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1 Introduction 

Given the broad consensus to invest in both asset man-

agement and infrastructure maintenance, Structural 

Health Monitoring (SHM) has emerged as a powerful tool 

to gain insights into structural behaviour before, during 

and after critical events [1,2]. Beyond visual inspections, 

which are often time-consuming and hazardous, vibration-

based SHM systems stand out for their non-destructive 

character and their capability to accomplish real-time 

damage assessment by analysing raw vibration measure-

ments during operational conditions [3,4]. Recently, these 

kinds of automated monitoring strategies are deemed par-

ticularly suitable to be adopted in conjunction with Ma-

chine Learning (ML) algorithms to address damage identi-

fication in several engineering fields [5-7]. Within the 

context of unsupervised learning, aiming at finding hidden 

patterns throughout the distribution of the unlabelled 

data, several works in the literature propose to consider a 

specific index as a damage-sensitive feature to evaluate 

the difference between the original and the reconstructed 

acceleration signal outgoing from an autoencoder network 

[8,9]. On the other hand, the use of supervised algorithms 

is not so common in practical applications since the train-

ing requires labelled data to learn a mapping function be-

tween the input and the output. In this framework, one of 

the main challenges of the ML techniques is the need to 

process large amounts of training data to build a robust 

algorithm. Especially in real monitoring scenarios, data 

collection might be discontinuous or economically unfeasi-

ble and labels are potentially unavailable or incomplete be-

cause of physical constraints or the scarcity of equipment. 

Population-based Structural Health Monitoring (PBSHM) 

attempts to expand the set of labelled data by investigat-

ing a population of structures [10-12] which may differ, 

however, for variations in manufacturing, materials, ge-

ometry, the monitoring setup and the surrounding envi-

ronmental conditions. This translates into a shift in both 

data distribution and feature space between the two do-

mains, which is the reason why a typical ML algorithm can-

not be directly trained on a structure and be tested on an-

other member of the population. Such an issue can be 

addressed by Transfer Learning (TL), whose goal is to im-

prove diagnostic inferences on a target domain, for which 

data are missing or scarce, by transferring knowledge 

from a different domain [13-15]. TL methods can be 

broadly divided into two main categories, covering fine-

tuning and domain adaptation theories. On the one hand, 

fine-tuning techniques perform a “surgery” on a pre-
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trained neural network model, where specific layers are 

frozen, removed or replaced with other layers for new clas-

sification tasks. Fine-tuning-based frameworks are often 

adopted in the literature to improve image classification 

for damage assessment using deep convolutional neural 

networks [16]. On the other hand, the focus of Domain 

Adaptation (DA) is to learn a mapping from source to tar-

get domains by minimising a defined statistical metric be-

tween the two distributions. Typical DA approaches, rely-

ing on kernel-based nonparametric density estimation, 

implement a non-linear transformation to represent 

source and target features in a shared latent space, using 

the Joint Domain Adaptation (JDA) and Domain-Adversar-

ial Neural Networks (DANN) techniques [17].  

However, it is worth pointing out that all the aforemen-

tioned approaches require large quantities of training la-

belled data to generalize well, thus increasing the risk of 

overfitting. Conversely, the methodology proposed in this 

paper exploits a DA technique based on Statistic Alignment 

(SA), that can be easily applied to poor and limited da-

tasets, thereby becoming particularly suitable for SHM 

problems [18]. SA has also the advantage to align the 

lower-order statistics of source and target domains in the 

original features space, rather than considering a latent 

space that may not guarantee a human-interpretable rep-

resentation.  

Specifically, this paper successfully applies (i) a SA tech-

nique, called Normal Condition Alignment (NCA), to align 

the normal conditions of the two domains and (ii) the K-

Nearest Neighbours (KNN) algorithm, which is previously 

trained on the source domain and afterwards adopted to 

perform supervised damage detection on the unknown 

target domain. The effectiveness of DA is demonstrated by 

evaluating the algorithm’s accuracy before and after fea-

ture alignment.  

