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chapter was submitted to The Annals of Applied Probability for review.

Chapter 2 was jointly co-authored with my supervisor, Professor Milan Vojnović, and Professor
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Abstract

This thesis comprises two chapters that study the statistical inference problems for two types of choice

models, namely, the discrete voter model and the Bradley-Terry models, respectively.

In Chapter 1, we consider a discrete-time voter model process on a set of nodes, each being in one

of two states, either 0 or 1. In each time step, each node adopts the state of a randomly sampled

neighbour according to sampling probabilities, referred to as node interaction parameters. We study

the maximum likelihood estimation of the node interaction parameters from observed node states for a

given number of realizations of the voter model process. We present parameter estimation error bounds

by interpreting the observation data as being generated according to an extended voter process that

consists of cycles, each corresponding to a realization of the voter model process until absorption to a

consensus state. We present new bounds for all moments and a probability tail bound for consensus

time. We also present a sampling complexity lower bound for parameter estimation within a prescribed

error tolerance for the class of locally stable estimators.

In Chapter 2, we study the popular methods for inference of the Bradley-Terry model parameters,

namely the gradient descent and MM algorithm, for maximum likelihood estimation and maximum

a posteriori probability estimation. This class of models includes the Bradley-Terry model of paired

comparisons, the Rao-Kupper model of paired comparisons allowing for tie outcomes, the Luce choice

model, and the Plackett-Luce ranking model. We propose a simple modification of the classical

gradient descent and MM algorithm with a parameter rescaling performed at each iteration step that

avoids the observed slow convergence issue that we found in our previous work (Vojnovic et al. [2020]).

We study the convergence rates of accelerated gradient descent and MM Algorithms for Bradley-Terry

models. We also produce some experimental results using synthetic and real-world data to show that

significant efficiency gains can be obtained by our new proposed method.
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Introduction

Choice models are mathematical and statistical models that provide a framework for studying indi-

vidual decision-making and understanding how individuals make choices based on different factors,

such as their preferences, beliefs, and information. These models are widely used in various fields.

For example, companies use choice models in marketing to understand consumers’ decision-making

process when facing several options. By applying choice models, companies can better understand how

different factors, such as price, quality, and branding, affect consumers’ preferences and ultimately

influence their purchase decisions. Similarly, in psychology, choice models are used to understand

how individuals make choices based on their beliefs, values, and emotions. By understanding how

individuals make choices, psychologists can develop interventions that help people make better deci-

sions and improve their overall well-being. In social networks, choice models are used to understand

how individuals interact and make choices to adopt opinions from their neighbors in a network. These

models provide insights into how ideas and information spread among individuals and how individuals’

opinions are influenced by their neighbors. Additionally, in online gaming, choice models can be used

to provide rankings of players. These models consider various factors, such as player skills, strategies,

and performance, to provide a fair and accurate ranking of players. This information is helpful for

matchmaking, tournament organization, and player evaluation.

The voter model is an instance of choice models used to understand how entities make choices

when updating their opinions. The voter model process focuses on the spread of opinions within a

population, where entities make choices to update their opinions based on the observed opinions that

are chosen by other entities. The concept of the voter model, introduced in Holley and Liggett [1975],

represents a continuous-time Markov process where each individual is in one of two possible states,

either state 0 or 1. In this model, individuals adopt the state of a randomly sampled neighbor at random

time instances through independent Poisson processes associated with individuals or links connecting

them. The voter model is classified as an interacting particle system (Liggett [1985]). In Granovsky

and Madras [1995], the noisy voter model was proposed as an extension of the classic voter model by

including spontaneous flipping of states from 0 to 1, and vice versa, for each node. The discrete-time

voter model is similar to the continuous-time model, except that node states are updated synchronously

at discrete time steps. The discrete-time voter model has been studied under different assumptions

about which nodes update their states at discrete time points, such as those presented in Nakata et al.
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[1999], Hassin and Peleg [2001], and Cooper and Rivera [2016]. Studies of dynamics and learning in

social and economic networks have been pursued from different perspectives, including dynamical

systems, stochastic processes, and statistical perspectives, e.g. see Jackson [2008], Kolaczyk [2009],

and Easley and Kleinberg [2010]. The key research questions include understanding the long-run

behavior of the underlying random dynamical system, time to convergence to a consensus state when

such a limit behavior arises, and statistical inference of model parameters from observed data, e.g.

inferring node interaction rate parameters from observed node states over time.

The Bradley-Terry model and its generalizations are choice models used for evaluating choice

preferences based on ranking scores computed by observed data from various comparison outcomes.

The Bradley-Terry model (Bradley and Terry [1952]), introduced by Bradley and Terry in 1952,

considers paired comparisons with win-lose outcomes and provides a way to estimate the relative

strength of players in a game. Other generalizations of Bradley-Terry models, such as the Rao-

Kupper model (Rao and Kupper [1967]) for win-lose-draw outcomes, the Luce choice model (Luce

[1959]) for choices from comparison sets, the Plackett-Luce ranking model for full ranking outcomes

(Plackett [1975]), as well as group comparisons (Huang et al. [2006b, 2008]) have also been developed.

Assigning ranking scores to items based on observed comparison data is a problem that arises in

many applications, including information search, social opinion aggregation, electronic commerce,

and online gaming platforms. Recently, ranking models have also been applied to evaluate machine

learning algorithms. The key problem is to efficiently compute ranking scores that accurately reflect

the strength of skills, relevancies, or preferences and to predict ranking outcomes using the estimated

parameters of a statistical model of ranking outcomes.

The outline of this thesis will be as follows. This thesis comprises two chapters that study the

statistical inference problems for the discrete voter model processes and Bradley-Terry models,

respectively.

In Chapter 1, we consider a discrete-time voter model process on a set of nodes, each being in one

of two states, either 0 or 1. In each time step, each node adopts the state of a randomly sampled

neighbor according to sampling probabilities, referred to as node interaction parameters. A detailed

introduction of the voter model and its related work will be given in Chapter 1.1. The key contributions

from us to this chapter are summarised as follows. We study the maximum likelihood estimation of

the node interaction parameters from observed node states for a given number of realizations of the
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voter model process. In Chapter 1.4, we present parameter estimation error bounds by interpreting

the observation data as being generated according to an extended voter process that consists of cycles,

each corresponding to a realization of the voter model process until absorption to a consensus state.

We also present a sampling complexity lower bound for parameter estimation within a prescribed error

tolerance for the class of locally stable estimators. To obtain these results, the consensus time of a

voter model process plays an important role. We present new bounds for all moments and a probability

tail bound for consensus time in Chapter 1.3. Proofs and additional results are included in Chapter 1.5.

In Chapter 2, we study popular methods for inference of the Bradley-Terry model parameters, namely

the gradient descent and MM algorithm, for maximum likelihood estimation and maximum a posteriori

probability estimation. This class of models includes the Bradley-Terry model of paired comparisons,

the Rao-Kupper model of paired comparisons allowing for tie outcomes, the Luce choice model, and

the Plackett-Luce ranking model. A more detailed discussion of the Bradley-Terry model and its

related work will be included in Chapter 2.1. A summary of our prior results from Vojnovic et al.

[2020] will be given in Chapter 2.3. The main contributions from us to this chapter are as follows. In

Chapter 2.4, we propose a simple modification of the classical gradient descent and MM algorithm

with a parameter rescaling performed at each iteration step that avoids the observed slow convergence

issue that we found in our previous work (Vojnovic et al. [2020]). We study the convergence rates of

accelerated gradient descent and MM algorithms for Bradley-Terry models. In Chapter 2.5, we also

provide some experimental results using synthetic and real-world data to demonstrate the identified

slow convergence issue of the classic gradient descent and MM algorithm and show that significant

efficiency gains can be obtained by our newly proposed method. Proofs and additional results are

included in Chapter 2.7.
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Chapter 1

Dynamics and Inference for Voter Model

Processes

1.1 Introduction

The mathematical models known as interacting particle systems have been studied in different academic

disciplines, with a canonical application to modeling opinion formation in social networks, where

individuals interact pairwise and update their state in a way depending on their previous states Aldous

[2013]. Models of opinion formation in social networks, e.g. DeGroot [1974], were introduced to

study how consensus is reached in a network where individuals update their opinions based on their

personal preferences and observed opinions of their neighbors. Threshold models of collective behavior

Granovetter [1978] assume individuals update their opinions according to a threshold rule, with an

individual adopting a new state only if the number of its neighbors who adopted this state exceeds a

threshold value.

In this chapter, we consider the classic interacting particle system known as the voter model. The voter

model was introduced in Holley and Liggett [1975] as a continuous-time Markov process, under which

each individual is in one of two possible states, either 0 or 1. In this model, each individual adopts

the state of a randomly sampled neighbor at random time instances according to independent Poisson

processes associated with individuals or links connecting them. This voter model is an instance of

an interacting particle system Liggett [1985]. A noisy voter model was introduced in Granovsky and

Madras [1995], which is obtained from the classic voter model by adding spontaneous flipping of
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states from 0 to 1, and 1 to 0, to each node. The discrete-time voter model is defined analogously to

the continuous-time voter model, but with node states updated synchronously at discrete time steps.

The discrete-time voter model was studied under different assumptions about which nodes update

their states at discrete time points, e.g. Nakata et al. [1999], Hassin and Peleg [2001], and Cooper and

Rivera [2016]. This model is particularly useful for understanding discrete changes in opinions and

behaviors within a population. It finds applications in fields like social science, political science, and

sociology, aiding in the study of the evolution of discrete opinions and behaviors among interacting

agents. The discrete voter model captures the essence of opinion shifts while considering the granular

nature of decision-making, making it a valuable tool for analyzing various societal and behavioral

phenomena.

Studies of dynamics and learning in social and economic networks have been pursued from different

perspectives, including dynamical systems, stochastic processes, and statistical perspectives, e.g. see

Jackson [2008], Kolaczyk [2009], and Easley and Kleinberg [2010]. The key research questions

include understanding the long-run behavior of the underlying random dynamical system, time to

convergence to a consensus state when such a limit behavior arises, and statistical inference of model

parameters from observed data, e.g. inferring node interaction rate parameters from observed node

states over time.

We study dynamics and inference for the discrete-time voter model, defined as a Markov chain {Xt}t≥0

with state space {0, 1}n, where Xt represents states of nodes at time t, updated such that node states

Xt+1 are independent conditional on Xt, with marginal distributions

Xt+1,u | Xt ∼ Ber(a⊤
u Xt) for t ≥ 0 and u ∈ {1, . . . , n} (1.1.1)

where a⊤
u is the u-th row of a stochastic matrix A, the initial state X0 is assumed to have distribution

µ, and Ber(p) denotes Bernoulli distribution with mean p. A matrix is said to be a stochastic matrix if

it has real, non-negative elements and all row sums equal to 1. Intuitively, au,v is the probability of

node u sampling node v in a time step.

The voter model can be equivalently defined as a random linear dynamical system with X0 ∼ µ and

Xt+1 = Zt+1Xt, for t ≥ 0 (1.1.2)
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where Z1, Z2, . . . are independent and identically distributed (i.i.d.) n× n random stochastic matrices,

with elements of value 0 or 1, and E[Z1] = A.

The voter model has C = {0, 1} as absorbing states and all other states are transient. Statistical

inference for the voter model asks to estimate parameter A from m ≥ 1 independent sample paths

of the voter model process. For the analysis of parameter estimation, it is convenient to consider an

extended voter process that consists of cycles, each of which corresponding to a realization of the

voter model process with initial state sampled according to given initial state distribution and ending at

hitting a consensus state. Such an extended voter process is defined as

Xt+1 = Zt+1XtI{Xt /∈C} + ξt+1I{Xt∈C} (1.1.3)

where ξt is an i.i.d. sequence of random vectors taking values in {0, 1}n according to distribution µ.

The voter model defined by (1.1.1) and equivalently by (1.1.2) is defined such that all nodes update

their states in every time step. We will also consider an asynchronous discrete-time voter model under

which in each time step exactly one node updates its state. The asynchronous voter model dynamics is

defined by

Xt+1,u | Xt ∼ Ber(a⊤
u Xt) if u = It and Xt+1,u = Xt,u if u ∈ {1, . . . , n} \ {It} (1.1.4)

where It are i.i.d. random variables according to uniform distribution on {1, . . . , n}. The asynchronous

discrete-time voter model also obeys the random linear dynamical system recursive equation (1.1.2)

but with Z1, Z2, . . . being i.i.d. n× n random stochastic matrices with elements of value 0 or 1 such

that E[Zt | It = u] = eua⊤
u +

∑
v ̸=u eve⊤

v where ew denotes the n-dimensional standard basis vector,

with the w-th element equal to 1 and other elements equal to 0.

The discrete-time ϵ-noisy voter model is defined by X0 ∼ µ, and

Xt+1,u | Xt ∼ Ber(f(a⊤
u Xt)) for t ≥ 0 and u ∈ {1, . . . , n} (1.1.5)

where f is some given function f : [0, 1]→ [ϵ, 1− ϵ], and ϵ ∈ [0, 1/2]. Under certain conditions on

f and 0 < ϵ < 1/2, the ϵ-noisy voter model is an ergodic stochastic process. This is important for

statistical inference of the model parameters as they can be inferred from a single, sufficiently long

random realization of the stochastic process. This is in contrast to the voter model which requires
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several realizations of the voter model process for inference of the model parameters.

A special case of an ϵ-noisy voter model is the linear ϵ-noisy voter model defined by taking f(x) =

ϵ + (1− 2ϵ)x. Note that the linear ϵ-noisy voter model corresponds to the voter model when ϵ = 0.

For the linear ϵ-noisy voter model, we have

Xt+1 = D(Qt+1)Zt+1Xt + Rt+1 (1.1.6)

where (Qt, Rt) is an i.i.d. sequence of n dimensional vectors with independent elements with

distribution P[(Qt,u, Rt,u) = (q, r)] = p(q, r) with p(0, 0) = p(0, 1) = ϵ and p(1, 0) = 1 − 2ϵ,

for all u ∈ {1, . . . , n}, and D(x) denoting diagonal matrix with diagonal elements x. The random

linear dynamical system (1.1.6) can be seen as a randomly perturbed version of the random linear

dynamical system (1.1.2). The role of this perturbation is significant, making an absorbing Markov

chain to an ergodic Markov chain.

Statistical inference for the voter model process is a challenging task because the number of informative

node interactions for parameter estimation vanish as node states converge to a consensus state. For

a node interaction to be informative for the estimation, it is necessary that the node has neighbors

with mixed states—having some neighbors in state 0 and some in state 1. For example, consider

asynchronous discrete-time voter model, where at each time step a single, random node observes the

state of a randomly picked neighbor and updates its state, with node interactions restricted to a path

connecting n nodes. Assume that initially k nodes on one end of the path are in state 1 and other

nodes are in state 0. Then, we can show that the expected number of nodes participating in at least one

informative interaction until absorption to a consensus state is k(log(n/k) + Θ(1)) when k = o(n),

we show this in Section 1.5.17. For the given voter model instance, typically, informative interactions

will be observed only for a small fraction of nodes in each realization of the voter model process. In

general, for the voter model inference, both the matrix of pairwise interaction rates A and the initial

state distribution µ play an important role.

We present new results on statistical inference for the voter model. This is achieved by using a

framework that allows to study inference for absorbing stochastic processes, by learning from several

realizations of the underlying stochastic process. This is different from existing work on statistical

inference for stationary autoregressive stochastic processes, akin to the aforementioned ϵ-noisy voter

model. In order to study statistical inference for absorbing stochastic processes, we need certain

14



properties of the hitting time of an absorbing state. Specifically, for the voter model, we need bounds

on the expected value and a probability tail bound of consensus time. We present new results for the

latter two properties of the consensus time, which may be of general interest. Before summarizing our

contributions in some more detail, we review related work.

1.1.1 Related work

Prior work on voter models is mostly concerned with dynamics of voter processes on graphs, studying

properties such as hitting probabilities and time to reach an absorbing state. Several seminal works

studied voter model in continuous time, where interactions between vertices occur at events triggered

by independent Poisson processes associated with vertices or edges, e.g. Cox [1989b], Liggett [1985],

Oliveira [2012]. The discrete-time voter model was first studied in Nakata et al. [1999] and Hassin and

Peleg [2001] under assumption that A is a stochastic matrix such that au,v > 0 if and only if av,u > 0

and the support of A corresponds to the adjacency matrix of a nonbipartite graph. Hassin and Peleg

[2001] found a precise characterization of the hitting probabilities of absorbing states, showing that

limt→∞ P[Xt = 1] = 1− limt→∞ P[Xt = 0] = π⊤x, for any initial state x, where π is the stationary

distribution of A, i.e. a unique distribution π satisfying π⊤ = π⊤A.

The consensus time of voter model process was studied in previous work under various assumptions.

In an early work, Cox [1989b] studied coalescing random walks and voter model consensus time

on a torus. Most of works studied voter model process with node interactions defined by a graph

G = (V, E) where V is the set of vertices and E is the set of edges. In Hassin and Peleg [2001],

using duality between voter model process and coalescing random walks, it was shown that the

expected consensus time is O(m(G) log(n)), where m(G) is the worst-case expected meeting time

of two random walks on graph G. It’s worth noting that the meeting time naturally serves as a clear

lower bound for coalescing time, hence also a lower bound on the consensus time. Kanade et al.

[2019] showed that m(G) = O((ndmax/Φ(G)) log(dmax)), for a lazy random walk, where dmax is

the maximum node degree and Φ(G) is graph conductance. This lazy random walk, in each time

step remains at the current vertex with probability 1/2 and otherwise moves to a randomly chosen

neighbor. Combined with the result in Hassin and Peleg [2001], this implies the expected consensus

time bound Õ((ndmax)/Φ(G)). Berenbrink et al. [2016] studied a voter model process where in each

time step, every vertex copies the state of a randomly selected neighbor with probability 1/2, and,

otherwise, does not change its state (corresponding to the previously defined lazy random walk). In

15



this setting, they showed that the expected consensus time is O((d(V )/dmin)/Φ(G)), where dmin is

the minimum node degree and d(V ) is the sum of node degrees. Our bound on the expected consensus

time is competitive to the best previously known bound up to at most a logarithmic factor in n. Aldous

and Fill [2002], Cooper et al. [2010] showed that if the states of vertices are initially distinct, the voter

model process takes Θ(n) expected steps to reach consensus on many classes of expander graphs

with n vertices. Cooper et al. [2013] established bounds on the expected consensus time for the voter

model process on general connected graphs that depend on an eigenvalue gap of the transition matrix

of random walk on the graph and the variance of the degree sequence. Cooper and Rivera [2016]

showed that the expected consensus time is O(1/ΨA) where ΨA is a property of A (we discuss in

Section 1.3.2). Oliveira and Peres [2019] established various results on hitting times of lazy random

walks on graphs. Unlike to the aforementioned previous work, which found bounds on the expected

consensus bound or bounds that hold with a constant probability, our results allow us to derive high

probability bounds.

The problem of inferring node interaction parameters from observed node states was studied in an

early work by Netrapalli and Sanghavi [2012] for classic epidemic models, and more recently by

Pouget-Abadie and Horel [2015a] for independent cascade model and some stationary voter model

processes, as well as by Gomez-Rodriguez et al. [2016] for some continuous-time network diffusion

processes. None of these works considered statistical inference for an absorbing voter model process.

A recent line of work studied statistical estimation for sparse autoregressive processes, including vector

autoregressive processes Basu and Michailidis [2015], Hall et al. [2019, 2016], Zhu et al. [2017], Zhu

and Pan [2020], sparse Bernoulli autoregressive processes Pandit et al. [2019], Mark et al. [2019],

Katselis et al. [2019], and network Poisson processes Mark et al. [2019]. These works established

convergence rates for the parameter estimation problem. All these works are concerned with stationary

autoregressive processes and thus do not apply to inference of absorbing stochastic processes, such as

the voter model we study. Our work provides a framework to study statistical inference for absorbing

stochastic processes, which may be of independent interest for autoregressive stochastic processes.

Another related work is on identification of discrete-time linear dynamical systems with random noise,

e.g. recent works by Simchowitz et al. [2018] and Jedra and Proutiere [2019]. We present a new lower

bound on the sampling complexity for estimation of voter model parameters by studying the random

linear dynamical system that governs the evolution of the voter model process.
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1.1.2 Summary of our contributions

We show an upper bound on the expected consensus time

E0[τ ] ≤ 1
ΦA

log
( 1

2π∗

)

where π∗ = min{πv : v = 1, . . . , n}, π is the stationary distribution of A, and ΦA is a parameter

of A. The upper bound is tight in the sense that there exist voter model instances that have the

expected consensus time matching the upper bound up to a poly-logarithmic factor in n. The upper

bound is obtained by a Lyapunov function analysis and follows from the exponential moment bound

E[eθτ ] ≤ 1/(2π∗) that holds for any θ such that (1 − ΦA)eθ ≤ 1. This exponential moment bound

allows us to bound the consensus time with high probability. Specifically, for any δ ∈ (0, 1], τ ≤

(log(1/(2π∗)) + log(1/δ))/ΦA with probability at least 1 − δ. In particular, this implies a high

probability bound, τ ≤ (log(1/(2π∗)) + log(n))/ΦA, which holds with probability at least 1− 1/n.

Moreover, by using the aforementioned exponential moment bound, we can bound any moment of

consensus time. These results are instrumental for the voter model inference problem, and may also be

of independent interest.

We developed a methodology for establishing statistical estimation error bounds for absorbing stochas-

tic processes. This is based on using the framework for analysis of M -estimators with decomposable

regularizers from high-dimensional statistics along with bounds on the expected length of cycles and

probability tail bounds for the length of cycles. To obtain these results, we leverage our bounds on the

expected consensus time and probability tail bounds for the consensus time, and use probability tail

bounds for some super-martingale sequences.

We show that the parameter estimation error of a voter model with parameter A due to statistical

estimation errors, measured by squared Frobenious norm, is

Õ

(
s

α2(1/ΦA)λmin(E[X0X⊤
0 ])2

1
m

)

with high probability, for sufficiently large number m. Here s is an upper bound on the support of

the voter model parameter A, λmin(E[X0X⊤
0 ]) is the smallest eigenvalue of the correlation matrix of

the extended voter process with respect to stationary distribution, and α > 0 is a lower bound for any

non-zero element of A.
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We also present a lower bound on the sampling complexity for statistical inference of the voter model

parameters, using the framework of locally stable estimators. Roughly speaking, for the voter model

with parameter A with every element in its support of value at least α > 0, to have the Frobenious

norm of the parameter estimation error bounded by ϵ, with probability at least 1− δ, the number of

voter model process realizations, m, must satisfy, for every sufficiently small ϵ > 0,

m ≥ α

16
1

ϵ2E0[τ ]λmin(E
[
X0X⊤

0
]
)

log
( 1

2.4δ

)
.

1.1.3 Organization of the chapter

In Section 1.2 we provide additional definitions for model formulation and some mathematical

background for the analysis in the model. Section 1.3 contains our main results on the consensus time

of the voter model process. Specifically, this includes the exponential moment bound in Theorem 1.3.1

from which we derive a bound on the expected consensus time in Corollary 1.3.2, a bound on any

moment of consensus time in Corollary 1.3.3, and a probability tail bound for a sum of independent

consensus times in Theorem 1.3.2. Section 1.4 contains our results on statistical estimation, with an

upper bound provided in Theorem 1.4.2 and a lower bound in Theorem 1.4.3. Section 1.5 contains

missing proofs and some further results.

1.2 Preliminaries

In this section we provide additional details for the model formulation and then provide some back-

ground definitions and results that we use in the rest of the chapter.

1.2.1 Model formulation

The voter model is defined as a Markov chain {Xt}t≥0 on the state space X = {0, 1}n with initial

state X0 with distribution µ and the state transitions defined by

Xt+1 = Zt+1Xt, for t ≥ 0 (1.2.1)

where Z1, Z2, . . . is an i.i.d. random sequence of stochastic matrices taking values in {0, 1}n×n with

independent rows. We can interpret Xt,u as the state of vertex u ∈ V := {1, . . . , n} at time t, which

takes value 0 or 1.
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The system (1.2.1) is a time-variant linear dynamical system with random i.i.d. linear transformations

as defined above.

We use the notation

A = E[Z1].

We assume that A is an aperiodic, irreducible transition matrix. Under these assumptions, A has a

stationary distribution π which is unique, given as the solution of global balance equations π⊤ = π⊤A.

We denote with a⊤
u the u-th row of matrix A. Note that au can be interpreted as a probability

distribution according to which vertex u initiates pairwise interactions. Any two vertices u and v are

said to be neighbors if au,v > 0, i.e. if the two vertices interact with a positive probability.

For the voter model, there are two absorbing states C = {0, 1}, and all other states are transient. Let

C0 = {0} and C1 = {1}, hence C = C0 ∪ C1. We refer to either of the two absorbing states as a

consensus state. Let τ denote the hitting time of a consensus state, we refer to as the consensus time,

which is defined by

τ = min{t ≥ 1 : Xt ∈ C}.

In our analysis, we consider the extended voter process {Xt}t∈Z defined by cycles of individual voter

model process realizations. Let {Ti}i∈Z be a point process defined as follows. Let Ti be the time at

which the i-th voter model process is in its initial state, and let Si = Ti+1 − Ti. We assume that Xt for

Ti ≤ t < Ti+1, correspond to the states of the i-th voter model process until reaching a consensus state,

excluding its final consensus state. Note that, indeed, Si = τi, where τi is the consensus time of the

i-th voter model process. In some parts of our analysis, we will also consider the alternative definition

of the extended voter process which includes the final states of individual voter model processes. In

this case, Si = τi + 1. The stationary distributions of the two extended voter processes are different.

We denote with P0[A] the probability of an event A conditional on time 0 being a point, i.e. {T0 = 0}.

We denote with P[A] the probability of event A under stationary distribution, where 0 is an arbitrary

time. In the framework of stationary point processes, the two distributions are referred to as the

Palm distribution and stationary distribution, respectively. By the Palm inversion formula, for any

measurable function f : X 7→ R,

E[f(X0)] =
E0
[∑S1−1

t=0 f(Xt)
]

E0[S1] . (1.2.2)
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We will also use the following notation in our analysis of parameter estimation. Let {X(i)
t }t≥0,

i = 1, . . . , m be independent voter model processes, each with initial state distribution µ. Let τi denote

the consensus time of voter model process i. With a slight abuse of notation, we will sometimes write

Xt in lieu of X
(1)
t and τ in lieu of τ1.

1.2.2 Markov chains background

In this section we present some definitions and results from Markov chain theory that we use in our

analysis.

Let {Xt}t≥0 be a time homogeneous Markov chain on a state space (X , E). Let P (x, A), x ∈ X ,

A ∈ E denote the transition probability and let P denote the corresponding operators on measurable

functions mapping X to R. Let Pt(x, ·) denote the transition probabilities at time t. We define the

following conditions:

(A1) Minorization condition. There exist S ∈ E , ϵ > 0, and a probability measure ν on (X , E) such

that

P (x, A) ≥ ϵν(A)

for all x ∈ S and A ∈ E .

(A2) Drift condition. There exist a measurable function V : X → [1,∞) and constants λ < 1 and

K <∞ satisfying

PV (x) := E[V (X1) | X0 = x] ≤

 λV (x) if x /∈ S

K if x ∈ S.

(A3) Strong aperiodicity condition. There exists ϵ̃ > 0 such that ϵν(S) ≥ ϵ̃.

We say that a measurable function V : X → [1,∞) is a drift function for P with respect to S, with

constants λ < 1 and K <∞, if it satisfies (A2).

For any given set S ⊂ E , let us define the hitting time

τS = min{t > 0 : Xt ∈ S}.

We say that the set S is an atom if P (x, ·) = P (y, ·) for all x, y ∈ S. In this case, we may assume
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ϵ = 1 and P (x, ·) = ν(·) for all x ∈ S.

By Theorem 1.1 in Baxendale [2005], under (A1)-(A3), {Xt}t≥0 has a unique stationary distribution

π and EX∼π[V (X)] < ∞. Moreover, there exists ρ < 1 depending only on ϵ, ϵ̃, λ and K such that

whenever ρ < γ < 1, there exists M <∞ depending only on γ, ϵ, ϵ̃, and K such that

sup
|g|≤V

|Ex[g(Xt)]− Eπ[g(X0)]| ≤MV (x)γt

for all x ∈ X and t ≥ 0, where the supremum is over all measurable functions g : X → R satisfying

|g(x)| ≤ V (x) for all x ∈ X . If g is restricted to functions satisfying |g(x)| ≤ 1 for all x ∈ X , then

we have the standard geometric ergodicity condition ||Pt(x, ·)− π||T V ≤MV (x)γt where || · ||T V

denotes the total variation distance. The Markov chain is said to be (M, ρ)-geometrically ergodic if

||Pt(x, ·)− π||T V ≤Mρt for some M <∞ and ρ < 1.

The following is a key lemma (e.g. Lemma 2.2 and Theorem 3.1 Lund and Tweedie [1996], Proposi-

tion 4.1 Baxendale [2005]) that we will use in our analysis of consensus time.

Lemma 1.2.1. Let {Xt}t≥0 be a Markov chain on (X , E) with transition kernel P , and let C ∈ E .

Suppose that V : X → [1,∞) is a measurable function that satisfies PV (x) ≤ λV (x) for all x /∈ C,

for a fixed λ < 1. Then, for all x ∈ X ,

Ex[λ−τC ] ≤ V (x).

