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Abstract. This paper focuses on (an interpretation of) the Enkratic principle of rational-

ity, according to which rationality requires that if an agent sincerely and with conviction

believes she ought to X, then X-ing is a goal in her plan. We analyze the logical struc-

ture of Enkrasia and its implications for deontic logic. To do so, we elaborate on the

distinction between basic and derived oughts, and provide a multi-modal neighborhood

logic with three characteristic operators: a non-normal operator for basic oughts, a non-

normal operator for goals in plans, and a normal operator for derived oughts. We prove

two completeness theorems for the resulting logic, and provide a dynamic extension of the

logic by means of product updates. We illustrate how this setting informs deontic logic by

considering issues related to the filtering of inconsistent oughts, the restricted validity of

deontic closure, and the stability of oughts and goals under dynamics.
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1. Introduction

Suppose I believe sincerely and with conviction that today I ought to repay
my friend Ann the 10 euro that she lent me. But I do not make any plan
for repaying my debt: Instead, I arrange to spend my entire day at the local
spa enjoying aromatherapy treatments. This seems wrong.

Enkrasia is the principle of rationality that rules out the above situation.
The principle plays a central role within the domain of practical rationality,
and has recently been receiving considerable attention in practical philos-
ophy.1 In its most general formulation, Enkrasia is the principle according
to which rationality requires that if an agent sincerely and with conviction
believes she ought to X, then she intends to X. There might be several
ways in which such an intention to X is to be understood. Inspired by Brat-
man [4], here we consider the agent’s intention to X as indicating that the
agent is committed to achieve X, and thus has, in some sense, a plan for

1See the works of Broome [6], Kolodny [20], Shpall [27], Horty [18]. For a complementary
account of the relation between oughts and plans, see Gibbard [13].
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X-ing. When this is the case, we say that X-ing is a goal in the agent’s plan.
Combining these aspects, we can understand Enkrasia as the principle of ra-
tionality requiring that if an agent sincerely and with conviction believes she
ought to X, then X-ing is a goal in the agent’s plan. Such an interpretation
of Enkrasia was first suggested by Horty [18], and constitutes the starting
point of the present paper. Notably, this formulation does not refer to the
agent’s intention. In fact, we drop the term “intention” altogether from our
analysis to avoid confusion.

This paper pursues two aims. Firstly, we want to analyze the logical struc-
ture of Enkrasia in light of the interpretation just described. This is, to the
best of our knowledge, a largely novel project within the literature. Much
existing work in modal logic deals with various aspects of practical rational-
ity starting from Cohen and Levesque’s seminal paper [10]. The framework
presented here aims to complement this literature by explicitly addressing
Enkrasia. The principle, in fact, bears some non-trivial conceptual and for-
mal implications—which might be of interest to the practical philosopher as
well as the modal logician. This leads to the second aim of the paper. We
want to address the repercussions that Enkrasia has for deontic logic. To
this end, we elaborate on the distinction between so-called “basic oughts”
and “derived oughts”, and show how this distinction is especially meaning-
ful in the context of Enkrasia. Moreover, we address issues related to the
filtering of inconsistent oughts, the restricted validity of deontic closure, and
the stability of oughts and goals under dynamics.

In pursuit of these two aims, we provide a multi-modal neighborhood logic
for Enkrasia. The logic has three characteristic operators: A non-normal
operator for basic oughts, a non-normal operator for goals in plans, and a
normal operator for derived oughts. We prove two completeness theorems for
the resulting logic, and provide a dynamic extension of the logic by means
of product updates.

The paper proceeds along the following general lines. First, we clarify
its philosophical foundations by introducing Enkrasia’s main characteris-
tics and its connection with two principles of rationality requiring goals in
plans to be consistent (Section 2). We then introduce three challenges that
illustrate the relevance of Enkrasia for deontic logic (Section 3). After dis-
cussing some core features and design choices of our approach (Section 4),
we present a static logic for Enkrasia (Sections 5–7). Finally, we provide a
dynamic extension of the logic (Section 8). This paper fits in with a larger
project aimed at investigating the logic of oughts in the context of practical
rationality. We hence conclude by discussing some related logic literature,
and considering possible future extensions.
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2. Enkrasia and the Consistency of Goals

The starting point of this paper is the Enkratic principle of rationality, in
the following interpretation:

enkrasia. If an agent believes she ought to X, then X-ing is a goal in
the agent’s plan.

Such an interpretation is inspired by Horty [18]. This section introduces
enkrasia’s main components and emphasizes its connection with two prin-
ciples of rationality governing goals in plans. Let us stress before continuing
that the aim pursued here is not to engage in a direct defense of enkrasia
(for this, the interested reader can consult [6] and [18]). Rather, this sec-
tion is meant to lay the groundwork for our formal analysis of enkrasia’s
structure and of its position within the domain of practical rationality.

Let us begin with the oughts to which enkrasia applies; where “ought”
is used as a noun, roughly meaning “obligation”. It should be stressed that
enkrasia does not take as antecedents all possible oughts. For one, enkra-
sia applies only to those oughts that are believed by the agent—in fact, this
straightforwardly follows from the above formulation of the principle. How-
ever, further constraints are in place. We take inspiration from Broome [6],
and require oughts that fall within the scope of enkrasia to have at least
two further properties: They are normative and ascribed to the agent her-
self. These constraints are better illustrated via examples, so let us briefly
consider them in turn.

One constraint limits the scope of enkrasia to normative oughts. These
are the oughts that have to do, for instance, with morality, law or prudence.
“I ought to repay my friend (as morality demands me to)” is an illustrative
example of a normative ought. Contrariwise, examples of non-normative
oughts are often to be found where oughts are used to express what is
typically expected to be the case (see [32]), as in “I ought to have heard
from the landing module ten minutes ago” ([6], p. 9). It would make little
sense to say that hearing from the landing module is something I plan for.
Indeed, enkrasia does not apply there.

The other constraint demands that the agent ascribes the oughts to her-
self. We can put this point in various ways: We can say this constraint
demands that the agent believes the ought is required of her, that she rec-
ognizes it as her job to bring about the ought, or that she believes she is
the “owner” of the ought (cf. [6], p. 22). Examples of oughts ascribed to the
agent herself are “I ought to get a sun hat” ([6], p. 12), and “I ought to see
to it that the kids are alright”. An ought that is not ascribed to the agent
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herself is “I ought to get a punishment” ([6], p.12), in a (natural) context
where it is not on me to ensure that I receive this punishment. As long as
getting a punishment is not my job, it would be incorrect to say that I fall
short of rationality if getting punished is not a goal in my plan. This is why
we demand enkrasia to apply only to oughts that are ascribed to the agent
herself.

We have just identified a way in which enkrasia is constrained: It applies
only to the oughts that enjoy the three properties above, namely, that are
believed by the agent, normative, and ascribed to the agent herself. In our
formal framework, we will implicitly assume that the oughts of enkrasia

are of that kind. This is not to mean, however, that all oughts with those
properties will correspond, via enkrasia, to goals in the agent’s plans. In
fact, in the next section, we will suggest that enkrasia needs to be further
weakened.

So much for oughts. Let us now turn to another crucial component of
enkrasia: Goals in plans. Drawing from Bratman [4], when saying that
X-ing is a goal in the agent’s plan, we mean that the agent is committed
to achieve X, which includes figuring out (to an appropriate degree) how
to do so. To put it more succinctly, we mean that the agent has a plan for
X-ing. For instance, repaying my friend is a goal in my plan only if I am
committed to do so: I have a plan for repaying my friend which, minimally,
for me rules out all the options (such as spending all my money, leaving the
country, etc.) that I believe would make it impossible to achieve my goal.
Those options become, given my commitment to repay my friend, no longer
admissible. In this context, goals in plans differ from mere desires or wishes,
which lack such a dimension of commitment [10,28]. Those notions should
be kept apart here.

Furthermore, goals in plans are future-directed: The most natural reading
of “X-ing is a goal” is the one in which X is something that still has to
happen (see [4], p. 4). Indeed, when talking about having a goal, we generally
refer to something we are committed to do in the future (by the end of today,
tomorrow, next month, etc.). In line with these considerations, in this paper
we will assume X to include an element of futurity.

The literature imposes constraints on goals in plans. For instance, Broome
suggests a property that—paraphrased in our own terms—amounts to re-
quiring that the agent has the ability, via forming the goal to X, to have
an impact on X-ing ([6], pp. 162–163). Although we find such a suggestion
worth further (formal) analysis, we do not pursue this direction here. Rather,
we focus our attention on two minimal principles of rationality governing
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goals in plans. These principles of rationality require goals in plans to be
consistent, in the following two senses of the term:

internal consistency. If X-ing, Y -ing, ... are goals in an agent’s plans,
then it is logically consistent to X and Y and ... .

strong consistency. If X-ing, Y -ing, ... are goals in an agent’s plans,
then the agent believes it is possible to X and Y and ... .

Both principles reflect the idea that it should be possible for goals in plans
to be successfully achieved: internal consistency demands that goals in
plans be jointly logically consistent, while strong consistency requires
that goals in plans be jointly consistent with respect to the agent’s beliefs.
Their motivation is ultimately rooted in the dimension of commitment that
goals in plans have: I could not truly be committed to repaying my friend
and, at the same time, be committed to spending all my money to see the
movies, while believing that these two things are incompatible—let alone
jointly logically impossible (see [4,10,18]).

Straightforward consequences of the above consistency principles are that
if X-ing is a goal in a plan, then not X-ing is not a goal in a plan (from
internal consistency), and that if X-ing is a goal in a plan, then the
agent believes it is possible to X (from strong consistency). That is
to say, goals in plans should neither be contradictory, nor believed to be
impossible to achieve.

This is perhaps the right moment to mention some aspects of the cur-
rent debate surrounding enkrasia—and the principles of rationality, more
generally—that we will not address in this paper. The first has to do with
the debate on whether principles of rationality are of wide or narrow scope.
Consider enkrasia. Under the narrow scope, if the agent believes she ought
to X, rationality requires that X-ing is a goal in the agent’s plan. Under the
wide scope, on the other hand, rationality requires that if the agent believes
she ought to X, then X-ing is a goal in her plan. The two readings lead to
different pictures of rationality. Under the narrow scope reading, rationality
requires a particular attitude of the agent. Under the wide scope, rationality
only requires a particular relation between the agent’s attitudes, typically
leaving the rational agent leeway to either adopt X-ing as a goal in her plan
or to revise her belief that she ought to X.2 Since the focus of the present
paper is not on operators akin to “rationality requires that”, we take our

2See, among others, Broome [6], Kolodny [20] and Shpall [27]. Broome defends the wide
scope reading, Kolodny the narrow scope one, while Shpall proposes a “conciliatory view”
between the two camps of the debate.
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contribution to be largely independent of the question whether enkrasia is
a narrow or wide scope principle of rationality.