The procedure is validated by considering the Z24 bench-

mark bridge as the source domain and the S101 bridge as 

the target domain, for which data are significantly poorer 

and just referred to the winter period. Experimental data 

allow a gain of information about the natural frequencies 

and mode shapes during the whole monitoring period. 

Natural frequencies are selected as damage-sensitive fea-

tures and used to firstly align the normal conditions of the 

two bridges via the NCA technique and to afterwards feed 

the KNN algorithm for super-vised damage detection. For 

the current work, damage data describe the same scenar-

ios imposed in both structures, namely the cutting and 

lowering of one pier and the rupture of tendons. 

Numerical results show that the proposed approach ena-

bles accurate detection of structural damages on the tar-

get domain starting from the knowledge of source domain 

observations, being particularly useful in most real-world 

applications given the capability to successfully transfer 

damage labels within a population of heterogeneous 

bridges. 

2 Bridge health assessment via Transfer Learn-

ing: the proposed methodology 

The methodology for performing damage detection and 

knowledge transfer between two bridges is described in 

Figure 1. Raw accelerations, denoting normal or damage 

conditions, are acquired by the installed SHM system and 

afterwards employed to carry out system identification 

and frequency tracking. N frequencies are then selected as 

damage-sensitive features. These quantities are aligned 

via DA, processed by the ML algorithm and employed for 

damage detection.  

2.1 K-Nearest Neighbour Machine Learning algo-

rithm 

ML theory provides a quite remarkable set of strategies for 

data analysis and pattern recognition [19]. Within the su-

pervised techniques, the K-Nearest Neighbours (KNN) al-

gorithm is adopted in this paper to predict feature labels, 

thereby addressing damage detection and classification. 

The model’s performance is evaluated using the accuracy, 

a metric that quantifies the percentage of correct predic-

tions given the number of true positives (TP), true nega-

tives (TN), false positives (FP) and false negatives (FN): 

Accuracy =
TP+TN

TP+TN+FP+FN
             (1) 

This index, however, may produce misleading results 

when working with unbalanced datasets, where each class 

does not include equal number of samples. In such cases, 

it is recommended to adopt different metrics that are not 

biased to favour the majority class and not sensitive to 

class skews. Possible solutions are represented by the bal-

anced accuracy or the geometric mean of precision and 

recall.  

KNN is a non-parametric method for classification and re-

gression tasks, based on the assumption that similar 

points in the feature space can be found near one another. 

As a first step, the algorithm identifies the K nearest neigh-

bours to a predicted datum in terms of specific distance 

metrics. Then, the class to which a general numerical item 

belongs is predicted on the basis of a majority vote, i.e. 

the label that is most frequently represented in the K 

neighbours is as-signed to a given data point. 

This technique is very simple to apply, it can handle multi-

class classification with few parameters to be tuned. How-

ever, the algorithm gets significantly slower as the number 

of features increases. It should be remarked the influence 

of the K value on the global performance. The lower it is, 

the more sensitive is the model to outliers. Conversely, a 

larger value may produce a neighbourhood including 

points of other classes. A detailed description is provided 

by Kramer [20]. 

2.2 Domain Adaptation 

Domain Adaptation is a sub-discipline of TL attempting to 

transfer knowledge between source and target domains by 

reducing the distance in data distributions. To introduce 

the method, it is important to provide some key defini-

tions. A domain 𝒟 = {𝒳, 𝑝(𝑋)} is described by a feature 

space 𝒳 and a marginal probability distribution 𝑝(𝑋) with 

𝑋 = {𝑥𝑖}𝑖=1
𝑁  being a finite sample set from 𝒳. A given domain 

is associated with a task, indicated as 𝒯 = {𝒴, 𝑓(∙)}, where 

𝒴 is a label space and 𝑓(∙) the predictive function learnt 

from the training data set.
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Figure 1 A general overview of the proposed framework. 