The lemma can be established by some Lyapunov drift arguments.

1.2.3 Miscellaneous definitions

We use different definitions of norms. For every x ∈ Rn, ||x||p denotes the Lp norm, ||x||p =

(|x1|p + · · ·+ |xn|p)1/p. For every matrix X = (x1, . . . , xn)⊤ ∈ Rn×m, ||X||p,q is defined as

||X||p,q = (||x1||pq + . . . + ||xn||pq)1/p.
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In particular, ||X||1,1 is the sum of absolute values of elements of X . ||X||0 denotes the number of

non-zero elements in X , i.e. the support of X . The Frobenius norm ||X||F is defined as

||X||F = ||X||2,2 =

√√√√ n∑
i=1

m∑
j=1

x2
i,j .

1.3 Consensus time

In this section we show our results on consensus time of the voter model process.

1.3.1 Consensus time bounds

For any vector a ∈ Rn, let us define

Va(x) = a⊤x(1− a⊤x).

For the voter model with parameter A, Vau(Xt) is the variance of Xt+1,u conditional on Xt. Intuitively,

we may interpret Vau(Xt) as a measure of diversity of states of neighbors of vertex u. Note that

Vau(Xt) = 0 if and only if all neighbors of vertex u are in the same state (either 0 or 1).

Lemma 1.3.1. For every x ∈ {0, 1}n and t ∈ Z, function Vπ satisfies the following expected drift

equation:

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] = −
n∑

u=1
π2

uVau(x) + E0[Vπ(X0)]I{x∈C}.

We can interpret the term
∑n

u=1 π2
uVau(x) as a weighted sum of variances of Bernoulli distributions

with parameters a⊤
u x, associated with vertex neighborhood sets. The weights are equal to the squares

of the elements of the stationary distribution π. By taking expectation on both sides in the equation in

Lemma 1.3.1 with respect to the stationary distribution, under assumption that µ(C) = 0, and applying

Palm inversion formula (1.2.2), we get

E[I{X0∈C}] =
E0[
∑τ

t=0 I{Xt∈C}]
E0[τ ] + 1 = 1

E0[τ ] + 1 .

22



Hence, we have

(E0[τ ] + 1)
n∑

u=1
π2

uE[Vau(X0)] = E0[Vπ(X0)]. (1.3.1)

From (1.3.1), we can observe that the expected consensus time is fully determined by the expected

variance of vertex states with respect to the stationary distribution measured by
∑n

u=1 π2
uE[Vau(X0)]

and the variance of the initial state measured by E0[Vπ(X0)]. Intuitively, the smaller the value of∑n
u=1 π2

uE[Vau(X0)], the larger the expected consensus time.

The following is a key property of A in our analysis of consensus time

ΦA = min
{∑n

u=1 π2
uVau(x)

π⊤x(1− π⊤x) : x ∈ {0, 1}n, x /∈ C

}
. (1.3.2)

Note that 0 < ΦA ≤ 1. The inequality ΦA > 0 can be shown by contradiction as follows. Suppose

ΦA = 0, which is equivalent to a⊤
u x(1− a⊤

u x) = 0 for all u ∈ V . We can then partition V into two

non-empty sets S and V \ S such that each u has support of au fully contained in either S or V \ S.

This implies that A has a block structure, which contradicts the assumption that A is irreducible and

aperiodic. The inequality ΦA ≤ 1 follows from

n∑
u=1

π2
ua⊤

u x(1− a⊤
u x) ≤

n∑
u=1

πua⊤
u x(1− a⊤

u x)

≤
(

n∑
u=1

πua⊤
u x

)1−
(

n∑
u=1

πua⊤
u x

)2


= π⊤x(1− π⊤x)

where the first inequality is by non-negativity of the summation terms and πu ∈ [0, 1] for all u ∈ V ,

the second inequality is by concavity of x 7→ x(1 − x), and the equation is by the global balance

equations π⊤ = π⊤A.

By Lemma 1.3.1 and definition of ΦA, we have the following corollary.

Corollary 1.3.1. For all x ∈ {0, 1}n and t ∈ Z,

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] ≤ −ΦAVπ(x) + E0[Vπ(X0)]I{x∈C}.
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We next present a bound on the exponential moment of consensus time.

Theorem 1.3.1. For any x ∈ {0, 1}n such that x /∈ C, and any θ ∈ R such that (1− ΦA)eθ ≤ 1,

E0
x[eθτ ] ≤ Vπ(x)

minz∈{0,1}n\C Vπ(z) .

Proof. The theorem follows from the general result for Markov chains satisfying the Lyapunov drift

condition stated in Lemma 1.2.1. Recall that C = {0, 1}. Let V (x) := Vπ(x)/ minz∈{0,1}n\C Vπ(z).

Using Corollary 1.3.1, V (x) is a drift function with respect to C, with constants λ = 1 − ΦA and

K = E0[V (X0)]. By Lemma 1.2.1, we have Ex[(1− ΦA)−τ ] ≤ V (x). Combining with the condition

(1− ΦA)eθ ≤ 1, the claim of the theorem follows.

We have the following upper bound for the expected consensus time.

Corollary 1.3.2. For every x ∈ {0, 1}n such that x /∈ C,

E0
x[τ ] ≤ 1

ΦA
log

( 1
2π∗

)

where π∗ = min{πv : v = 1, . . . , n}.

Proof. By Theorem 1.3.1, taking θ such that (1− ΦA)eθ = 1, and Jensen’s inequality, we have

E0
x[τ ] ≤ 1

log
(

1
1−ΦA

) log
(

Vπ(x)
minz∈{0,1}n\C Vπ(z)

)
.

The corollary follows from the last inequality and combining with the following facts (a) Vπ(x) ≤ 1/4

for all x ∈ {0, 1}n, (b) Vπ(z) ≥ π∗(1− π∗) ≥ π∗/2, for all z ∈ {0, 1}n \ C, and (c) 1/ log(1/(1−

ΦA)) ≤ 1/ΦA.

From (1.3.1), we obtain

E0[τ ] ≥ 4E0[Vπ(X0)]
||π||22

− 1.

By Corollary 1.3.2, E0[τ ] ≤ log(1/(2π∗))/ΦA. Hence, if ΦA = Ω(||π||22) and E0[Vπ(X0)] = Ω(1),

the upper bound is tight within a factor logarithmic in 1/π∗. For instance, for the complete graph case,

i.e. when au,u = 0 and au,v = 1/(n − 1) for all u ̸= v, we have ΦA = (1/n)(1 + o(1)) (we show
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this in Section 1.3.2). In this case, we have the upper bound E0[τ ] = O(n log(n)), which is within a

factor logarithmic in n of the lower bound E0[τ ] = Ω(n).

In fact, from Theorem 1.3.1, we have the following bound for any moment of the consensus time.

Corollary 1.3.3. For every x ∈ {0, 1}n such that x /∈ C and k ≥ 0,

E0
x[τk] ≤ 1

2

(
k

e

)k 1
Φk

A

1
π∗ .

Proof. The proof follows readily from Theorem 1.3.1 and the the elementary fact that for any non-

negative random variable X , for any k ≥ 0 and θ > 0, E[Xk] ≤ (k/(eθ))kE[eθX ].

The bound for the first moment of consensus time in Corollary 1.3.2 is better than that in Corollary 1.3.3

in having a logarithmic dependence on 1/π∗ instead of linear dependence on this parameter.

By using the bound on the exponential moment of consensus time in Theorem 1.3.1, we can obtain a

bound on the tail probability of the consensus time. This allows us to derive bounds on the consensus

time that hold with high probability. We will next state a more general result that applies to the sum of

consensus times of m ≥ 1 independent voter model processes. We will use this more general result for

the parameter estimation in Section 1.4.

Theorem 1.3.2. For m ≥ 1 independent voter model processes with parameter A and independent

initial states according to distribution µ, for any a ≥ 0,

P0
[

m∑
i=1

τi ≥ ma

]
≤
((

E0[Vπ(X0)]
minz∈{0,1}n\C Vπ(z)

)
(1− ΦA)a

)m

. (1.3.3)

Proof. By Chernoff’s bound, for any θ ≥ 0,

P0
[

m∑
i=1

τi ≥ ma

]
≤ e−maθE0

[
eθ
∑m

i=1 τi

]
= e−maθE0[eθτ1 ]m.
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Let θ∗ = − log(1− ΦA). By Theorem 1.3.1, we have

E0[eθ∗τ1 ] ≤ E0[Vπ(X0)]
minz∈{0,1}n\C Vπ(z) .

Hence, (1.3.3) follows.

From Theorem 1.3.2, for any δ ∈ (0, 1], with probability at least 1− δ,

1
m

m∑
i=1

τi ≤
(

log
(

E0[Vπ(X0)]
minz∈{0,1}n\C Vπ(z)

)
+ 1

m
log

(1
δ

)) 1
log

(
1

1−ΦA

) .

From the last statement, we have the following corollary.

Corollary 1.3.4. For m ≥ 1 independent voter model processes with parameter A and independent

initial states with distribution µ, for any δ ∈ (0, 1], with probability at least 1− δ,

1
m

m∑
i=1

τi ≤
1

ΦA

(
log

( 1
2π∗

)
+ 1

m
log

(1
δ

))
.

The corollary implies us a high probability bound for consensus time, O((1/ΦA)(log(1/π∗)+log(n))),

which holds with probability at least 1− 1/nc, for any constant c > 0.

Asynchronous discrete-time voter model Similar results hold for the asynchronous discrete-time

voter model. An analogous lemma to Lemma 1.2.1 holds which is given as follows.

Lemma 1.3.2. For every x ∈ {0, 1}n and t ∈ Z, function Vπ satisfies the following expected drift

equation:

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x]

= − 1
n

n∑
u=1

π2
u(xu(1− a⊤

u x) + (1− xu)a⊤
u x) + E0[Vπ(X0)]I{x∈C}.

The statements in Corollary 1.3.2 and Theorem 1.3.2 hold true for asynchronous discrete-time voter
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model by replacing ΦA with Φ′
A where

Φ′
A = 1

n
min

{∑n
u=1 π2

uV ′
u(x)

π⊤x(1− π⊤x) : x ∈ {0, 1}n, x ̸= C

}
(1.3.4)

with V ′
u(x) := xu(1− a⊤

u x) + (1− xu)a⊤
u x.

It is readily observed that nΦ′
A ≥ ΦA and it follows that the statements in Corollary 1.3.2 and

Theorem 1.3.2 remain to hold true for asynchronous discrete-time voter model by replacing ΦA with

ΦA/n. The factor 1/n occurs because under asynchronous discrete-time voter model, at each time

step, exactly one node updates its state, which is in contrast to the voter model under which all nodes

update their states.

1.3.2 Discussion and comparison with previously-known consensus time bounds

We discuss the value of parameter ΦA and expected consensus time for some node interaction matrices

A and compare with the best previously-known consensus time bounds.

We will discuss node interaction probabilities that can be defined by a graph, as common in the

literature on voter model processes and random walks on graphs. Let G = (V, E) be a connected

graph where V is the set of |V | = n vertices and E is the set of edges. Let dv denote the degree of

vertex v, defined as the number edges incident to vertex v. For any set S ⊆ V , let d(S) =
∑

v∈S dv,

and let dv(S) denote the number edges incident to v and S. Let dmin denote the minimum degree of a

vertex in G. Graph G may contain self-loops, i.e. an edge connecting a vertex with itself.

We represent any given vector x ∈ {0, 1}n by the set S = {v ∈ V : xv = 1}, and we will use the

notation Sc := V \ S. Note that a vector x ∈ {0, 1}n defines a graph partition, i.e. partition of the set

of vertices into two components, S and Sc.

We will compare ΦA and bonds on the expected consensus time with some functions of graph

conductance. Conductance Φ(G) of graph G is defined as

Φ(G) = min
S⊂V :0<|S|<n

|E(S, Sc)|
min{d(S), d(Sc)} (1.3.5)

where E(S, Sc) is the set of edges connecting S and Sc. Let L be the normalized Laplacian matrix of

graph G, defined as L = I −D−1/2AD−1/2 where D is the diagonal matrix with diagonal elements

corresponding to vertex degrees. Let λ2 be the second smallest eigenvalue of L. By Cheeger’s
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inequality, for any connected graph G,

λ2/2 ≤ Φ(G) ≤
√

2λ2. (1.3.6)

We first consider node interactions such that in each time step, every vertex copies the state of a

randomly chosen neighbor with probability 1/2, where graph G has no self-loops. For example, this

case was studied in Berenbrink et al. [2016] and Kanade et al. [2019], and is commonly referred to as

lazy random walk. The node interaction matrix A has elements

au,v = 1
2 I{u=v} + 1

2
1
du

I{(u,v)∈E}, for u, v ∈ V. (1.3.7)

It can be readily checked that πv = dv/d(V ) for v ∈ V , and we also have

ΦA = 1
4 min

S⊂V :0<|S|<n

∑
u∈V (duI{u∈S} + du(S))(duI{u∈Sc} + du(Sc))

d(S)d(Sc) .

Lemma 1.3.3. Assume that node interaction matrix A is according to (1.3.7). Then, we have

1
ΦA
≤ 2d(V )

dmin

1
Φ(G) .

Together with Corollary 1.3.2, Lemma 1.3.3 implies E0[τ ] = O(((d(V )/dmin)/Φ(G)) log(n)), which

is within a logarithmic factor in n to the expected consensus time bound in Berenbrink et al. [2016].

For comparing with the expected consensus time bound in Cooper and Rivera [2016], E0[τ ] ≤ 64/ΨA,

we consider ΨA which is defined as ΨA = π∗Ψ̃A with

Ψ̃A = min
x∈{0,1}n\C

E [|
∑n

u=1 πu (xu −
∑n

v=1 Zu,vxv)|]
min{π⊤x, 1− π⊤x}

.

Lemma 1.3.4. For node interaction matrix A according to (1.3.7), we have

Ψ̃A ≤ Φ(G).
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From Lemmas 1.3.3 and 1.3.4, we have

Lemma 1.3.5. For node interaction matrix A according to (1.3.7), we have

1
ΦA
≤ 2 1

ΨA
.

The last lemma, together with Corollary 1.3.2, implies that our bound on the expected consensus time

is at most a logarithmic factor in n to the expected consensus time bound in Cooper and Rivera [2016].

We also considered another type of node interactions, where in each time step, each node copies the

state of a node from its neighborhood set which includes the node itself, i.e. we consider A defined as

au,v = 1
du

I{(u,v)∈E}, for u, v ∈ V. (1.3.8)

It is readily checked that πv = dv/d(V ), for v ∈ V , and

ΦA = min
S⊂V :0<|S|<n

|E2(S, Sc)|
d(S)d(Sc) (1.3.9)

where E2(S, Sc) is the set of paths consisting of two edges connecting S and Sc. Equation (1.3.9) can

be shown as follows. Note that

∑
u∈V

π2
ua⊤

u x(1− a⊤
u x) =

∑
u∈V

d2
u

d(V )2
du(S)

du

(
1− du(S)

du

)
= 1

d(V )2

∑
u∈V

du(S)du(Sc)

= 1
d(V )2

∑
v∈S

∑
w∈Sc

∑
u∈V

I{(v,u)∈E}I{(w,u)∈E}

= 1
d(V )2 |E2(S, Sc)|

and π⊤x(1− π⊤x) = d(S)d(Sc)/d(V )2. We will assume that every node in G has a self-loop. The

node interaction matrix A in this case can be interpreted to correspond to a lazy random walk that has a

higher probability of remaining at a vertex for smaller degree vertices. In other words, a higher-degree

vertex has a higher probability of adopting the state of a neighbor.

Lemma 1.3.6. Assume that node interaction matrix A is according to (1.3.8) and every node in G has
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a self-loop. Then, we have
1

ΦA
≤ 1

2d(V ) 1
Φ(G) .

Together with Corollary 1.3.2, Lemma 1.3.6 implies E0[τ ] = O((d(V )/Φ(G)) log(n)). By the same

arguments as in the proof of Lemma 1.3.4, we have the following lemma.

Lemma 1.3.7. Assume that node interaction matrix A is according to (1.3.8). Then, we have

Ψ̃A ≤ 2Φ(G).

From Lemmas 1.3.6 and 1.3.7, we have the following lemma.

Lemma 1.3.8. Assume that node interaction matrix A is according to (1.3.8) and every node in G has

a self-loop. Then, we have
1

ΦA
≤ dmin

1
ΨA

.

Together with Corollary 1.3.2, Lemma 1.3.8 implies that our bound on the expected consensus time is

at most a O(dmin log(n)) factor of the expected consensus time bound in Cooper and Rivera [2016].

For the asynchronous discrete-time voter model with A according to (1.3.8), we have

E0[τ ] ≤ 1
Φ′

A

log
(

d(V )
2dmin

)

where

Φ′
A = 1

n
min

S⊂V :0<|S|<n

{∑
u∈S,v∈Sc(du + dv)I{(u,v)∈E}

d(S)d(Sc)

}
.

From Cooper and Rivera [2016], E0[τ ] ≤ 64/ΨA where

ΨA = 2
n

dmin
d(V ) min

S⊂V :0<|S|<n

|E(S, Sc)|
min{d(S), d(Sc)} .

From the above relations, we have the following lemma.
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Lemma 1.3.9. For the asynchronous discrete-time voter model with A according to (1.3.8), we have

1
Φ′

A

≤ 1
ΨA

.

The last lemma implies that our bound on the expected consensus time is within a logarithmic factor in

n to the expected consensus time bound in Cooper and Rivera [2016].

We next provide explicit characterizations of ΦA and bounds on the expected consensus time, from

Corollary 1.3.2, for node interactions such that au,v = 1/dv for (u, v) ∈ E, for the case of a complete

graph and a cycle. Note that it holds

ΦA = min
S⊂V :0<|S|<n

|E2(S, Sc)|
d(S)d(Sc) (1.3.10)

where E2(S, Sc) is the set of paths with two edges connecting S and Sc.

Complete graph Kn Let G be the complete graph with n vertices. Then, for any S ⊆ V ,

|E2(S, Sc)| = |S|(n− |S|)(n− 2)

d(S) = |S|(n− 1)

d(Sc) = (n− |S|)(n− 1).

Using this in (1.3.10), we have

ΦA = n− 2
(n− 1)2 = 1

n
(1 + o(1)).

Combining with π∗ = 1/n, and Corollary 1.3.2, we have

E0[τ ] ≤ n log(n)(1 + o(1)).

Cycle Cn Let G be the cycle with n ≥ 3 nodes. Then, for any S ⊆ V , we have

d(S) = 2|S| and d(Sc) = 2(n− |S|).
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Conditional on |S|, the smallest value of |E2(S, Sc)| is achieved when vertices in S are adja-

cent. In this case, we distinguish two cases. First, if |S| = n − 1, then, |E2(S, Sc)| = 2, and

|E2(S, Sc)|/(d(S)d(Sc)) = 1/(2(n− 1)). Second, if |S| < n− 1, then |E2(S, Sc)| = 4, and thus

|E2(S, Sc)|
d(S)d(Sc) = 1

|S|(n− |S|) .

The minimum over |S| is achieved for |S| = n/2 if n is even, otherwise, it is achieved for (n− 1)/2.

For n even, ΦA = 4/n2 and, otherwise, ΦA = 4/(n2 − 1). Therefore, we have

ΦA = 4 1
n2 (1 + o(1)).

Combining with π∗ = 1/n, and Corollary 1.3.2, we have

E0[τ ] ≤ 1
4n2 log(n)(1 + o(1)).

1.4 Parameter estimation

In this section we first show an upper bound for the parameter estimation error, using a maximum

likelihood estimator with a regulaizer, for the voter model parameter A∗ from observed node states

over time for m ≥ 1 independent voter model process realizations with parameter A∗ and independent

initial states according to distribution µ. We then show a lower bound for the parameter estimation

error for the class of locally stable estimators.

1.4.1 Parameter estimation error upper bound

Let A 7→ L(A; X) denote a loss function of the voter model for given observation data X , where X

are observed node states for m independent voter model process realizations with parameter A∗ and

initial state distribution µ,

X = (X(1)
0 , . . . , X(1)

τ1 , . . . , X
(m)
0 , . . . , X(m)

τm
)⊤.
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We define estimator Â as a minimizer of the loss function L(A; X), i.e.,

Â ∈ arg min
A∈Θ
{L(A; X)} (1.4.1)

where Θ is some given set of parameters.

Specifically, we will consider the loss function L(A; X) defined as the sum of the negative log-

likelihood function and a regularizer defined as

L(A; X) = −ℓ(A; X) + λm||A||1,1 (1.4.2)

where ℓ(A) is the log-likelihood function and λm ≥ 0 is the regularization parameter. Let ∆ = Â−A∗

denote the parameter estimation error. As common in statistical inference theory, we will measure the

parameter estimation error by the Frobenious norm ||∆||F .

The log-likelihood function can be expressed as

ℓ(A; X) =
m∑

i=1

(
log(µ(X(i)

0 ))−
n∑

u=1

τi−1∑
t=0

H(X(i)
t+1,u, a⊤

u X
(i)
t )
)

(1.4.3)

where H(p, q) is the cross-entropy between two Bernoulli distributions with mean values p and q, i.e.

H(p, q) = −(p log(q) + (1− p) log(1− q)).

Let us define

Tu,i = {t ∈ {0, . . . , τi} : 0 < a⊤
u X

(i)
t < 1}.

Intuitively, Tu,i is the set of time steps at which the state of the i-th voter model process is such that

vertex u has a pair of neighbors in different states. Note that having such mixed neighborhood sets

is necessary for the parameter estimation, as otherwise, no useful information can be gained from

observed vertex states for the parameter estimation.

For our analysis we will consider the gradient vector∇ℓ(A; X) and the Hessian matrix∇2ℓ(A; X) of

the log-likelihood function. The gradient vector∇ℓ(A; X) has elements given as follows

∂

∂au,v
ℓ(A; X) =

m∑
i=1

∑
t∈Tu,i

X
(i)
t+1,u

a⊤
u X

(i)
t

−
1−X

(i)
t+1,u

1− a⊤
u X

(i)
t

X
(i)
t,v .
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The Hessian matrix∇2ℓ(A; X) has elements given as follows

∂2

∂au,v∂au,w
ℓ(A; X) = −

m∑
i=1

∑
t∈Tu,i

φu(X(i)
t , X

(i)
t+1)X(i)

t,vX
(i)
t,w (1.4.4)

where

φu(X, Y ) = Yu

(a⊤
u X)2 + 1− Yu

(1− a⊤
u X)2

and
∂2

∂au,v∂au′,w
ℓ(A; X) = 0, if u ̸= u′. (1.4.5)

For bounding the parameter estimation error, we use the framework for analysis of M-estimators with

decomposable regularizers from high-dimensional statistics, e.g. Negahban et al. [2012c], Wainwright

[2019]. The parameter estimator defined by (1.4.1) with the loss function (1.4.2) is an instance of an

M-estimator with a decomposable regularizer.

For any set S ⊆ V 2 and A ∈ Rn×n, let AS be the n× n matrix with support restricted to S, i.e. AS is

such that (AS)u,v = au,v if (u, v) ∈ S and (AS)u,v = 0 if (u, v) ∈ Sc = V 2 \S. For any set S ⊆ V 2,

let

C(S; A∗) := {∆ : ||∆Sc ||1,1 ≤ 3||∆S ||1,1 + 4||A∗
Sc ||1,1}.

When the support of A∗ is contained in S, we have ||A∗
Sc ||1,1 = 0.

For a given positive integer s, let S∗ be a minimizer of ||A∗
Sc ||1,1 over S ⊆ V such that |S| ≤ s. Let

C∗ := C(S∗; A∗).

For any differentiable loss function L : Rn×n 7→ R, we define the first-order Taylor error as

E(∆) = L(A∗ + ∆)− L(A∗)−∇L(A∗)⊤vec(∆)

where vec(∆) denotes the vector defined by stacking the rows of matrix ∆.

A key concept in the framework of M -estimators is that of restricted strongly convex functions which

is defined as follows.

Definition 1.4.1. (Restricted Strong Convexity (RSC)) A loss function L satisfies restricted strong
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convexity relative to A∗ and S ⊆ V 2 with curvature κ > 0 and tolerance γ2 if, for all ∆ ∈ C(S; A∗),

E(∆) ≥ κ||∆||2F − γ2.

The following bound on the parameter estimation error follows from the framework of M-estimators

with decomposable regularizers (e.g. Theorem 1 in Negahban et al. [2012c]).

Theorem 1.4.1. Assume that the loss function L(A; X) in (1.4.2) has the regularization parameter

λm such that

λm ≥ 2||∇ℓ(A∗)||∞ (1.4.6)

and, for some S ⊆ V 2, the negative log-likelihood function −ℓ(A; X) satisfies the RSC condition

relative to A∗ and S with curvature κ > 0 and tolerance γ2. Then, we have

||Â−A∗||2F ≤ 9|S|
(

λm

κ

)2
+
(

2γ2 1
m

+ 4||A∗
Sc ||1,1

)
λm

κ
.

To bound the parameter estimation error for the voter model, we need to show (1) that condition (1.4.6)

holds for the extended voter model with a given probability and (2) that the negative log-likelihood

function satisfies the RSC condition with a given probability.

We first show a lemma that allows us to set the regularization parameter λm such that condition in

(1.4.6) holds with high probability.

Lemma 1.4.1. For any δ ∈ (0, 1], and any m ≥ 1 independent realizations of the voter model process

with parameter A∗ and initial distribution µ, with probability at least 1− δ,

||∇ℓ(A∗)||∞ ≤
√

2 1
α

1√
ΦA∗

√
mcn,δ,π∗(m) (1.4.7)

where

cn,δ,π∗(m)2 :=
(

log
( 1

2π∗

)
+ 1

m
log

(
2n2

δ

))
log

(
4n2

δ

)
.

The proof of the lemma bounds the probability that ||∇ℓ(A∗)||∞ exceeds a fixed value with the sum
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of probabilities of two events. One of these events is a deviation event for the sum of a bounded-

difference martingale sequence defined by the sequence of gradients of the log-likelihood function

over a fixed horizon time; which we bound by using Azuma-Hoeffding’s inequality. The other event is

the probability that the sum of consensus times of m independent voter model processes exceeds the

value of the fixed horizon time; which we bound by using the probability tail bound for the sum of

consensus times in Theorem 1.3.2.

Note that the bound on ||∇ℓ(A∗)||∞ in Lemma 1.4.1 involves the term
√

m/ΦA∗ . In view of the bound

on the expected consensus time in Corollary 1.3.2, we may intuitively think of the term
√

m/ΦA∗ as

an upper bound on the square-root of the expected number of observed time steps of the extended voter

model process, i.e.
√

mE0[τ ]. Note also that the bound (1.4.7) in Lemma 1.4.1 remains to hold by

replacing cn,δ,π∗(m) with cn,δ,π∗(1), in which case the right-hand side in (1.4.7) scales with m as
√

m.

We can lower bound the first-order Taylor error function as follows.

Lemma 1.4.2. Assume that A∗ and A∗ + ∆ with ∆ = (∆1, . . . , ∆n)⊤ have a common support. Then,

we have

E(∆) ≥ h(∆; X)

where

h(∆; X) :=
m∑

i=1

τi−1∑
t=0

n∑
u=1

(
∆⊤

u X
(i)
t

)2
.

By Lemma 1.4.2, in order to show that the first-order Taylor error function E(∆) satisfies the RSC

condition in Definition 1.4.1, it suffices to show that the RSC condition holds for function h(∆; X).

We first show that the RSC condition holds for the expected value of h(∆; X) for any fixed value of ∆.

Lemma 1.4.3. For any ∆ = (∆1, . . . , ∆n)⊤, we have

E0[h(∆; X)] ≥ κ1||∆||2F

for any κ1 > 0 such that

κ1 ≤ mE0[τ ]λmin(E[X0X⊤
0 ]).

The correlation matrix E[X0X⊤
0 ] is with respect to the stationary distribution of the extended voter
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process that does not include final consensus states of individual voter processes. The smallest

eigenvalue λmin(E[X0X⊤
0 ]) plays an important role in Lemma 1.4.3 and the results that follow. Note

that by the Palm inversion formula (1.2.2),

λmin(E[X0X⊤
0 ]) = 1

E0[τ ]λmin

(
E0
[

τ−1∑
t=0

XtX
⊤
t

])
. (1.4.8)

From (1.4.8), it can be readily observed that

λmin(E[X0X⊤
0 ]) ≥ 1

E0[τ ]λmin(E0[X0X⊤
0 ]). (1.4.9)

If the initial state distribution µ is of product-form with Bernoulli (p) marginal distributions, with

0 < p < 1, then λmin(E0[X0X⊤
0 ]) = p(1− p), and we have

λmin(E[X0X⊤
0 ]) ≥ p(1− p) 1

E0[τ ] .

This bound is not tight. Tighter bounds can be obtained by analysis of the spectrum of the stationary cor-

relation matrix E[X0X⊤
0 ] by using the Lyapunov matrix equation, which we discuss in Section 1.5.14.

For example, for the complete graph case, when au,u = 0 and au,v = 1/(n− 1) for all u ̸= v, we have

λmin(E[X0X⊤
0 ]) = p(1− p) n

E0[τ ] (1 + o(1)).