A second issue to which this paper does not contribute is whether prin-
ciples of rationality are synchronic or diachronic. Consider again enkrasia,
now enriched with time-indexes: If the agent believes at t that she ought to
X, then X-ing is a goal in the agent’s plan at t′. Diachronically, t precedes
t′, while synchronically, t and t′ refer to the same time. Under the diachronic
reading, believed oughts can be thought of generating corresponding goals,
while under the synchronic interpretation, believed oughts and goals coexist
at the same time. For reasons of simplicity, we follow Broome [6] and focus
on the synchronic interpretation of enkrasia. We hold, however, that both
interpretations have a certain appeal, especially from a logical perspective.

3. Three Challenges

We now introduce three challenges surrounding enkrasia that are apt to
illustrate the relevance such a principle holds for deontic logic.

3.1. Challenge I: From Inconsistent Oughts to Consistent Goals

There is a potential tension between enkrasia and the principles of inter-
nal and strong consistency for goals in plans. Consider the following:

Example 3.1. Suppose I believe I ought to repay 10 euro to my friend Ann.
I also believe I ought to go to the movies with Barbara (I have promised her
so). However, money is scarce, and I believe it is impossible to do both.

It is safe to suppose that the oughts in Example 3.1 are of the kind to
which enkrasia may apply, i.e., they enjoy all three properties introduced
in Section 2. Now if enkrasia were in fact applied to those oughts, I would
need to plan for both repaying the money to Ann and for going to the movies
with Barbara—ending up with two goals I believe to be inconsistent, and so
violating strong consistency in this specific case.

How to solve this tension? One way is to assume oughts are always consis-
tent, both from a logical viewpoint and from the perspective of the agent’s
beliefs (see Broome, [6]). This assumption certainly solves the problem. But
consider again the example above. Especially when oughts originate from
different sources, it seems a viable possibility that these may end up being
jointly inconsistent.

In what follows, we investigate another strategy to solve the tension be-
tween enkrasia, internal and strong consistency. In a nutshell, this
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strategy is not to rule out the possibility of inconsistent oughts, nor to
abandon the consistency principles for goals in plans, but rather to weaken
enkrasia. The rationale for maintaining both internal and strong con-

sistency is rather pragmatic: In the face of a normative conflict about how
to act, the least I can do is to assure that whatever I commit to is achievable.

Allowing for oughts, but not goals, to be inconsistent has several major
consequences. Firstly, since oughts are possibly inconsistent but goals are
not, it straightforwardly follows that not all oughts can correspond to goals
in plans. In fact, this makes enkrasia a logically invalid principle. Secondly,
it is natural to ask if not all, then which oughts do correspond to goals in
plans. The challenge consists then in formally determining how oughts can
be filtered out, in order to move from inconsistent oughts to consistent goals.

3.2. Challenge II: Basic Oughts and Derived Oughts

The second challenge revolves around a family of logical principles and infer-
ence rules that goes under the name of “deontic closure under implication”—
for short: deontic closure. A longstanding tradition in deontic logic rejects
the validity of deontic closure, arguing that it leads to unacceptable con-
clusions. An example is given by Ross’ Paradox [15,26]: Suppose I ought to
mail the letter ; now, since mailing the letter logically implies mailing the
letter or burning it, deontic closure would imply that I ought to mail the
letter or burn it—which is intuitively implausible.

The issue is that even if we accept that deontic closure is in fact prob-
lematic and should not be generally valid, an outright rejection of deontic
closure would not constitute an adequate solution. For one, it would lead us
to miss out also on deontic inferences that are intuitively plausible.

To see this, consider the following example, which we owe to Horty [18].
For this example, let us forget about my promise to go to the movies with
Barbara, and simply assume that going to the movies is something I like:

Example 3.2. Suppose that I ought to repay Ann 10 euro. Now suppose
that I would also like to go to the movies, but I do not have a lot of money. In
fact, I believe that unless I refrain from going to the movies it is impossible
to repay Ann. So, I conclude, I ought not go to the movies.

Such a conclusion strikes us as impeccable. Following von Wright [31],
we call the above piece of reasoning practical inference, and schematically
represent it as:
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(P1) I ought to repay Ann

(P2) Necessarily, repaying Ann implies not going to the movies

(C) Therefore, I ought not go to the movies

Practical inference is the cornerstone of instrumental reasoning.3 Yet, practi-
cal inference—just as Ross’ Paradox—is a variant of deontic closure (specif-
ically, deontic closure under necessary implication). An outright rejection of
deontic closure would have the effect of also blocking the above derivation.

The challenge then takes the following shape: Even assuming that deontic
closure is not generally valid, a deontic logic should be “thick” enough to
license crucial deontic inferences—including those instances of deontic clo-
sure that are valid. In the remainder of this section, we explore the bound-
aries between valid and invalid instances of deontic closure, and show that
enkrasia provides us with the conceptual tools to do so.

All we need is to fix one set of oughts to start with. This set functions
as input for the agent’s deliberation. We do not impose any requirements
on this set other than demanding that all oughts enjoy the three properties
described in Section 2, i.e., being believed by the agent, normative, and
ascribed to the agent herself. It follows, hence, that these are oughts to which
enkrasia may apply. We call the oughts in this set basic oughts. Apart from
what we just said, there is nothing intrinsically special about these.4 We do
not assume basic oughts to have any particular surface grammar, nor do we
assume they share any further commonalities. In fact, we even admit the
possibility that basic oughts are jointly inconsistent.5 Once the set of basic
oughts is fixed, we call derived oughts those oughts that are implied by basic
oughts.

The distinction between basic and derived oughts is crucially meaningful
in relation to enkrasia, and helps us to discern valid from invalid instances
of deontic closure. Let us take practical inference as a case study. The central
observation—originally noticed by Horty [18]—is that the oughts in (P1) and

3Typically (P2) expresses a practical necessity, which might vary with the circumstances
or the agent’s beliefs thereof, cf. von Wright ([31], p. 161).

4Various interpretations can be imposed on the set of basic oughts. Horty [18] thinks of
basic oughts as those oughts directly generated by normative requirements. Alternatively,
one may think of basic oughts as those explicitly believed by the agent.These interpreta-
tions are compatible with our characterization of basic oughts. An alternative characteri-
zation of basic oughts is provided by Nair [24].

5This is why we have stressed that basic oughts are oughts to which enkrasia may
apply. Since basic oughts are possibly inconsistent, while goals are not, it follows that not
all basic oughts correspond to goals. See our discussion in Section 3.1.
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in (C) interact differently with enkrasia. Suppose I deliberate about my
day and I take as input that I ought to repay Ann (P1). In the absence of
conflicts, this basic ought leads via enkrasia to the goal of repaying Ann,
something that I plan for in itself. From there, via deontic closure, I do
well in deriving that I ought not go to the movies (C). However this derived
ought does not interact with enkrasia in the same way: Refraining from
going to the movies is not a goal in its own right. Rather, it is something
I necessarily have to do in order to fulfill my goal of repaying Ann. In
other terms, the derived ought registers the necessary (though possibly not
sufficient) conditions for the fulfillment of such a goal (see also [7]).

It is with respect to enkrasia that the different roles played by basic
and derived oughts become evident. This motivates taking basic and de-
rived oughts as two separate kinds of oughts in this context. Once these
are understood as two separate oughts, having different logical meanings, it
becomes non-trivial to say that there are instances of deontic closure that
move from basic oughts to derived oughts. These instances will be valid in
our logic. As elaborated above, this bears crucial implications for practical
inference. Similar considerations apply to Ross’ Paradox. Acknowledging the
different roles of the oughts involved, I do well in deriving that I ought to
mail the letter or burn it only to the extent that this expresses no more than
the (logically) necessary—but not sufficient—conditions for the fulfillment
of my goal of mailing the letter. In other terms, my inference is only valid
to the extent that I ought to mail the letter or burn it is a derived ought.

3.3. Challenge III: Dynamic Conditions

The last challenge, finally, brings dynamics into the picture. Our initial rea-
son for focusing on dynamics is mainly conceptual, as it is especially when
seen through the lenses of dynamic change that the differences between ba-
sic oughts, goals and derived oughts become most prominent. The following
two observations illustrate what we have in mind. Firstly, it is a well-known
feature of goals in plans that they tend to be stable under various perturba-
tions (cf. the seminal Bratman [4], pp. 16, 67). Reflecting the fact that goals
are ultimately things the agent has committed to, there is a tendency for
goals in plans to resist reconsideration, and in particular not to be discarded
at every slight change that might occur in the agent’s information.

Example 3.3. Suppose that giving 10 euro back to Ann is a goal in my
plan. My plan involves reaching Ann’s house which I usually do by car. Now
if I learned that my car is broken, I would not simply give up my goal to
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repay Ann. Normally, I would rather maintain my goal and replan to get to
her house by another means, for instance, by bus.

Let us call practical dynamics any changes in the agent’s information
about what the world looks like. This is, in fact, the kind of dynamics at
work in Example 3.3. Then, the basic idea is that goals in plans are not
reconsidered whenever practical dynamics occur. Of course, goals are not
irrevocable. They should, for instance, be dropped if they become inconsis-
tent (cf. [4], p. 16). Yet, goals are stabler than other notions with respect
to practical dynamics. This leads us to a second observation. Echoing Horty
[18], we can appeal to a sort of “stability test” to illuminate the conceptual
distinction between basic oughts, at least those that correspond to goals via
enkrasia, and derived oughts. The following example shows that derived
oughts are generally less stable with respect to practical dynamics:6

Example 3.4. Suppose I ought to repay 10 euro to Ann (basic ought), and
I hold the corresponding goal in my plan. Moreover, suppose that I do not
have a lot of money, and hence conclude that I ought not go to the movies
(derived ought), although I would really like to. Now if I learned that I have
additional money at home, sufficient for both repaying Ann and buying a
cinema ticket, I would give up that I ought not go to the movies. While I
would maintain that I ought to repay Ann, and hence that doing so is a goal
in my plan, I would not maintain that I ought to make sure not to go to the
movies.