 

With these premises, given a source domain 𝒟𝑠 with task 

𝒯s and a target domain 𝒟𝑡 with task 𝒯t,DA is defined as the 

process of improving the target predictive function 𝑓𝑡(∙) in 

𝒯t using the knowledge extracted from 𝒟𝑠.  

Classic DA methods match data distributions by using non-

parametric distance metrics, which require enough data to 

perform accurate density estimation. Moreover, they pro-

ject data into a latent space, decreasing the interpretabil-

ity of the results. In contrast, this paper uses a SA tech-

nique, named as Normal Condition Alignment (NCA), 

working in the original feature space to align just a subset 

of data corresponding to normal conditions, which are usu-

ally easier to obtain. Precisely, these approaches align the 

lower-order statistics of the features, quantities that 

should be able to be estimated with a limited data set. The 

source domain is firstly standardised as: 

𝑧𝑠
(𝑖)

=
𝑥𝑠

(𝑖)
−𝜇𝑠

𝜎𝑠
                    (2) 

where 𝜇𝑠 and 𝜎𝑠 are the mean and standard deviation of 

the source. Normal conditions of the target domain are 

then aligned with those of the source using Equation 3, 

𝑧𝑡
(𝑖)

= (
𝑥𝑡

(𝑖)
−𝜇𝑡,𝑛

𝜎𝑡,𝑛
) 𝜎𝑠,𝑛 + 𝜇𝑠,𝑛    (3) 

where 𝜇𝑠,𝑛 , 𝜇𝑡,𝑛 and 𝜎𝑠,𝑛 , 𝜎𝑡,𝑛 indicate the means and stand-

ard deviations extracted from normal condition data of the 

source and target domain, respectively.  

The idea presented in this work is to match the normal 

conditions of two bridges in a single healthy class. The KNN 

algorithm is therefore implemented to evaluate damage 

detection capabilities before and after DA. 

3 Case study: Transfer Learning between two 

real bridges 

The applicability of DA for bridge SHM is demonstrated via 

a case study involving knowledge transfer between the 

Z24 and the S101 benchmark bridges.  

3.1 General description of the Z24 bridge and 

S101 bridge 

The Z24 bridge, built in 1963 and demolished at the end 

of 1998, was a post-tensioned RC bridge linking the vil-

lages of Koppigen and Utzenstorf in Switzerland [21]. It 

was characterised by a main span of 30 m and two side 

spans of 14 m, for a global length of 60 m. Two rectangular 

concrete piers were located at the limits of the main span 

and clamped into the deck’s girder, whose cross-section 

was made of two box cells, for a global width of 8.6 m.  

The bridge was continuously monitored from November 

1997 to September 1998 by measuring accelerations and 

various environmental parameters. Specifically, vibration 

data were recorded by eight sensors every hour, for about 

10 minutes, at a sampling frequency of 100 Hz.  

In order to investigate the dynamic response towards mul-

tiple damage scenarios, the bridge was subjected to pro-

gressive damage scenarios, carried out in August 1998, 

shortly before its demolition. A detailed description of the 

damage test, the experimental data and the monitoring 

setup can be found in [22]. 

The second benchmark case study is represented by the 

S101 bridge, built in the 1960s and located across the A1 

Westautobahn in Austria [23]. It was a post-tensioned 

three-span bridge, composed of a main span of 32 m and 

two 12 m long side spans. The cross-section was 7.2 m 

wide and was designed as a double-webbed t-beam, with 

the height varying from 0.9 m in the mid-span to 1.7 m 

over the piers. Before the demolition of the bridge, a mon-

itoring campaign was carried out from 10th to 13th De-

cember 2008 by using a permanent system characterised 

by forty-five channels, whose task was to acquire acceler-

ation measurements at a frequency of 500 Hz. Since there 

were hardly any temperature changes during the meas-

urement period, being freezing conditions dominant, it is 

conceivable to neglect temperature effects on modal re-

sponses. In fact, unlike the Z24, the S101 was deliberately 

damaged in the winter season for only three days, after 

collecting one day of healthy measurements. Despite the 

different monitoring period, both bridges experienced sim-

ilar damage scenarios, which are divided into two macro-

categories, the former describing the lowering of one pier 

and the latter involving the cutting of tendons along the 

deck. 