We next show that for any fixed value ∆, h(∆; X) satisfies the RSC condition in Definition 1.4.1 with

a prescribed probability, provided that the number of observations m is sufficiently large.

Lemma 1.4.4. For a voter model process with parameter A∗ and initial distribution µ, for any

δ ∈ (0, 1/2], any S ⊆ V 2 such that |S| ≤ s for some positive integer s, and any ∆ ∈ C(S, A∗),

h(∆; X) satisfies the RSC condition relative to A∗ and S, with curvature κ = κ1/2 and tolerance

γ = 0, with probability at least 1− δ, under condition

m ≥ s2

ΦA∗

1
E0[τ ]2λmin(E[X0X⊤

0 ])2 cδ,π∗(m),

where

cδ,π∗(m) = 8
(

log
( 1

2π∗

)
+ 1

m
log

(2
δ

))
log

(2
δ

)
.
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We next show that h(∆; X) satisfies the RSC condition in Definition 1.4.1 for every ∆ ∈ C∗ with

certain probability.

Lemma 1.4.5. For a voter model process with parameter A∗ and initial distribution µ, function

h(∆; X) satisfies the RSC condition relative to A∗ and S∗, for every ∆ ∈ C∗ with probability at least

1− 4/n,

h(∆; X) ≥ κ′||∆||2F − γ′2 for all ∆ ∈ C∗

where κ′ = κ1/8 and γ′ =
√

κ1/8||A∗
S∗ ||1,1/

√
s, provided that

m ≥ m1 := c1s2 log(1/(2π∗))(a + 1) log(n) + (a + 1)2 log(n)2

ΦA∗E0[τ ]2λmin(E[X0X⊤
0 ])2 (1.4.10)

and

m ≥ m2 := c2n3(1/π∗) 1
(ΦA∗E0[τ ])2λmin(E[X0X⊤

0 ])2 (1.4.11)

where

a = sn
log(1/(2π∗)) + log(n)

(ΦA∗E0[τ ])λmin(E[X0X⊤
0 ])

for some constants c1, c2 > 0.

The proof of Lemma 1.4.5 relies on some set covering arguments to bound the probability of events

indexed with ∆, which takes values in the infinite set C∗. These covering arguments require stronger

conditions on the number of voter model realizations m than in Lemma 1.4.4, which shows that the

RSC condition holds in probability, for any fixed value ∆.

Consider the case when the voter model process has the stationary distribution π of A∗ such that π∗

is lower bounded by a polynomial in 1/n. Then, a sufficient condition for (1.4.10) is that for some

constant c > 0,

m ≥ c
1

E0[τ ]
s4n2

λmin(E[X0X⊤
0 ])4

log(n)2

(ΦA∗E0[τ ])3 .

We next present our main theorem that provides a bound on the parameter estimation error.

Theorem 1.4.2. Consider the voter model process with parameter A∗ with support size s. Assume that
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Â is a minimizer of the loss function L(A; X) defined by (1.4.2) with the regularization parameter

λm = 2
√

2 cn,π∗

α
√

ΦA∗

√
m,

and conditions (1.4.10) and (1.4.11) hold. Then, for some constant c > 0, with probability at least

1− 5/n,

||Â−A∗||2F ≤ c
sc2

n,π∗

α2(ΦA∗E0[τ ])2λmin(E[X0X⊤
0 ])2 ΦA∗

1
m

(1.4.12)

where

c2
n,π∗ =

(
log

( 1
2π∗

)
+ log

(
2n3

))
log

(
4n3

)
.

Theorem 1.4.2 gives us a bound on the parameter estimation error in (1.4.12) that holds with high

probability under sufficient conditions (1.4.10) and (1.4.11) for consistency of the estimator. For any

initial distribution µ and parameter A∗ such that E0[τ ] is equal to 1/ΦA∗ up to a poly-logarithmic

factor in n, the term ΦA∗E0[τ ] contributes only poly-logarithmic factors in (1.4.12). In the case when

the product ΦA∗E0[τ ] is poly-logarithmic in n, for asymptotically large m,

m||Â−A∗||2F = Õ

(
sΦA∗

α2λmin(E[X0X⊤
0 ])2

)
.

1.4.2 Sampling complexity lower bound

In this section, we show a lower bound on the sampling complexity for the parameter estimation of the

voter model. This lower bound is derived using the framework of locally stable estimators Jedra and

Proutiere [2019]. Intuitively, a locally stable estimator of a parameter is robust to small perturbations

of the true parameter value.

To make a precise definition, let B(A∗, r) be the ball with centre point A∗ and radius r, i.e. B(A∗, r) =

{A ∈ Θ : ||A∗−A||F ≤ r}, where Θ is some set of parameter values. Let PA[·] denote the probability

distribution under a statistical model with parameter A. The notion of locally stable estimators is

defined as follows.

Definition 1.4.2. An estimator Â is said to be (ϵ, δ)-locally stable in A∗ with parameters ϵ > 0 and
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δ ∈ (0, 1), if there exists a finite m0 such that for all m ≥ m0 and A ∈ B(A∗, 3ϵ),

PA[||Â−A||F ≤ ϵ] ≥ 1− δ.

Roughly speaking, for any locally stable estimator in A∗, a given bound on the parameter estimation

error holds in probability with respect to any parameter A that is in a neighborhood of A∗. In our

setting, we let Θ be the set of n× n substochastic matrices.

The following theorem gives a lower bound on the sampling complexity for the class of locally stable

estimators.

Theorem 1.4.3. Assume that A∗ is a stochastic matrix such that each element in its support has value

at least α > 0. Let q1 be the eigenvector corresponding to the smallest eigenvalue of the correlation

matrix E[X0X⊤
0 ] of the extended voter process with parameter A∗ and initial state distribution µ.

Then, for any (ϵ, δ)-locally stable estimator in A∗, such that δ ∈ (0, 1) and ϵ ∈ (0, min{1/(2|q⊤
1 1|), α/4}),

it holds

mE0[τ ]λmin(E[X0X⊤
0 ]) ≥ α

16
1
ϵ2 log

( 1
2.4δ

)
. (1.4.13)

Moreover, (1.4.13) holds under stronger condition ϵ ∈ (0, min{1/(2
√

n), α/4}).

The proof of the theorem follows similar arguments as in the proof of a sampling complexity lower

bound for linear discrete-time dynamical systems with additive Gaussian noise Jedra and Proutiere

[2019]. The extended voter process requires us to study a different discrete-time random dynamical

system, and addressing certain technical points that arise due to Bernoulli random variables and

constraints on the node interaction parameters.

The result in Theorem 1.4.3 shows us that the upper bound in Theorem 1.4.2 is tight with respect to

the relation between ||Â−A∗||F and m for small estimation error case. If δ is polynomial in 1/n and

ϵ2 ≤ min{1/n, α2}/16, then from (1.4.13) we have

mϵ2 = Ω
(

α

E0[τ ]λmin(E[X0X⊤
0 ])

log(n)
)

.
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1.5 Proofs and additional results

1.5.1 Mathematical background

1.5.1.1 KL divergence bounds

Let p and q be two distributions on X such that p(x) = 0 for all x ∈ X such that q(x) = 0. The KL

divergence between p and q is defined by

KL(p || q) =
∑
x∈X

p(x) log
(

p(x)
q(x)

)
.

The total variation distance between p and q is defined by

δ(p, q) = 1
2
∑
x∈X
|p(x)− q(x)|.

The Pinsker’s inequality is

KL(p || q) ≥ 2δ(p, q)2. (1.5.1)

Because (
∑

x∈X |p(x)− q(x)|)2 ≥ ||p− q||2, it follows

KL(p || q) ≥ 1
2 ||p− q||2. (1.5.2)

Let α > 0 be a constant such that q(x) ≥ α for all x ∈ X such that q(x) > 0. Then, we have the

following upper bound for the KL divergence:

KL(p || q) ≤ 1
α
||p− q||2. (1.5.3)
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The proof is easy and is provided here for completeness:

KL(p || q) =
∑

x∈X :q(x)>0
p(x) log

(
p(x)
q(x)

)

=
∑

x∈X :q(x)>0
q(x)

(
p(x)− q(x)

q(x) + 1
)

log
(

p(x)− q(x)
q(x) + 1

)

≤
∑

x∈X :q(x)>0
q(x)

(
p(x)− q(x)

q(x) + 1
)

p(x)− q(x)
q(x)

=
∑

x∈X :q(x)>0

(p(x)− q(x))2

q(x)

≤ 1
α
||p− q||2

where the first inequality follows by the fact that log(x + 1) ≤ x for all x > −1 and the last inequality

follows by the definition of α.

Suppose that p and q are two Bernoulli distributions with parameters p̄ and q̄, respectively. With a

slight abuse of notation, let KL(p̄ || q̄) denote the KL divergence between p and q. Using Pinsker’s

inequality (1.5.1) and δ(p, q) = 1
2(|p̄− q̄|+ |p̄− q̄|) = |p̄− q̄|, we have the lower bound

KL(p̄ || q̄) ≥ 2(p̄− q̄)2. (1.5.4)

Using (1.5.3), under α ≤ q̄ ≤ 1− α, we have the upper bound

KL(p̄ || q̄) ≤ 2
α

(p̄− q̄)2. (1.5.5)

1.5.1.2 Concentration of measure inequalities

Theorem 1.5.1 (Azuma-Hoeffding). Assume X0, X1, . . . is a martingale sequence such that |Xi −

Xi−1| ≤ ci almost surely. Then, for all positive integers N and all ϵ > 0,

P[XN −X0 ≥ ϵ] ≤ exp
(
− ϵ2

2
∑N

i=1 c2
i

)

with an identical bound for the other tail.
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1.5.1.3 Covering and metric entropy

Let (M, ρ) be a metric space, where M is a set and ρ : M ×M → R+ is a metric.

An ϵ-covering of M in metric ρ is a collection of points {x1, . . . , xk} ⊂M such that for every x ∈M ,

ρ(x, xi) ≤ ϵ, for some i ∈ {1, . . . , k}.

The ϵ-covering number, denoted as N(ϵ, M, ρ), is the cardinality of the smallest ϵ-covering of M in

metric ρ. In other words, N(ϵ, M, ρ) is the minimum number of balls with radius ϵ under metric ρ

required to cover M .

Let BM (x, ϵ, ρ) be the closed ball with center x and radius ϵ under metric ρ, i.e.

BM (x, ϵ, ρ) = {y ∈M : ρ(x, y) ≤ ϵ}.

Then,

N(ϵ, M, ρ) = min{k ∈ N : ∃x1, . . . , xk : M ⊂ ∪k
i=1BM (xi, ϵ, ρ)}.

The metric entropy is defined as the logarithm of the covering number, i.e. log(N(ϵ, M, ρ)).

The dyadic entropy number ϵk(M, ρ) is defined as

ϵk(M, ρ) = inf{ϵ > 0 : N(ϵ, M, ρ) ≤ 2k−1}.

Note that ϵk(M, ρ) ≤ ϵ if and only if log(N(ϵ, M, ρ)) ≤ k.

Let M = Rd and let Bq(r) be the closed ball with center 0 and radius r under metric ℓq. By Raskutti

et al. [2011], for every q ∈ (0, 1] and p ∈ [1,∞] such that p > q, there exists a constant cq,p such that

log(N(ϵ, Bq(r), ℓp)) ≤ cq,prp/(p−q)
(1

ϵ

)1/(1/q−1/p)
log(d), for all ϵ ∈ (0, r1/q).

In particular, for q = 1 and p = 2, for some constant c > 0,

log(N(ϵ, B1(r), ℓ2)) ≤ c

(
r

ϵ

)2
log(d), for all ϵ ∈ (0, r). (1.5.6)

In the following lemma we provide a bound on the metric entropy for a certain metric ρ that is of

interest for our parameter estimation problem. A similar lemma was stated in Pandit et al. [2019]

43



(Lemma A.8) without a proof. Our lemma shows that parameters c1 and c2 in the lemma are not

constants but depend on matrix X . This has significant implications on required conditions when

applying the lemma to the parameter estimation problem.

Lemma 1.5.1. Let X be a real T × n matrix with each column having ℓ2 norm bounded by
√

T .

Let B1(r) = {∆ ∈ Rn×n : ||∆||1 ≤ r} and ρ(∆, ∆′) = 1/
√

T ||X(∆ −∆′)⊤||F . Then, there exist

constant c > 0 such that the metric entropy of B1(r) in ρ is bounded as

log(N(ϵ, B1(r), ρ)) ≤ c1

(
r

ϵ

)2
log(n), for all ϵ ∈ (0, c2r]

where c1 = cσmax(X)2/T and c2 = σmax(X)/
√

T .

Proof. For any real k × n matrix M and real n× n matrix D with k ≥ n, we have

||MD||F ≤ ||M ||||D||F = σmax(M)||D||F

where σmax(M) denotes the largest singular value of M .

Hence, we have

1/
√

T ||X(∆−∆′)⊤||F ≤ (σmax(X)/
√

T )||∆−∆′||F .

Let ρ′(∆, ∆′) = (σmax(X)/
√

T )||∆−∆′||F , and N(ϵ, B1(r), ρ′) be the minimum number of balls

with radius ϵ under metric ρ′ to cover B1(r), and ϵ′ =
√

Tϵ/σmax(X). Then, we have

N(ϵ, B1(r), ρ) ≤ N(ϵ, B1(r), ρ′)

= N(ϵ′, B1(r), ℓ2)

≤ ec1( r
ϵ )2 log(n)

for all ϵ ∈ (0, c2r). The first inequality comes from the fact that ρ′ balls take up less space than ρ balls,

so it would take more of them to do the covering, and the second inequality comes from (1.5.6).

1.5.2 Proof of Lemma 1.2.1

Lemma 1.2.1 is a known result. We provide a proof for the sake of completeness.
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We claim that for every t ≥ 0 and x /∈ C,

V (x) ≥ λ−tEx[V (Xt)I{τC>t}] +
t∑

s=1
λ−sPx[τC = s]. (1.5.7)

We will prove this by induction on t. Base case t = 0 trivially holds. For the induction step, assume

that (1.5.7) holds for t, and we are going to prove that it then holds for t + 1. For any x /∈ C,

Ex[V (Xt)I{τC>t}]

≥ λ−1Ex[PV (Xt+1)I{τC>t}]

= λ−1Ex[V (Xt+1) | I{τC>t}]

= λ−1
(
Ex[V (Xt+1)I{τC>t+1}] + Ex[V (Xt+1)I{τC=t+1}]

)
≥ λ−1Ex[V (Xt+1)I{τC>t+1}] + λ−1Px[τC = t + 1]

where the first inequality is by the drift condition and the last inequality is because V (x) ≥ 1 for all

x ∈ X .

Now, use the last inequality to obtain that (1.5.7) holds for t + 1. It follows that

V (x) ≥ λ−tPx[τC > t] +
t∑

s=1
λ−sPx[τC = s].

By letting t goes to infinity, we have

V (x) ≥
∞∑

s=1
λ−sP[τC = s] = Ex[λ−τC ].

1.5.3 Proof of Lemma 1.3.1

We first consider the case when x ∈ {0, 1}n such that x /∈ C. Note that

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x]

= π⊤E[Xt+1 | Xt = x]

−π⊤x− (E[(π⊤Xt+1)2 | Xt = x]− (π⊤x)2)

−(E[(π⊤Xt+1)2 | Xt = x]− (π⊤x)2) (1.5.8)
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where the last equation is by the fact that π⊤Xt is a martingale.

Let

DA(x) = diag(a⊤
1 x(1− a⊤

1 x), . . . , a⊤
n x(1− a⊤

n x)).

Note that

E[(π⊤Xt+1)2 | Xt = x]

= π⊤E[Xt+1X⊤
t+1 | Xt = x]π

= π⊤(AE[XtX
⊤
t | Xt = x]A⊤ + E[DA(Xt) | Xt = x])π

= π⊤xx⊤π + π⊤DA(x)π

= (π⊤x)2 + π⊤DA(x)π.

Plugging the derived identity in (1.5.8), we obtain

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] = −
n∑

u=1
π2

uVau(x).

Now, consider the case when x ∈ C. Then, Vπ(x) = 0, and we have

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] = E0[Vπ(X0)].

Hence, we have shown that

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x]

= −
n∑

u=1
π2

uVau(x) + E0[Vπ(X0)]I{x∈C}.

1.5.4 Proof of Lemma 1.3.2

We first consider the case when x ∈ {0, 1}n such that x /∈ C. In this case, we have

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x]

= π⊤E[Xt+1 | Xt = x]− π⊤E[Xt+1X⊤
t+1 | Xt = x]π − π⊤x + π⊤xx⊤π.
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Now, note

E[Xt+1 | Xt = x] = 1
n

Ax +
(

1− 1
n

)
x.

Hence, π⊤E[Xt+1 | Xt = x] = π⊤x. It follows

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] = −π⊤E[Xt+1X⊤
t+1 | Xt = x]π + π⊤xx⊤π.

For u ̸= v, we have

E[Xt+1,uXt+1,v | Xt = x] = 1
n

a⊤
u xxv + 1

n
xua⊤

v x +
(

1− 2
n

)
xuxv

and

E[Xt+1,uXt+1,u | Xt = x] = 1
n

a⊤
u x +

(
1− 1

n

)
xu.

In a matrix notation, we have

E[Xt+1X⊤
t+1 | Xt = x] = 1

n
(Ax)x⊤ + 1

n
x(Ax)⊤ +

(
1− 2

n

)
xx⊤ + 1

n
DA(x)

where DA(x) is the diagonal matrix with diagonal elements

(DA(x))u,u = xu(1− a⊤
u x) + (1− xu)a⊤

u x.

It follows that

π⊤E[Xt+1X⊤
t+1 | Xt = x]π = π⊤xx⊤π + 1

n

n∑
u=1

π2
u(xu(1− a⊤

u x) + (1− xu)a⊤
u x)

and, hence,

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] = − 1
n

n∑
u=1

π2
u(xu(1− a⊤

u x) + (1− xu)a⊤
u x).

For the case when x ∈ C, we have

E[Vπ(Xt+1)− Vπ(Xt) | Xt = x] = E0[Vπ(X0)].
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1.5.5 Proof of Lemma 1.3.3

It is can be readily checked that πu = du/d(V ), for u ∈ V .

Next, note

∑
u∈V

π2
ua⊤

u x(1− a⊤
u x) = 1

4d(V )2

∑
u∈V

(duI{u∈S} + du(S))(duI{u∈Sc} + du(Sc))

≥ dmin
4d(V )2

(∑
u∈S

du(Sc) +
∑

u∈Sc

du(S)
)

= dmin
2d(V )2 |E(S, Sc)|.

It follows

∑
u∈V π2

ua⊤
u x(1− a⊤

u x)
π⊤x(1− π⊤x) ≥ dmin

2
|E(S, Sc)|
d(S)d(Sc)

≥ dmin
2d(V )

|E(S, Sc)|
min{d(S), d(Sc)} .

Hence, we have
1

ΦA
≤ 2d(V )

dmin

1
Φ(G) .

1.5.6 Proof of Lemma 1.3.4

Note that

E[|π⊤(I − Z)x|] ≤
n∑

u=1
πuE

[∣∣∣∣∣xu −
n∑

v=1
Zu,vxv

∣∣∣∣∣
]

=
n∑

u=1
πu[xu(1− a⊤

u x) + (1− xu)(a⊤
u x)]

= 2
n∑

u=1

n∑
v=1

πuau,vxu(1− xv)

where the inequality is by Jensen’s inequality. For A according to (1.3.8), we have

n∑
u=1

n∑
v=1

πuau,vxu(1− xv) = 1
2d(V ) |E(S, Sc)|

48



and

min{π⊤x, 1− π⊤x} = 1
d(V ) min{d(S), d(Sc)}.

Hence, it follows

Ψ̃A ≤ Φ(G).

1.5.7 Proof of Lemma 1.3.6

For every S ⊆ V , we have

|E2(S, Sc)| =
∑
u∈V

du(S)du(Sc)

=
∑

u∈Sc

du(S)du(Sc) +
∑
u∈S

du(S)du(Sc)

≥
∑

u∈Sc

du(S) +
∑
u∈S

du(Sc)

= 2|E(S, Sc)|

where the inequality holds by the fact that du(S) ≥ 1 when u ∈ S, , for any set S ⊂ V , because each

vertex in G has a self-loop.

Thus, we have

∑
u∈V

π2
ua⊤

u x(1− a⊤
u x) = 1

d(V )2 |E2(S, Sc)| ≥ 2
d(V )2 |E(S, Sc)|.

Combining with

π⊤x(1− π⊤x) = d(S)d(Sc)
d(V )2 ≤ 1

d(V ) min{d(S), d(Sc)},

and (1.3.5) and (1.3.9), we have
1

ΦA
≤ 1

2d(V ) 1
Φ(G) .

1.5.8 Proof of Lemma 1.4.1

By the union bound, for any Λ ≥ 0,

P0[||∇ℓ(A∗; X)||∞ ≥ Λ] ≤ n2 max
(u,v)∈V 2

P0
[∣∣∣∣∣ ∂

∂au,v
ℓ(A∗; X)

∣∣∣∣∣ ≥ Λ
]

.
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Fix u, v ∈ V . Let us define

Y
(i)

t =

 X
(i)
t,u

a∗
u

⊤X
(i)
t−1
−

1−X
(i)
t,u

1− a∗
u

⊤X
(i)
t−1

X
(i)
t−1,vI{0<a∗

u
⊤X

(i)
t−1<1}.

Note that

P0
[∣∣∣∣∣ ∂

∂au,v
ℓ(A∗; X)

∣∣∣∣∣ ≥ Λ
]

= P0
[∣∣∣∣∣

m∑
i=1

τi∑
t=1

Y
(i)

t

∣∣∣∣∣ ≥ Λ
]

. (1.5.9)

For 0 < s ≤
∑m

i=1 τi, let us define

Ys = Y
(k)

s−
∑k−1

i=1 τi

, for
k−1∑
i=1

τi < s ≤
k∑

i=1
τi and k ∈ [m]

where
∑0

i=1 τi ≡ 0, and

Ys = Y (m)
τm

= 0, for s >
m∑

i=1
τi.

From (1.5.9), for any T > 0,

P0
[∣∣∣∣∣ ∂

∂au,v
ℓ(A∗; X)

∣∣∣∣∣ ≥ Λ
]
≤ P0

[∣∣∣∣∣
T∑

t=1
Yt

∣∣∣∣∣ ≥ Λ
]

+ P0
[

m∑
i=1

τi > T

]
.

For every t ≥ 0, we have

E[Yt | Ft−1] = 0.

Hence, Y1, Y2, . . . is a martingale difference sequence. For all t ≥ 1, |Yt| ≤ 1/α, with probability 1.

Hence, we can apply Azuma-Hoeffding’s inequality (Theorem 1.5.1) to obtain

P

[∣∣∣∣∣
T∑

t=1
Yt

∣∣∣∣∣ ≥ Λ
]
≤ 2e− α2Λ2

2T . (1.5.10)

By Theorem 1.3.2, we have

P0
[

m∑
i=1

τi > T

]
≤ e−cm (1.5.11)

for any

T ≥ m

(
log

( 1
2π∗

)
+ c

) 1
ΦA∗

.

Let δ ∈ (0, 1]. We require that the right-hand sides of the inequalities in (1.5.10) and (1.5.11) are less

50



than or equal to δ/(2n2). This yields

Λ ≥
√

2
√

T
1
α

√
log

(4n2

δ

)

and

T ≥ m

(
log

( 1
2π∗

)
+ 1

m
log

(
2n2

δ

))
1

ΦA∗
.

Hence, with probability at least 1− δ,

||∇ℓ(A∗)||∞ ≤
√

2
α

√
m

1√
ΦA∗

√(
log

( 1
2π∗

)
+ 1

m
log

(2n2

δ

))
log

(4n2

δ

)
.

1.5.9 Proof of Lemma 1.4.2

By a limited Taylor expansion, for some λ ∈ [0, 1],

E(∆) = vec(∆)⊤∇2(−ℓ(A∗ + λ∆))vec(∆).

By the properties of the Hessian matrix of the negative log-likelihood function, (1.4.4) and (1.4.5), we

have
∂2

∂au,v∂au,w
(−ℓ(A; X)) ≥

m∑
i=1

τi−1∑
t=0

X
(i)
t,vX

(i)
t,wI{0<a⊤

u X
(i)
t <1}.

Note that

vec(∆)⊤∇2(−ℓ(A; X))vec(∆)

≥
n∑

u=1

n∑
v=1

n∑
w=1

∆u,v

(
m∑

i=1

τi−1∑
t=0

X
(i)
t,vX

(i)
t,wI{0<a⊤

u X
(i)
t <1}

)
∆u,w

=
m∑

i=1

τi−1∑
t=0

n∑
u=1

(
∆⊤

u X
(i)
t

)2
I{0<a⊤

u X
(i)
t <1}.

Hence,

vec(∆)⊤∇2(−ℓ(A; X))vec(∆) ≥ h(A, ∆; X)

where

h(A, ∆; X) =
m∑

i=1

τi−1∑
t=0

n∑
u=1

(
∆⊤

u X
(i)
t

)2
I{0<a⊤

u X
(i)
t <1}.
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For A = A∗ + λ∆ = (1− λ)A∗ + λ(A∗ + ∆), since A∗ and A∗ + ∆ have the same support, we have

the following properties. If a⊤
u X

(i)
t = 0, then ∆⊤

u X
(i)
t = 0 because a∗

u
⊤X

(i)
t = 0. If a⊤

u X
(i)
t = 1,

then again ∆⊤
u X

(i)
t = 0 because a∗

u
⊤X

(i)
t = 1. It thus follows that for any A with the same support as

A∗, we have

h(A, ∆; X) = h(∆; X) :=
m∑

i=1

τi−1∑
t=0

n∑
u=1

(
∆⊤

u X
(i)
t

)2
.

1.5.10 Proof of Lemma 1.4.3

We consider

E0[h(∆; X)] = mE0[τ ]
n∑

u=1
E
[(

∆⊤
u X0

)2
]

.

The following relations hold

n∑
u=1

(∆⊤
u x)2 =

n∑
u=1

x⊤∆u∆⊤
u x

= x⊤
(

n∑
u=1

∆u∆⊤
u

)
x

= x⊤∆⊤∆x

= ⟨∆x, ∆x⟩

= tr((∆x)⊤∆x)

= tr(x⊤∆⊤∆x)

= tr(xx⊤∆⊤∆).

Hence, we have

n∑
u=1

E
[(

∆⊤
u X0

)2
]

= tr(E[X0X⊤
0 ]∆⊤∆)

≥ λmin(E[X0X⊤
0 ])||∆||2F .

It follows that E0[h(∆; X)] ≥ κ1||∆||22, for every κ1 > 0 such that

κ1 ≤ mE0[τ ]λmin(E[X0X⊤
0 ]).
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1.5.11 Proof of Lemma 1.4.4

We first show a concentration bound for random variable h(∆; X) in the following lemma.

Lemma 1.5.2. For a voter model process with parameter A∗, for any δ ∈ (0, 1/2] and ∆ ≥ 0, with

probability at least 1− δ,

|h(∆; X)− E[h(∆; X)]| ≤ ϵ∥∆∥2F

where

ϵ = 2
√

2s

√
m

(
log

( 1
2π∗

)
+ 1

m
log

(2
δ

)) 1
ΦA∗

√
log

(2
δ

)
.

Proof. Recall that

h(∆; X) =
m∑

i=1

τi−1∑
t=0

n∑
u=1

(∆⊤
u X

(i)
t )2.

Let us define, if 0 ≤ s <
∑m

i=1 τi,

Xs = X
(k)
s−
∑k−1

i=1 τi

for
k−1∑
i=1

τi ≤ s <
k∑

i=1
τi and k ∈ [m]

where
∑0

i=1 τi = 0 and, otherwise, if s >
∑m

i=1 τi,

Xs = 0.

Now, we can write

h(∆; X) =

∑m

i=1 τi−1∑
t=0

n∑
u=1

(∆⊤
u Xt)2.
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Let Ys =
∑n

u=1(∆⊤
u Xs)2. For any T > 0, we have

P0
[
|h(∆; X)− E[h(∆; X)]| ≥ ϵ∥∆∥2F

]
≤ P0

[∣∣∣∣∣
T −1∑
t=0

n∑
u=1

(∆⊤
u Xt)2 − E

[
T −1∑
t=0

n∑
u=1

(∆⊤
u Xt)2

]∣∣∣∣∣ ≥ ϵ∥∆∥2F

]
+ P0

[
m∑

i=1
τi > T

]

= P0
[∣∣∣∣∣

T −1∑
s=0

Ys − E0
[

T −1∑
s=0

Ys

]∣∣∣∣∣ ≥ ϵ∥∆∥2F

]
+ P0

[
m∑

i=1
τi > T

]

≤ P0
[

T −1∑
s=0
|Ys − E [Ys] | ≥ ϵ∥∆∥2F

]
+ P0

[
m∑

i=1
τi > T

]

where the last inequality follows from the following basic relations

∣∣∣∣∣
T∑

s=1
Ys − E

[
T∑

s=1
Ys

]∣∣∣∣∣ =
∣∣∣∣∣

T∑
s=1

(Ys − E [Ys])
∣∣∣∣∣ ≤

T∑
s=1
|Ys − E [Ys] |.

Let us define

Gt =
t∑

s=1
|Ys − E [Ys] | and δGt = Gt −Gt−1.