Hence, while the difference between basic oughts and derived oughts is
not explicitly reflected in surface grammar, testing stability with respect to
practical dynamics can help to make this conceptual distinction salient.7

The above observations show the relevance of investigating the effects
of practical dynamics. Unanticipated obstacles or unexpected opportunities
can diversely affect various notions at play in enkrasia, specifically goals
in plans and derived oughts. The challenge then consists in precisely char-
acterizing how and under which conditions these change dynamically.

6A version of Example 3.4 is discussed in Horty [18], p. 225.
7We thank an anonymous reviewer for drawing attention to the fact that the con-

trast between basic oughts and derived oughts is not marked in ordinary language. The
distinction between the two oughts is predominantly conceptual.
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4. Introducing the Framework

We can turn now to the first aim of this paper: Providing a logical frame-
work for enkrasia. For the analysis, we posit a set of minimal requirements
about basic oughts, goals in plans, and derived oughts. The reader may find
these incomplete. However, our aim here is not to reveal the full logical
principles governing oughts or goals. Rather, we aim for a minimal set of
axioms strong enough to identify relations between basic oughts, goals and
derived oughts that result from our analysis of enkrasia. In working to-
wards a more complete logic of oughts and goals, additional axioms could
be added in the future, validating further theorems. Of course, in such a
stronger logic, the relationships identified here would continue to hold.

Despite the intended minimalism, devising a logic for enkrasia requires
a variety of conceptual and formal choices. Some of these are core features
of the framework developed. Others are mere design choices that could be
altered easily. The following discussion details both.

4.1. Core Features

Basic Oughts, Goals and Derived Oughts The framework’s first core compo-
nent is three main logical operators: A modal operator for basic oughts, one
for goals in plans, and finally one for derived oughts. We implicitly assume
basic oughts to satisfy the three conditions identified in Section 2: They are
believed by the agent, normative, and ascribed to the agent herself. More-
over, we take oughts and goals to be future-looking, referring to future states
of affairs to be brought about.

Information States The framework focuses on a single moment in time,
specifically, where the agent deliberates on what to do. The choice options
represented in the logic are those believed possible by the agent at this mo-
ment; they form, in some sense, her information state.8 In fact, the frame-
work with its various components is fully relative to the agent’s beliefs, and
so can do without any explicit doxastic operators.

A Thin Logic for Basic Oughts and Goals The starting point of the frame-
work is a set of basic oughts. At present, the logic governing basic oughts
remains thin. We do not assume basic oughts to have any logical structure
such as being closed under implication or pairwise intersections, nor do we

8Unlike in most epistemic frameworks, this information state does not list epistemic
possibilities the agent cannot distinguish between, but a set of possible options the agent
can choose from.
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require the content of a basic ought to be satisfiable, even in principle. The
only requirement made is that basic oughts are independent of their exact
description, i.e., the agent’s set of basic oughts is closed under replacement
of logically equivalent formulas.9 The logic of basic oughts, hence, will turn
out weaker than normal in the logical sense: It will be a neighborhood modal
logic (cf. [25]). Similar considerations apply to goals. The set of goals in the
agent’s plans will be a consistent subset of her basic oughts. Hence, also the
goal modality will turn out to be a non-normal neighborhood operator.

A Thicker Logic for Derived Oughts While assuming the logic of basic oughts
and goals to be thin, the resulting neighborhood logic is strong enough to
license crucial deontic inferences. Derived oughts play a central role in such
reasoning. To illustrate how these are represented in the framework, we first
note that the agent may be committed to multiple goals in parallel. Follow-
ing the principles of internal consistency and strong consistency,
these goals are required to be jointly consistent. Put formally, this means
that there must exist some possible course of events that satisfies all of the
agent’s goals. We call such courses of events admissible. Derived oughts,
then, denote those properties that all admissible courses of events have in
common. In other words, derived oughts indicate the necessary (but possibly
not sufficient) conditions for the fulfillment of all the agent’s goals. Derived
oughts, unlike basic oughts, hence follow a normal modal logic.

4.2. Design Choices

Branching Temporal Trees Oughts and goals, we have said, are future-
looking. Correspondingly, the agent’s relevant choices when deliberating on
what to do are between possible future courses of events. In the present
framework a fine-grained perspective on such future courses of events is
assumed, representing the relevant temporal structure explicitly. To this
end, all possible future unfoldings of the world are recorded in a temporally
branching tree, where each maximal branch—each history—corresponds to
a possible future course of events. For an illustration of a branching time
setting, see Figure 1.

In accordance with this fine-grained perspective, oughts and goals need
to be expressed in an adequate formal language rich enough to capture their

9We are arguably omitting certain structural properties of basic oughts. For instance,
a plausible further requirement to impose on basic oughts could be what Cariani [8] calls
“weakening”: Oϕ∧Oψ � O(ϕ∨ψ). Nevertheless, we will show that the present framework
contains sufficient structure for a logical analysis of enkrasia.
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t0

ϕ ϕ ϕ,ψ ψ

t0

ϕ ϕ ϕ,ψ ψ

t0

ϕ ϕ ϕ,ψ ψ

Figure 1. Left: The subtree compatible with the satisfaction of the

agent’s basic ought and goal that ϕ (gray). Middle: The subtree compat-

ible with the satisfaction of agent’s basic ought and goal that ψ (gray).

Right: Interaction of both basic oughts and goals (dark gray). Bold ar-

rows denote the admissible subtree, i.e., the courses of events compatible

with the satisfaction of both goals ϕ and ψ

temporal structure. To this end, the framework involves a temporal logic
that can express, for instance, that certain states of affairs should be always
avoided, reached at least once or maintained throughout.

Notably, representing possible courses of events as temporally extended
histories is not strictly necessary. For the static part of the logic (Section 7),
it would suffice to treat each possible course of events as a single state, giving
rise to a more classic neighborhood logic. It is only in the dynamic extension
of Section 8 that the temporal structure becomes relevant.

From Basic Oughts to Goals An agent’s goals, we have said, form a sub-
set of her basic oughts. The latter, however, are potentially inconsistent
whereas goals are not. A central component for the transition from ba-
sic oughts to goals will hence be (maximally) consistent subsets of basic
oughts, as these guarantee that the principles of internal consistency

and strong consistency are satisfied.10 Note, however, that there can
be multiple maximally consistent subsets of basic oughts. So how are goals
related to maximally consistent sets of basic oughts? There exist at least
two viable ways of approaching this:

• In a strict reading, a basic ought is adopted as goal if it is contained
in every maximally consistent set of basic oughts.

10A competing notion of consistency, which we might call free choice consistency, is
discussed in Veltman [29]. Veltman would consider O(¬ϕ) and O(ϕ ∨ ψ) inconsistent, as
the former violates the free choice expressed by the latter. In this paper we do not deal
with free choice, and hence we limit ourselves to a classic account of consistency. Free
choice in the context of planning is considered in Marra and Klein [23].



98 D. Klein, A. Marra

• In a more tolerant approach, a basic ought is adopted as goal if it is
contained in some specific maximally consistent set of basic oughts.

The tolerant approach will, in general, lead to more goals than the strict
approach. In fact, by picking a single maximally consistent subset of basic
oughts, it guarantees the agent to do the best she can in terms of adopting
a multitude of goals without violating consistency. The following analy-
sis follows the tolerant approach.11 We are hence in need of a mechanism
for selecting which maximally consistent set of basic oughts corresponds to
goals.

Linear Priority on Basic Oughts For selecting a maximally consistent subset
of basic oughts, we assume the latter to be ordered linearly.12 By means of
the lexicographic order (cf. Definition 6.6), this linear order extends to a pri-
ority ordering among sets of basic oughts. The agent then adopts the highest
ranked maximally consistent subset of her basic oughts as goals. The current
framework is, however, modular in this respect. Any other mechanism for
picking out one element from any given set of maximally consistent set of
oughts would function just as well. In fact, the choice of selection mechanism
does not have any impact of the static analysis of Sections 6 and 7. In par-
ticular, the assumption of oughts being ordered linearly is non-substantial
for the present purpose.

11The strict approach is prominently pursued by Kratzer [21] in her seminal approach to
the semantics of deontic operators. There, briefly, a possibly inconsistent set of normative
requirements N creates an ideality ordering on a set of possible worlds W . To define the
ordering, let N(w) for a world w be the set of normative requirements from N satisfied at w.
The ordering is then defined by w > v (read “w is more ideal than v”) if N(w) ⊃ N(v). A
deontic necessity statement �ϕ, finally, holds true in the framework if ϕ is satisfied in all >-
maximal worlds. Notably, >-maximality is tightly related to maximally consistent subsets.
More specifically, world w is >-maximal iff no M with N(w) ⊂ M ⊆ N is satisfiable in any
v ∈ W , i.e., iff N(w) is maximally W -consistent. It follows that �ϕ is true iff ϕ holds in
all intersections of maximally consistent subsets of norms. This is exactly the above strict
reading.

In fact, various aspects of Kratzer’s approach have counterparts in the present frame-
work. To make these explicit: normative requirements N and possible worlds correspond
to basic oughts and histories of tree T respectively. The deontic necessity operator, finally,
corresponds to our modality for derived oughts.

12Hence, although we do not rule out the possibility of having both Oϕ and O¬ϕ as
basic oughts, we exclude irresolvable dilemmas. One basic ought must take priority over
the other.
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4.3. Towards a Logic for Enkrasia

The construction of our formal framework proceeds in two steps. The first
step (Sections 5–7) defines two static logics ΛEnkr and ΛEnkr,�. Having
modalities for basic oughts, goals and derived oughts, these already incor-
porate enkrasia through a number of axioms regulating the relationship
between the three components. The second of these logics offers an addi-
tional global modality � allowing the agent to reason about which options
are available to her.

The second step (Section 8) adds dynamic operations to the logics de-
fined. We focus on practical dynamics: The updating operations we consider
can add or remove possible courses of events, but leave the agent’s basic
oughts unaltered. Nevertheless, practical dynamics turn out to have com-
plex effects on goals and derived oughts. Studying these—we hold—provides
additional insights into the relationship between basic oughts, goals and de-
rived oughts.

