsos and 
Alexandris, 2019). In addition, the sensitivity of the CC for m-sTBI 
impact may also be explained by the anatomy of this tract which is ideal 
for the tensor model, subsequently leading to a better fit, a lower 
contribution of noise to the diffusion estimations and higher statistical 
power (Dennis et al., 2021). 

Finally, 3 out of the 5 patients showed overlap between the SPRS 
clinical outcome measure and the damage observed in the white matter 
tracts detected by TractLearn. The SPRS measures the extent to which a 
patient’s lifestyle may have changed as a result of an acquired brain 
injury and is a valid measure for monitoring chronic outcomes many 
years post-TBI (Tate et al., 2011). This provides preliminary evidence of 
interpretability of these individualised profiles and clinical outcomes in 

chronic TBI patients, but also highlights the heterogeneity seen across 
individual patients. 

4.2. State-of-the art processing pipeline and implications of single-subject 
profiling 

Our patients presented large focal lesions, representative of m-sTBI. 
However, using single-shell 3 tissue constrained spherical deconvolution 
(SS3T-CSD; Dhollander and Connelly, 2016; Dhollander et al., 2019), we 
were able to reconstruct the majority of the white matter tracts in a 
robust manner. This approach utilises group-average response functions 
for white matter, grey matter, and cerebrospinal fluid tissue types 
(Dhollander and Connelly, 2016; Dhollander et al., 2016). These 
response functions are tissue-specific signal models that allow tissue 
signal fraction estimation of grey matter and cerebrospinal fluid signals 
as well as white matter fibre orientation distributions (FODs) through 
spherical deconvolution analysis. This makes it possible to clearly 
delineate white matter fibre-bundles for TractLearn analysis. Computing 
white matter FODs using SS3T-CSD has previously been suggested as 
being able to inherently deal with lesions (Dhollander et al., 2021; 
Egorova et al., 2020; Gajamange et al., 2018; Gottlieb et al., 2020). 

In addition, we also performed whole brain analysis at baseline 
through the use of TractSeg utilising the fibre-specific FD metric from 
the FBA framework, which overcomes drawbacks of tensor-based met
rics (i.e., modelling crossing fibres) used in previous studies6. In 
advanced analyses, control for subject motion is essential, an issue that 
can be of particular importance in TBI patients, who can be less coop
erative during MRI scanning. Motion control be achieved through pa
tient preparation in a dummy scanner, online tracking of motion during 
scanning and re-running the protocol if excessive motion is detected. 

TractLearn was used to detect damaged tracts, which relies on a 
manifold learning approach4. This framework (as opposed to deep- 
learning methods) for single-subject anomaly detection has two ad
vantages over classic statistics methods: 

Fig. 4. Fibre density (FD) heatmaps of m-sTBI patients. Each heatbar shows the 
mean FD of the severe (top panel) and moderately (bottom panel) damaged 
tracts. Tracts are listed from the highest number of damaged voxels to the 
lowest. For each heatmap, the X-axis represents the percentage difference in FD 
from the healthy control mean. Grey heat maps in the centre represent the 99% 
healthy control confidence intervals. 

Fig. 5. Back-projection visualisations of TBI1 and TBI3, showing the damaged 
voxels of the severely damaged tracts projected back into population template 
space. LH = left hemisphere; RH = right hemisphere, CC = corpus callosum. 
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1. Decreasing the number of false positive findings by capturing the 
anatomical variability and contrast variation from the healthy atlas. 
A benefit of manifold learning (compared with deep learning) is that 
it does not rely on the need of large number of subjects, which makes 
it useful for studies like the present one and for clinical translation. 
However, future studies will benefit from using larger control 
reference groups (N > 50).  

2. Decreasing the number of false negatives by providing a nonlinear 
global analysis of all voxels in brain bundles, as opposed to a classic 
statistical method where all voxels are analysed independently. 

Also, a benefit of this approach is that it does not require an explicit 
mask (which is very time consuming) and can operate over damaged 
tissue. This leads to not having to exclude subjects from analyses - an 
issue which has plagued research in populations with large lesions, with 
implications for representativity. Overall, our study indicates that this 
advanced method of lesion detection can identify extensive fibre bundle 
damage in TBI patients in comparison with previous individualised 
profiling methods. However, in the absence of a gold-standard (i.e., a 
procedure that is widely accepted for clinical use), it is difficult to pre
cisely ascertain its accuracy. 