We have E[Gt | Ft−1] = Gt−1 + E [|Yt − E[Yt]| | Ft−1] ≥ Gt−1 for all t ∈ {1, . . . , T}. Hence,

G0, G1, . . . , GT is a super-martingale sequence. Moreover, we have

Ys =
n∑

u=1
(∆⊤

u Xs)2

≤
n∑

u=1
∥∆u∥21

≤ ∥∆∥21,1

≤ s∥∆∥2F

where the first inequality follows from ∆u,iXs,i ≤ |∆u,i| for all i = 1, . . . , n, the second inequality

follows from the fact
∑n

u=1 ∥∆u∥21 ≤ (
∑n

u=1 ∥∆u∥1)2 = ∥∆∥21,1 and the last inequality follows from

the assumption that ∆ has sparsity s, and, hence, ∥∆∥1,1 ≤
√

s∥∆∥2,2.

It follows that |δGt| = |Yt − E[Yt]| ≤ 2s∥∆∥2F for all t ∈ {1, . . . , T}, almost surely.
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By applying Azuma-Hoeffding’s inequality, we obtain

P [GT −G0 ≥ ϵ] = P

[
T∑

s=1
|Ys − E [Ys] | ≥ ϵ∥∆∥2F

]
≤ e− ϵ2

8T s2 .

Hence, P [GT −G0 ≥ ϵ] ≤ δ/2, for

ϵ ≥ 2
√

2
√

Ts

√
log

(2
δ

)
.

From Theorem 1.3.2, we also have P [
∑m

i=1 τi > T ] ≤ δ/2, for any

T ≥ m

(
log

( 1
2π∗

)
+ 1

m
log

(2
δ

)) 1
ΦA∗

.

Hence, it follows that with probability at least 1− δ,

|h(∆; X)− E[h(∆; X)]| ≤ ϵ∥∆∥2F

where

ϵ = 2
√

2s

√
m

(
log

( 1
2π∗

)
+ 1

m
log

(2
δ

)) 1
ΦA∗

√
log

(2
δ

)
.

From Lemma 1.5.2, it follows that with probability at least 1− δ, h(∆; X) ≥ E[h(∆; X)]− ϵ||∆||2F .

Combining with Lemma 1.4.3, with probability at least 1− δ, h(∆; X) ≥ (κ1− ϵ)||∆||2F . Hence, with

probability at least 1− δ, h(∆; X) ≥ (κ1/2)||∆||2F , provided that κ1/2 ≥ ϵ, which is equivalent to

m ≥ s2

ΦA∗

1
E0[τ ]2λmin(E[X0X⊤

0 ])2 cδ,π∗(m).

where

cδ,π∗(m) = 8
(

log
( 1

2π∗

)
+ 1

m
log

(2
δ

))
log

(2
δ

)
.
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1.5.12 Proof of Lemma 1.4.5

The proof of the lemma is based on using the concepts of covering and metric entropy which we

discussed in Appendix 1.5.1.3. With a slight abuse of notation, in the proof, we assume

X = (X(1)
0 , . . . , X

(1)
τ1−1, . . . , X

(m)
0 , . . . , X

(m)
τm−1)⊤.

The proof follows similar steps as that of Lemma A.6 in Pandit et al. [2019]. The main difference in

our case is that X does not have fixed dimensions, which requires additional technical steps.

We separately consider three different cases: (a) ||∆||F = r, (b) ||∆||F > r, and (c) ||∆||F < r, for

value of r defined as

r = 1√
s
||A∗

S∗c ||1,1 + I{||A∗
S∗c ||1,1=0}. (1.5.12)

Case 1: ||∆||F = r For every ∆ ∈ C∗, we have

||∆||1,1 = ||∆S∗ ||1,1 + ||∆S∗c ||1,1

≤ 4||∆S∗ ||1,1 + 4||A∗
S∗c ||1,1

≤ 4(
√

s||∆||F + ||A∗
S∗c ||1,1).

Hence, for any r > 0, C∗ ∩ ∂B2(r) ⊆ B1(r′) where

r′ := 4(r
√

s + ||A∗
S∗c ||1,1). (1.5.13)

Note that under (1.5.12), 4
√

s ≤ r′/r ≤ 8
√

s.

By the triangle inequality, for all ∆, ∆′ ∈ Rn×n,

∣∣∣∣√h(∆; X)−
√

h(∆′; X)
∣∣∣∣ ≤ √Tρ(∆, ∆′)

where

ρ(∆, ∆′) = 1√
T
||X(∆−∆′)⊤||F .
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Because it holds (a− b)2 ≥ a2/2− b2 for all a, b ≥ 0, it follows that for all ∆, ∆′ ∈ Rn×n,

h(∆; X) ≥ 1
2h(∆′; X)− Tρ(∆, ∆′)2.

Let N be an rϵ-cover of C∗ ∩ ∂B2(r). Fix an arbitrary ∆ ∈ C∗ ∩ ∂B2(r), and let ∆′′ be such that

∆′′ ∈ N and ρ(∆, ∆′′) ≤ rϵ. Then, note

h(∆; X) ≥ 1
2h(∆′′; X)− T (rϵ)2 ≥ 1

2 min
∆′∈N

h(∆′; X)− T (rϵ)2.

It follows that

inf
∆∈C∗∩∂B2(r)

h(∆; X) ≥ 1
2 min

∆∈N
h(∆; X)− T (rϵ)2. (1.5.14)

Let ϵ2 = (κ1/8)/T . It then follows

P0
[

inf
∆∈C∗∩∂B2(r)

h(∆; X) ≤ 1
8κ1r2

]
≤ P0

[
min
∆∈N

h(∆; X) ≤ 1
2κ1r2

]
. (1.5.15)

For any matrix X with the number of rows T such that T ≤ T ∗, for some fixed T ∗, we can bound |N |

by a fixed value N∗, which we show next. Recall that for any r > 0, C∗ ∩ ∂B2(r) ⊆ B1(r′), where r′

is defined in (1.5.13). Hence, we can bound |N |, the covering number of C∗ ∩ ∂B2(r), by the covering

number of B1(r′). From Lemma 1.5.1, r′/r ≤ 8
√

s and ϵ2 = (κ1/8)/T , we have

|N | ≤ e
c1

(
r′
rϵ

)2
log(n)

≤ e
83sc1T 1

κ1
log(n)

,

where c1 = cσmax(X)2/T for some constant c > 0, under condition rϵ ≤ c2r′ with c2 =

σmax(X)/
√

T . Since σmax(X)2 ≤ nT and r′/r ≥ 4
√

s, we have

|N | ≤ N∗ = e
c83 T ∗

κ1
sn log(n) (1.5.16)

under conditions

C1 = {T ≤ T ∗} and C2 =
{

σmax(X)2

κ1
≥ 1

128s

}
.
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From (1.5.15), we have

P0
[

inf
∆∈C∗∩∂B2(r)

h(∆; X) ≤ 1
8κ1r2

]
≤ E0

[
I∪∆∈N {h(∆;X)≤(κ1/2)r2}IC1IC2

]
+ E0[ICc

1
] + E0[ICc

2
]

≤ N∗ max
∆:||∆||F =r

P0
[
h(∆; X) ≤ 1

2κ1r2
]

+ P0[Cc
1] + P0[Cc

2].

The probability of the event Cc
1 can be bounded as follows. By Corollary 1.3.4, for any δ′ ∈ (0, 1],

Pr[Cc
1] = Pr[T > T ∗] ≤ δ′, when

T ∗ ≥ m

(
log

( 1
2π∗

)
+ log

( 1
δ′

)) 1
ΦA∗

. (1.5.17)

We next upper bound the probability of the event Cc
2. First, note

σmax(X)2 = λmax(X⊤X) ≥ ||X
⊤X||1,1
n

where the last inequality holds by the basic fact that for any real n× n matrix M ,

λmax(M) ≥ 1⊤M1
1⊤1 =

∑n
i=1

∑n
j=1 Mi,j

n
.

Hence, we have

P0[Cc
2] ≤ P0

[
||X⊤X||1,1 <

n

128s
κ1

]
. (1.5.18)

Note that

||X⊤X||1,1 =
m∑

i=1

τi−1∑
t=0

1⊤X
(i)
t X

(i)
t

⊤
1.

By the Palm inversion formula and definition of κ1, we have

E0[||X⊤X||1,1] = mE0
[

τ−1∑
t=0

1⊤XtXt
⊤1
]

= mE0[τ ]1⊤E[X0X⊤
0 ]1

≥ mE0[τ ]λmin(E[X0X⊤
0 ])n

= nκ1.
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To bound (1.5.18), we use Chebyshev’s inequality: for any random variable X with expected value µ

and variance σ2, Pr[|X − µ| ≥ kσ] ≤ 1/k2, for any k > 0. By Chebyshev’s inequality, we have

P0[||X⊤X||1,1 < x] ≤ σ2

(µ− x)2

for every 0 ≤ x < µ, where µ and σ2 are the expected value and variance of ||X⊤X||1,1, respectively.

Let σ2
1 be the variance of random variable Y =

∑τ−1
t=0 1⊤XtXt

⊤1 and cs = 1/(1 − 1/(128s))2. It

follows

P0
[
||X⊤X||1,1 <

n

128s
κ1

]
≤ cs

mσ2
1

n2κ2
1

= cs
σ2

1
n2mE0[τ ]2λmin(E[X0X⊤

0 ])2 .

Next, we bound σ2
1 as follows

σ2
1 ≤ E0[Y 2] ≤ n4E0[τ2] ≤ 2

e2 n4 1
Φ2

A∗

1
π∗

where the last inequality is by Corollary 1.3.3.

Putting the pieces together, we have Pr[Cc
2] ≤ 1/n, under condition

m ≥ csn3(1/π∗) 1
(ΦA∗E0[τ ])2λmin(E[X0X⊤

0 ])2 . (1.5.19)

By Lemma 1.4.4, for any δ ∈ (0, 1] and ∆, Pr[h(∆; X) ≤ (κ1/2)||∆||2F ] ≤ δ provided that

m ≥ 8s2 log(1/(2π∗)) + log(2/δ)
ΦA∗E0[τ ]2λmin(E[X0X⊤

0 ])2 .

Let T ∗ be defined by equality in (1.5.17) and δ′ = 1/n. From (1.5.16), we have N∗ = na where

a = snc83 log(1/(2π∗)) + log(n)
(ΦA∗E0[τ ])λmin(E[X0X⊤

0 ])
.

Take δ = 2/na+1. Then, we have

N∗ max
∆:||∆||F =r

P0
[
h(∆; X) ≤ 1

2κ1r2
]
≤ 2

n

59



provided that

m ≥ 8s2 log(1/(2π∗))(a + 1) log(n) + (a + 1)2 log(n)2

ΦA∗E0[τ ]2λmin(E[X0X⊤
0 ])2 . (1.5.20)

We have shown that the RSC condition holds with at least probability 1−4/n, for all ∆ ∈ C∗∩∂B2(r),

with curvature κ1/8 and tolerance 0, under conditions (1.5.19) and (1.5.20). Condition (1.5.20) is

stronger than condition (1.5.19) when

E0[τ ] = Õ

(
s4π∗

n

1
(ΦA∗E0[τ ])λmin(E[X0X⊤

0 ])

)
.

Case 2: ||∆||F > r Let t = ||∆||F /r. Assume that the RSC condition holds for every ∆′ ∈

C∗ ∩ ∂B2(r) with curvature κ1/8 and tolerance 0. Note that, for ∆ ∈ C∗ ∩B2(r),

h(∆; X) = t2h(∆/t; X) ≥ t2 1
8κ1r2 = 1

8κ1||∆||2F .

Hence, the RSC condition holds on C∗ ∩B2(r) with curvature κ1/8 and tolerance 0.

Case 3: ||∆||F < r Let γ′2 = (κ1/8)r2 = (κ1/8)||A∗
S∗ ||21,1/s. In this case, we have

h(∆; X) ≥ 0 ≥ (κ1/8)||∆||2F − γ′2.

Hence, the RSC condition holds with curvature κ1/8 and tolerance (κ1/8)||A∗
S∗ ||21,1/s.

1.5.13 Proof of Theorem 1.4.2

The proof follows from Theorem 1.4.1 and Lemmas 1.4.1, 1.4.2 and 1.4.5, which we show as follows.

From Lemma 1.4.1, with probability at least 1− 1/n,

2||∇ℓ(A∗)||∞ ≤ λm = 2
√

2 1
α

1√
ΦA∗

cn,π∗
√

m.

From Lemma 1.4.2 and Lemma 1.4.5, the negative log-likelihood function satisfies the RSC condition

relative to A∗ and S that is the support of A∗ with curvature κ′ = κ1/8, and tolerance γ′2 = 0 with

probability at least 1− 4/n, under conditions (1.4.10) and (1.4.11).
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Recall that κ1 = mE0[τ ]λmin(E[X0X⊤
0 ]). It follows that

λm

κ′ = max
{

8
E0[τ ]λmin(E[X0X⊤

0 ])
, 1
}

2
√

2 1
α

1√
ΦA∗

cn,π∗
1√
m

.

Combining the above facts with Theorem 1.4.1, with probability at least 1− 5/n,

||Â−A∗||2F ≤ 4608
sc2

n,π∗

α2(ΦA∗E0[τ ])2λmin(E[X0X⊤
0 ])2 ΦA∗

1
m

which completes the proof.

1.5.14 Stationary correlation matrices

We consider the stationary correlation matrix M of the extended voter model (1.1.3) defined by

M = E[X0X⊤
0 ].

The stationary correlation matrix exists which follows from the Palm inversion formula (1.2.2) as

E0[τ ] <∞.

In this section we present analysis for the extended voter model that includes final consensus states of

individual voter model processes. The stationary correlation matrix of this process, denoted as M , is

related to the stationary correlation matrix, M ′, for the extended voter model that does not include

final consensus states of individual voter model processes as follows

M = E0[τ ]
E0[τ ] + 1M ′ + π⊤E0[X0]

E0[τ ] 11⊤. (1.5.21)

This follows by the Palm inversion formula and the fact P0[Xτ = 1] = π⊤E0[X0]. Indeed,

(E0[τ ] + 1)M = E0
[

τ∑
t=0

XtX
⊤
t

]

= E0
[

τ−1∑
t=0

XtX
⊤
t

]
+ E0[Xτ X⊤

τ ]

= E0[τ ]M ′ + P0[Xτ = 1]11⊤

= E0[τ ]M ′ + π⊤E0[X0]11⊤.
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By Weyl’s inequalities and the fact that eigenvalues of 11⊤ are either of value 0 or n, the eigenvalues

of M and M ′ are related as follows

E0[τ ]
E0[τ ] + 1λi(M ′) ≤ λi(M) ≤ E0[τ ]

E0[τ ] + 1λi(M ′) + π⊤E0[X0]
E0[τ ] n.

1.5.14.1 Lyapunov matrix equation

The stationary correlation matrix satisfies the Lyapunov matrix equation stated in the following lemma.

The Lyapunov matrix equation plays an important role for stability of linear dynamical systems Gajic

and Qureshi [1995], Barnett and Storey [1970].

Lemma 1.5.3. For the extended voter model with parameter A and initial state distribution µ such

that the process is ergodic, the following Lyapunov matrix equation holds

M = AMA⊤ + Q (1.5.22)

where

Q = E[D(V (X0))] + E0[X0X⊤
0 ]− (µ(C1) + (1− µ(C))π⊤E0[X0 | X0 /∈ C])11⊤

(1− µ(C))E0[τ ] + 1

and D(V (x)) is the diagonal matrix with diagonal elements Vau(x).

Proof. The following equations hold

E[Xt+1X⊤
t+1] = E[Xt+1X⊤

t+1I{Xt /∈C}]

+E0[X0X⊤
0 ]P[Xt ∈ C]

E[Xt+1X⊤
t+1I{Xt /∈C}] = E[Zt+1XtX

⊤
t Z⊤

t+1]

−E[Zt+1XtX
⊤
t Z⊤

t+1I{Xt∈C}]
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E[Zt+1XtX
⊤
t Z⊤

t+1] = E[E[Zt+1Xt(Zt+1Xt)⊤ | Xt]]

= AE[XtX
⊤
t ]A⊤ + E[D(V (Xt))]

and

E[Zt+1XtX
⊤
t Z⊤

t+1I{Xt∈C}] = 11⊤P[Xt ∈ C1].

Putting the pieces together, we have

E[X0X⊤
0 ] = AE[X0X⊤

0 ]A⊤ + E[D(V (X0))]

+(E0[X0X⊤
0 ]− p111⊤)P[X0 ∈ C]

where p1 := P[X0 ∈ C1 | X0 ∈ C], from which the statement of the lemma follows.

By multiplying both sides in equation (1.5.22) with π⊤ and π from left and right respectively, we

obtain the following corollary.

Corollary 1.5.1. The following equation holds

((1− µ(C))E0[τ ] + 1)
n∑

u=1
π2

uE[Vau(X0)]

= E0[Vπ(X0)] + µ(C1)− µ(C)E0[π⊤X0].

If µ(C) = 0, then the last expression boils down to

(E0[τ ] + 1)
n∑

u=1
π2

uE[Vau(X0)] = E0[Vπ(X0)]

which asserted in (1.3.1).

The necessary and sufficient condition for the Lyapunov matrix equation (1.5.22) to have a unique

solution M for any positive semi-definite matrix Q is that no two eigenvalues of A have product equal
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to 1, i.e. λi(A)λj(A) ̸= 1 for all i, j = 1, . . . , n. Furthermore, it is known that ρ(A) < 1, where ρ(A)

is the spectral radius of A, holds if and only if for any positive definite Q, (1.5.22) has a a positive

definite solution M .

The Lyapunov matrix equation of the voter model is such that Q is a positive semi-definite matrix as

stated in the following lemma.

Lemma 1.5.4. Q in (1.5.22) is a positive semi-definite matrix, with eigenvalue 0 associated with

eigenvector π.

Proof. Multiply both sides of equation (1.5.22) with π⊤ from the left and π from the right. Note that

π⊤AMA⊤π = π⊤Mπ. It follows that π⊤Qπ = 0, which shows that π is an eigenvector of Q with

eigenvalue 0.

1.5.14.2 Product-form Bernoulli initial state distribution

We consider the spectrum of matrix Q for initial state distribution µ that has product-form with

Bernoulli (p) marginal distributions, with 0 < p < 1. Note that

E0[X0 | X0 /∈ C] = 1− (1− p)n−1

1− pn − (1− p)n
p1.

Under the given assumptions on distribution µ, Q is an n × n off-diagonal constant matrix with

qu,u = E[Vau(X0)] and qu,v = −α, for u ̸= v, where

α := p(1− p)
(1− pn − (1− p)n)E0[τ ] + 1 . (1.5.23)

In order to localize eigenvalues of Q, we will use the following lemma.

Lemma 1.5.5 (Gendreau [1986]). Let S be an n×n off-diagonal constant matrix such that si,j = di+α,

for i = j and si,j = α, for i ̸= j, where d1, d2, . . . , dn and α are given real numbers with α ≥ 0. Let

e1 < · · · < em be distinct values in {d1, . . . , dn}, and ni be the number of occurrences of ei. Then S

has

1. one eigenvalue in (ei, ei+1) for i = 1, . . . , m − 1 and one eigenvalue in (em,∞), all with

multiplicity 1;

2. each ei such that ni > 1 is an eigenvalue of multiplicity ni − 1.
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By Lemma 1.5.4 and Lemma 1.5.5, matrix Q in (1.5.22) has eigenvalue 0 and all other eigenvalues

larger than or equal to minu E[Vau(X0)] + α > 0. Hence, the smallest positive eigenvalue λ2(Q) of

Q satisfies

λ2(Q) ≥ min
u∈V

E[Vau(X0)] + α > 0. (1.5.24)

1.5.14.3 Bounding smallest eigenvalue of the stationary correlation matrix

Let R(S, x) denote the Rayleigh quotient, R(S, x) = (x⊤Sx)/x⊤x, for some matrix S. Note that

R(M ; π) = E[(π⊤X0)2]
||π||2

.

Note that

λ2(Q) = min
x:x ̸=0,π⊤x=0

R(Q, x).

We claim that

λ1(M) ≥ min{R(M ; π), λ2(Q)}.

To show this, we decompose any vector x ∈ Rn into orthogonal components x = γπ + z for some

γ ∈ R and z ∈ Rn such that π⊤z = 0. We have the following relations

R(M, x) = x⊤Mx

x⊤x

= (γπ + z)⊤M(γπ + z)
(γπ + z)⊤(γπ + z)

= (γπ + z)⊤M(γπ + z)
γ2π⊤π + z⊤z

≥ γ2π⊤Mπ + z⊤Mz

γ2π⊤π + z⊤z

≥ γ2π⊤πR(M ; π) + z⊤zλ2(Q)
α2π⊤π + z⊤z

≥ min{R(M ; π), λ2(Q)}.

From this it follows that the smallest eigenvalue λ1(M) of M statisfies λ1(M) = minx:x ̸=0 R(M, x) ≥

min{R(M ; π), λ2(Q)}.
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It readily follows from (1.1.3) that the Rayleigh quotient R(M ; π) can be lower bounded as follows

R(M ; π) ≥ 1
(1− µ(C))E[τ ] + 1

E0[(π⊤X0)2]
||π||2

.

For the case when µ is a product-form distribution with Bernoulli (p) marginal distributions, we have

E0[(π⊤X0)2] = p2 + p(1− p)||π||2.

Hence, R(M ; π) ≥ p(1− p + p/||π||2)/(E0[τ ] + 1). By combining with (1.5.24), we have

λ1(M) ≥ min

p
(
1− p + p 1

||π||2
)

E0[τ ] + 1 , min
u∈V

E[Vau(X0)] + p(1− p)
E0[τ ] + 1

 .

1.5.14.4 Complete graph example

We consider the case when au,u = 0 and au,v = 1/(n − 1) for all u ̸= v, and when the initial state

distribution µ is the product-form with Bernoulli (p) marginal distributions. Because of the symmetry,

mu,u = a and mu,v = b, for all u ̸= v, for some a and b. Note

(AMA⊤)u,v =
n∑

i=1

n∑
j=1

au,iav,jmi,j

= a
n∑

i=1
au,iav,i + b

n∑
i=1

∑
j ̸=i

au,iav,j

= (a− b)
n∑

i=1
au,iav,i + b

n∑
i=1

n∑
j=1

au,iav,j .

It follows

(AMA⊤)u,v = (a− b)
( 1

n− 1 I{u=v} + n− 2
(n− 1)2 I{u̸=v}

)
+ b.

Hence, we have

(M −AMA⊤)u,v =

 (a− b)
(
1− 1

n−1

)
if u = v

−(a− b) n−2
(n−1)2 if u ̸= v.
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Now, we have M −AMA⊤ = Q, and Q has diagonal elements of value E[Va1(X0)] and off-diagonal

elements of value −α, where α is given in (1.5.23). It follows that

a− b = (n− 1)2

n− 2
1

(1− pn − (1− p)n)E0[τ ] + 1p(1− p)

and

E[Va1(X0)] =
(

1− 1
n− 1

)
(a− b).

Note that

a− b = np(1− p)
E0[τ ] (1 + o(1))

and

E[Va1(X0)] = p(1− p) n

E0[τ ] + 1(1 + o(1)).

From Lemma 1.5.5, it follows that λ1(M) = a− b. Hence,

λ1(M) = p(1− p) n

E0[τ ] + 1(1 + o(1)).

The smallest eigenvalue of the correlation matrix K with respect to the stationary distribution of an

extended voter process that includes final consensus states of individual voter model processes, λ1(K),

such that K has constant diagonal elements and constant non-diagonal elements, λ1(K), is related

to the smallest eigenvalue of the correlation matrix K ′ with respect to stationary distribution of the

extended voter process that does not include final consensus states, λ1(K ′), as follows:

λ1(K) = E0[τ ]
E0[τ ] + 1λ1(K ′). (1.5.25)

This easily follows from (1.5.21) and the fact that the smallest eigenvalue of a matrix with constant

diagonal elements (say equal α) and constant non-diagonal elements (say equal to β) is equal to α− β.

For the complete graph case considered in this section, from (1.5.25) and E0[τ ]/(E0[τ ]+1) = 1+o(1),

the correlation matrix M ′ with respect to stationary distribution of the extended voter process that does

not include final consensus states of individual voter model processes is

λ1(M ′) = p(1− p) n

E0[τ ] + 1(1 + o(1)).
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1.5.15 Linear ϵ-noisy voter model

In this section we consider the linear ϵ-voter model defined as the linear discrete-time dynamical

system (1.1.6). Let Aϵ := (1− 2ϵ)A.

Lemma 1.5.6. For any linear ϵ-voter model with parameters A and 0 < ϵ ≤ 1/2, the expected values

of vertex states satisfy

E[X0] = 1
21.

Proof. From (1.1.6), we have

E[Xt+1] = E[Qt+1Zt+1Xt] + E[Rt] = (1− 2ϵ)AE[Xt] + ϵ1.

Hence,

(I − (1− 2ϵ)A)E[X0] = ϵ1.

Since ρ((1− 2ϵ)A) = 1− 2ϵ < 1, we have

E[X0] = (I − (1− 2ϵ)A)−1ϵ1.

Now, note

(I − (1− 2ϵ)A)−11 =
∞∑

i=0
(1− 2ϵ)iAi1

=
∞∑

i=0
(1− 2ϵ)i1

= 1
2ϵ

1.

Hence, it holds E[X0] = (1/2)1.

Lemma 1.5.7. For any linear ϵ-voter model with parameters A and 0 < ϵ ≤ 1/2, the following

Lyapunov matrix equation holds

M = AϵMAϵ⊤ + Qϵ
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where

E[M ] = E[X0X⊤
0 ]

and

Qϵ = E[D(V ϵ(X0))] + ϵ2I + ϵ(1− ϵ)11⊤.

Proof. From (1.1.6), we have

Xt+1X⊤
t+1 = (D(Qt+1)Zt+1Xt + Rt)(D(Qt+1)Zt+1Xt + Rt)⊤

= (D(Qt+1)Zt+1Xt + Rt)((D(Qt+1)Zt+1Xt)⊤ + R⊤
t )

= D(Qt+1)Zt+1XtX
⊤
t (D(Qt+1)Zt+1)⊤ + D(Qt+1)Zt+1XtR

⊤
t

+(D(Qt+1)Zt+1XtR
⊤
t )⊤ + RtR

⊤
t .

Now, note

E[(D(Qt+1)Zt+1Xt + Rt)((D(Qt+1)Zt+1Xt)⊤ + R⊤
t )]

= AϵE[XtX
⊤
t ]Aϵ⊤ + E[D(V ϵ(Xt))].

(D(Qt+1)Zt+1XtR
⊤
t )u,v = Qt+1,u

∑
w

Zt+1,u,wXt,wRt,v

E[(D(Qt+1)Zt+1XtR
⊤
t )u,v] = ϵ(1− 2ϵ)a⊤

u E[Xt]I{u̸=v}

E[D(Qt+1)Zt+1XtR
⊤
t ] = ϵD(AϵE[Xt])(11⊤ − I)

and

E[RtR
⊤
t ] = ϵ((1− ϵ)I + ϵ11⊤).
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Putting the pieces together, we have

Qϵ = E[D(V ϵ(X0))] +

+ϵ(D(AϵE[X0])(11⊤ − I) + (11⊤ − I)D(AϵE[X0]))

+ϵ(1− ϵ)I + ϵ211⊤.

Since, by Lemma 1.5.6, E[X0] = (1/2)1, we have

ϵ(D(AϵE[X0])(11⊤ − I) + (11⊤ − I)D(AϵE[X0])) + ϵ((1− ϵ)I + ϵ11⊤)

= ϵ(1− 2ϵ)(11⊤ − I) + ϵ(1− ϵ)I + ϵ211⊤

= ϵ2I + ϵ(1− ϵ)11⊤.

Lemma 1.5.8. For any linear ϵ-voter model with parameters A and 0 < ϵ ≤ 1/2, we have

λmin(E[X0X⊤
0 ]) ≥ 1

1− λmin(A)2 (min
u

E[Vaϵ
u
(X0)] + ϵ2) ≥ ϵ2.

Proof. Let M and Qϵ be defined as in Lemma 1.5.7. It is known that (see, e.g. Yasuda and Hirai

[1979]),

λmin(M) ≥ 1
1− λmin(A)2 λmin(Qϵ).

Note that Qϵ is a matrix with constant off-diagonal elements equal to α := ϵ(1 − ϵ) and diagonal

elements equal to

E[Vaϵ
u
(X0)] + ϵ2 + α.

By Lemma 1.5.5, it follows

λmin(Qϵ) ≥ min
u

E[Vaϵ
u
(X0)] + ϵ2.
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1.5.16 Proof of Theorem 1.4.3

The proof follows similar steps as that for linear dynamical systems with additive Gaussian noise Jedra

and Proutiere [2019]. The differences lie in steps that are needed to resolve technical points that arise

due to Bernoulli random variables and underlying constraints on the model parameter.

For any substochastic n× n matrix A, x0, . . . , xt ∈ {0, 1}n, and t ≥ 0, let us define

pA(x0, . . . , xt) := PA[X0 = x0, . . . , Xt = xt]

and, for any x, y ∈ {0, 1}n,

pA(y | x) := PA[Xt+1 = y | Xt = x].