5. The Language

To begin, let us specify the logical language used. The construction proceeds
in several steps. First, we define two languages L0 and L1 to talk about
present and future states of affairs. This language will serve to express the
content of oughts and goals. Afterwards, we introduce language L2 that
allows to reason about basic and derived oughts, goals, and their interaction.

Definition 5.1. Let At be a finite or countable set of atomic propositions.
The basic language L0 is given by the standard language of propositional
logic combined with a future-tensed operator F . It is defined by the following
BNF:

ψ := p|¬ψ|ψ ∧ ψ|Fψ

for p ∈ At. The intended reading of modal expressions Fψ is “ψ is true at
least once in the future”. We denote the dual of F by G. Gψ hence reads as
“ψ is always true in the future”. Operators → and ∨, finally, are defined as
usual.

It is convenient to consider the future looking fragment of L0:

Definition 5.2. The language L1 is the fragment of L0 containing only
future-tensed formulas where every atomic proposition is in the scope of a
temporal operator. Formally, L1 is defined as follows:
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ϕ := Fψ|¬ϕ|ϕ ∧ ϕ

for ψ ∈ L0. Building on L1, the modal language for reasoning about basic
oughts, goals in plans, and derived oughts can be defined.

Definition 5.3. The modal language L2 is given by the following BNF:

ϕ := p|Oψ|Goalψ|Dψ|¬ϕ|ϕ ∧ ϕ

for p ∈ At and ψ ∈ L1. The intended reading of the three modal operators
is the following: Oϕ reads as “it is a basic ought that ϕ ”, Goalϕ as “it is a
goal in a plan that ϕ”, and finally Dϕ reads as “it is a derived ought that
ϕ”. Again, operators → and ∨ are defined as usual.

Two observations about L2 are in order. Firstly, the language does not
allow for iterated modalities. This is a feature shared with several other
systems of deontic logic. Secondly, being built over the temporal fragment
L1 of L0, the modal language L2 only allows for basic oughts, goals and
derived oughts that scope over future-tensed formulas. Our oughts and goals
are, as we have said, future-looking.

6. Semantics

Before introducing logical principles on the above languages, we specify the
intended semantic structures for basic oughts, goals, and derived oughts.
Section 7 then provides an axiomatization that is sound and complete with
respect to the semantics introduced here. We begin our analysis by intro-
ducing trees, delineating how the agent envisages the possible unfoldings of
future events.

Definition 6.1. A tree is an ordered set T = 〈T, ≺T 〉 where T is a set of
moments and ≺T a tree-order on T . We make two additional assumptions
about ≺T . First, the tree order is assumed to have a root, i.e., a minimal
element t0 satisfying t0 ≺T t for all t 	= t0. Second, ≺T is assumed serial,
i.e., every moment must have at least one successor.13 A history h, finally,
is a maximal linearly ordered subset of T .

Intuitively, t0 indicates the current time step, i.e, the moment at which the
agent ponders what to do. Notably, a tree is the union of its histories, i.e.,
T =

⋃
{h ⊆ T | h history}. We will make heavy use of this later. To ease

13This definition remains silent about the exact shape of a tree. It allows for finite as
well as infinite branchings and also for discrete as well as dense orders.
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terminology, we will use the term subtree for any tree T ′ that is of the
form

⋃
h∈Hist h with Hist a set of histories of T . We will denote the set

of subtrees of T by P(T ). Lastly, let T ′ and T ′′ be subtrees of T given
by T ′ =

⋃
h∈Hist′ h and T ′′ =

⋃
h∈Hist′′ h respectively. Then define the

intersection subtree T ′�T ′′ of T as the subtree generated by Hist′ ∩Hist′′,
i.e.,14 T ′�T ′′ :=

⋃
h∈Hist′∩Hist′′ h.

Based on the definition of a tree, we can define a tree model for our temporal
language L0.

Definition 6.2. A pointed tree model is a tuple M = 〈T , t0, v〉 where
T = 〈T, ≺T 〉 is a tree, t0 the distinguished time, i.e., the root of T and
v : At → P(T ) is a valuation function that maps each atomic proposition of
the background language into a set of moments of T .

A pointed tree model provides a semantics for language L0 and hence
also L1.

Definition 6.3. Let M be a pointed tree model. The evaluation of formulas
of L0 on time-history pairs t/h with t ∈ h of M is defined as follows:

• M, t/h |= p iff t ∈ v(p) for p atomic

• M, t/h |= ¬ϕ iff M, t/h 	|= ϕ

• M, t/h |= ϕ ∧ ψ iff M, t/h |= ϕ and M, t/h |= ψ

• M, t/h |= Fϕ iff there is a t′ ∈ h such that t ≺T t′ and M, t′/h |= ϕ

Finally, we say that a formula is true at t simpliciter iff it is true at t/h′ for
all histories h′ passing through t.

Definition 6.4. Let ϕ ∈ L0 and t ∈ T . The proposition expressed by ϕ at
t, i.e., the truth subtree �ϕ�t, is defined as follows:

�ϕ�t =
⋃

{h|t ∈ h and M, t/h |= ϕ}

Towards developing a semantics for the language L2, we finally extend
tree models with neighborhoods representing the agent’s basic oughts. A
central component of these extended models will be sets of the form �ϕ�t0 ,
representing the truth set of ϕ as seen from the moment of deliberation t0.

Definition 6.5. An enkratic model is a tuple M = 〈T , t0, v, NO,�O〉 where
〈T , t0, v〉 is a pointed tree model, and NO ⊆ P(T ) × L1 is a neighborhood
with the additional condition that (T ′, ϕ) ∈ NO implies that T ′ = �ϕ�t0 .

14Note that T ′�T ′′ ⊆ T ∩T . In general, however, T ′�T ′′ is a proper subset of T ∩T .
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Finally �O is a conversely well-founded linear order on the set of all ϕ such
that (�ϕ�t0 , ϕ) ∈ NO.15

Presently, we are only interested in the agent’s basic oughts at the time of
reasoning t0. We can represent these with a set of treelike neighborhoods
NO listing all the basic oughts the agent is exposed to at t0.16 It might
seem counterintuitive to represent a basic ought by a subset-formula pair
(�ϕ�t0 , ϕ) rather than simply a subtree �ϕ�t0 . The reason for this will become
clear in Section 8 where dynamics enter the picture. Briefly, two propositions
ϕ and ψ may be co-extensional in the current tree, but might cease to be
so once new information about the world is acquired. For this case, it is
necessary to keep track of whether the basic ought prescribes that ϕ or ψ.

On a given enkratic model, we can construct additional structures re-
lated to the semantics of goals and derived oughts. The first is the goal-
neighborhood NG ⊆ P(T ). For the construction we recall the definition of
a lexicographic order.

Definition 6.6. Let �O be a conversely well-founded linear order on a set
of formulas Ψ ⊆ L1. Then the lexicographic order �Lex on the power set
P(Ψ) is defined by X �Lex Y iff there is some x ∈ X, x 	∈ Y such that

{z ∈ X | z �O x} = {z ∈ Y | z �O x}.

In other words, x is the �O-most important element on which X and Y
disagree.

The goal neighborhood NG ⊆ P(T ) is determined by three conditions. First,
the goals in an agent’s plan must be derived from basic oughts. Second, the
set of goals in a plan should be consistent. The third condition, finally,
expresses that the set of goals is chosen optimally, given the agent’s priority
relation �O between her basic oughts. Formally, the conditions on NG are:

(i) NG ⊆ {�ϕ�t0 | (�ϕ�t0 , ϕ) ∈ NO}.

(ii) NG is maximally consistent, i.e.,

(a) there is some history h of T with h ⊆ �ϕ�t0 for all �ϕ�t0 ∈ NG and

15Where 	O is a conversely well-founded linear order if and only if it is antisymmetric,
transitive, total and every subset B ⊆ {ϕ | (�ϕ�t0 , ϕ) ∈ NO} has a 	O-maximal element.

16The approach could be extended to include the agent’s basic oughts along all moments
of a tree. Such an extension requires additional conceptual work, as basic oughts may, for
instance, get discarded once they have been satisfied. Also, an extension will need to specify
what happens to basic oughts in future moments where they have become unsatisfiable
for pragmatic or principal reasons. Technically, such an extension would work by replacing
the neighborhood NO with a neighborhood function nO : T → P(P(T ) × L1).
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(b) whenever NG ⊂ Y ⊆ {�ϕ�t0 | (�ϕ�t0 , ϕ) ∈ NO} there is no history
h′ with h′ ⊆ �ϕ�t0 for all �ϕ�t0 ∈ Y .

(iii) NG is �O-maximal, i.e., whenever Y satisfies (i) and (ii) then

{ϕ | �ϕ�t0 ∈ NG} �Lex {ϕ | �ϕ�t0 ∈ Y };

where �Lex is the lexicographic order on P({ϕ | (�ϕ�t0 ϕ) ∈ NO})
induced by �O. (Cf. Definition 6.6).

Note that the three conditions uniquely determine the neighborhood NG

which is therefore well-defined.
From NG the third central component of enkratic models—besides basic

oughts and goals—can be defined. Let us begin by introducing what we
call the admissible subtree Tadm. The admissible subtree Tadm, briefly, is
the intersection of the various subtrees corresponding to the agent’s goals.
Hence, it consists of all those histories that guarantee all of the agent’s goals
to be satisfied. It is from this admissible subtree that the agent’s derived
oughts are determined. Derived oughts indicate what holds in Tadm, and
therefore can be thought of as expressing the necessary conditions for the
fulfillment of all the agent’s goals. To state things formally, the admissible
subtree is defined as

Tadm :=��ϕ�t0∈NG

�ϕ�t0 .

From the properties of NG, it follows that Tadm is non-empty. Having de-
fined Tadm, we can give the semantic conditions turning enkratic model into
models for language L2. Unlike L0, the language L2 is evaluated on moments
t rather than time-history pairs t/h. We take this to be a natural condition,
as L2 represents the agent’s oughts and goals at a moment in time t0 where
she has not yet acted on any particular course of events, i.e., any history h.
The following definition builds on the evaluation of L0 (and hence L1) on
pointed tree models (cf. Definition 6.3).