3.2 Feature selection 

After signal processing, needed to re-sample and filter the 
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original monitoring data, a complete dynamic characteri-

sation of the two bridges is carried out by exploiting the 

Subspace Identification (SSI) technique within MOSS, a 

software recently implemented by the SHM group of the 

Department of Civil and Environmental Engineering at the 

University of Perugia [24]. System identification results 

are listed in Table 1, containing the natural frequencies 

identified for the Z24 and the S101 bridges through an 

Ambient Vibration Test (AVT). 

Table 1 Natural frequencies [Hz] of the Z24 and the S101 bridges 

Mode Z24 bridge S101 bridge 

1 3.85 4.04 

2 4.91 6.28 

3 9.77 9.72 

4   - 13.27 

5 12.46 15.81 

 
Although the two structures present some differences in 

design, belonging thus to a heterogeneous population, 

there are similarities in the modal responses. Despite dif-

ferent absolute values in natural frequencies, the Z24 and 

the S101 bridge have in common three bending modes 

(modes 1, 3 and 5), and a torsional mode (mode 2). In 

this paper, the first two natural frequencies (describing a 

bending and a torsional mode, respectively) are consid-

ered as damage-sensitive features and therefore em-

ployed as inputs for domain adaptation and TL-based dam-

age detection. 

After frequency tracking, the datasets are split into train-

ing and testing data for the ML classifier. Training data in-

clude normal and damage conditions of the Z24: healthy 

data refer to the first eight months of monitoring and in-

clude several temperature ranges (from November 1997 

to June 1998), while the investigated damage period co-

vers two weeks during August 1998. On the contrary, test-

ing data are fully represented by the S101 dataset, where 

normal conditions are exclusively collected in the first day 

of monitoring. 

3.3 Domain Adaptation results 

When different domains, characterised by the distribution 

represented in Figure 2a, are adopted for training and 

testing, the classifier shows an insufficient performance, 

less than random guessing, with an accuracy of 49%. This 

outcome clearly motivates the need for performing feature 

alignment. NCA is therefore applied to align the healthy 

data of the Z24 and the S101 bridge, denoted as “0 Z24” 

and “0 S101”, respectively, thereby creating a single 

healthy-class cluster and removing the offset between the 

source and target distribution (Figure 2b). Once the map-

ping has been inferred, any future instances can be pro-

jected onto the shared feature space. 

Note that the widespread distribution of the Z24 healthy 

instances is because of the huge amount of available data 

for that specific case study, covering a broad range of 

weather conditions. Moreover, looking at Figure 2b, it is 

interesting to point out that damage instances of both 

bridges, labelled with “1” (lowering of one pier) and “2” 

(rupture of tendons), have a similar distribution and be-

long to the same clusters. This result demonstrates the 

power of DA, enabling one to classify specific scenarios 

based on damage experienced by another bridge. 

To provide a damage detector and prove the capability of 

DA to share knowledge between the two bridges, the KNN 

algorithm is afterwards trained on the Z24 (labelled source 

domain) and tested on the S101 (labelled target domain) 

using statistically-aligned feature data and setting the K 

parameter equal to 1. 

 

Figure 2 The first (F1) and second (F2) natural frequencies of the Z24 

and the S101 bridge are plotted in the same feature space before DA 

(a) and after aligning the normal conditions with NCA (b). Training and 

testing data points are denoted with “×” and “o”, respectively.  