Let A∗ be an n× n stochastic matrix and A be an n× n substochastic matrix such that A ̸= A∗. The

log-likelihood ratio of the observed voter model process states, under parameters A∗ and A, is given by

L(X) =
m∑

i=1
log

(
pA∗(X(i)

0 , . . . , X
(i)
τi )

pA(X(i)
0 , . . . , X

(i)
τi )

)
.

For every t ≥ 1, we have

pA∗(x0, . . . , xt) = µ(x0)pA∗(x1 | x0) · · · pA∗(xt | xt−1).

Now, note

E0
A∗ [L(X)] = mE0

A∗

[
τ−1∑
t=0

E0
A∗

[
log

(
pA∗(Xt+1 | Xt)
pA(Xt+1 | Xt)

)
| Ft

]]

= mE0
A∗

[
τ−1∑
t=0

n∑
u=1

KL(a∗
u

⊤Xt || au
⊤Xt)

]
.

For every u ∈ V , let Su denote the support of a∗
u, Xu = {x ∈ {0, 1}n : 0 <

∑
j∈Su

xj < |Su|}, and

A∗
u = {a ∈ Rn

+ |
∑n

v=1 av = 1, aw ≥ α/2, for all w ∈ Su}. Then, for every x ∈ Xu and au ∈ A∗
u,

we have α/2 ≤ x⊤au ≤ 1− α/2.
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If Xs ∈ Xu and au ∈ A∗
u, we have

KL(a∗
u

⊤Xt || au
⊤Xt) ≤

4
α

(a∗
u

⊤Xt − au
⊤Xt)2

= 4
α

X⊤
t (a∗

u − au)(a∗
u − au)⊤Xt.

In the remainder of the proof, we assume that A is such that au ∈ A∗
u for all u ∈ {1, . . . , n}. It follows

E0
A∗ [L(X)] ≤ m

4
α

E0
A∗

[
τ−1∑
t=0

n∑
u=1

(a∗
u

⊤Xt − au
⊤Xt)2

]

= m
4
α

E0
A∗

[
τ−1∑
t=0

n∑
u=1

E0
A∗ [X⊤

t (au
∗ − au)(a∗

u − au)⊤Xt]
]

= m
4
α

E0
A∗

[
τ−1∑
t=0

X⊤
t WXt

]

where W := (A∗ −A)⊤(A∗ −A).

By the elementary properties of the trace of a matrix, we have

E0
A∗

[
τ−1∑
t=0

X⊤
t WXt

]
= tr

(
WE0

A∗

[
τ−1∑
t=0

XtX
⊤
t

])
.

Hence, it holds

E0
A∗ [L(X)] ≤ m

4
α

tr
(

WE0
A∗

[
τ−1∑
t=0

XtX
⊤
t

])
.

By the Palm inversion formula (1.2.2), we have

E0
A∗

[
τ−1∑
t=0

XtX
⊤
t

]
= E0

A∗ [τ ]EA∗ [X0X⊤
0 ].

It follows that

E0
A∗ [L(X)] ≤ 4

α
mE0

A∗ [τ ]tr(WEA∗ [X0X⊤
0 ]). (1.5.26)

Let Fm denote the σ-algebra of observations from m independent realizations of the voter model

process with parameter A∗ and initial state distribution µ. By the data processing inequality, we have

E0
A∗ [L(X)] ≥ sup

E∈Fm

KL(P0
A∗ [E] || P0

A[E]). (1.5.27)
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Assume in addition that A satisfies 2ϵ ≤ ||A−A∗||F ≤ 3ϵ, and assume that m ≥ m0. Let E be the

Fm-measurable event defined as

E = {||Â−A∗||F ≤ ϵ}.

Since the algorithm is (ϵ, δ)-locally stable, we have

PA∗ [||Â−A∗||F ≤ ϵ] ≥ 1− δ

and

PA[||Â−A∗||F ≤ ϵ] ≤ PA[||Â−A||F > ϵ] ≤ δ.

Hence, it follows

KL(P0
A∗(E) || P0

A(E)) ≥ KL(1− δ || δ) ≥ log
( 1

2.4δ

)
. (1.5.28)

Combining (1.5.26), (1.5.27) and (1.5.28), it follows that for any (ϵ, δ)-locally stable estimator in A∗,

for all substochastic matrices A such that (a) 2ϵ ≤ ||A − A∗||F ≤ 3ϵ and (b) au,v ≥ α/2 for every

(u, v) in the support of A∗, and m ≥ m0, we have

mE0
A∗ [τ ]tr

(
WEA∗ [X0X⊤

0 ]
)
≥ α

4 log
( 1

2.4δ

)
(1.5.29)

where, recall,

W = (A∗ −A)⊤(A∗ −A).

We need to show that there exists a substochastic matrix A that minimizes the left-hand side of

inequality (1.5.29) under the given constraints.

Let EA∗ [X0X⊤
0 ] = QΛQ⊤ be the eigenvalue decomposition of the correlation matrix EA∗ [X0X⊤

0 ],

with eigenvalues λ1 ≤ · · · ≤ λn, and eigenvectors Q = (q1, . . . , qn). Hence, we have EA∗ [X0X⊤
0 ] =∑n

i=1 λiqiq
⊤
i . Finding A that minimizes the left-hand side of the inequality (1.5.29) corresponds to
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finding A that is a solution of the following optimization problem:

minimize tr(W
∑n

v=1 λvqvq⊤
v )

subject to W = (A∗ −A)⊤(A∗ −A)

2ϵ ≤
√

tr(W ) ≤ 3ϵ

au,v ≥ α/2 for every (u, v) in the support of A∗

A is a substochastic matrix.

By taking W = 4ϵ2q1q⊤
1 , we have

tr(WEA∗ [X0X⊤
0 ]) = 4ϵ2λ1

and

||A−A∗||F =
√

tr(W ) = 2ϵ.

We need to show that there exists a matrix A that satisfies the constraints of the above optimization

problem. To show this, let A be such that for some fixed u ∈ {1, . . . , n}, a∗
v = av for all v ̸= u, and

au is given by

a∗
u − au = 2ϵq1. (1.5.30)

For such a matrix A, we have W = (a∗
u − au)(a∗

u − au)⊤, and clearly W = 4ϵ2q1q⊤
1 . Note that

||A∗ −A||F = ||a∗
u − au||2 = 2ϵ.

From (1.5.30), we have

a⊤
u 1 = 1− 2ϵq⊤

1 1.

Hence, A is a substochastic matrix, if and only if,

2ϵ|q⊤
1 1| ≤ 1.

By Cauchy-Schwartz inequality |q⊤
1 1| ≤ ||1||2||q1||2 =

√
n. Hence, if ϵ ≤ 1/(2

√
n), then A is a

substochastic matrix.
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From (1.5.30), for every (u, v) which is in the support of A∗, i.e. a∗
u,v > 0, it must hold

a∗
u,v − 2ϵq1,v ≥ α/2.

Since |q1,v| ≤ 1 for all v, a∗
u,v ≥ α for all (u, v) in the support of A∗, we have that the above condition

holds if ϵ ≤ α/4.

1.5.17 Asynchronous voter model on a path

We consider the asynchronous voter model process on a path of two or more vertices, where at each

time step one vertex, chosen uniformly at random, updates its state. We assume that initial node states

are such that k vertices on one end of the path are in state 1 and other vertices are in state 0. For any

such initial state, at every time step, there are at most two vertices with a mixed neighborhood set. If

such two vertices exist, they reside on the boundary separating the state-1 vertices from state-0 vertices.

Note that an informative interaction for the parameter estimation problem occurs only when one of

these boundary vertices samples a neighbour. See Figure 1.1 for an illustration.

Figure 1.1: A path example: initial state is such that k leftmost vertices are in state 1 and the remaining
n− k rightmost vertices are in state 0. Each vertex samples a neighbour equiprobably.

The expected number of vertices that perform at least one informative interaction until the voter model

process hits a consensus state can be characterized as asserted in the following proposition.

Proposition 1.5.1. Consider the voter model on a path with n ≥ 2 vertices such that each vertex

samples a neighbor with equal probabilities, with initial states such that k vertices on one end of the

path are in state 1 and other vertices are in state 0. Then, the number of vertices N that participate in

at least one informative interaction has the expected value

E[N ] = k log
(

n

k

)
+ (n− k) log

(
n

n− k + 1

)
+ Θ(1).
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Note that if k/n = o(1), then

E[N ] = k

(
log

(
n

k

)
+ Θ(1)

)
.

On the other hand, if k is a fixed constant, then

E[N ] = O(log(n)).

This makes precise the intuition that only a small fraction of vertices will participate in at least one

informative interaction if a small fraction of vertices on one end of the path are in state 1 and other

vertices are in state 0, for asymptotically large n.

In the remainder of this section, we prove the proposition. Let It denote the vertex activated at time

step t. Let pu denotes the probability with which vertex u samples vertex u + 1. Then, 1 − pu is

the probability of vertex u sampling vertex u − 1. Here p = (p1, p2, . . . , pn) are parameters such

that pu ∈ (0, 1) for u = 1, 2, . . . , n. In the proposition, we consider the case p1 = 1, pn = 0, and

pu = 1/2, for u ∈ {1, . . . , n} \ {1, n}.

If vertex u is active at time step t, then the state of u is according to

P[Xt+1,u = 1 | Xt = x] =


(1− p1)x1 + p1x2 if u = 1

(1− pu)xu−1 + puxu+1 if 1 < u < n,

(1− pn)xn−1 + pnxn if u = n,

and the states of other vertices remain unchanged.

Given observed node states until absorption to a consensus state, we want to estimate the values of

parameters p1, . . . , pn. We consider this parameter estimation problem for the initial state such that

X0,u = 1 for u ∈ {1, . . . , k} and X0,u = 0 for u ∈ {k + 1, . . . , n}, for some k ∈ {1, . . . , n− 1}.

Under given condition on the initial state, the system dynamics is fully described by Yt defined as

the number of vertices in state 1 at time step t. Note that {Yt}t≥0 is a Markov chain with state space
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{0, . . . , n}, initial state Y0 = k and the transition probabilities:

P[Yt+1 = y + 1 | Yt = y] = 1
n

(1− py+1)I{0<y<n}

P[Yt = y − 1 | Yt = y] = 1
n

pyI{0<y<n}

P[Yt+1 = y | Yt = y] = 1− 1
n

(1− py+1)I{0<y<n} −
1
n

pyI{0<y<n}.

This Markov chain has two absorbing states 0 and n.

The Markov chain {Yt}t≥0 has a jump point at time step t if, and only if, (a) vertex Yt is active and

this vertex samples vertex Yt + 1 or (b) vertex Yt + 1 is active and this vertex samples vertex Yt. We

refer to each jump point of Y as a useful interaction as only at a jump point we can observe outcome

of a Bernoulli experiment of which vertex is sampled by the active node, with parameter in a strict

interior of (0, 1).

If at time step t, the active vertex is It = Yt, then this vertex sampled vertex Yt + 1 if we observe

Yt+1 − Yt = −1, otherwise this vertex sampled vertex Yt − 1 if we observe Yt+1 − Yt = 0. If at

time step t, the active vertex is It = Yt+1 + 1, then this vertex sampled vertex Yt if we observe

Yt+1 − Yt = 1 and otherwise this vertex sampled Yt + 2 if we observe Yt+1 − Yt = 0.

We next consider the probability that a given vertex has at least one informative interaction before Y

gets absorbed in either state 0 or 1. This is of interest because the maximum likelihood estimate of pu

is well defined only if at least one informative interaction is performed for vertex u.

Let hu,y be the probability that vertex u has at least one informative interaction given that Y started at

initial state Y0 = y. We want to compute the values of hu,k for 1 ≤ u ≤ n and 1 < k < n.

Case k < u Vertex u has at least one informative interaction if, and only if, there exists a time

step t such that It = u and Yt = u− 1. Let Ỹ be a Markov chain with state space {1, 2, . . . , u} and

transition probabilities for vertices 0 ≤ v < u− 1 corresponding to those of Y and by definition

P[Ỹt+1 = u | Ỹt = u− 1] = 1
n

P[Ỹt+1 = u− 2 | Ỹt = u− 1] = 1
n

pu−1

P[Ỹt+1 = u− 1 | Ỹt = u− 1] = 1− 1
n
− 1

n
pu−1
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and

P[Ỹt+1 = u | Ỹt = u] = 1.

The value of hu,k corresponds to the probability of Markov chain Ỹ hitting state u by starting from

state k. We have boundary conditions hu,0 = 0 and hu,u = 1. By the first-step analysis of Markov

chains, for 0 < y < u,

hu,y = 1
n

pyhu,y−1 + 1
n

(1− py+1)hu,y+1 +
(

1− 1
n

py −
1
n

(1− py+1)
)

hu,y

where we abuse the notation by assuming that pu = 0. We can write

(py + 1− py+1)hu,y = pyhu,y−1 + (1− py+1)hu,y+1, for 0 < y < u.

Now, this can be equivalently written as

(1− py+1)(hu,y+1 − hu,y) = py(hu,y − hu,y−1), for 0 < y < u.

Let δu,y := hu,y+1 − hu,y. Then, note

δu,y = py · · · p1
(1− py+1) · · · (1− p2)δu,0

where δu,0 = hu,1. Since hu,y = δu,y−1 + · · ·+ δu,0 and hu,u = 1, we have

(
1 +

u−1∑
z=1

pz · · · p1
(1− pz+1) · · · (1− p2)

)
δu,0 = 1.

Hence, we have

hu,k =
1 +

∑k−1
z=1

pz ···p1
(1−pz+1)···(1−p2)

1 +
∑u−1

z=1
pz ···p1

(1−pz+1)···(1−p2)
, for 1 ≤ k < u. (1.5.31)

For the special when all the transition probabilities of Y of values in (0, 1) are equal to 1/2, we have

hu,k = 2k

2u− 1 , for 1 ≤ k < u. (1.5.32)

Case k > u In this case, vertex u has at least one informative interaction if, and only, if there exits a

time step t such that It = u and Yt = u. Let Ỹ be a Markov chain with state space {u− 1, u, . . . , n}
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and transition probabilities for vertices u < v ≤ n corresponding to those of Y and by definition

P[Ỹt+1 = u + 1 | Ỹt = u] = 1
n

(1− pu+1)

P[Ỹt+1 = u− 1 | Ỹt = u] = 1
n

P[Ỹt+1 = u | Ỹt = u] = 1− 1
n

(1− pu+1)− 1
n

and

P[Ỹt+1 = u− 1 | Ỹt = u− 1] = 1.

The value of hu,k corresponds to Ỹ hitting state u − 1 by starting from state k. We have boundary

conditions hu,u−1 = 1 and hu,n = 0. By same arguments as before, for u− 1 < y < n,

hu,y = 1
n

pyhu,y−1 + 1
n

(1− py+1)hu,y+1 +
(

1− 1
n

py −
1
n

(1− py+1)
)

hu,y

where we abuse the notation by assuming pu = 1.

Again, it follows

(1− py+1)(hu,y+1 − hu,y) = py(hu,y − hu,y−1), for u− 1 < y < n

and

δu,y = py · · · pu

(1− py+1) · · · (1− pu+1)δu,u−1, for u− 1 < y < n.

Since hu,y = −(δu,y + δu,y+1 + · · ·+ δu,n−1) and hu−1,u = 1, we obtain

hu,k =
∑n−1

z=k
pz ···pu

(1−pz+1)···(1−pu+1)

1 +
∑n−1

z=i
pz ···pu

(1−pz+1)···(1−pu+1)
, for u < k < n. (1.5.33)

In particular, when all the transition probabilities of Y of values in (0, 1) are equal to 1/2, we have

hi,k = 2(n− k)
2(n− i) + 1 , for i < k < n. (1.5.34)
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Case k = i In this case, we have

hk,k = 1
n

+ 1
n

(1− pk+1)hk,k+1 +
(

1− 1
n
− 1

n
(1− pk+1)

)
hk,k

Hence,

hk,k = 1 + (1− pk+1)hk,k+1
2− pk+1

. (1.5.35)

In particular, when all the transition probabilities of Y of values in (0, 1) are equal to 1/2, we have

hk,k = 2
3

(
1 + (n− k)

2(n− k) + 1

)
. (1.5.36)

We next discuss the results of the above analysis for the special case when the transition probabilities

of Y of value in (0, 1) are equal to 1/2. From (1.5.31), we observe that vertex n has at least one

informative interaction with probability

hn,k = 2n

2n− 1
k

n
.

For large n, we have hn,k ∼ k/n. It follows that vertex n has a diminishing probability of having

at least one informative interaction provided that k/n = o(1). For instance, if k is a constant, then

hn,k = Θ(1/n).

Let N be the number of vertices with at least one informative interaction. We have

E[N ] =
n∑

u=1
hu,k.

Note the following elementary identity

Sn :=
n∑

u=1

1
2u− 1 = 1

2(2H2n −Hn)

and note that

Tn :=
n∑

i=1

1
2n + 1 = Sn+1 − 1.
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We first compute

n∑
u=k+1

hu,k = 2k
n∑

u=k+1

1
2u− 1

= 2k(Sn − Sk)

= k(2H2n −Hn − 2H2k + Hk)

= k log(n/k)(1 + o(1)).

Then, we compute

k−1∑
u=1

hu,k = 2(n− k)
k−1∑
u=1

1
2(n− u) + 1

= 2(n− k)
n−1∑

v=n−k+1

1
2v + 1

= 2(n− k)(Tn−1 − Tn−k)

= 2(n− k)(Sn − Sn−k+1)

= (n− k)(2H2n −Hn − 2H2(n−k+1) + Hn−k+1)

= (n− k) log(n/(n− k + 1))(1 + o(1)).

It follows that

E[N ] = k log
(

n

k

)
+ (n− k) log

(
n

n− k + 1

)
+ Θ(1).
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Chapter 2

Accelerated MM Algorithms for Inference

of Ranking Scores from Comparison Data

2.1 Introduction

Rank aggregation is an important task that arises in a wide-range of applications, including recom-

mender systems, information retrieval, online gaming, sports competitions, and evaluation of machine

learning algorithms. Given a set of items, rank aggregation aims to infer ranking scores of items or an

ordering of items based on observed data containing partial orderings of items. A typical scenario is

that of paired comparisons, where observations consist of information about which item is preferred in

a pairwise comparison. For example, player A defeats player B in a game, product A is preferred over

product B by a user, and machine learning algorithm A outperforms machine learning algorithm B

in an evaluation. In such scenarios, a common goal is not only to compute an aggregate ranking of

items, but also to compute ranking scores, which represent strengths of individual items. Such ranking

scores are used for predicting outcomes of future ranking outcomes, such as predicting outcomes of

matches in online games and sport contests, and predicting preferences of users in product shopping

or movie watching scenarios, among others. Note that, importantly, observations are not restricted to

paired comparisons, but may also include other types of comparison data, such as choice (e.g., product

A chosen from a set of two or more products) or full ranking (e.g., a ranking list of players or teams

participating in a competition).

In this chapter, our goals are twofold. First, we aim to shed light on the efficiency of one of the most
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popular iterative optimization methods for inferring ranking scores, namely the MM algorithm, where

ranking scores correspond to parameter estimates of popular Bradley-Terry family of models. Second,

we propose an accelerated MM algorithm that resolves a slow convergence issue found to hold for a

classic MM algorithm.

2.1.1 Related work

Statistical models of ranking data play an important role in a wide range of applications, including

learning to rank in information retrieval (Burges et al. [2006], Li [2011]), skill rating in sport games

(Elo [1978a]), online gaming platforms (Herbrich et al. [2006]), and evaluation of machine learning

algorithms by comparing them with each other (Balduzzi et al. [2018]).

A common class of statistical models of ranking data are generalized Bradley-Terry models, which

accommodate paired comparisons with win-lose outcomes (Zermelo [1929], Bradley and Terry [1952],

Bradley [1954]), paired comparisons with win-lose-draw outcomes (Rao and Kupper [1967]), choices

from comparison sets of two or more items, e.g., Luce choice model (Luce [1959]), full ranking

outcomes for comparison sets of two or more items, e.g., Plackett-Luce ranking model (Plackett

[1975]), as well as group comparisons (Huang et al. [2006b, 2008]). These models can be derived from

suitably defined latent variable models, where items are associated with independent latent performance

random variables, which is in the spirit of the well-known Thurstone model of comparative judgment

(Thurstone [1927b]).

Statistical models of ranking data play an important role in applications. The Bradley-Terry model of

paired comparisons underlies the design of the Elo rating system, used for rating skills of chess players

Elo [1978a]. Extensions to team competitions and tie outcomes were implemented in popular online

gaming platforms, e.g. TrueSkill rating system Herbrich et al. [2006]. The generalized Bradley-Terry

type of models have been used for estimation of relevance of items in information retrieval applications,

e.g. learning to rank Burges et al. [2006], Li [2011]. Statistical models of paired comparisons are used

in timely applications such as evaluation of reinforcement learning algorithms Balduzzi et al. [2018].

An iterative optimization algorithm for the maximum likelihood (ML) parameter estimation (MLE)

of the Bradley-Terry model has been known since the original work of Zermelo [1929]. Lange et al.

[2000] showed that this algorithm belongs to the class of MM optimization algorithms. Here MM refers

to either minorize-maximization or majorize-minimization, depending on whether the optimization
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problem is maximization or minimization of an objective function. Lange [2016] provided a book on

MM algorithms and Hunter and Lange [2004] provided a tutorial. Mairal [2015] established some

convergence results for incremental MM algorithms.

In a seminal paper, Hunter [2004] derived MM algorithms for generalized Bradley-Terry models as

well as sufficient conditions for their convergence to ML estimators using the framework of MM

optimization algorithms. For the Bradley-Terry model of paired comparisons, a necessary and sufficient

condition for the existence of a ML estimator is that the directed graph whose vertices correspond to

items and edges represent outcomes of paired comparisons is connected. In other words, the set of

items cannot be partitioned in two sets such that none of the items in one partition won against an item

in other partition.

A Bayesian inference method for generalized Bradley-Terry models was proposed by Caron and Doucet

[2012a], showing that classical MM algorithms can be reinterpreted as special instances of Expectation-

Maximization (EM) algorithms associated with suitably defined latent variables and proposed some

original extensions. This amounts to MM algorithms for maximum a posteriori probability (MAP)

parameter estimation, for a specific family of prior distributions. This prior distribution is a product-

form distribution with Gamma(α, β) marginal distributions, where α ≥ 1 is the shape parameter and

β > 0 is the rate parameter. Importantly, unlike to the ML estimation, the MAP estimate is always

guaranteed to exist, for any given observation data.

Algorithms for fitting Bradley-Terry model parameters are implemented in open source software

packages, including BradleyTerry2 (Turner and Firth [2012]), BradleyTerryScalable (Kaye and Firth

[2020]), and Choix (Maystre [2018]). The first package uses a Fisher scoring algorithm (a second-order

optimization method), while the latter two use MM algorithms (a first-order optimization method).

First-order methods are generally preferred over second-order methods for fitting high-dimensional

models using large training datasets. Our focus in this chapter is on first-order optimization methods,

specifically, gradient descent and MM algorithms.

Recent research on statistical models of paired comparisons focused on characterization of the accuracy

of parameter estimators and development of new, scalable parameter estimation methods, e.g., Guiver

and Snelson [2009], Wauthier et al. [2013], Hajek et al. [2014b], Rajkumar and Agarwal [2014], Chen

and Suh [2015], Shah et al. [2016], Khetan and Oh [2016a], Vojnovic and Yun [2016b], Borkar et al.

[2016], Negahban et al. [2017], Chen et al. [2019], Han et al. [2020], Wang et al. [2020], Hendrickx
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et al. [2020], Ruijian Han and Chen [2022], Li et al. [2022]. Note that the question about statistical

estimation accuracy and computation complexity tradeoff is out of the scope of our chapter, and this

was studied in the above cited papers. The focus of our work is on convergence properties of first-order

iterative optimization methods for parameter estimation of Bradley-Terry models. Here ”first-order”

refers to optimization methods that are restricted to value oracle access to gradients of the optimization

objective function, thus not allowing access to second-order properties such as values of the Hessian

matrix. Specifically, we are interested in convergence properties of first-order methods for ML and

MAP estimation objectives. It is noteworthy that some recently proposed algorithms show empirically

faster convergence rate than MM, e.g., Negahban et al. [2017], Maystre and Grossglauser [2015a],

Agarwal et al. [2018], but it is hard to apply them for the MAP estimation objective. We thus restrict

our attention to MM and gradient descent algorithms which are able to solve both MLE and MAP

optimization problems.

While conditions for convergence of MM algorithms for generalized Bradley-Terry models are well

understood, to the best of our knowledge, not much is known about their convergence rates for either

ML or MAP estimation. In Vojnovic et al. [2020], we closed this gap by providing tight characteri-

zations of convergence rates. We presented the tight characterizations of the rate of convergence of

gradient descent and MM algorithms for ML and MAP estimation for generalized Bradley-Terry mod-

els. Our results showed that both gradient descent and MM algorithms have linear convergence with

convergence rates differing only in constant factors. An iterative optimization algorithm that has linear

convergence is generally considered to be fast in the space of first-order optimization algorithms, and

many first-order algorithms cannot guarantee a linear convergence. For example, standard stochastic

gradient descent algorithm is known to have sub-linear convergence, see, e.g., Bubeck [2015]. We

provided explicit bounds on convergence rates that provide insights into which properties of observed

comparison data play a key role for the rate of convergence.

Specifically, we showed that the rate of convergence critically depends on certain properties of the

matrix of counts of item pair co-occurrences, M, in input comparison data. We found that two key

properties are: (a) maximum number of paired comparisons per item (denoted as d(M)) and (b) the

algebraic connectivity of matrix M (denoted as a(M)). Intuitively, a(M) quantifies how well is the

graph of paired comparisons connected. Here a(M) is the Fiedler value (eigenvalue), see Fiedler

[1973], defined as the second smallest eigenvalue of the Laplacian matrix LM = DM −M, where

DM is the diagonal matrix with diagonal elements equal to the row sums of M. The Fiedler value of a
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matrix of paired comparison counts is known to play a key role in determining the MLE accuracy, e.g.,

Hajek et al. [2014b], Shah et al. [2016], Khetan and Oh [2016c], Vojnovic and Yun [2016b], Negahban

et al. [2017]. These works characterized the number of samples needed to estimate the true parameter

value within a statistical estimation error tolerance. This is different from the problem of characterizing

the number of iterations needed for an iterative optimization algorithm to compute a ML or a MAP

parameter estimate satisfying an error tolerance condition, which is studied in this chapter.

Our results in Vojnovic et al. [2020] revealed the following facts about convergence time, defined as the

number of iterations that an iterative optimization algorithm takes to reach the value of the underlying

objective function within a given error tolerance parameter ϵ > 0 of the optimum value.

For the ML objective, we showed that the convergence time satisfies

T ML = O

(
d(M)
a(M) log

(1
ϵ

))
(2.1.1)

which reveals that the rate of convergence critically depends on the connectivity of the graph of paired

comparisons in observed data.

For the MAP estimation, we showed that the convergence time satisfies

T MAP = O

((
d(M)

β
+ 1

)
log

(1
ϵ

))
(2.1.2)

where, recall, β > 0 is the rate parameter of the Gamma prior distribution. This bound is shown to be

tight for some input data instances. We observed that the convergence time for the MAP estimation

problem can be arbitrarily large for small enough value of β, where small values of β correspond to

less informative prior distributions.

From the convergence time results in Vojnovic et al. [2020], we identifed a slow rate of convergence

issue for gradient descent and MM algorithms for the MAP estimation problem. While the MAP

estimation alleviates the issue of the non-existence of a ML estimator when the graph of paired

comparisons is disconnected, it can have a much slower convergence than ML when the graph of

paired comparisons is connected. Perhaps surprisingly, the rate of convergence has a discontinuity at

β = 0, in the sense that for α = 1 and β = 0, the MM algorithm for the MAP estimation corresponds

to the classic MM algorithm for ML estimation, and in this case, the convergence bound (2.1.1) holds,

while for the MAP estimation, the convergence time grows arbitrarily large as β approaches 0 from
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above.

In the present chapter, we extend our prior work Vojnovic et al. [2020] by proposing new accelerated

algorithms and establishing their theoretical guarantees (Section 2.4) as well as demonstrating their

efficiency through numerical evaluations (Section 2.5).

2.1.2 Summary of our contributions for this chapter

We propose an acceleration method for the MAP estimation objective that has convergence time

bounded as follows

T MAP
Acc = O

(
min

{
d(M)
a(M) ,

d(M)
β

}
log

(1
ϵ

))
.

This acceleration method resolves the slow convergence issue of classic MM algorithm for the MAP

estimation for generalized Bradley-Terry models. This accelerated method does not have a discontinuity

at β = 0 with respect to the rate of convergence: as β approaches 0 from above, the convergence

time bound corresponds to that of the MM algorithm for ML estimation. The acceleration method

normalizes the parameter vector estimate in each iteration of the gradient descent or MM algorithm

using a transformation that ensures (a) that the value of the objective function is non decreasing along

the sequence of parameter estimates and (b) that the objective function satisfies certain smoothness and

strong convexity properties that ensure high convergence rate. This amounts to a slight modification of

the classical MM algorithm to resolve the slow convergence issue. This acceleration method is derived

by using a theoretical framework that may be of general interest. This framework can be applied to

other statistical models of ranking data and prior distributions for Bayesian inference of parameters of

these models.