Definition 6.7. The evaluation of L2 on an enkratic model M is given by
the following clauses:

• M, t |= p iff t ∈ v(p) for p atomic

• M, t |= ¬ϕ iff M, t 	|= ϕ

• M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ

• M, t |= Oϕ iff (�ϕ�t0 , ϕ) ∈ NO

• M, t |= Goalϕ iff �ϕ�t0 ∈ NG and (�ϕ�t0 , ϕ) ∈ NO.
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• M, t |= Dϕ iff Tadm ⊆ �ϕ�t0

Notably, the semantics of operators O,Goal and D does not depend on
the moment t of evaluation, but only on the initial time t0. These modalities,
hence, are meant to represent the agent’s basic oughts, goals and derived
oughts at the time of deliberation t0.

In sum, the semantics of all three modalities supervenes on two compo-
nents of the model: The neighborhood NO and the priority ordering �O.
While the semantics of O, the basic ought modality, is directly given by NO,
the Goal modality’s neighborhood is derived by having �O pick a maxi-
mally consistent subset of NO. This goal neighborhood, in turn, defines the
derived ought modality D’s admissible subtree by means of intersection.

7. Syntax: Axioms and Results

In this section, we provide an axiomatization for the various languages in-
troduced in Section 5. We start with axioms for the temporal languages L0

and L1.

KG G(ϕ → ψ) → (Gϕ → Gψ)
4 Gϕ → GGϕ
L Fϕ∧Fψ → (F (ϕ ∧ ψ) ∨ F (ϕ ∧ Fψ) ∨ F (ψ ∧ Fϕ))
DG ¬G⊥

These are accompanied by the classic necessitation rule

� ϕ
NecG� Gϕ

The first two axioms are the standard K and 4 axioms, expressing that G
is a normal modal operator and that the ‘later’ relation is transitive. The
third axiom L reflects the fact that histories are linear, expressing that two
future events ϕ and ψ will either be simultaneous, or that one comes after
the other. Finally, the D-style axiom DG expresses that time never ends, as
there always is a future moment. We denote the temporal logic over language
L0 generated by KG,4,L,DG and G-necessitation NecG by Λtemp.

Next, we turn to the extended language L2. Operators O and Goal only
have a limited logical structure. Reflecting the actual content of oughts is-
sued by a normative source, we do not presuppose any logical requirements
on basic oughts other than being invariant under replacement with logical
equivalents. This is the content of:
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� ϕ ↔ ψ
IntO� Oϕ ↔ Oψ

The corresponding intensionality condition for the Goal operator also holds,
as is shown in Lemma 7.3. While goals and basic oughts are not closed under
logical reasoning, derived oughts are. In particular, the D-operator is normal
and non-trivial, as expressed by the following axioms

KD D(ϕ → ψ) → (Dϕ → Dψ)
DD ¬D⊥

� ϕ
NecD� Dϕ

Lastly, and most importantly, the logic is guided by three interaction axioms
describing the interplay between goals, basic and derived oughts. It is these
principles that embody the enkrasia principle in the logic.

GO Goalϕ → Oϕ
GD Goalϕ → Dϕ
Max Oϕ ∧ ¬Goalϕ → D¬ϕ

The first of these expresses that basic oughts are the only admissible sources
of goals in the agent’s plan. Every Goal follows from a basic Ought. The sec-
ond axiom, GD, is a weak converse, saying that every Goal gives rise to a
corresponding Derived ought. The third axiom, Max, finally embodies the
bounded validity of enkrasia, as can best be seen from its counterpositive
¬D¬ϕ → (Oϕ → Goalϕ): If it is not the case that already ¬ϕ is a de-
rived ought, then a basic ought that ϕ triggers a goal that ϕ. Hence, in
combination with KD and DD, Max states that every basic ought has a
corresponding goal unless this causes a violation of consistency. Put seman-
tically, Max expresses that the set of goals is a Maximally consistent subset
of the agent’s basic oughts.17

Definition 7.1. The Enkrasia logic ΛEnkr on language L2 is defined by all
propositional tautologies together with the axioms KG,4,L,DG,KD,DD,
GO,GD,Max and the rules IntO,NecG and NecD (cf. Table 1).

Before moving on to completeness, let us take a moment to derive a
number of consequences of the above axioms. First, we note that whenever
an agent has a goal to ϕ, her derived oughts contain all logical consequences
of ϕ. This follows immediately from axioms KD and GD together with
NECD.

17If we had instead chosen the strict principle of translating basic oughts into goals,
(cf. Section 4.2) i.e., only taking those basic oughts that are contained in all maximally
consistent subsets instead, Max would need to be replaced by the weaker Oϕ∧¬Goalϕ →
¬Dϕ.
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Table 1. Axioms and rules of Λtemp, ΛEnkr and ΛEnkr,�

Axioms of Λtemp over L0

4 Gϕ → GGϕ
� ϕ

NecG� Gϕ
DG ¬G⊥
KG G(ϕ → ψ) → (Gϕ → Gψ)

L Fϕ ∧ Fψ → (F (ϕ ∧ ψ) ∨ F (ϕ ∧ Fψ) ∨ F (ψ ∧ Fϕ))

Axioms of ΛEnkr over L2

KD D(ϕ → ψ) → (Dϕ → Dψ)
� ϕ

NecD� Dϕ
DD ¬D⊥
GD Goalϕ → Dϕ

GO Goalϕ → Oϕ
� ϕ ↔ ψ

IntO� Oϕ ↔ Oψ
Max Oϕ ∧ ¬Goalϕ → D¬ϕ

Λtemp for L1 formulas inside O, Goal, D

Additional Axioms for ΛEnkr,� over L�

ND �ϕ → Dϕ
� ϕ

Nec�� �ϕ
K� �(ϕ → ψ) → (�ϕ → �ψ)

Fact 7.2. ll
� ϕ → ψ

� Goalϕ → Dψ

Second, we note that the Goal operator is closed under replacement with
logical equivalents:

Lemma 7.3. Wurst?
� ϕ ↔ ψ

� Goalϕ ↔ Goalψ

Proof. Assume � ϕ ↔ ψ. For a contradiction, also assume that Goalϕ but
¬Goalψ. By GO we have Oϕ and hence by IntO also Oψ. Hence we have
Oψ ∧ ¬Goalψ which implies D¬ψ by Max. On the other hand, GD implies
Dϕ. By NecD and KD this implies D(ϕ∧¬ψ) which, again by KD, implies
D⊥ contradicting DD.

Next, note that the logic does not demand an agent’s basic oughts to
be jointly consistent. Our agent may, for instance, believe both Oϕ and
O¬ϕ simultaneously. The set of goals, however, is required to be internally
consistent.
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Lemma 7.4. Let Λ ⊆ L2 be a consistent set and let S = {ϕ ∈ L1 | Goalϕ ∈
Λ}. Then S 	�Λtemp

⊥.

Proof. Assume for a contradiction that S �Λtemp
⊥. Since all its axioms

correspond to first order expressible frame conditions, Λtemp is compact (cf.
[3], Chapter 2.4). Hence there is a finite S0 ⊆ S such that S0 �Λtemp

⊥.
By Fact 7.2, we have {Goalϕ|ϕ ∈ S0} �ΛEnkr

∧
ϕ∈S0

Dϕ. By KD we then
get {Goalϕ|ϕ ∈ S} �ΛEnkr

D
∧

ϕ∈S0
ϕ, i.e., {Goalϕ|ϕ ∈ S} �ΛEnkr

D⊥
contradicting DD.

An immediate consequence is that the Goal operator satisfies the D-
axiom, i.e.,

� Goalϕ → ¬Goal¬ϕ

In fact, this consistency requirement is solely responsible for discrepancies
between basic oughts and goals. By Max, whenever Oϕ ∧ ¬Goalϕ hold at
some state w, this is because Goalϕ could not have been consistently added
to the set of present goals, as it would require both Dϕ and D¬ϕ to hold
simultaneously.

Having specified our treatment of enkrasia, it is now time to present a
general characterization result. However, before being able to do so, we need
to make an extra assumption about enkratic models. For the rest of this pa-
per, we assume the neighborhood NO to be closed under logical equivalence.
That is, if ϕ and ψ are logically equivalent in Λtemp and (�ϕ�t0 , ϕ) ∈ NO

then also (�ψ�t0 , ψ) ∈ NO. It follows immediately that also NG is closed
under Λtemp logical equivalence. With this assumption, we can show the
following characterization result, which is proved in the appendix.

Theorem 7.5. The logic ΛEnkr is sound and complete with respect to the
class of enkratic models.

7.1. Enriching the Language: A Global Modality

Note that language L2 suffers from what might be perceived as a lack of
expressive power. So far, L2 can express whether the agent is under a certain
basic ought that ϕ and whether this ought translates into a goal. What L2

cannot yet express is whether the agent considers ϕ possible in the first
place, i.e., whether she believes her basic ought that ϕ to be satisfiable. To
remedy this, we add a new modal operator �, where �ϕ for some ϕ ∈ L1 is
to express that ϕ holds in all histories considered possible by the agent. As
usual, ♦ stands for the dual of �. So ♦ψ expresses that there is a possible
ψ-history or, at least, one the agent considers possible. To incorporate �,
we expand language L2 to L� given by the BNF:
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ϕ := p|Oψ|Goalψ|Dψ|�ψ|¬ϕ|ϕ ∧ ϕ

for p ∈ At and ψ ∈ L1. The semantics of L� on an enkratic model is given
by the semantics of L2 extended with the clause

M, t � �ϕ iff M, t/h′ � ϕ for all branches h′ with t ∈ h′

On the axiomatic side, the new modality � is governed by the axioms and
rules below. The first, ND, expresses that the agent is under a derived ought
to ϕ whenever ϕ is unavoidable to her. K� is the K-axiom for �.

ND �ϕ → Dϕ
K� �(ϕ → ψ) → (�ϕ → �ψ)

� ϕ
Nec�� �ϕ

We denote the extension of ΛEnkr with ND, K� and Nec� by ΛEnkr,�.
That is, ΛEnkr,� is the logic on L� defined by all propositional tautologies
together with the axioms KG, 4,L,DG,KD,DD,GO,GD,Max,ND,K� and
the rules IntO,NecD,NecG and Nec�. See Table 1 for an overview. As
we will see below, ND covers the full interaction between � and the other
operators.

Having the expressive resources of ΛEnkr,�, we are finally in a position
to show that goals satisfy strong consistency, as desired:

Lemma 7.6. Let Λ ⊆ L2 be consistent, and let S ⊆ {ϕ ∈ L1 | Goalϕ ∈ Λ}
be finite. Then {Goalϕ ∈ Λ} �ΛEnkr,� ♦

∧
ϕ∈S ϕ.