4.3. Limitations and future studies 

There are some limitations in this study that should be considered for 
future research. As mentioned earlier, future studies with larger sample 
sizes are needed (Jolly et al., 2020; Lv et al., 2021), a key limitation of 
this study are the low sample sizes of our TBI group and reference group. 
Our results need to be validated using control and TBI samples that are 
large enough to capture the normal variability (age and sex effects) and 
pathological variability white matter organisation. Also, although 
research demonstrated high test–retest reliability for TractSeg and 
TractLearn (Attyé et al., 2021), future studies should examine test–retest 
reliability across different scanners (vendor, software, strength) and 
data acquisition (Grech-Sollars et al., 2015; Karayumak et al., 2019; 
Mirzaalian et al., 2016; Schmeel, 2019; Tax et al., 2019). Continuing 
improvements in multi-site scanner harmonisation procedures will offer 
the possibility of increasing data from healthy cohorts from different 
scanning sites that can serve as reference which will increase the pre
cision of the single-subject analyses (Liew et al., 2022; Olsen et al., 
2021). Continued improvement in cross-scanner harmonisation is 
essential for the feasibility of this framework to ensure that large control 
cohorts are not required at each scanning facility – enabling feasibility of 
this process in terms of costs and clinical accessibility (Olsen et al., 
2021). 

Our study only utilised T1 images for DAI grading and lesion iden
tification. In future studies, it is important to use other structural im
aging modalities such as fluid attenuated inversion recovery (FLAIR) 
and susceptibility weighted imaging (SWI) for best practice guidelines 
for DAI grading and lesion identification (Olsen et al., 2021). This may 
be a reason for the lack of consistency between the DAI grades and 
TractLearn results. However, this study did employ the use of expert 
raters using hospital-level classification techniques through the use of an 
established procedure (Adams et al., 1989), still, DAI grading remains 
subjective with these processes and there is no general consensus 
regarding for the best classification type across the field (Jolly et al., 
2020; Volovici et al., 2021). In addition, alternative MRI location-based 
grading scales (such as the modified Adams-Gentry system) may 
perform better than the Adams Grading system for the DAI despite its 
relevance as an established method (Volovici et al., 2021). The Adams 
Grading system for the DAI is not usually used for MRI as it is a patho
logical based system – this may also account for lack of consistency 
found between DAI grading and TractLearn results. This study highlights 
the importance of alternative DAI grading classifications as discussed in 
recent papers and the push toward consensus in the field (Jolly et al., 
2020; Volovici et al., 2021). 

In addition, longitudinal profiles need to be developed and validated 
to track the progression of damaged tracts over time or after a specific 
training program. Conducting TractLearn in a longitudinal analysis is 
possible and has the potential to overcome these drawbacks. The next 
key important step is to incorporate behavioural data to further under
stand the clinical relevance of structural changes in the white matter in 
TBI patients. Although the purpose of this study was to validate the 
neuroimaging framework, the lack of behavioural data may affect 
interpretability of the clinical meaningfulness of the data (as only the 
SPRS was used to measure general lifestyle changes, not specific out
comes). For example, this includes (1) how the range of differences in 
number of affected tracts may be related to the degree of clinical 
disability and; (2) how a specific tract injury may be linked to deficits in 
cognitive, motor, psychological, or social outcomes. Linking white 
matter profiles to clinical profiles may also provide added value for 
personalised training and is therefore an important step to translate the 
basic science into the clinical practice. This may eventually lead to 
tailored training programs with details provided at baseline or at the end 
of a training protocol, leading to the potential for better health care 
options for heterogeneous populations. 

4.4. Conclusion 

This study presents a novel individualised profiling framework that, for 
the first time, implements TractLearn in m-sTBI patients to detect the 
location and extent of fibre density loss in all tracts across the brain, 
combined with an analysis of tract-wide density loss in those damaged 
tracts. This approach captures the heterogeneity within individual m- 
sTBI patients and can therefore be very useful in clinically heteroge
neous populations. This study extends on the recent papers on single- 
subject profiling (Attyé et al., 2021; Chamberland et al., 2021; Jolly 
et al., 2020; Lv et al., 2021) by developing further insight into damaged 
tracts, as well as using specific FBA-framework based FD measures. With 
further validation of this approach, single-subject profiles may eventu
ally assist clinicians with more quantitative information about the 
changes in the brain structure, potentially augmenting diagnostic and/ 
or treatment decisions made with respect to individual patients with m- 
sTBI. 
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