We present numerical evaluation of the convergence time of different iterative optimization algorithms

using input data comparisons from a collection of real-world datasets. These results demonstrate the

extent of the slow convergence issue of the existing MM algorithm for MAP estimation and show

significant speed ups achieved by our accelerated MM algorithm.

Our theoretical results are established by using the framework of convex optimization analysis and

spectral theory of matrices. In particular, the convergence rate bounds are obtained by using concepts

of smooth and strongly convex functions. We derive accelerated iterative optimization algorithms based

on a general approach that may be of independent interest. This approach transforms the parameter

estimator in each iteration so that certain conditions are preserved for the gradient vector and the
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Hessian matrix of the objective function. For generalized Bradley-Terry models, this transformation

turns out to be simple, yielding practical algorithms.

2.1.3 Organization of the chapter

In Section 2.2, we present problem formulation and some background material. We summarise our

prior results in Vojnovic et al. [2020] on characterization of convergence rates of gradient descent

and MM algorithms in Section 2.3; for simplicity of exposition, we focus only on the Bradley-Terry

model of paired comparisons. Section 2.4 presents our accelerated algorithms for MAP estimation.

Section 2.5 contains our numerical results. We conclude in Section 2.6. Section 2.7 contains all our

proofs, additional discussions, and extensions to generalized Bradley-Terry models.

2.2 Problem formulation

According to the Bradley-Terry model of paired comparisons with win-lose outcomes, each comparison

of items i and j has an independent outcome: either i wins against j (i ≻ j) or j wins against i (j ≻ i).

The distribution of outcomes is given by

Pr[i ≻ j] = θi

θi + θj
(2.2.1)

where θ = (θ1, θ2, . . . , θn)⊤ ∈ Rn
+ is the parameter vector. The Bradley-Terry model of paired

comparisons was studied by many, e.g., Ford [1957], Dykstra, Jr. [1956, 1960], Simons and Yao [1999]

and is covered by classic books on categorical data analysis, e.g., Agresti [2002].

We will sometimes use the parametrization θi = ewi when it is simpler to express an equation or when

we want to make a connection with the literature using this parametrization. Using parameterization

w = (w1, w2, . . . , wn)⊤ ∈ Rn, we have

Pr[i ≻ j] = ewi

ewi + ewj
.

All our convergence results are for the model with parameter w. The Bradley-Terry type models for

paired comparisons with ties, choice, and full ranking outcomes, we refer to as generalized Bradley-

Terry models, are defined in Section 2.7.8. Our results apply to all these different models. In the main

body of this chapter, we focus only on the Bradley-Terry model for paired comparisons in order to
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keep the presentation simple.

Maximum likelihood estimation The maximum likelihood parameter estimation problem corre-

sponds to finding w⋆ that solves the following optimisation problem:

max
w∈Rn

ℓ(w) (2.2.2)

where ℓ(w) is the log-likelihood function,

ℓ(w) =
n∑

i=1

∑
j ̸=i

di,j (wi − log (ewi + ewj )) (2.2.3)

with di,j denoting the number of observed paired comparisons such that i ≻ j.

The maximum likelihood optimisation problem (2.2.2) is a convex optimization problem. Note,

however, that the objective function is not a strictly concave function as adding a common constant to

each element of the parameter vector keeps the value of the objective function unchanged.

MAP estimation problem An alternative objective is obtained by using a Bayesian inference

framework, which amounts to finding a maximum a posteriori estimate of the parameter vector under a

given prior distribution. We consider the Bayesian method introduced by Caron and Doucet [2012a],

which assumes the prior distribution to be of product-form with marginal distributions such that

θi(= ewi) has a Gamma(α, β) distribution where α ≥ 1 is the shape parameter and β > 0 is the

rate parameter. Note that α and β affect the scale of the parameter vector as with respect to the

Gamma(α, β) prior distribution, θi has the expected value and the mode equal to α/β and (α− 1)/β,

respectively. For any fixed α ≥ 1, the density of Gamma(α, β) distribution becomes more flat as

β approaches zero which corresponds to a less informative prior. According to the assumed prior

distribution,
∑n

i=1 θi ∼ Gamma(nα, β) and, hence, the mode of
∑n

i=1 θi is (nα − 1)/β. We can

interpret the mode of
∑n

i=1 θi as the scale of the parameter vector.

The log-a posteriori probability function can be written as

ρ(w) = ℓ(w) + ℓ0(w) (2.2.4)

where ℓ is the log-likelihood function in (2.2.3) and ℓ0 is the log-likelihood of the prior distribution
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given by

ℓ0(w) =
n∑

i=1
((α− 1)wi − βewi) . (2.2.5)

Note that for α = 1 and β = 0, the log-a posteriori probability function corresponds to the log-

likelihood function. For these values of parameters α and β, MAP and ML estimation problems are

equivalent.

MM algorithms The MM algorithm for minimizing a function f is defined by minimizing a surrogate

function that majorizes f .

A surrogate function g(x; y) is said to be a majorant function of f if f(x) ≤ g(x; y) and f(x) =

g(x; x) for all x and y. The MM algorithm is defined by the iterative updates:

x(t+1) = arg min
x

g(x; x(t)). (2.2.6)

For maximizing a function f , we can analogously define the MM algorithm as minimization of

a surrogate function g that minorizes function f . Majorization surrogate functions are used for

minimization of convex functions, and minorization surrogate functions are used for maximization of

concave functions.

The classic MM algorithm for the Bradley-Terry model of paired comparisons uses the following

minorization function of ℓ(x):

ℓ(x; y) =
n∑

i=1

∑
j ̸=i

ℓij(x; y), (2.2.7)

where

ℓij(x; y) = di,j

(
xi −

exi + exj

eyi + eyj
− log (eyi + eyj ) + 1

)
.

It is easy to observe that ℓ(x; y) is a minorization surrogate function of ℓ(x) by noting that log(x) ≤

x− 1 and that equality holds if, and only if, x = 1, which is used to break log(exi + exj ) terms in the

log-likelihood function.

The classic MM algorithm for the ML parameter estimation of the Bradley-Terry model of paired

comparisons (Ford [1957], Hunter [2004]), is defined by the following iterative updates, for i =
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1, 2, . . . , n,

θ
(t+1)
i =

∑n
j=1 di,j∑n

j=1
mi,j

θ
(t)
i +θ

(t)
j

. (2.2.8)

Following Caron and Doucet [2012a], the MM algorithm for the MAP parameter estimation of the

Bradley-Terry model of paired comparisons is derived for the minorant surrogate function ρ of function

ρ in (2.2.4), defined as

ρ(x; y) = ℓ(x; y) + ℓ0(x)

where ℓ(x; y) is the minorant surrogate function of the log-likelihood function (2.2.7) and ℓ0 is the

prior log-likelihood function (2.2.5).

The iterative updates of the MM algorithm are defined by, for i = 1, 2, . . . , n,

θ(t+1) =
α− 1 +

∑
j ̸=i di,j

β +
∑

j ̸=i
mi,j

θ
(t)
i +θ

(t)
j

. (2.2.9)

Note that this iterative optimization algorithm corresponds to the classic MM algorithm for ML

estimation (2.2.8) when α = 1 and β = 0.

We also consider gradient descent algorithm with constant step size η > 0, which has iterative updates

as

x(t+1) = x(t) − η∇f(x(t)). (2.2.10)

Our goal in this chapter is to summarise the rate of convergence of gradient descent and MM algorithms

for generalized Bradley-Terry models that we derived in our previous work and then propose new

accelerated algorithms to avoid the observed slow convergence issue for MAP estimation. It is natural

to consider gradient descent algorithms as they belong to the class of first-order optimization methods

(not requiring second-order quantities such as Hessian of the objective function or its approximations).

Intuitively, the rate of convergence of an iterative algorithm quantifies how fast the value of the

objective function converges to the optimum value with the number of iterations.

For an iterative optimization method for minimizing function f , which outputs a sequence of points

x(0), x(1), . . ., we say that there is an α-improvement with respect to f at time step t if

f(x(t+1))− f(x⋆) ≤ (1− α)(f(x(t))− f(x⋆))
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where x⋆ is a minimizer of f . An iterative optimization method is said to have linear convergence if

there exist positive constants α and t0 such that the method yields an α-improvement at each time step

t ≥ t0.

Background on convex analysis We define some basic concepts from convex analysis that we will

use throughout the chapter.

Function f : Rn → R is γ-strongly convex on X if it satisfies the following subgradient inequality, for

all x, y ∈ X :

f(x)− f(y) ≤ ∇f(x)⊤(x− y)− γ

2 ||x− y||2.

f is γ-strongly convex on X if, and only if, f(x)− γ
2 ||x||

2 is convex on X .

Function f is µ-smooth on X if its gradient∇f is µ-Lipschitz on X , i.e., for all x, y ∈ X ,

||∇f(x)−∇f(y)|| ≤ µ||x− y||.

For any µ-smooth function f on X , we also have that, for all x, y ∈ X ,

|f(x)− f(y)−∇f(y)⊤(x− y)| ≤ µ

2 ||x− y||2. (2.2.11)

A proof of the last claim can be found in Lemma 3.4 in Bubeck [2015].

Function f satisfies the Polyak-Lojasiewicz inequality on X (Polyak [1963]) if there exists γ > 0 such

that for all x ∈ X ,

f(x)− f(x∗) ≤ 1
2γ
||∇f(x)||2 (2.2.12)

where x∗ is a minimizer of f . When the PL inequality holds on X for a specific value of γ, we say

that γ-PL inequality holds on X . If f is γ-strongly convex on X , then f satisfies the γ-PL inequality

on X .

2.3 Prior results on convergence rates

In this section, we summarise our prior results on the rate of convergence for gradient descent and

MM algorithms for ML and MAP estimation for the Bradley-Terry model of paired comparisons

from Vojnovic et al. [2020]. We first show some general convergence theorems that hold for any
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strongly convex and smooth function f , which characterize the rate of convergence in terms of the

strong-convexity and smoothness parameters of f , and a parameter of the surrogate function used

to define the MM algorithm. These results are then used to derive convergence rate bounds for the

Bradley-Terry model.

The results of this section can be extended to other instances of generalized Bradley-Terry models,

including the Rao-Kupper model of paired comparisons with tie outcomes, the Luce choice model, and

the Plackett-Luce ranking model. These extensions are established by following the same main steps

as for the Bradley-Terry model of paired comparisons. The differences lie in the characterization of

the strong-convexity and smoothness parameters. The resulting characterizations of the convergence

rates that are equivalent to those for the Bradley-Terry model of paired comparisons up to constant

factors. We provide details in Section 2.7.8.

2.3.1 General convergence theorems

We first present a well-known result on the convergence rate of a gradient descent algorithm, for the

reader’s convenience. A result of this type can be found in Nesterov [2013] and a simple proof can be

found in Chapter 9.3 of Boyd and Vandenberghe [2004].

Theorem 2.3.1 (gradient descent). Assume f is a convex µ-smooth function on Xµ satisfying the γ-PL

inequality on Xγ ⊆ Xµ, x∗ ∈ Xγ is a minimizer of f , and x(t) 7→ x(t+1) is according to the gradient

descent algorithm (2.2.10) with step size η = 1/µ.

Then, if x(t) ∈ Xγ and x(t+1) ∈ Xµ, there is an γ/µ-improvement with respect to f at time step t.

Proof of Theorem 2.3.1 is provided in Section 2.7.10.1.

Note that if there exists t0 ≥ 0 such that x(t) ∈ Xγ for all t ≥ t0, then Theorem 2.3.1 implies a

linear convergence rate with rate γ/µ. Such a t0 indeed exists as it can be shown that ||x(t) − x∗|| is

non-increasing in t and is decreasing for every t such that ||∇f(x(t))|| ≠ 0.

We next present a result in Vojnovic et al. [2020] which shows that the MM algorithm also has linear

convergence, for any smooth and strongly convex function f that has a surrogate function g satisfying

a certain condition.

Theorem 2.3.2 (MM). Assume f is a convex µ-smooth function on Xµ satisfying the γ-PL inequality

on Xγ ⊆ Xµ, x∗ ∈ Xγ is a minimizer of f and x(t) 7→ x(t+1) is according to the MM algorithm
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(2.2.6). Let g be a majorant surrogate function of f such that for some δ > 0,

g(x; y)− f(x) ≤ δ

2 ||x− y||2 for all x, y ∈ Xµ.

Then, if x(t) ∈ Xγ and x(t) − 1
µ+δ∇f(x(t)) ∈ Xµ, there is a γ/(µ + δ)-improvement with respect to f

at time step t.

From Theorems 2.3.1 and 2.3.2, we observe that the MM algorithm has the same rate of convergence

bound as the gradient descent algorithm except for the smoothness parameter µ being enlarged for

value δ. If δ ≤ cµ, for a constant c > 0, then the MM algorithm has the same rate of convergence

bound as the gradient descent algorithm up to a constant factor.

2.3.2 Maximum likelihood estimation

We consider the rate of convergence for the ML parameter estimation for the Bradley-Terry model of

paired comparisons. This estimation problem amounts to finding a parameter vector that minimizes

the negative log-likelihood function, with the log-likelihood function given in (2.2.3). Recall that M

denotes the matrix of counts of item-pair co-occurrences and LM denotes the corresponding Laplacian

matrix. For any positive semidefinite matrix A, we let λi(A) denote the i-th smallest eigenvalue of A.

Lemma 2.3.1. For any ω ≥ 0, the negative log-likelihood function for the Bradley-Terry model

of paired comparisons is γ-strongly convex on Wω,0 = Wω ∩ {w ∈ Rn : w⊤1 = 0}, where

Wω = {w ∈ Rn : ||w||∞ ≤ ω}, and µ-smooth on Rn with

γ = cωλ2(LM) and µ = 1
4λn(LM)

where cω = 1/(e−ω + eω)2.

By Lemma 2.3.1, the smoothness parameter µ is proportional to the largest eigenvalue of the Laplacian

matrix LM. By the Gershgorin circle theorem, e.g., Theorem 7.2.1 in Golub and Loan [2013], we have

λn(LM) ≤ 2d(M). Thus, we can take µ = d(M)/2. We will express all our convergence time results

in terms of d(M) instead of λn(LM). This is a tight characterization up to constant factors. When

M is a graph adjacency matrix, then λn(LM) ≥ d(M) + 1 by Grone et al. [1990]. In the context of

paired comparisons, d(M) has an intuitive interpretation as the maximum number of observed paired

comparisons per item.
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The following lemma will be useful for showing that a function f satisfies the γ-PL inequality if it

satisfies a γ-strong convexity condition.

Lemma 2.3.2. Assume that X is a convex set such that f is γ-strongly convex on X0 = X ∩ {x ∈ Rn :

x⊤1 = 0}, and that for all c ∈ R and x ∈ X ,

(C1) f(Πc(x)) = f(x) and

(C2) ∇f(Πc(x)) = ∇f(x)

where

Πc(x) = x + c1.

Then, f satisfies the γ-PL inequality on X .

Since the negative log-likelihood function of the Bradley-Terry model of paired comparisons satisfies

conditions (C1) and (C2) of Lemma 2.3.2, combining with Lemma 2.3.1, we observe that it satisfies the

γ-PL inequality onWω with γ = cωa(M). Furthermore, by Lemma 2.3.1, the negative log-likelihood

function is µ-smooth on Rn with µ = d(M)/2. Combining these facts with Theorem 2.3.1, we have

the following corollary:

Corollary 2.3.1 (gradient descent). Assume that w∗ is the maximum likelihood parameter estimate in

Wω = {w : Rn : ||w||∞ ≤ ω}, for some ω ≥ 0, and w(t) 7→ w(t+1) is according to gradient descent

algorithm with step size η = 2/d(M).

Then, if w(t) ∈ Wω, there is an αM,ω-improvement at time step t where

αM,ω = 2cω
a(M)
d(M) .

The result in Corollary 2.3.1 implies a linear convergence with the rate of convergence bound 1 −

2cωa(M)/d(M). Hence, we have the following convergence time bound:

T = O

(
d(M)
a(M) log

(1
ϵ

))
. (2.3.1)

We next consider the classic MM algorithm for the ML estimation problem, which uses the surrogate

function in (2.2.7). This surrogate function satisfies the following property:
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Lemma 2.3.3. For any ω ≥ 0, for all x, y ∈ [−ω, ω]n, ℓ(x; y)− ℓ(x) ≥ − δ
2∥x− y∥2 where

δ = 1
2e2ωd(M).

By Theorem 2.3.2 and Lemmas 2.3.1, 2.3.2, and 2.3.3, we have the following corollary:

Corollary 2.3.2 (MM). Assume that w∗ is the maximum likelihood parameter estimate inWω = {w :

Rn : ||w||∞ ≤ ω}, for some ω ≥ 0, and that w(t) 7→ w(t+1) is according to the MM algorithm.

Then, if w(t) ∈ Wω, there is an αM,ω-improvement with respect at time step t where

αM,ω = 2c′
ω

a(M)
d(M)

and c′
ω = 1/[(e−ω + eω)2(1 + e2ω)].

From Corollaries 2.3.1 and 2.3.2, we observe that both gradient descent and MM algorithms have the

rate of convergence bound of the form 1− ca(M)/d(M) for some constant c > 0. The only difference

is the value of constant c. Hence, both gradient descent and MM algorithm have a linear convergence,

and the convergence time bound (2.3.1).

2.3.3 Maximum a posteriori probability estimation

We next consider the maximum a posteriori probability estimation problem. We first note that the

negative log-a posteriori probability function has the following properties.

Lemma 2.3.4. The negative log-a posteriori probability function for the Bradley-Terry model of

paired comparisons and the prior distribution Gamma(α, β) is γ-strongly convex and µ-smooth on

Wω = {w ∈ Rn : ||w||∞ ≤ ω} with

γ = e−ωβ and µ = 1
4λn(LM) + eωβ.

Note that the strong convexity parameter γ is proportional to β while as shown in Lemma 2.3.1, for the

ML objective γ is proportional to λ2(M). This has important implications on the rate of convergence

which we discuss next.
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By Theorem 2.3.1 and Lemma 2.3.4, we have the following corollary:

Corollary 2.3.3 (gradient descent). Assume w∗ is the maximum a posteriori parameter estimate in

Wω = {w ∈ Rn : ||w||∞ ≤ ω}, for some ω ≥ 0, and w(t) 7→ w(t+1) is according to gradient descent

algorithm (2.2.10) with step size η = 2/(d(M) + 2βeω).

Then, if w(t) ∈ Wω, there is an αM,ω-improvement where

αM,ω = 2e−ωβ

d(M) + 2eωβ
.

The result in Corollary 2.3.3 implies a linear convergence with the convergence time bound

T = O

((
1 + d(M)

β

)
log

(1
ϵ

))
. (2.3.2)

This bound can be arbitrarily large by taking parameter β to be small enough.

We next consider the MM algorithm. First, note that since ρ(x; y) − ρ(x) = ℓ(x; y) − ℓ(x), by

Lemma 2.3.3, we have

Lemma 2.3.5. For all x, y ∈ [−ω, ω]n, ρ(x; y)− ρ(x) ≥ − δ
2∥x− y∥2 where δ = 1

2e2ωd(M).

By Theorem 2.3.2 and Lemmas 2.3.4 and 2.3.5, we have the following corollary:

Corollary 2.3.4 (MM). Assume w∗ is the maximum a posteriori parameter estimate inWω = {w ∈

Rn : ||w||∞ ≤ ω}, for some ω ≥ 0, and w(t) 7→ w(t+1) is according to the MM algorithm.

Then, if w(t) ∈ Wω, there is an αM,ω-improvement at time step t where

αM,ω,β = 2e−ωβ

(1 + e2ω)d(M) + 2eωβ
.

From Corollaries 2.3.3 and 2.3.4, we observe that both gradient descent algorithm and MM algorithm

have the rate of convergence bound 1− Ω(β/(β + d(M))), and hence both have linear convergence

and both have the convergence time bound (2.3.2).

Note that Corollaries 2.3.1 to 2.3.4 rely on the radius parameter ω. For the gradient descent algorithm,
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Figure 2.1: Simple illustrative example: number of iterations until convergence versus parameter β.
Note that (a) the smaller the value of β, the slower the convergence for MAP and (b) the MM algorithm
for MAP can be slower for several orders of magnitude than for ML.

w(t) ∈ Wω for all t ≥ 0, given w(0) = 0 and ω = ∥w∗∥∞ +∥w∗∥2. This holds because ∥w(t)−w∗∥2

is non-increasing in t and ∥w(t)∥∞ ≤ ∥w∗∥∞ + ∥w(t) − w∗∥∞ ≤ ∥w∗∥∞ + ∥w(t) − w∗∥2. For

the MM algorithm, however, it seems hard to establish such theoretical bound for a sufficiently large

radius. Instead, we empirically examine the radius ω for several different scenarios in Section 2.5. In

all our experimental results, consistently, the radius ω is bounded and is scaled with ∥w∗∥∞.

2.3.4 A simple illustrative numerical example

We illustrate the rate of convergence for a simple example, using randomly generated observations of

paired comparisons. This allows us to demonstrate how the number of iterations grows as the value of

parameter β becomes smaller, and how the number of iterations is affected by the value of parameter

ω. Later, in Section 2.5, we provide further validation by using real-world datasets.

Our example is for an instance with 10 items with each distinct pair of items compared 10 times and the

input data generated according to the Bradley-Terry model of paired comparisons with the parameter

vector such that a half of items have parameter value −ω and the other half of items have parameter

value ω, for a parameter ω > 0. We define the convergence time T to be the smallest integer t such

that ||w(t) −w(t−1)||∞ ≤ ξ, for a fixed parameter ξ > 0. In our experiments, we set ξ = 0.0001.

The results in Figure 2.1, obtained for ω = 1/2, demonstrate that the MM algorithm for the MAP

estimation problem with β > 0 can be much slower than the MM algorithm for the ML estimation

problem.

We further evaluate the convergence time of gradient descent and MM algorithms for different values

of parameter ω, for each distinct pair of items compared 100 times. The numerical results in Figure 2.2
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(a) ω = 0.01 (b) ω = 1 (c) ω = 5

Figure 2.2: Number of iterations versus β for gradient descent and MM algorithms, for different values
of ω.

show the number of iterations versus the value of parameter β for gradient descent and MM algorithms,

for different values of parameter ω. We observe that for small enough value of ω, convergence times

of gradient descent and MM algorithms are nearly identical. Both algorithms have the convergence

time that increases with decreasing the value of β for strictly positive values of β. We also observe a

discontinuity in convergence time, for β = 0 (MLE case) being smaller than for some small positive

value of β (MAP case).

The discontinuity at β = 0 originates from the fact that the log-likelihood function has infinitely many

solutions for β = 0, but has a unique solution whenever β > 0. Consider a simple illustrative example:

f(x1, x2) = (x1 − 1)2 + c(x2 − 1)2, for a parameter c ≥ 0. Then, the gradient descent converges to

the unique solution (1, 1) slowly when c is close to 0. When c = 0, however, we just need to find the

minimum point of (x1 − 1)2 which can be solved in a few iterations.

2.4 Accelerated MAP inference

In this section, we present a new accelerated algorithm for gradient descent and MM algorithms for

MAP estimation. The key element is a transformation of the parameter vector estimate in each iteration

of an iterative optimization algorithm that (a) ensures monotonic improvement of the optimization

objective along the sequence of parameter vector estimates and (b) ensures certain second-order

properties of the objective function hold along the sequence of parameter vector estimates.

We first introduce transformed versions of gradient descent and MM algorithms. Given a mapping

Π : Rn → Rn, we define the Π-transformed gradient descent algorithm by

x(t+1) = Π(x(t) − ηf(x(t))). (2.4.1)
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Similarly, we define the Π-transformed MM algorithm by the iteration:

x(t+1) = Π(arg min
x

g(x; x(t))). (2.4.2)

Importantly, function f and mapping Π have to satisfy certain conditions in order to provide a

convergence rate guarantee, which we discuss in the following section.

2.4.1 General convergence theorems

Assume that f and Π satisfy the following conditions, for a convex set X that contains optimum point

x∗, and a vector d ∈ Rn:

(F1) f is µ-smooth on X ;

(F2) f satisfies the γ-PL inequality on

X0 = X ∩ {x ∈ Rn : ∇f(x)⊤d = 0} (2.4.3)

and

(P1) f(Π(x)) ≤ f(x) for all x ∈ Rn;

(P2) Π(x) ∈ X0 when Π(x) ∈ X .

Condition (F1) is a standard smoothness condition imposed on X . Condition (F2) is a standard γ-PL

condition imposed on the subset of points in X at which the gradient of the function f is orthogonal

to vector d. Condition (P1) means that applying Π to a point cannot increase the value of function

f . This condition is crucial to ensure a monotonic improvement of the objective function value when

transformation Π is applied to an iterative optimization method. Condition (P2) is satisfied when at any

Π-transformed point, the gradient of f is orthogonal to vector d. This condition is crucial to ensure

certain second-order properties hold when Π is applied to an iterative optimization method.

We have the following two theorems.

Theorem 2.4.1 (Gradient descent). Assume that f satisfies (F1) and (F2), Π satisfies (P1), and

η = 1/µ. Let x(t) 7→ x(t+1) be according to the Π-transformed gradient descent algorithm (2.4.1).

Then, if x(t), x(t+1) ∈ X0, there is an γ/µ-improvement with respect to f at time step t.
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The theorem establishes the same rate of convergence as for the gradient descent algorithm in The-

orem 2.3.1 but with the strong convexity condition restricted to points at which the gradient of f is

orthogonal to vector d.

Theorem 2.4.2 (MM). Assume that f satisfies (F1) and (F2), Π satisfies (P1), and g is a majorant

surrogate function of f such that g(x; y)− f(x) ≤ δ
2 ||x − y||2. Let x(t) 7→ x(t+1) be according to

the Π-transformed MM algorithm (2.4.2).

Then, if x(t), x(t+1) ∈ X0, there is an γ/(γ + δ)-improvement with respect to f at time step t.

The last theorem establishes the same rate of convergence as for classic MM algorithm in Theorem 2.3.2,

but with a strong convexity condition imposed only at the points at which the gradient of f is orthogonal

to vector d.

We next present a lemma which will be instrumental in showing that the PL condition in (F1) holds for

the MAP estimation problem.

Lemma 2.4.1. Assume f is a convex, twice-differentiable function. Let X be a convex set, X0 be

defined by (2.4.3) for a given vector d, and x∗ ∈ X0 be a minimizer of f .

If for some positive semidefinite matrix AX ,

(A1) ∇2f(x) ⪰ AX for all x ∈ X , and

(A2) u⊤AX v = 0 for all u, v such that

u = (I−Pd)z and v = Pdz, for z ∈ Rn

where

Pd = I− 1
||d||2 dd⊤

then, f satisfies the γ-PL inequality on X0 for all γ ≤ γ0 with

γ0 := min
x∈Rn\{0}:d⊤x=0

x⊤AX x
||x||2 .

Note that Pd is the projection matrix onto the space orthogonal to vector d. The value of γ0 is

maximized when vector d is the eigenvector corresponding to the smallest eigenvalue of AX . In this
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case, γ0 is the second smallest eigenvalue of AX .

2.4.2 Convergence rate for the Bradley-Terry model

In this section, we apply the framework developed in the previous section to characterize the conver-

gence rate for the MAP parameter estimation of the Bradley-Terry model of paired comparisons. The

MAP parameter estimation problem amounts to finding a parameter vector that maximizes the log-a

posteriori probability function ρ defined in (2.2.4). Let the transformation Π be defined as

Π(x) = x + c(x)1 (2.4.4)

where

c(x) = log
(

α− 1
β

n

)
− log

(
n∑

i=1
exi

)
. (2.4.5)

We next show that f and Π satisfy conditions (F1), (F2), (P1), and (P2) for the direction vector d = 1.

This will allow us to apply Theorems 2.4.1 and 2.4.2 to characterize the rate of convergence for

Π-transformed gradient descent and MM algorithms.

We first show that f satisfies conditions (F1) and (F2) for the setWω = {w ∈ Rn : ||w||∞ ≤ ω}.

Condition (F1) holds because, in Lemma 2.3.4, we have already shown that f is µ-smooth onWω

with µ = d(M)/2 + eωβ. Condition (F2) can be shown to hold by Lemma 2.4.1 as follows. Note that

we have ∇2(f(w)) ⪰ AWω , for all w ∈ Wω, where AWω = cωLM + e−ωβI. The assumptions of

Lemma 2.4.1 hold: (A1) holds because AWω is a positive semidefinite matrix, and (A2) holds because

u⊤LMv = 0 (which follows from LM1 = 0) and u⊤Iv = u⊤v = 0 (u and v are orthogonal). Since

γ0 is the smallest eigenvalue of AX on the subspace orthogonal to vector 1, we have

γ0 = cωλ2(LM) + e−ωβ.

Hence, by Lemma 2.4.1, it follows that f satisfies condition (F2) with γ = cωλ2(LM) + e−ωβ.

We next show that Π, defined in (2.4.4), satisfies conditions (P1) and (P2). These two conditions are

shown to hold in the following lemma.

Lemma 2.4.2. For all w ∈ Rn,

ρ(Π(w)) ≥ ρ(w) (2.4.6)
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and

∇ρ(Π(w))⊤1 = 0. (2.4.7)

From Theorem 2.4.1, we have the following corollary.