Proof. Assume
∧

ϕ∈S Goalϕ. By iterated application of GD, we can derive
∧

Goalϕ∈S Dϕ. By KD and NECD this implies D
∧

Goalϕ∈S ϕ. By KD and
DD this implies ¬D¬

∧
Goalϕ∈S ϕ. The counterpositive of KD then allows

us to derive ♦
∧

Goalϕ∈S ϕ.

An immediate consequence is:

� Goalϕ → ♦ϕ

We turn now to a characterization result for ΛEnkr,�:

Theorem 7.7. Assume At is infinite. Then the logic ΛEnkr,� is sound and
weakly complete with respect to the class of enkratic models.

The proof can be found in the appendix. Note that a strengthening of
this result is not valid. Unlike ΛEnkr, the extended logic ΛEnkr,� is only
weakly complete with respect to the class of enkratic trees, at least if At is
infinite.18

18To see this take some ϕ ∈ L1 that is neither a tautology nor a contradiction. Then the
set {♦ϕ∧D¬ϕ}∪{¬Oψ | ψ ∈ L1} is ΛEnkr,� consistent. In fact, every finite subset thereof
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7.2. Back to Challenge I: From Inconsistent Oughts to Consistent Goals

This is the right moment to return to the first two of the three challenges
posed in Section 3. We consider them in turn. The first challenge concerned
the potential tension between enkrasia and the two principles of inter-

nal and strong consistency of goals in plans. Within the current frame-
work, the tension was solved by weakening enkrasia. Both internal and
strong consistency of goals are logically valid principles, while enkra-

sia is only valid within bounds. internal and strong consistency are, in
fact, the only bounds to enkrasia’s validity. While basic oughts are possi-
bly inconsistent, and hence not all basic oughts can correspond to goals, the
agent’s set of goals is guaranteed to be a maximally consistent subset of her
basic oughts. That is, the agent validates as many instances of enkrasia

as is possible without violating internal and strong consistency.
Note that the bounds imposed on enkrasia do not, as such, fully de-

termine for which basic oughts the principle is valid. There might be more
than one maximally consistent subset of the agent’s basic oughts, hence ad-
ditional choices are necessary. To this end, the framework incorporates a
selection mechanism, fueled by the agent’s priority ordering �O. This as-
pect is, however, less central for the resulting logic. Any alternative selection
mechanism would validate the same logical principles.

To illustrate the choices made, let us return to Example 3.1: Suppose I
believe I ought to repay 10 euro to my friend Ann. I also believe I ought to
go to the movies with Barbara. However, money is scarce, and I believe it
is impossible for me to do both.

Put formally, the basic oughts of Example 3.1 are O(F r) and O(Fm) (we
assume, for the sake of illustration, that no other basic oughts are in play).
If enkrasia were applied unrestrictedly, it would follow that Goal(F r) and
Goal(Fm) which, given that ¬♦(F r ∧ Fm), would violate strong consis-

tency. Hence, enkrasia can only be applied to a maximally consistent
subset of those basic oughts, i.e., either to {OF r} or to {OFm}. Which one
of the two depends on the lexicographic order induced by �O. Suppose I
believe that settling my debt with Ann takes precedence over going to the
movies with Barbara, i.e., F r �O Fm. It follows that enkrasia applies only
to {OF r}. The only goal derived is Goal(F r), and since ♦(F r) holds, no
violation of internal or strong consistency occurs.

Footnote 18 continued
is realizable in a enkratic-model. However, for a enkratic-model M to satisfy {¬Oψ | ψ ∈
L1} we need that NO = ∅. This, however, implies that the admissible subtree is all of T ,
which yields that M, t0 � D¬ϕ iff M, t0 �� ♦ϕ, i.e., it is impossible that M, t0 �� ♦ϕ∧D¬ϕ.
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7.3. Back to Challenge II: Basic and Derived Oughts

The second challenge asked to distinguish valid from invalid logical infer-
ences about oughts. Our focus was specifically on the notorious principle
of deontic closure. Even if one accepts that deontic closure is not gener-
ally valid, we have argued that an outright rejection of the principle is a
too strong, and ultimately unsatisfying, solution. The challenge, hence, is
to provide a deontic logic that is thick enough to license those instances of
deontic closure that are unproblematic.

A central step towards meeting this challenge was the distinction between
two types of oughts, basic and derived. Building on this distinction, we
can illustrate the main characteristics of those deontic inferences that are
valid in our logics ΛEnkr and ΛEnkr,�. Let us begin by limiting the possible
conclusions derivable from valid deontic inferences. Leaving aside axiom GO

and IntO, the logics ΛEnkr and ΛEnkr,� can only produce derived oughts as
conclusions. In valid instances of deontic closure, hence, the ought inferred
as a conclusion is a derived ought D in our sense.

More positively, valid deontic inferences are of the following kinds. First,
the axiom GD allows us to infer a derived ought Dϕ from a corresponding
basic ought, provided that Goalϕ also holds. This reflects the idea that
derived oughts are necessary conditions for the fulfillment of goals. Second,
since the derived ought operator D is a normal modality, classical reasoning
within the scope of derived oughts is a valid mode of inference. Thus, new
derived oughts can be derived by standard modal reasoning from old ones.
Finally, within the extended logic ΛEnkr,�, axiom ND can be used to infer
derived oughts also from global facts about the space of available options.

To illustrate the strength of this approach, let us recall the main lines
of Example 3.2: Suppose that I ought to repay Ann 10 euro. Moreover, I
believe that unless I refrain from going to the movies it is impossible to
repay Ann. So, I conclude, I ought not go to the movies.

We have called the inference in the above example practical inference,
and argued that valid practical inferences move from basic oughts to derived
oughts. In the specific case of Example 3.2, practical inference moves from
O(Fp), indicating the basic ought to repay Ann (i.e., once), to D(G¬m), in-
dicating the derived ought to refrain (i.e., always) from going to the movies.
It is a characteristic of our approach that derived oughts indicate the nec-
essary conditions for the fulfillment of the agent’s goals. To derive that
D(G¬m) we therefore need to require that repaying Ann is in fact a goal
in the agent’s plan. With this in place, we can apply the inference rules
described in Section 7 to derive the desired conclusion:
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(i) O(F r) (P1)
(ii) �(F r → G¬c) (P2)
(iii) Goal(F r) (P3)
(iv) Goal(F r) → D(F r) Axiom GD

(v) D(F r) From (iii), (iv) and Modus Ponens
(vi) D(F r → G¬c) From (ii) and ND

(vii) D(G¬c) From (v)–(vi) and KD and NecD

Let us conclude with some observations about Ross’ Paradox. The dis-
tinction between basic and derived oughts allows us to disentangle different
readings of Ross’ Paradox. Some of these are problematic, others in fact are
not. Suppose we start from a basic ought to mail the letter. From such a
premise, the logics ΛEnkr and ΛEnkr,� allow us to infer at best a derived
ought to mail or burn the letter.19 Such an inference is not paradoxical. Be-
ing a derived ought, mailing or burning the letter is not an ought to which
enkrasia may apply: It cannot become a goal in its own right. Such a de-
rived ought merely describes a necessary condition for the fulfillment of the
goal of mailing the letter, not a sufficient one. In fact, burning the letter is
not an admissible option (i.e., states of affairs in which the letter is burnt
lie outside the admissible subtree); hence, also a derived ought not to burn
the letter can be inferred.

8. Dynamics

Finally, we turn towards the dynamics of basic oughts, goals and derived
oughts. More precisely, we study how goals and oughts change when the
agent receives new information that impacts her mental picture of the world
and the options available to her. In general, informational changes may
trigger significant replanning, as the agent’s original options might not be
admissible anymore or new, better options have become available.

Our focus here is exclusively on what we have called practical dynam-
ics. Crucially, the dynamics studied here are not fueled by time progression
and the according changes to the set of options available. For the present
exposition, we assume the agent to rest in moment t0, i.e., she has not yet
begun to put her plans into action. Even before beginning to act, the agent
might receive epistemic updates that change her perception of available fu-
ture courses of events [2,12]. Let us stipulate that this information is purely
descriptive: The agent does not receive any information that leads her to

19And even that only if also the goal to mail the letter is present.
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adapt or discard any basic oughts. Rather, updates may only concern fur-
ther available courses of events she had not yet considered, or that certain
options she had considered are, in fact, not available. Crucially, leaving the
set of basic oughts intact does not entail that the agent’s set of goals remains
unchanged. Which of the agent’s basic oughts translate into goals precisely
depends upon whether they are satisfiable in a given situation and, more
generally, which sets of basic oughts are jointly satisfiable. In the following,
we provide a dynamic account of how an agent’s goals and derived oughts
change when the available courses of events do. Let us illustrate this with the
following example, which brings together our previous Examples 3.3 and 3.4:

Example 8.1. Suppose that I ought to repay my friend Ann 10 euro today
(basic ought), and that is a goal in my plan. I start to plan my day accord-
ingly. I believe I can get to Ann’s house only by bus or car, so it follows
that I ought to take the bus or the car (derived ought). Moreover, since my
money is scarce, it follows that I ought not go to the movies today (derived
ought), although I would really like to. In fact, I have even promised my
friend Barbara to go to the movies with her (basic ought), but repaying my
debt takes precedence (priority relation). Consider the following updates.

Update 1 Suppose I learn that the car has a dead battery, and I cannot
fix the problem on time to reach Ann’s house to give her the 10 euro.
So, I conclude I ought to take the bus and replan my day accordingly.

Update 2 Suppose that, later, I learn that I can simply walk to Ann’s
(her place is unexpectedly quite close). Hence, now there are again two
ways in which I can reach her house: By walking or by bus. I conclude
it is no longer true that I ought to take the bus.

Update 3 Finally, suppose that I find some extra money at home: It is
no longer true that I do not have enough money to repay Ann and go
to the movies. I can do both. Hence, it ceases to be true that I ought
not go to the movies. In fact, as I had promised my friend Barbara to
accompany her, it follows that I now entertain the goal of going to the
movies.

Figure 2 illustrates this situation: The top left corner shows the initial tree,
the top right corner the tree after learning that the car’s battery is dead.
The results of the following two updates are depicted in the bottom row.