Such a classifier is used in a supervised way to: (i) detect 

damage conditions and (ii) discriminate between different 

types of damage, providing 96% and 88% accuracy, re-

spectively. It means that damage labels can be success-

fully transferred within the population. Beyond this, the 

model’s performance on the target domain alone is clearly 

improved with DA, yielding 3.3% and 17% improvements 

in accuracy for tasks (i) and (ii), respectively. It follows 

that major advantages are visible when the intention is to 

identify specific damage scenarios on the target domain 

(S101 bridge), using the supervised KNN algorithm trained 

on the source domain (Z24 bridge). These results are sum-

marised in Figure 3 in terms of confusion matrices. It is 

possible to notice the ability of the KNN to well recognize 

the rupture of tendons in the S101 bridge, given that the 
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features of both domains are contained in a well-defined 

cluster. In addition, particularly important is the absence 

of false positives or false alarms, which can cause man-

agement issues within SHM activities.  

 

Figure 3 Model performance after DA when classifying between 

healthy and damage conditions (a) and between healthy and different 

damage scenarios, indicated with labels “1” and “2” (b). 

3.4 Advantages and limitations 

DA is particularly useful when the availability of monitoring 

data is limited and not sufficient for implementing a relia-

ble and robust damage-detection tool. This is the case for 

the S101 bridge, whose data are not suitable to train a 

supervised/unsupervised ML algorithm with good general-

isation. Therefore, data stemming from the Z24 monitor-

ing campaign and properly transformed with DA tech-

niques, represent a considerable source to enlarge the 

original S101 dataset.  

Prior to DA and damage detection, one of the main issues 

to face is the number of features to align and afterwards 

adopt for classification purposes. In this work, the first two 

natural frequencies, describing a bending and a torsional 

mode, are deemed effective to capture the similarities be-

tween the two bridges as well as able to indicate the dis-

crepancies between healthy and damage states. However, 

the way by which a large number of modes (and the cor-

responding features) affects TL outcomes deserves future 

research.  

Moreover, it should be stressed that a good feature align-

ment facilitates the classifier’s implementation. In this 

context, it could be interesting to investigate other ML al-

gorithms beyond the KNN, such as Artificial Neural Net-

works, to check their capability in handling aligned fea-

tures and bringing any advantage in terms of accuracy and 

false-detection errors.  

The most critical aspects underlying the application of TL 

are represented by the similarity degree between different 

structures and the type of information that can be suc-

cessfully transferred. The current paper underlines TL per-

formances when considering that the same damage sce-

narios occurred within the population of bridges. However, 

the effectiveness of the proposed approach should be ex-

plored by introducing different kinds of damage, to ob-

serve if the corresponding features can be sufficiently 

aligned in the shared feature space. The importance to un-

derstand which damage scenarios are transferable could 

represent a fundamental step towards the implementation 

of supervised ML algorithms able to assess several bridges 

with different characteristics.  

4 Conclusions 

Within the field of SHM, this paper proposes a strategy of 

DA to statistically align different domains and provide a 

population-level damage detector by transferring labels 

across a population of bridges; this can be particularly 

useful when the target domain is described by a limited 

quantity of vibration data. The proposed approach is 

tested on two heterogeneous real structures, the Z24 and 

the S101 bridges, thus representing an enrichment of the 

current literature. Given the acceleration responses col-

lected by multiple sensors, system identification provides 

a set of natural frequencies, considered as damage-sensi-

tive features. The NCA technique is then applied to align 

the features characterising normal conditions into a shared 

bi-dimensional space. Common clusters, containing 

healthy and different damage instances, can be easily 

identified, thereby yielding clear improvements on KNN 

performance when classifying target data (S101 bridge), 

based on the knowledge learnt from source domain obser-

vations (Z24 bridge). The supervised damage-identifica-

tion procedure is deemed to be effective to transfer dam-

age labels between the two bridges, bringing important 

advantages to practical SHM applications and speeding up 

the decision-making process; this means that if a bridge 

undergoes a damage event that has been previously learnt 

and classified on another domain, the recovery activities 

could be scheduled and well-focussed on that particular 

problem. For more reliable outcomes, it is worth mention-

ing that the concept of similarity and the definition of 

transferable information are fundamental and deserve 

particular attention and deeper investigations. Overall, 

such a promising tool would potentially allow higher-level 

diagnostic assessment across members of a population 

before/during/after critical events that worsen the bridges’ 

modal responses. 
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