Corollary 2.4.1 (Gradient descent). Assume that w(t) 7→ w(t+1) is according to the Π-transformed

gradient descent (2.4.1) for the negative log-a posteriori probability function of the Bradley-Terry

model of paired comparisons, with product-form prior distribution such that ewi ∼ Gamma (α, β),

α ≥ 1 and β > 0, and η = 2/(||M||∞ + 2eωβ).

Then, there is an αM,ω,β-improvement with respect to ρ at time step t where

αM,ω,β = 2cωa(M) + 2e−ωβ

d(M) + 2eωβ

and cω = 1/(e−ω + eω)2.

From Theorem 2.4.2, we have the following corollary.

Corollary 2.4.2 (MM). Assume that iterates are according to the Π-transformed MM (2.4.1) for the

negative log-a posteriori probability function of the Bradley-Terry model of paired comparisons, with

product-form prior distribution such that ewi ∼ Gamma (α, β), α ≥ 1 and β > 0.

Then, there is an αM,ω,β-improvement with respect to ρ at time step t where

αM,ω,β = 2cωa(M) + 2e−ωβ

(1 + e2ω)d(M) + 2eωβ

and cω = 1/(e−ω + eω)2.

Proof. Proof Condition (F1) holds for −ρ because we have already shown that −ρ is µ-smooth

with µ = d(M)/2 + eωβ on Wω and δ = e2ωd(M)/2. Condition (F2) holds by Lemma 2.4.1

with γ = cωa(M) + e−ωβ. Conditions (P1) and (P2) hold by (2.4.6) and (2.4.7) in Lemma 2.4.2,

respectively.

Note that in the limit of small β, the convergence rate bounds in Corollaries 2.4.1 and 2.4.2 correspond

to the bounds for the ML estimation in Corollaries 2.3.1 and 2.3.2, respectively. From Corollar-

ies 2.4.1 and 2.4.2, it follows that for accelerated gradient descent and accelerated MM algorithms, the

103



Algorithm 1 Accelerated MM algorithm

1: Initialization: ϵ, θ, θprev

2: while ||θ − θprev||∞ > ϵ do
3: θprev ← θ
4: for i = 1, 2, . . . n do

5: θtemp
i =

α−1+
∑

j ̸=i
di,j

β+
∑

j ̸=i

mi,j
θi+θj

▷ standard MM

6: end for
7: for i = 1, 2, . . . , n do
8: θi = θtemp

i∑n

j=1 θtemp
j

α−1
β n ▷ rescaling

9: end for
10: end while

convergence time satisfies

T = O

(
min

{
d(M)
a(M) ,

d(M)
β

}
log

(1
ϵ

))
.

For the Bradley-Terry model of paired comparisons with parametrization θ = (θ1, . . . , θn)⊤, where

θi = ewi for i = 1, 2, . . . , n, the transformation Π given by (2.4.4) is equivalent to a rescaling as

shown in a procedural form in Algorithm 1. This algorithm first performs the standard MM update

in Eq. (2.2.9), which is followed by rescaling the resulting intermediate parameter vector such that

the parameter vector θ at every iteration satisfies
∑n

i=1 θi = c where c = n(α − 1)/β. This can

be interpreted as fixing the scale of parameters to a carefully chosen scale that is dependent on the

choice of the prior distribution. Note that the scaling factor c cannot be arbitrarily fixed while still

preserving good convergence properties. In particular, selecting the scale c = 1 can result in undesired

convergence properties. We demonstrate this in Section 2.5 by numerical examples.

It turns out that the rescaling in Algorithm 1 is roughly of the same order as the random rescaling

suggested in Caron and Doucet [2012a]. Therein, the authors suggested using independent identically

distributed random rescaling factors across different iteration steps with distribution Gamma(nα, β).

This ensures the distribution of
∑n

i=1 θi to remain invariant across different iterations, equal to

Gamma(nα, β). The mode of this rescaling factor is (nα − 1)/β. This bears a similarity with the

rescaling in Algorithm 1, in particular, with respect to the dependence on parameter β. Our results show

that it suffices to use a simple deterministic rescaling factor to ensure linear convergence. Moreover,

using a different rescaling than the one used in Algorithm 1 can result in a lack or slow convergence,

which is shown by numerical experiments in Section 2.5.
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Figure 2.3: The illustrative example revisited: accelerated MM resolves the convergence issue for
MAP estimation: it has faster or equal convergence than for ML estimation.

Our numerical example revisited We ran the accelerated MM algorithm for our numerical example

and obtained the results shown in Figure 2.3. By comparing with the corresponding results obtained by

the MM algorithm with no acceleration, shown in Figure 2.1, we observe that the acceleration resolves

the slow convergence issue and that it can yield a significant reduction of the convergence time.

2.5 Numerical results

In this section we present evaluation of convergence times of gradient descent and MM algorithms

for different generalized Bradley-Terry models for a collection of real-world datasets. Our goal

is to provide empirical validation of some of the hypotheses derived from our theoretical analysis.

Overall, our numerical results validate that (a) the convergence of the MM algorithm for MAP

estimation can be much slower than for ML estimation, (b) MM algorithm for MAP estimation

has convergence time that increases as parameter β of the prior distribution decreases, and (c) a

significant reduction of the convergence time can be achieved by the accelerated MM algorithm

defined in Section 2.4. The code and datasets for reproducing our experiments are available online at:

https://github.com/GDMMBT/AcceleratedBradleyTerry.

2.5.1 Datasets

We consider three datasets, which vary in the type of data, size and sparsity. The three datasets are

described as follows.

GIFGIF This dataset contains user evaluations of digital images by paired comparisons with respect

to different metrics, such as amusement, content, and happiness. The dataset was collected through an
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online web service by the MIT Media Lab as part of the PlacePulse project Rich et al. [2018]. This

service presents a user with a pair of images and asks to select one that better expresses a given metric,

or select none. The dataset contains 1,048,576 observations and covers 17 metrics. We used this

dataset to evaluate convergence of MM algorithms for the Bradley-Terry model of paired comparisons.

We did this for each of the three aforementioned metrics.

Chess This dataset contains game-by-game results for 65,030 matches among 8,631 chess players.

The dataset was used in a Kaggle chess ratings competition Sonas [2010]. Each observation contains

information for a match between two players including unique identifiers of the two players, informa-

tion about which one of the two players played with white figures, and the result of the match, which

is either win, loss, or draw. This dataset has a large degree of sparsity. We used this dataset to evaluate

convergence of the Rao-Kupper model of paired comparisons with ties.

NASCAR This dataset contains auto racing competition results. Each observation is for an auto race,

consisting of a ranking of drivers in increasing order of their race finish times. The dataset is available

from a web page maintained by Hunter [2003]. This dataset was previously used for evaluation of

MM algorithms for the Plackett-Luce ranking model by Hunter [2004] and more recently by Caron

and Doucet [2012a]. We used this dataset to evaluate convergence times of MM algorithms for the

Plackett-Luce ranking model.

Table 2.1: Dataset properties.

Dataset m n d(M) a(M)
GIFGIF: A (full) 161,584 6,123 83 0
GIFGIF: C (full) 108,126 6,122 56 0
GIFGIF: H (full) 225,695 6,124 153 0

GIFGIF: A (sample) 702 252 15 0.671
GIFGIF: C (sample) 734 256 28 0.569
GIFGIF: H (sample) 1040 251 23 1.357

Chess (full) 65,030 8,631 155 0
Chess (sample) 13,181 985 135 1.773

NASCAR 64,596 83 1,507 39.338

We summarise some key statistics for each dataset in Table 2.1. We use the shorthand notation GIFGIF:

A, GIFGIF: C, and GIFGIF: H to denote datasets for metrics amusement, contempt, and happiness,

respectively. For full GIFGIF and Chess datasets, we can split the items into two groups such that

at least one item in one group is not compared with any item in the other group, i.e., the algebraic

connectivity a(M) of matrix M is zero. In this case, there exists no ML estimate, while an MAP
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estimate always exists. In order to consider cases when an MLE exists, we consider sampled datasets

by restricting to the set of items such that the algebraic connectivity for this subset of items is strictly

positive. This subsampling was done by selecting the largest connected component of items.

2.5.2 Experimental results

We evaluated the convergence time defined as the number of iterations that an algorithm takes until a

convergence criteria is satisfied. We use the standard convergence criteria based on the difference of

successive parameter vector estimates. Specifically, the convergence time T is defined as the smallest

integer t > 0 such that ||w(t) −w(t−1)||∞ ≤ ξ, for fixed value of parameter ξ > 0, with initial value

w(0) = 0. In our experiments, we used 10−4 as the default value for parameter ξ. For NASCAR

dataset, we also present results for several other values of ξ to demonstrate how the convergence time

changes. In our experiments, we also evaluated the convergence time measured in real processor time

units. We noted that they validate all the observations derived from the convergence times measured in

the number of iterations, and hence we do not further discuss them.

In our experiments we varied the value of parameter β and, unless specified otherwise, we set the

value of parameter α such that α− 1 = β. This corresponds to fixing the mode of the Gamma prior

marginal distributions to value 1. Note that the case β = 0 corresponds to ML estimation.

Before discussing numerical convergence time results, we first show results validating that the MM

algorithm converges and that this convergence is linear. This is shown in Figure 2.4 for GIFGIF A

dataset for three different values of parameter β. For space reasons, we only include results for this

dataset. We observe that in all cases the log-a posteriori probability monotonically increases with the

number of iterations, thus validating convergence. We also observe that the gap between the maximum

log-a posteriori probability and the log-a posteriori probability decreases with the number of iterations

in a linear fashion for sufficiently large number of iterations, when plotted using the logarithmic scale

for the y axis, thus validating linear convergence.

We next discuss our numerical results for convergence time evaluated for the MM algorithm and

accelerated MM algorithm for different datasets and choice of parameters. Our numerical results are

shown in Table 2.2.

For GIFGIF datasets, we observe that the convergence time increases as the value of parameter β

decreases for β > 0. For the values of β considered, this increase can be for as much as two orders
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(a) β = 0 (b) β = 0.1 (c) β = 1

Figure 2.4: Convergence of the MM algorithm with the input GIFGIF A training dataset for different
values of parameter β: (top) log-a posteriori probability versus the number of iterations, and (bottom)
the difference between the maximum log-a posteriori probability and the log a-posteriori probability
versus the number of iterations. The maximum a posteriori probability is approximated by taking the
parameter vector ŵ∗ output by the MM algorithm after a large number of iterations. The plots in the
top row indicate that the algorithm converges. The plots in the bottom row indicate linear convergence.
From the plots, we also observe that the convergence is slower for smaller values of parameter β.

of magnitude. When the ML estimate exists (for sampled data), we observe that the MM algorithm

for ML estimation converges much faster than the MM algorithm for MAP estimation for sufficiently

small values of parameter β. We also observe that a significant reduction of the convergence time can

be achieved by the accelerated MM algorithm. This reduction can be for as much as order 10% of

the convergence time of the MM algorithm without acceleration. These empirical results validate our

theoretical results.

For Chess datasets, all the observations derived by using the GIFGIF datasets remain to hold.

For NASCAR dataset, we show results for different values of parameter ξ, including the default

value of 10−4. Again, all the observations made for GIFGIF and Chess datasets remain to hold. It is

noteworthy that the MM algorithm for ML estimation converges much faster than for MAP estimation

for sufficiently small values of parameter β. This is especially pronounced for smaller values of ξ. For

the cases considered, this can be for as much as three orders of magnitude. Similarly, the accelerated

MM algorithm converges much faster than the classical MM algorithm. We also compare the quality

of estimates obtained from the classical MM algorithm and the accelerated MM algorithm through a
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toy simulation, which is included in Section 2.7.9 due to space constraints.

(a) β = 0 (b) β = 0.1 (c) β = 1

Figure 2.5: The log-a posteriori probability versus the number of iterations for the MM algorithm with
normalization such that

∑n
i=1 ewi = 1 at each iteration, using GIFGIF A (sample) as input dataset,

for different values of β. The results indicate that the log-a posteriori probability is not guaranteed to
monotonically increase with the number of iterations.

Table 2.2: Number of iterations for the MM algorithm and accelerated MM algorithm (AccMM).

Dataset Algorithm β = 0 0.01 0.1 1 10

GIFGIF: A (full) MM MLE 572 125 70 16
AccMM non-existant 509 123 42 13

GIFGIF: C (full) MM MLE 733 150 49 13
AccMM non-existant 551 93 37 13

GIFGIF: H (full) MM MLE 1,127 149 98 21
AccMM non-existant 1,044 159 51 18

GIFGIF: A (sample) MM 145 854 177 26 7
AccMM 125 81 22 7

GIFGIF: C (sample) MM 130 694 151 39 9
AccMM 111 78 36 9

GIFGIF: H (sample) MM 216 1,234 237 38 8
AccMM 146 72 26 8

Chess (full) MM MLE 2,217 581 113 33
AccMM non-existant 2,291 302 49 25

Chess (sample) MM 121 122 91 74 19
AccMM 117 93 48 16

NASCAR MM 11 695 971 58 10
AccMM 11 11 10 6

NASCAR (ξ = 10−5) MM 14 1,528 2,069 105 16
AccMM 14 14 12 7

NASCAR (ξ = 10−6) MM 17 2,362 3,223 157 23
AccMM 17 16 14 8

NASCAR (ξ = 10−8) MM 22 4,029 5,544 261 36
AccMM 22 21 18 11

We next discuss the importance of carefully changing the scale of the parameter vector in each iteration,

as done in our accelerated MM algorithm, Algorithm 1, as otherwise the monotonic convergence may

not be guaranteed or the convergence may be slow. To demonstrate this, we examine the alternative
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Table 2.3: Number of iterations for the MM algorithm with normalization such that
∑n

i=1 ewi = 1 in
each iteration.

Dataset Algorithm β = 0 0.01 0.1 1 10
GIFGIF: A (sample) MM norm 141 136 125 154 No convergence
GIFGIF: C (sample) MM norm 128 130 144 350 No convergence
GIFGIF: H (sample) MM norm 205 203 184 124 No convergence

change of scale such that the parameter vector w in each iteration satisfies
∑n

i=1 ewi = 1. We present

the results for the GIFGIF (sample) datasets. From Figure 2.5, we observe that the algorithm does not

guarantee a monotonic increase of the a posteriori probability with the number of iterations, which

is unlike to our accelerated MM algorithm for which this always holds. In Table 2.3, we show the

same quantities as in Table 2.2 but for the MM algorithm with the alternative change of scale under

consideration. We observe that our acceleration method can converge much faster, and that there

are cases for which the alternative change of scale results in no convergence within a bound on the

maximum number of iterations.

(a) β = 0 (b) β = 0.1 (c) β = 1

Figure 2.6: Euclidean distance between the MM algorithm parameter vector estimator and the true pa-
rameter vector versus the number of iterations, for GIFGIF:A (Sample) dataset. The results demonstrate
that the distance monotonically decreases with the number of iterations.

Finally, we demonstrate that the distance between the parameter vector estimator of the MM algorithm

and the true parameter vector decreases with the number of iterations. We show this in Figure 2.6 for

different values of parameter β and GIFGIF:A (sample) dataset. We also verified that the monotonicity

holds for other values of parameter β and other datasets, which is not shown for space reasons.

2.6 Further discussion

We have shown that for generalized Bradley-Terry models, gradient descent and MM algorithms for the

ML estimation problem have a linear convergence with the convergence time bound O(d(M)/a(M)),
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Table 2.4: Parameters d(M) and a(M) when M is the adjacency matrix of a graph G with n vertices.

G d(M) a(M) d(M)
a(M)

complete n − 1 n Θ(1)
star n − 1 1 Θ(n)

circuit 2 2
(
1 − cos

(
π
n

))
∼ 4π2

n2 Θ(n2)
path 2 2

(
1 − cos

(
2π
n

))
∼ π2

n2 Θ(n2)

where d(M) is the maximum number of observed comparisons per item and a(M) is the algebraic

connectivity of the matrix M of the observed counts of item-pair co-occurrences. We have also

shown that for generalized Bradley-Terry models, gradient descent and MM algorithms for the MAP

estimation problem, with the prior product-form distribution with Gamma(α, β) marginal distributions,

the convergence time is also linear but with the convergence time bound O(d(M)/β). This bound

is shown to be tight. Our results identify a slow convergence issue for gradient descent and MM

algorithms for the MAP estimation problem, which occurs for small values of parameter β. The small

values of parameter β correspond to more vague prior distributions. Our results identify a discontinuity

of the convergence time at (α, β) = (1, 0), which corresponds to ML estimation. The proposed

acceleration method for the MAP estimation problem resolves the slow convergence issue, and yields a

convergence time that is bounded by the best of what can be achieved for the ML and MAP estimation

problems.

Our results provide insights into how the observed comparison data affect the rate of convergence

of gradient descent and MM algorithms. The two key parameters affecting the rate of convergence

are d(M) and a(M). For illustration purposes, in Table 2.4 we show values of d(M) and a(M) for

examples of matrix M with 0-1 valued entries, which correspond to graph adjacency matrices. We

observe that when each distinct pair is compared the same number of times, i.e. for the complete

graph case, the convergence time is T = O(log(1/ϵ)). For other cases, the convergence time is

T = O(nc log(1/ϵ)), for some c ≥ 1.

We further consider the case of random design matrices where each distinct pair of items is either

compared once or not compared at all, and this is according to independent Bernoulli random variables

with parameter p across all distinct pairs of items. In other words, the item pair co-occurrence is

according to the Erdös-Rényi random graph Gn,p and M is its adjacency matrix. d(M) corresponds

to the maximum degree of Gn,p which has been extensively studied, with precise results obtained

for different scalings of p with n. In particular, by Bollobás [2001] (Corollary 3.4), d(M) = pn +
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O(
√

pn log(n)) with probability 1−1/n provided that p = ω(log(n)3/n). The algebraic connectivity

for Erdös-Rényi graphs has been studied as well. By Coja-Oghlan [2007] (Theorem 1.3), a(M) =

pn + O(
√

pn log(n)) with probability 1− o(1), provided that p = ω(log(n)2/n). Intuitively, if the

expected degree np is large enough, d(M)/a(M) = Θ(1).

We can derive an upper bound for the convergence time, which depends only on some simple properties

of the graph associated with matrix M. Let A be the adjacency matrix of a graph G which has edge

(i, j) if, and only if, mi,j > 0. Let r = m/m where m = maxi,j mi,j and m = min{mi,j : mi,j > 0}.

Let d(n) be the maximum degree and D(n) be the diameter of G. Then, for both gradient descent and

MM algorithms for the ML estimation, we have the convergence time bound (shown in Section 2.7.7):

T = O(rd(n)D(n)n log(1/ϵ)). (2.6.1)

This implies that T = O(rn3 log(1/ϵ)) for every connected graph G, which follows by trivial facts

d(n) ≤ n and D(n) ≤ n. The bound in (2.6.1) follows from the lower bound on the algebraic

connectivity of a Laplacian matrix λ2(LA) ≥ 4/(nD(n)), see Theorem 3.4 in Merris [1994].

2.7 Proofs and additional results

2.7.1 Comparison of Theorem 2.3.2 with Proposition 2.7 in Mairal [2015]

Theorem 2.7.1 (Proposition 2.7 in Mairal [2015]). Suppose that f is a strongly convex function on Xγ

and x∗ is a minimizer of f and that it holds x∗ ∈ Xγ . Assume that g is a first-order surrogate function

of f on Xµ with parameter µ0 > 0. Let x(t+1) be the output of the MM algorithm for input x(t). Then,

if x(t) ∈ Xγ and x(t+1) ∈ Xµ, then we have

f(x(t+1))− f(x∗) ≤ c(f(x(t))− f(x∗))

where

c =


µ0
γ , if γ > 2µ0

1− γ
4µ0

, if γ ≤ 2µ0.
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Proof. Proof If g is a first-order surrogate function on Xµ with parameter µ0, then

f(x′) ≤ f(z) + µ0
2 ||z− y||2

where x′ = arg minz′ g(z′; y).

From this, it follows that

f(x′)

≤ min
z

{
f(z) + µ0

2 ||z− x∗||2
}

≤ min
a∈[0,1]

{
f(ax∗ + (1− a)x) + µ0a2

2 ||x− x∗||2
}

≤ min
a∈[0,1]

{
af(x∗) + (1− a)f(x) + µ0a2

2 ||x− x∗||2
}

where the last inequality is by convexity of f .

We have established the following inequality

f(x′)− f(x∗)

≤ min
a∈[0,1]

{
(1− a)(f(x)− f(x∗)) + µ0a2

2 ||x− x∗||2
}

.

By assumption that f is γ-strongly convex on Xγ and x ∈ Xγ , we have

f(x)− f(x∗) ≥ γ

2 ||x− x∗||2.

It follows that

f(x′)− f(x∗)

≤ min
a∈[0,1]

{
1− a + µ0a2

γ

}
(f(x)− f(x∗)).

It remains only to note that

min
a∈[0,1]

{
1− a + µ0a2

γ

}
= c.
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The rate of convergence bound derived from Theorem 2.3.2 can be tighter than the rate of convergence

bound derived from Theorem 2.7.1.

To show this consider the Bradley-Terry model for which we have shown in Lemma 2.3.3 that the

surrogate function ℓ of the log-likelihood function ℓ satisfies condition of Theorem 2.3.2 on [−ω, ω]n

with δ = 1
2e2ωd(M). It also holds that surrogate function ℓ is also a first-order surrogate function of ℓ

on [−ω, ω]n with µ0 = 1
2e2ωd(M). Hence in this case, we have δ = µ0.

The convergence rate bound of Theorem 2.3.2 is tighter than the convergence rate bound of Theo-

rem 2.7.1 if and only if µ+δ < 4µ0. Since δ = µ0, this is equivalent to µ < 3δ. Since by Lemma 2.3.1

we can take µ = 1
2d(M), the latter condition reads as

1 < 3eω

which indeed holds true.

2.7.2 Surrogate function (2.2.7) for the Bradley-Terry model is a first-order surrogate

function

We show that the surrogate function ℓ of the log-likelihood function ℓ of the Bradley-Terry model,

given by (2.2.7), is a first-order surrogate function on Xω = [−ω, ω]n with µ0 = 1
2e2ωd(M).

We need to show that the error function h(x; y) = ℓ(x)− ℓ(x; y) is a µ0-smooth function on Xω.

By a straightforward calculus, we note

∇2h(x; y) = ∇2ℓ(x) + D(x, y)

where D(x, y) is a diagonal matrix with diagonal elements

du =
∑
j ̸=u

mu,j
exu

eyu + eyj
.

We can take

µ0 = max
x,y∈Xω

max{|λ1(∇2h(x; y))|, |λn(∇2h(x; y))|}.

For any A = B + D where B is a n × n matrix and D is a n × n diagonal matrix with diagonal
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elements d1, d2, . . . , dn, we have

λ1(B) + min
u

du ≤ λi(A) ≤ λn(B) + max
u

du.

It thus follows that

µ0 ≤ max
x,y∈Xω

max{|λ1(∇2ℓ(x))|

+ min
u

du|, |λn(∇2ℓ(x)) + max
u

du|}.

Now note that for all x, y ∈ Xω,

−1
2d(M) ≤ λ1(∇2ℓ(x)) ≤ λn(∇2ℓ(x)) = 0

and
1
2e−2ω min

u

∑
j∈u

mu,j ≤ min
u

du ≤ max
u

du ≤
1
2e2ωd(M).

We have

|λn(∇2ℓ(x)) + max
u

du| = max
u

du ≤
1
2e2ωd(M)

and

|λ1(∇2ℓ(x)) + min
u

du|

= (λ1(∇2ℓ(x)) + min
u

du)Iλ1(∇2ℓ(x))+minu du≥0

+(−λ1(∇2ℓ(x))−min
u

du)Iλ1(∇2ℓ(x))+minu du<0

≤ min
u

duIλ1(∇2ℓ(x))+minu du≥0

−λ1(∇2ℓ(x))Iλ1(∇2ℓ(x))+minu du<0

≤ 1
2e2ωd(M)Iλ1(∇2ℓ(x))+minu du≥0

+1
2d(M)Iλ1(∇2ℓ(x))+minu du<0

≤ 1
2e2ωd(M).
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2.7.3 Proof of Theorem 2.4.1

Since f(Π(x)) ≤ f(x) for all x ∈ Rn,

f(x(t+1)) = f(Π(x(t) − η∇f(x(t))))

≤ f(x(t) − η∇f(x(t))).

By the same steps as those in the proof of Theorem 2.3.1, we can show that

f(x(t) − η∇f(x(t)))− f(x∗)

≤
(

1− γ

µ

)
(f(x(t))− f(x∗)).

Hence, it follows that

f(x(t+1))− f(x∗)

≤
(

1− γ

µ

)
(f(x(t))− f(x∗)).

2.7.4 Proof of Lemma 2.4.1

By a limited Taylor expansion, for any x, y ∈ Rn, we have

f(y) ≥ f(x) +∇f(x)⊤(y− x)

+1
2 mina∈[0,1](y− x)⊤∇2f(ay + (1− a)x)(y− x).

(2.7.1)

Let

u = (I−Pd) (y− x) and v = Pd(y− x)

where

Pd = I− 1
||d||2 dd⊤.

Notice that

(i) u + v = y− x, and

(ii) u and v are orthogonal, i.e., u⊤v = 0.
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From now on, assume that x and y are such that x, y ∈ X0 and y = x∗.

By definition of X0, we have d⊤∇f(x) = 0, which together with u + v = x∗ − x, implies

∇f(x)⊤(x∗ − x) = ∇f(x)⊤v. (2.7.2)

Now, note that for any a ∈ [0, 1], we have the following relations:

(x∗ − x)⊤∇2f(ax∗ + (1− a)x)(x∗ − x)

= (u + v)⊤∇2f(ax∗ + (1− a)x)(u + v)
(a)
≥ (u + v)⊤AX (u + v)
(b)
≥ v⊤AX v

≥
(

min
y:d⊤y=0

y⊤AX y
||y||2

)
||v||2

≥ γ||v||2

where (a) is by assumption (A1) and (b) is by assumption that AX is a positive semidefinite matrix

and (A2). Hence, we have shown that, for all a ∈ [0, 1],

(x∗ − x)⊤∇2f(ax∗ + (1− a)x)(x∗ − x) ≥ γ||v||2. (2.7.3)

Next, note that

∇f(x)⊤v + 1
2γ||v||2

≥ min
z∈Rn

(
∇f(x)⊤z + 1

2γ||z||2
)

≥ − 1
2γ
||∇f(x)||2.

Combining with (2.7.1)-(2.7.3), we obtain

f(x)− f(x∗) ≤ 1
2γ
||∇f(x)||2.
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2.7.5 Proof of Lemma 2.4.2

Proof of (2.4.6) Since ℓ(w) = ℓ(Π(w)) for all w ∈ Rn, we have that ρ(Π(w)) ≥ ρ(w) is equivalent

to ℓ0(Π(w)) ≥ ℓ0(w).

Now, note

ℓ0(Π(w))− ℓ0(w)

= ℓ0(w + c(w)1)− ℓ0(w)

= (α− 1)nc(w)− βec(w)
n∑

i=1
ewi + β

n∑
i=1

ewi

= β

(
n∑

i=1
ewi

)( (α− 1)n
β
∑n

i=1 ewi
c(w)− ec(w) + 1

)

= β

(
n∑

i=1
ewi

)
ec(w)

(
c(w)− 1 + e−c(w)

)
≥ 0

where the last inequality holds by the fact x− 1 + e−x ≥ 0 for all x ∈ R.

Proof of (2.4.7) Indeed, ∇ρ(w) = ∇ℓ(w) +∇ℓ0(w). It is readily checked that ∇ℓ(w)⊤1 = 0 for

all w ∈ Rn. We next show that∇ℓ0(Π(w))⊤1 = 0 for all w ∈ Rn.

Note that
∂

∂wi
ℓ0(w) = α− 1− βewi for i = 1, 2, . . . , n.

Hence,

∇ℓ0(w)⊤1 = (α− 1)n− β
n∑

i=1
ewi .

Now, by definition of the mapping Π given by (2.4.4) and (2.4.5), for all w ∈ Rn,

∇ℓ0(Π(w))⊤1 = (α− 1)n− βec(w)
n∑

i=1
ewi = 0.
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2.7.6 Proof of Lemma 2.7.1

Let ti,j be the number of paired comparisons in the input data with tie outcome for items i and j. Note

that ti,j = tj,i. The log-likelihood function can be written as follows:

ℓ(w) =
n∑

i=1

∑
j ̸=i

di,j (wi − log(ewi + θewj ))

+1
2

n∑
i=1

∑
j ̸=i

ti,j (wi + wj − log(ewi + θewj )

− log(θewi + ewj ) + log(θ2 − 1)
)

.

Let d̄i,j be the number of paired comparisons of items i and j such that i ⪰ j, i.e., d̄i,j = di,j + ti,j .

By a straightforward calculus, we can write

ℓ(w) =
n∑

i=1

∑
j ̸=i

d̄i,j (wi − log(ewi + θewj ))

+1
2

n∑
i=1

ti,j log(θ2 − 1).

Now, we note when i ̸= j,

∂2

∂wi∂wj
(−ℓ(w))

= −d̄i,j
θewiewj

(ewi + θewj )2 − d̄j,i
θewiewj

(θewi + ewj )2

and
∂2

∂w2
i

(−ℓ(w)) = −
∑
j ̸=i

∂2

∂wu∂wj
(−ℓ(w)).