Let us make things formal. In this section, all trees are assumed discrete.
More precisely we assume—(in line with much work in computer science,
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M1

home

t0

home
car,
repay

bus,
repay

movies home home home

M2

home

t0

home
bus,
repay

movies home home

M3

home

t0

home
walk,
repay

bus,
repay

movies home home home

M4

home

t0

home
walk,
repay

bus,
repay

movies
home

home
movies home

movies

Figure 2. Four stages of planning about going to the movies

and repaying money, indicated by the atoms repay and movies.

In all models we have F repay 	O Fmovies and NO =

{(�F repay�t0 , F repay), (�Fmovies�t0 , Fmovies)}. Bold lines denote each

model’s admissible subtree.

e.g., Ciuni and Zanardo [9])—that every history is isomorphic to the natural
numbers, i.e., it can be written as h = t0 ≺T t1 ≺T t2 ≺T · · · .

For a tree T = 〈T, ≺T 〉 let ≺im be the immediate predecessor relation,
e.g., x ≺im y iff x ≺T y and there is no z ∈ T with x ≺T z ≺T y. Note
that ≺T and ≺im are in a tight relationship. As just shown, ≺im is defin-
able from ≺T . Under our assumption that every history is isomorphic to the
natural numbers, the converse is also true: ≺T is the transitive closure of
≺im. Hence, providing an enkratic model M = 〈T, t0, v, No,�O〉 is equiva-
lent to providing an extended enkratic model M = 〈T, t0, v, No,�O,≺im〉
that includes the relation ≺im. We will make use of this property later. To
technically define the dynamics of models, we refer to the concept of product
updates with postconditions. See van Ditmarsch et al. [12] and Baltag et al.
[2] for some technical background.
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Definition 8.2. A (practical) update model E = 〈S, s0, Rims, pre, post〉
consists of a set of states S with s0 ∈ S, a relation Rims ⊆ S × S, and maps
pre : S → L0 and post : S → P(At × {�,⊥}) such that if (p,�) ∈ post(s)
then (p,⊥) 	∈ post(s).

The attribute practical refers to the fact that update models do not introduce
or revoke any basic oughts the agent is exposed to. Rather these models
merely change the tree of possible future histories. Intuitively, S is a set of
possible states with a temporal relation Rims on it, similar to the relation
≺im on T . Each possible state or event s in S can match and modify moments
t in T . However, the matching might be subjected to additional conditions
to be met by t. These conditions are recorded in pre(s). Finally, a state of
the update model might prescribe a change to atomic valuation at moment
t. This change is represented by the postcondition post(s), marking when a
valuation should be forced true (i.e., (p,�) ∈ post(s)) or false (i.e., (p,⊥) ∈
post(s).

For the present purpose, we make two additional assumptions on the
update model. First, we demand the transitive closure R of Rims to be
a discrete tree order on S with root s0 such that Rims is the immediate
predecessor relation of R. Second, we require that for any s ∈ S the set
{¬pre(t) | sRimst} is Λtemp inconsistent. In other words: For any formula
ψ ∈ L0 that is not a Λtemp contradiction, there is some successor t of s such
that pre(t) is logically compatible with ψ.

The second of the above assumptions, that the set {¬pre(t) | sRimst} is
Λtemp inconsistent for any s ∈ S, is non-standard. In fact, this assumption
precludes classic approaches to public announcements or, more generally,
the deletion of possible worlds. The condition is needed to ensure that the
non-terminality axiom DG continues to hold in the updated model. As will
become clear in the formal treatment of Example 8.1, this restriction is far
less severe than it may seem at first sight. Briefly, many cases of deletion
can be mimicked by transforming superfluous worlds using postconditions.

Definition 8.3. Let M = 〈T, t0, v,No,�O,≺im〉 be an extended enkratic
model and E = 〈S, s0, Rims, pre, post〉 be a practical update model. The
product update of M with E , denoted by M ⊗ E , is the extended enkratic
model 〈〈T ⊗ S,≺′

T 〉, (t0, s0), v′, N ′
o,�′

O≺′
im〉 defined as follows

• T ⊗ S = {(t, s) ∈ T × S | M, t � pre(s)}
• Define a relation ≺′

im on T ⊗S as (t, s) ≺′
im (t, s′) iff t ≺im t′ and sRimss

′.
The relation ≺′

T is then the transitive closure of ≺′
im
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E1

post : ∅
pre :

s0

post : ¬car, bus
pre : car

post : ∅
pre :

post : ∅
pre : ¬car

post : ∅
pre :

E2
post : ∅
pre :

s0

post : ∅
pre :

post : ∅
pre :

post : ¬bus,walk
pre : bus

post : ∅
pre :

E3

post : ∅
pre :

s0

post : ∅
pre : home

post : ∅
pre :

post : ∅
pre : bus ∨ walk

post : ∅
pre :

post : movies,¬home
pre :

Figure 3. Practical update models corresponding to the three updating

steps from Example 8.1

• The valuation v′ : At → P(T ⊗ S) is defined by (t, s) ∈ v′(p) if either

(i) (p,�) ∈ post(s) or
(ii) t ∈ v(p) and (p,⊥) 	∈ post(s).

• (�ϕ�
(t0,s0)
M⊗E , ϕ) ∈ NM⊗E

O iff (�ϕ�t0
M, ϕ) ∈ NM

O .

• �M⊗E
O =�M

O .

To begin with, we note that M ⊗ E is indeed an enkratic model. The
proof of the following lemma can be found in the appendix, along with all
other proofs of this section.

Lemma 8.4. Let M be an extended enkratic model and E a practical update
model. Then 〈〈T ⊗ S,≺′

T 〉, (t0, s0), v′, N ′
o,�O,′ ≺′

im〉 is an extended discrete
enkratic model

To demonstrate the versatility of this approach, we show how all three
updating steps in Example 8.1 can be represented with update models. The
first update model E1 in Figure 3 corresponds to learning that the car is
not available. Note that by the second additional assumption on update
models, the set {¬pre(s′) | sRimss

′} has to be inconsistent for any s ∈ S.
We hence cannot simply delete the car worlds, but need to replace going by
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car with something else, in this case going by bus. The next update model
E2 corresponds to learning that I could walk to my friend’s house. Here, a
copy of the going-by-bus world is transformed into a walking-world. Finally,
E3 corresponds to learning that I have sufficient money to see the movies
even after repaying my friend.

The three update models displayed in Figure 3 generate the sequence
of models M1,M2,M3,M4 depicted in Figure 2. More precisely, we have
that M2 ⊗ E2 = M3 and M3 ⊗ E3 = M4. For the transition from M1 to
M2 this is not fully true: M1 ⊗ E1 is not the same as M2, since the former
has two duplicate branches of going by bus. However, as M2 can be gained
from M1 ⊗ E1 by removing one of these duplicate branch, both models are
logically equivalent.

8.1. Back to Challenge III: Dynamic Conditions

Generalizing from the previous examples, we show several general results
that illustrate the complex relationship between updates, goals and derived
oughts. Practical update models, despite not changing the set of basic oughts
an agent is exposed to, can have intricate and non-monotonic effects on the
agent’s goals or derived oughts. We show that the agent’s set of goals need
not necessarily grow when her available options grow, and it need not shrink
if her options shrink.

To formulate the following results, let Hist(T ) denote the set of histories
of a tree T . For a given situation M, we call practical update model E
a restriction if Hist(M ⊗ E) ⊂ Hist(M) and an expansion if Hist(M) ⊂
Hist(M⊗E). Note that the first update in Example 8.1 is a restriction, while
the second and third update exemplify expansions. We show two structural
results about restrictions and expansions and how these impact the agent’s
goals. To show these results, we first introduce some notation. In the rest of
this section, nM

G denotes the goal formulas an agent pursues in model M.
Formally nM

G = {ϕ | M, t0 � Goalϕ}.

Lemma 8.5. Let M be an enkratic model where for each (�ϕ�t0 , ϕ) and
(�ψ�t0 , ψ) in NO with ψ �O ϕ it holds that ψ ∈ nM

G whenever ϕ ∈ nM
G . Let

E be an expansion of M. Then nM
G ⊆ nM⊗E

G .

Lemma 8.5 identifies a condition under which the agent’s set of goals in-
creases if new options become available to her. This additional condition is
crucial. In general, an agent might drop some of her goals when new options
become available. The following example provides an enkratic model M and
an expansion E of M such that nM

G 	⊆ nM⊗E
G .
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M

r

t0

r p, r r p, r

r r p r

M

r

t0

r p, r r p, r

r r p r, q

r r p r

Figure 4. An expansion M′ of M that does not ⊆-increase the set of

goals. Bold lines indicate the admissible subtree.

Example 8.6. Consider the enkratic models M, M′ displayed in Figure 4.
In both models we set NO = {(�Fp�t0 , Fp), (�Fq�t0 , Fq), (�Gr�t0 , Gr)} and
Fp �O Fq �O Gr. Clearly, Hist(M) ⊆ Hist(M′) and there is an update
model E such that M′ = M ⊗ E . Hence M′ is an expansion of M. In M
we have M, t0 � GoalFp and M, t0 � GoalGr but M, t0 	� GoalFq. In the
expansion M′, on the other hand, we have M′, t′0 � GoalFp ∧ GoalFq but
M′, t′0 	� GoalGr. Hence nM

G 	⊆ nM⊗E
G .

Next, we turn to restrictions. Here, we show that an agent’s goal set
cannot grow as some of her options are removed.

Lemma 8.7. Let M be an enkratic model and let M ⊗ E be a restriction of
M. Then nM

G 	⊂ nM⊗E
G .

This does not imply that a restriction cannot give rise to new goals. When
certain goals become unreachable, other basic oughts the agent had dis-
carded before may move into focus. In formal terms: It is, in general, not
true that nM⊗E

G ⊆ nM
G . This is the subject of the following example.

Example 8.8. We use the same construction as in Example 8.6. Again,
consider the enkratic models M, M′ displayed in Figure 4. Again, we set
Fp �O Fq �O Gr and NO = {(�Fp�t0 , Fp), (�Fq�t0 , Fq), (�Gr�t0 , Gr)} in
both models. Evidently, Hist(M) ⊂ Hist(M′) and there is an practical up-
date model E such that M is equivalent to M′ ⊗E . Hence M is a restriction
of M′. Then the same argument as above shows that nM′⊗E

G 	⊆ nM′
G .