For any i ̸= j, it indeed holds
θewiewj

(ewi + θewj )2 ≤
1
4 .

Hence, when i ̸= j,
∂2

∂wi∂wj
(−ℓ(w)) ≥ −1

4(d̄i,j + d̄j,i) ≥ −
1
2mi,j .
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It follows that 1
2LM ⪰ ∇2(−ℓ(w)) for all w ∈ Rn. Hence,

x⊤∇2(−ℓ(w))x ≤ 1
2λn(LM) for all x ∈ Rn.

This implies that −ℓ is a 1
2λn(LM)-smooth function on Rn.

On the other hand, we can show that for all w ∈ [−ω, ω]n,

θewiewj

(ewi + θewj )2 ≥
θ

(θe−ω + eω)2 := cθ,ω.

This can be noted as follows. Let z = θewj /(ewi + θewj ). Note that

θewiewj

(ewi + θewj )2 = z(1− z)

and that z ∈ Ω := [1/(1 + θe2ω), 1/(1 + θe−2ω)]. The function z(1− z) is convex and thus achieves

its minimum value over the interval Ω at one of its boundary points. It can be readily checked that the

minimum is achieved at z∗ = 1/(1 + θe2ω), which yields z∗(1− z∗) = cθ,ω.

Hence, when i ̸= j,

∂2

∂wi∂wj
(−ℓ(w)) ≤ −cθ,ω(d̄i,j + d̄j,i) ≤ −cθ,ωmi,j .

It follows that∇2(−ℓ(w)) ⪰ cθ,ωLM. From this, we have that for all w ∈ [−ω, ω]n and x ∈ X ,

x⊤∇2(−ℓ(w))x ≥ cθ,ωλ2(LM)

where X = {x ∈ Rn : ||x||∞ ≤ ω and x⊤1 = 0}. This implies that −ℓ is cθ,ωλ2(LM)-strongly

convex on X .

2.7.7 Derivation of the convergence time bound (2.6.1)

First note that

mA ≤M ≤ m̄A
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where the inequalities hold elementwise. From this, it follows that LM ⪰ mLA and m̄LA ⪰ LM,

where recall A is the adjacency matrix induced by matrix M. Now, note

d(M) = ||M||∞ ≤ m̄d(n)

and

a(M) = λ2(LM) ≥ mλ2(LA)

where d(n) is the maximum degree of a node in graph G.

Hence, we have
d(M)
a(M) ≤

rd(n)
λ2(LA) .

By Theorem 3.4 in Merris [1994], for any graph G with adjacency matrix A and diameter D(n),

λ2(LA) ≥ 4/(nD(n)).

It thus follows that
d(M)
a(M) ≤

1
4rd(n)D(n)n

which implies the convergence time bound T = O(rd(n)D(n)n log(1/ϵ)).

2.7.8 Generalized Bradley-Terry models

In this section, we discuss how the results for Bradley-Terry model of paired comparisons can be

extended to other instances of generalized Bradley-Terry models. In particular, we show this for

the Rao-Kupper model of paired comparisons with tie outcomes, the Luce choice model and the

Plackett-Luce ranking model.

We discuss only the characterization of the strong-convexity and smoothness parameters as the

convergence rate bounds for gradient descent and MM algorithms follow similarly as in Section 2.3.1,

from Theorems 2.3.1 and 2.3.2, respectively. Similarly, the rate of convergence bounds for accelerated

gradient descent and MM algorithms follow readily, similarly to as in Section 2.4.1, from Theorems,

2.4.1 and 2.4.2, respectively.
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2.7.8.1 Model definitions

Bradley-Terry model of paired comparisons According to the Bradley-Terry model, each paired

comparison of items i and j has two possible outcomes: either i wins against j (i ≻ j) or j wins

against i (j ≻ i). The distribution of the outcomes is given by

Pr[i ≻ j] = ewi

ewi + ewj

where w = (w1, w2, . . . , wn)⊤ ∈ Rn are model parameters.

Rao-Kupper model of paired comparisons with ties The Rao-Kupper model is such that each

paired comparison of items i and j has three possible outcomes: either i ≻ j or j ≻ i or i ≡ j (tie).

The model is defined by the probability distribution of outcomes that is given by

Pr[i ≻ j] = ewi

ewi + θewj

and

Pr[i ≡ j] = (θ2 − 1)ewiewj

(ewi + θewj )(θewi + ewj )

where w = (w1, w2, . . . , wn)⊤ ∈ Rn and θ ≥ 1 are model parameters.

The larger the value of parameter θ, the more mass is put on the tie outcome. For the value of parameter

θ = 1, the model corresponds to the Bradley-Terry model for paired comparisons.

Luce choice model The Luce choice model is a natural generalization of the Bradley-Terry model

of paired comparisons to comparison sets of two or more items. For any given comparison set

S ⊆ N = {1, 2, . . . , n} of two or more items, the outcome is a choice of one item i ∈ S (an event we

denote as i ⪰ S) which occurs with probability

Pr[i ⪰ S] = ewi∑
j∈S ewj

where w = (w1, w2, . . . , wn)⊤ ∈ Rn are model parameters.

We will use the following definitions and notation. Let T be the set of ordered sequences of two or

more items from N such that for each y = (y1, y2, . . . , yk) ∈ T , y1 is an arbitrary item and y2, . . . , yk

are sorted in lexicographical order. We can interpret each y = (y1, y2, . . . , yk) ∈ T as a choice of item

122



y1 from the set of items {y1, y2, . . . , yk}. According to the Luce’s choice model, the probability of

outcome y is given by

Pr[Y = (y1, y2, . . . , yk)] = ewy1∑
j∈y ewj

.

We denote with dy the number of observed outcomes y in the input data. For each y ∈ T , let |y| denote

the number of items in y.

Plackett-Luce ranking model The Plackett-Luce ranking model is a model of full rankings: for each

comparison set of items S ⊆ N = {1, 2, . . . , n}, the set of possible outcomes contains all possible

permutations of items in S. The distribution over possible outcomes is defined as follows. Let T be the

set of all possible permutations of subsets of two or more items from N . Each y = (y1, y2, . . . , yk) ∈ T

corresponds to a permutation of the set of items S = {y1, y2, . . . , yk}. The probability of outcome y

is given by

Pr[Y = (y1, y2, . . . , yk)]

= ewy1∑k
j=1 ewyj

ewy2∑k
j=2 ewyj

· · · ewyk−1∑k
j=k−1 ewyj

where w = (w1, w2, . . . , wn)⊤ ∈ Rn are model parameters.

The model has an intuitive explanation as a sampling of items without replacement proportional to

the item weights ewi . The Plackett-Luce ranking model corresponds to the Bradley-Terry model of

paired comparisons when the comparison sets consist of two items. We denote with dy the number of

observed outcomes y in the input data.

In this section, we discuss how the results for Bradley-Terry model of paired comparisons can be

extended to other instances of generalized Bradley-Terry models. In particular, we show this for

the Rao-Kupper model of paired comparisons with tie outcomes, the Luce choice model and the

Plackett-Luce ranking model.
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2.7.8.2 Rao-Kupper model

The probability distribution of outcomes according to the Rao-Kupper model is defined in Sec-

tion 2.7.8.1. The log-likelihood function can be written as

ℓ(w) =
n∑

i=1

∑
j ̸=i

d̄i,j (wi − log(ewi + θewj ))

+1
2

n∑
i=1

ti,j log(θ2 − 1)

where d̄i,j is the number of observed paired comparisons of items i and j such that either i wins against

j or there is a tie outcome, and ti,j is the number of observed paired comparisons of items i and j with

tie outcomes.

Lemma 2.7.1. The negative log-likelihood function for the Rao-Kupper model of paired comparisons

with parameter θ > 1 is γ-strongly convex onWω = {w ∈ Rn : ||w||∞ ≤ ω and w⊤1 = 0} and

µ-smooth on Rn with

γ = cθ,ωλ2(LM) and µ = 1
2λn(LM)

where cθ,ω = θ/(θe−ω + eω)2.

Proof of Lemma 2.7.1 is provided in Section 2.7.6.

A surrogate minorant function for the log-likelihood function of the Rao-Kupper model is given as

follows:

ℓ(x; y)

=
n∑

i=1

∑
j ̸=i

d̄i,j

(
xi −

exi + θexj

eyi + θeyj
− log(eyi + θeyj ) + 1

)

+1
2

n∑
i=1

ti,j log(θ2 − 1).
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The MM algorithm is defined by, for i = 1, 2, . . . , n,

w
(t+1)
i = log

∑
j ̸=i

d̄i,j

−
log

∑
j ̸=i

(
d̄i,j

ew
(t)
i + θew

(t)
j

+ θd̄j,i

ew
(t)
j + θew

(t)
i

) .

Lemma 2.7.2. For all x, y ∈ [−ω, ω]n, ℓ(x; y)− ℓ(x) ≥ − δ
2 ||x− y||2 where

δ = e2ωd(M).

2.7.8.3 Luce choice model

The probability distribution of outcomes according to the Luce choice model is defined in Sec-

tion 2.7.8.1. The log-likelihood function can be written as:

ℓ(w) =
∑
y∈T

dy

wy1 − log

∑
j∈y

ewj

 .

Lemma 2.7.3. The negative log-likelihood function for the Luce choice model with comparison sets of

size k ≥ 2 is γ-strongly convex and µ-smooth onWω = {w ∈ Rn : ||w||∞ ≤ ω and w⊤1 = 0} with

γ = cω,kλ2(LM) and µ = dω,kλn(LM)

where

cω,k =

 1/(e−ω + eω)2, if k = 2

1/((k − 2)e2ω + 2)2, if k > 2

and

dω,k = 1
((k − 2)e−2ω + 2)2 .

Note that for every fixed ω > 0, (a) cω,k/dω,k is decreasing in k, (b) 1/e8ω ≤ cω,k/dω,k ≤ 1/e2ω, and

(c) 1/e8ω is the limit value of cω,k/dω,k as k goes to infinity.
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A minorant surrogate function for the log-likelihood function of the Luce choice model is given by

ℓ(x; y) =
∑
y∈T

dy

xy1 −
∑

j∈y exj∑
j∈y eyj

− log

∑
j∈y

eyj

+ 1

 .

The MM algorithm iteration can be written as: for i = 1, 2, . . . , n,

w
(t+1)
i = log

∑
y∈T

dyIi=y1


− log

∑
y∈T

dyIi∈y
1∑

j∈y ew
(t)
j


where

∑
y∈T dyIi=y1 is the number of observed comparisons in which item i is the chosen item.

Lemma 2.7.4. For all x, y ∈ [−ω, ω]n, ℓ(x; y)− ℓ(x) ≥ − δ
2 ||x− y||2 where

δ = 1
k(k − 1)e2ωd(M).

2.7.8.4 Plackett-Luce ranking model

The probability distribution of outcomes according to the Plackett-Luce ranking model is defined in

Section 2.7.8.1. The log-likelihood function can be written as follows:

ℓ(w) =
∑
y∈T

dy

|y|−1∑
r=1

wyr − log

 |y|∑
j=r

ewyj

 .

Lemma 2.7.5. The negative log-likelihood function for the Plackett-Luce ranking model with com-

parison sets of size k ≥ 2 is γ-strongly convex and µ-smooth on Wω = {w ∈ Rn : ||w||∞ ≤

ω and w⊤1 = 0} with

γ = c̃ω,kλ2(LM) and µ = d̃ω,kλn(LM)

where

c̃ω,k = 1
k2 e−4ω and d̃ω,k =

(
2− 1

k

)
e4ω.
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Proof of Lemma 2.7.5 is provided in Section 2.7.10.6.

Note that for fixed values of ω and k, Lemma 2.7.5 implies the convergence time log(d(M)/a(M)).

Note, however, that for fixed ω > 0, c̃ω,k/d̃ω,k decreases to 0 with k and is of the order 1/k2. This

is because in the derivation of parameters c̃ω,k and d̃ω,k we use (conservative) deterministic bounds.

Following Hajek et al. [2014b], one can derive bounds for γ and µ that hold with high probability,

which are such that c̃ω,k and d̃ω,k scale with k in the same way.

The log-likelihood function of the Plackett-Luce ranking model admits the following minorization

function:

ℓ(x; y)

=
∑
y∈T

dy

|y|−1∑
r=1

xyr
−
∑|y|

j=r exyj∑|y|
j=r eyyj

− log

 |y|∑
j=r

eyyj

+ 1

 .

The MM algorithm is given by: for i = 1, 2, . . . , n,

w
(t+1)
i = log

∑
y∈T

dyIi∈S1,|y|−1(y)


− log

∑
y∈T

dy

|y|−1∑
r=1

Ii∈Sr,|y|(y)
1∑|y|

j=r e
w

(t)
yj


where Sa,b(y) = {ya, ya+1, . . . , yb}.

Lemma 2.7.6. For all x, y ∈ [−ω, ω]n, ℓ(x; y)− ℓ(x) ≥ − δ
2 ||x− y||2 where

δ = 1
2e2ωd(M).

2.7.9 Additional numerical results

GD v.s. MM

Numerical results presented in Table 2.7 validate the following observations derived from our theo-

retical results: (a) the convergence time increases by decreasing the value of parameter β for β > 0,

which can be for a substantial amount, and (b) there is a discontinuity in the convergence time being

much smaller for β = 0 (MLE case) than for a small value β > 0.
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Table 2.5: Number of iterations until ϵ-convergence for gradient descent (GD) and MM algorithms.
’n/a’ indicates cases when a ML estimate does not exist.

Dataset Algo. β = 0 0.01 1 10

GIFGIF: A (full)
GD n/a 14,965 432 46
MM n/a 572 70 16

GIFGIF: C (full)
GD n/a 12,745 299 33
MM n/a 733 49 13

GIFGIF: H (full)
GD n/a 26,512 792 77
MM n/a 1,127 98 21

GIFGIF: A (sample)
GD 516 1,914 83 12
MM 145 854 26 7

GIFGIF: C (sample)
GD 769 2,055 121 18
MM 130 694 39 9

GIFGIF: H (sample)
GD 434 2,452 100 25
MM 216 1,234 38 8

Chess (full)
GD n/a 36,598 725 64
MM n/a 2,217 113 33

Chess (sample)
GD 529 552 314 57
MM 121 122 74 19

NASCAR
GD 291 1,518 140 30
MM 11 695 58 10

The comparison of the quality of obtained estimates from MM and AccMM.

In order to demonstrate that our accelerated algorithm also guarantees the quality of the obtained

estimates, I conducted a toy simulation as follows: I considered a scenario with 6 items, where

each distinct pair of items was compared 5 times. The input data was generated according to the

Bradley-Terry model of paired comparisons with the parameter vector w, such that a half of the items

have parameters ω, and the other half have parameters −ω. We choose ω = 1/2.

We defined the convergence time (T ) as the smallest integer t such that ∥wt–w(t−1)∥ ≤ 10−4, and

ŵ∗ represents the estimated parameter vector obtained from either the MM algorithm or the AccMM

algorithm. The results on the number of iterations for the MM algorithm and the accelerated MM

algorithm (AccMM) are summarized in Table 1. It can be observed that the number of iterations

increases as the value of β decreases. Additionally, Table 2 presents the results of ∥ŵ∗ −w∥2F for

MM and AccMM algorithms for different values of α. It is evident that AccMM is much faster than

MM when β becomes smaller. We also observed that ∥ŵ∗ −w∥2F for AccMM is slightly larger than

that for MM for different β values. This might suggest that the quality of the estimates obtained

128



Table 2.6: The convergence time (T) for the MM algorithm and accelerated MM algorithm (AccMM).

Algorithm β = 0 0.1 1 10
MM 15 67 35 7

AccMM 15 13 7

Table 2.7: ∥ω̂∗ − ω∥2F for the MM algorithm and accelerated MM algorithm (AccMM).

Algorithm β = 0 0.1 1 10
MM 1.593867 1.601168 1.572034 1.506924

AccMM 1.621299 1.573552 1.506955

from the MM algorithm is slightly better than those from the AccMM algorithm, but the difference is

negligible. I repeated the simulation with different values of ω, and all gave me similar results to Table

2. Sometimes, ∥ŵ∗ −w∥2F for AccMM is even slightly larger than MM, but again, the difference is

negligible. Hence, this might suggest that the quality of estimates obtained from MM and AccMM is

not significantly different. In this scenario, our AccMM algorithm is superior because it converges

faster than MM while providing similar quality of estimates compared to the MM algorithm.

2.7.10 Background proofs for Chapter 2.3 and Chapter 2.7.8

2.7.10.1 Proof of Theorem 2.3.1

Let x′ be the output of the gradient descent iteration update for input x with step size η.

If x ∈ Xγ and x′ ∈ Xµ, then

f(x′)− f(x∗)

= f(x− η∇f(x))− f(x∗)

≤ f(x)− η||∇f(x)||2 + µ

2 η2||∇f(x)||2 − f(x∗)

= f(x)− f(x∗)−
(

η − µ

2 η2
)
||∇f(x)||2

≤ f(x)− f(x∗)− 2γ

(
η − µ

2 η2
)

(f(x)− f(x∗))

= (1− 2γη + γµη2)(f(x)− f(x∗))

where the first inequality is by the assumption that f is µ-smooth on Xµ and the second inequality is

by the assumption that f satisfies the γ-PL inequality on Xγ . Taking η = 1/µ, which minimizes the

above bound, establishes the claim of the theorem.
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2.7.10.2 Proof of Theorem 2.3.2

Let x′ be the output of the MM algorithm iteration update for input x.

By the facts f(x′) ≤ g(x′; x) and g(x′; x) ≤ g(z; x) for all z, for any η ≥ 0,

f(x′)− f(x∗)

≤ g(x′; x)− f(x∗)

≤ g(x− η∇f(x); x)− f(x∗)

= f(x− η∇f(x))− f(x∗)

+g(x− η∇f(x); x)− f(x− η∇f(x)).

Now, by the same arguments as in the proof of Theorem 2.3.1, if x ∈ Xγ and x− η∇f(x) ∈ Xµ, we

have

f(x− η∇f(x))− f(x∗)

≤ (1− 2γη + γµη2)(f(x)− f(x∗)).

Next, if x ∈ Xγ and x− η∇f(x) ∈ Xµ,

g(x− η∇f(x); x)− f(x− η∇f(x))

≤ δ

2η2||∇f(x)||2

≤ δη2γ(f(x)− f(x∗))

where the first inequality is by the smoothness condition on the majorant surrogate function and the

second inequality is by the assumption that f satisfies the PL inequality with parameter γ on Xγ .

Putting the pieces together, we have

f(x′)− f(x∗)

≤
(
1− 2γη + γ(µ + δ)η2

)
(f(x)− f(x∗)).

Taking η = 1/(µ+δ) (which minimizes the factor involving η in the last inequality) yields the asserted
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result.

2.7.10.3 Proof of Lemma 2.3.1

The Hessian of the negative log-likelihood function has the following elements:

∇2(−ℓ(w))i,j =


∑

v ̸=i mi,v
ewi ewv

(ewi +ewv )2 , if i = j

−mi,j
ewi ewj

(ewi +ewj )2 , if i ̸= j.
(2.7.4)

We will show that for all i ̸= j,

∂2

∂wi∂wj
(−ℓ(w)) ≤ −cωmi,j for all w ∈ [−ω, ω]n (2.7.5)

and

−1
4mi,j ≤

∂2

∂wi∂wj
(−ℓ(w)) for all w ∈ Rn. (2.7.6)

From (2.7.5), we have ∇2(−ℓ(w)) ⪰ cωLM for all w ∈ [−ω, ω]n. Hence, for all w ∈ [−ω, ω]n and

x ∈ X ,

x⊤∇2(−ℓ(w))x ≥ cωλ2(LM)||x||2

where X = {x ∈ Rn : x⊤1 = 0}. This shows that −ℓ is cωλ2(LM)-strongly convex on X .

From (2.7.6), we have 1
4LM ⪰ ∇2(−ℓ(w)) for all w ∈ Rn. Hence, for all x ∈ Rn,

x⊤∇2(−ℓ(w))x ≤ 1
4λn(LM)||x||2.

This shows that −ℓ is 1
4λn(LM)-smooth on Rn.

It remains to show that (2.7.5) and (2.7.6) hold. For (2.7.5), we need to show that cω ≤ xixj/(xi +xj)2

for all x ∈ [−ω, ω]n. Note that xixj/(xi + xj)2 = z(1 − z) where z := xi/(xi + xj). Note that

z ∈ Ω := [e−ω/(e−ω + eω), 1 − e−ω/(e−ω + eω)] for all x ∈ [−ω, ω]n. The function z(1 − z)

achieves its minimum over the interval Ω at a boundary of Ω. Thus, it holds minz∈Ω z(1− z) = cω.

For (2.7.6), we can immediately note that for all w ∈ Rn,

wiwj

(wi + wj)2 = wi

wi + wj

(
1− wi

wi + wj

)
≤ 1

4 .
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2.7.10.4 Proof of Lemma 2.3.3

Let y be an arbitrary vector in [−ω, ω]n. Let r(x; y) = ℓ(x; y)− ℓ(x) for x ∈ [−ω, ω]n. Then, we

have
r(y; y) = 0,∇xr(y; y) = 0, and

∇2
xr(x; y) = ∇2(−ℓ(x)) + A

(2.7.7)

where A is a n× n diagonal matrix with diagonal elements

Ai,i = −
∑
j∈i

mi,j
exi

eyi + eyj
≥ −1

2e2ω||M||∞.

Since∇2(−ℓ(x)) is a positive semi-definite matrix and A is a diagonal matrix, for all x, y ∈ [−ω, ω]n

and w ∈ [−ω, ω]n, we have

x⊤∇2
xr(w; y)x ≥ −||M||∞

e2ω

2 ||x||
2 = −δ||x||2.

By limited Taylor expansion, for all x ∈ [−ω, ω]n,

r(x; y)

≥ r(y; y) + (x− y)⊤∇xr(y; y)

+1
2 min

0≤a≤1
(x− y)⊤∇2

xr(ax + (1− a)y; y)(x− y)

= 1
2 min

0≤a≤1
(x− y)⊤∇2

xr(ax + (1− a)y)(x− y; y)

≥ −δ

2 ||x− y||2.

By the definition of r(x; y), we have ℓ̄(x; y)− ℓ(x) ≥ − δ
2 ||x− y||2.

2.7.10.5 Proof of Lemma 2.3.4

We consider the log-a posteriori probability function ρ(w) = ℓ(w) + ℓ0(w) + const where ℓ is the

log-likelihood function given by (2.2.3) and ℓ0 is the prior log-likelihood function given by (2.2.5).

Note that∇2(−ℓ0(w)) is a diagonal matrix with diagonal elements equal to βewi , for i = 1, 2, . . . , n.

It can be readily shown that for w ∈ Wω,

cωLM + e−ωβIn ⪯ ∇2(−ρ(w)) ⪯ 1
4LM + eωβIn. (2.7.8)
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From (2.7.8), for all w ∈ Wω and x ∈ Rn,

x⊤∇2(−ρ(w))x ≥ λ1(e−ωβIn)||x||2 = e−ωβ||x||2.

Hence, −ρ is e−ωβ-strongly convex onWω.

Similarly, from (2.7.8), for all w ∈ Wω, and x ∈ Rn,

x⊤∇2(−ρ(w))x ≤ λn(1
4LM + eωβIn)||x||2

≤ (λn(1
4LM) + λn(eωβIn))||x||2

= (1
4λn(LM) + eωβ)||x||2.

Hence, −ρ is µ-smooth onWω with µ = 1
4λn(LM) + eωβ.

2.7.10.6 Proof of Lemma 2.7.5

It can be easily shown that for all w ∈ [−ω, ω]n, S ⊆ N such that |S| ≥ 2, and u, v ∈ S such that

u ̸= v, we have
e−4ω

|S|2
≤ ewuewv

(
∑

j∈S ewj )2 ≤
e4ω

|S|2
.

Combining with (2.7.4), we have

∂2

∂wu∂wv
(−ℓ(w))

≤ −
∑
y∈T

dy
wuwv

(
∑k

j=1 ewyj )2
1u,v∈{y1,y2,...,yk}

≤ −e−4ω

k2

∑
y∈T

dπ1u,v∈{y1,y2,...,yk}

= −e−4ω

k2 mu,v.

From this it follows that for all x ∈ Rn such that x⊤1 = 0,

x⊤∇2(−ℓ(w))x ≥ e−4ω

k2 λ2(LM)||x||2. (2.7.9)
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Similarly, we have

∂2

∂wu∂wv
(−ℓ(w))

≥ −
∑
y∈T

dy

k−1∑
l=1

wuwv

(
∑k

j=l ewyj )2
1u,v∈{y1,y2,...,yk}

≥ −e4ω
k−1∑
l=1

1
(k − l + 1)2 mu,v

= −e4ω
k∑

l=2

1
l2

mu,v

≥ −e4ω

(
1 +

∫ k

1

dx

x2

)
mu,v

= −e4ω
(

2− 1
k

)
mu,v.

From this it follows that for all x,

x⊤∇2(−ℓ(w))x ≤ e4ω
(

2− 1
k

)
λn(LM)||x||2. (2.7.10)

134



Bibliography

B. Abrahao, F. Chierichetti, R. Kleinberg, and A. Panconesi. Trace complexity of network inference.

In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 491–499, 2013.

I. Adler and S. M. Ross. The coupon subset collection problem. Journal of Applied Probability, 38(3):

737–746, 2001. doi: 10.1239/jap/1005091036.

A. Agarwal, P. Patil, and S. Agarwal. Accelerated spectral ranking. In International Conference on

Machine Learning, pages 70–79, 2018.

A. Agresti. Categorical Data Analysis. Wiley Series in Probability and Statistics, 2 edition, 2002.

A. E. Alaoui and A. Montanari. On the computational tractability of statistical estimation on amenable

graphs, 2019.

A. Albert and J. A. Anderson. On the existence of maximum likelihood estimates in logistic regression

models. Biometrika, 71(1):1–10, 1984. ISSN 00063444. URL http://www.jstor.org/

stable/2336390.

D. Aldous. Interacting particle systems as stochastic social dynamics. Bernoulli, 19(4):1122–1149, 09

2013.

D. Aldous and J. A. Fill. Reversible Markov Chains and Random Walks on Graphs. Unfinished

monograph, 2002.

D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge: A geometric theory

of phase transitions in convex optimization. Information and Inference: A Journal of the IMA, 3:

224–294, 2014.
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C. Cooper, R. Elsässer, H. Ono, and T. Radzik. Coalescing random walks and voting on connected

graphs. SIAM Journal on Discrete Mathematics, 27(4):1748–1758, 2013.

C. Cooper, M. Dyer, A. Frieze, and N. Rivera. Discordant voting processes on finite graphs. SIAM

Journal on Discrete Mathematics, 32(4):2398–2420, 2018.

K. P. Costello and V. Vu. On the rank of random sparse matrices. Combinatorics, Probability and

Computing, 19(3):321–342, 2010. doi: 10.1017/S0963548309990447.

K. P. Costello and V. H. Vu. The rank of random graphs. Random Structures & Algorithms, 33

(3):269–285, 2008. doi: 10.1002/rsa.20219. URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/rsa.20219.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2 edition, 2006.

J. T. Cox. Coalescing Random Walks and Voter Model Consensus Times on the Torus in Zd. The

Annals of Probability, 17(4):1333 – 1366, 1989a. doi: 10.1214/aop/1176991158. URL https:

//doi.org/10.1214/aop/1176991158.

J. T. Cox. Coalescing random walks and voter model consensus times on the torus in Zd. Annals of

Probability, 17(4):1333–1366, 10 1989b.

M. Daltayanni, L. de Alfaro, and P. Papadimitriou. Workerrank: Using employer implicit judgements

to infer worker reputation. In Proceedings of the Eighth ACM International Conference on Web

Search and Data Mining, pages 263–272. ACM, 2015.

H. A. David. The Method of Paired Comparisons. Charles Griffin and Company, London, 1963.

R. R. Davidson. On extending the bradley-terry model to accommodate ties in paired comparison

experiments. Journal of the American Statistical Association, 65(329):317–328, 1970.

R. Dawkins. A threshold model of choice behaviour. Animal Behaviour, 17(Part 1):120–133, Feb.

1969.

M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):

118–121, 1974.

M. Desai and V. Rao. A characterization of the smallest eigenvalue of a graph. Journal of Graph

Theory, 18(2):181–194, 1994. doi: 10.1002/jgt.3190180210. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/jgt.3190180210.

139

https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20219
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20219
https://doi.org/10.1214/aop/1176991158
https://doi.org/10.1214/aop/1176991158
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190180210
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190180210


O. Dykstra, Jr. A note on the rank analysis of incomplete block designs – applications beyond the

scope of existing tables. Biometrics, 12(3):301–306, 1956.

O. Dykstra, Jr. Rank analysis of incomplete block designs: A method of paired comparisons employing

unequal repetitions on pairs. Biometrics, 16(2):176–188, 1960.

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected

World. Cambridge University Press, 2010.

A. E. Elo. The Rating of Chessplayers. Ishi Press International, 1978a.

A. E. Elo. The rating of chessplayers, past and present. Arco Pub., 1978b.

P. Erdös and T. Gallai. Graphen mit punkten vorgenschriebenen grades. Mat. Lapok, 11:264–274,

1960.
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