The two examples above illustrate that purely practical updates can have
complex and non-monotonic effects on the agent’s goals or derived oughts.
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In particular, even practical updates merely expanding the set of available
histories may trigger the agent to drop certain goals of hers. Partially, such
phenomena are due to the exact choice of updating rule. In the present
framework, the agent calculates her set of goals from scratch after each
update, picking as the new goal set the maximally consistent subset of basic
oughts that is maximal in the lexicographic order induced by �O.

An alternative updating policy might opt for minimal changes instead,
adopting as the updated set of goals some maximally consistent subset
that differs minimally from the goal set the agent pursued before the up-
date. While immune to the non-monotonicity described above, such minimal
change rule may trigger a different type of non-conservativeness. Take for
instance a two step update where an agent is first informed that some his-
tory h of a given enkratic tree model M is not available, followed by a
second update indicating that the first information was wrong and h is, in
fact available. After executing both updates, the tree of available options is
exactly as it was in the starting model M. With the original updating policy
described above, the set of goals after both updates is also the same as the
initial goal set. However, this would, in general, cease to hold if we followed
a minimal change rule instead.20 We take this to illustrate that the existence
of complex interaction patterns between changes of available histories and
the set of goals pursued does not hinge on the exact updating policy, but
is a general fact of planning when exposed to possibly incompatible sets of
basic oughts.

9. Conclusion and Open Ends

In this paper we pursued two aims: Analyzing the logical structure of enkra-
sia, and addressing some of the implications enkrasia has, in combination
with certain other principles of practical rationality, for deontic logic.

As for the first aim, we have argued that enkrasia is a principle of
bounded validity. Goals are subjected to two requirements of internal and

20To see that this holds true for any minimal change updating rule, consider an enkratic
model M consisting of three branches f, g and h. Moreover, assume NO to contain three
basic oughts O1–O3 which are satisfied in the subtrees {f, g}, {f, h} and {g, h} respectively.
Maximally consistent subsets hence are {O1, O2}, {O1, O3} and {O2, O3}. Assume wlog
that {O1, O2} is adopted as set of goals in M. After removing branch f , this set is not
consistent anymore, now only {O1, O3} and {O2, O3} are maximally consistent. One of
these is selected as new set of goals, wlog {O1, O3}. Since {O1, O3} remains maximally
consistent after adding f again, any minimal change rule must retain it as set of goals. In
particular, the set of goals after removing and re-adding f is different from before.
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strong consistency which basic oughts are not. Both of these conditions
set boundaries for the translation of basic oughts into goals. enkrasia,
then, is only valid as far as it does not conflict with either requirement of
consistency.

In relation to the second aim in this paper, we have elaborated on the
distinction between basic and derived oughts. This distinction allows us to
represent and indeed validate, e.g., a plausible reading of practical inference
without generating an unrestricted validity of deontic closure. In fact, by
restricting the conclusions of deontic closure to derived oughts, many of the
paradoxical implications usually associated with deontic closure no longer
obtain. Differences between basic and derived oughts surface, as shown, in
their interaction with goals and their kinematics within a dynamical logical
framework.
Related Approaches To the best of our knowledge, enkrasia has not been
previously investigated explicitly from a logical perspective. There are, how-
ever, a variety of logical frameworks that deal with notions pertaining to
practical rationality. We point to some of these. The analysis presented here
is linked to the logical tradition of interpreting intentions according to Brat-
man’s [4] planning theory. Related works—mainly focusing on normal modal
logic—include Cohen and Levesque [10] and Lorini and Herzig [22]. The lat-
ter paper also discusses practical inference, though in the context of forming
instrumental intentions rather than derived oughts.

For what concerns the dynamics of intentions and plans, related work
includes van der Hoek et al. [16], with a focus on the operation of deleting
plans. A second reference is Icard et al. [19], who provide an account of
intention revision based on AGM theory. Further complementary work in-
cludes Craven and Sergot’s [11] account of permitted and obligatory actions
within transition systems, and Broersen et al.’s [5] syntactic, default-based
approach on conflicts between beliefs, obligations, intentions and desires.

While various frameworks address the relationship between obligations,
plans and intentions, combinability across approaches is sometimes ham-
pered by the fact that these may refer to different notions. Consider, for
instance, Broersen et al.’s [5] BOID framework on beliefs, obligations, inten-
tions and desires mentioned above. BOID distinguishes, inter alia, between
obligations (be they believed by the agent or not) and intentions, denoting
actions the agent plans on doing. In the present framework, in contrast, basic
oughts are assumed believed by the agent. Goals in a plan, moreover, corre-
spond to basic oughts the agent decided to pursue. These form a category
between BOID’s obligations and intentions.
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Future Directions The present approach fits in with a larger project on
the logic of oughts in the context of practical rationality. The analysis and
the framework presented here can be extended in different directions. We
mention two.

One possible extension of our framework pertains to the relation between
enkrasia and permissions. We have seen that the relation between oughts
and goals is not unidirectional. Oughts translate into goals, and further, de-
rived oughts can be generated from a given set of goals. However, it seems
that not only oughts, but also permissions can be derived from what the
agent is committed to bring about. The admissible subtree, denoting the
intersection of all goals pursued by the agent, can be thought of as a weak-
est permission, i.e., as the largest subtree the agent is permitted to arrive
in, given her commitments. Naturally, stronger permissions may also hold,
permitting the agent to arrive in any subtree of the admissible tree. A classic
reference on this is Anglberger et al. [1].

A second possible extension relates to the way in which possible future
courses of events are represented. In the current framework we use a tree-
structure to represent the agent’s choice options among future unfoldings of
events. This picture can be refined in various ways. We may, for instance,
restrict the agent’s ability to fully select the future course of actions. That is,
agents may no longer be able to pick a specific branch, but merely to choose
some subtree to stay within. Conceptually, this might require a refinement
of the principle of strong consistency, e.g., by demanding that if Goalϕ
then the agent believes she has an available choice option that guarantees ϕ.
Formally, this would amount to having equivalence classes of histories (rep-
resenting choice uncertainty) paired with a quantification over such classes.
Similar topics have been investigated by Horty [17] and Ciuni and Zanardo
[9]. The results presented in these works could form a fruitful starting point
for expanding the logic of enkrasia.
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Appendix: Proofs

Before we can prove Theorem 7.5, we need the following auxiliary lemma:

Lemma A.1. Assume Λ ⊆ L2 is maximally ΛEnkr consistent. Let ΛD = {ϕ ∈ L1 |
Dϕ ∈ Λ}, let Λ¬D = {ϕ ∈ L1 | ¬Dϕ ∈ Λ} and let Λlit ⊆ Λ be the set of all
literals, i.e., atoms and negated atoms, occurring in Λ. Then for every ψ ∈ Λ¬D,
there is a linear21 tree H¬ψ = 〈h¬ψ,≺H〉 with root t¬ψ such that H¬ψ, t¬ψ � ¬ψ
and H¬ψ, t¬ψ � ϕ for every ϕ ∈ ΛD ∪ Λlit.

Proof. Let χ ∈ Λ¬D, we will construct the desired linear tree H¬χ = 〈h¬χ,≺H〉.
By axioms KD and DD, the set ΛD ∪ {¬χ} is Λtemp consistent. Since all ϕ ∈
ΛD∪{¬χ} are future looking, i.e., every atom is in the scope of a modal operator, also
ΛD ∪{¬χ}∪Λlit is Λtemp consistent. We can hence expand it to a maximally Λtemp

consistent subset Γ ⊆ L0. The rest of the proof proceeds by a classic bulldozing
argument. For the sake of completeness, we hint at the details.

Let M = 〈W,R〉 be the Λtemp canonical model over L0. That is, W is the set of
all maximally Λtemp consistent subsets of L0 and ΘRΣ iff Fϕ ∈ Θ for all ϕ ∈ L0

with ϕ ∈ Σ. Let H = {Σ ∈ M | ΓRΣ}. We show that R is transitive and complete
on H. Transitivity follows from the 4 axiom. For completeness let Θ 	= Σ ∈ H, wlog
Θ,Σ 	= Γ. We have to show ΘRΣ or ΣRΘ.

Pick enumerations ϕΘ
0 , ϕΘ

1 . . . of Θ and ϕΣ
0 , ϕΣ

1 . . . of Σ. For i ∈ ω let ψ∗
i =

∧i
j=1 ϕ∗

j for ∗ ∈ {Θ,Σ}. Note that since Θ 	= Σ, there are j, k ≥ 0 such that
ϕΘ

j = ¬ϕΣ
k . Letting i0 = max(j, k) we have that �Λtemp

¬(ψΘ
i ∧ ψΣ

i ) for all i > i0.
As Θ,Σ are maximally consistent we get ψΘ

i ∈ Θ, ψΣ
i ∈ Σ for all i ∈ ω.

By construction, we have ΓRΘ and ΓRΣ. The Truth Lemma then implies that
Fψ∗

i ∈ Γ for ∗ ∈ {Θ,Σ} and all i ∈ ω. Hence, we have for all i that FψΘ
i ∧FψΣ

i ∈ Γ.
By L, this implies that F (ψΘ

i ∧ψΣ
i )∨F (ψΘ

i ∧FψΣ
i )∨F (ψΣ

i ∧FψΘ
i ) ∈ Γ. In particular

Γ contains either F (ψΘ
i ∧ψΣ

i ) for infinitely many i, F (ψΘ
i ∧FψΣ

i ) for infinitely many
indices i or F (ψΣ

i ∧ ψΘ
i ) for infinitely many i. Since �Λtemp

¬(ψΘ
i ∧ FψΘ

i ) for all
but finitely many i, the first case is impossible. We treat the case where Γ contains
F (ψΘ

i ∧ FψΣ
i ) for infinitely many i, the other case being similar. We will show that

FψΣ
i ∈ Θ for all i ∈ ω. By KG and the construction of the ψΣ

i this entails that
Fϕ ∈ Θ for all ϕ ∈ Σ, which, together with the definition of R implies that ΘRΣ.

21I.e., a tree where ≺H is a linear order.
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To see that FψΣ
i ∈ Θ for all i ∈ ω, assume for a contradiction that this is false,

i.e., that there is some im with FψΣ
im

	∈ Θ By maximal consistency, this implies
that ¬FψΣ

im
∈ Θ. Hence, there is some ψΘ

j ∈ Θ with �Λtemp
¬(ψΘ

j ∧ FψΣ
im

). By
construction of the ψj , this implies �Λtemp

¬(ψΘ
j′ ∧ FψΣ

j′) for all j′ > max(im, j). In
particular, since Γ contains F (ψΘ

i ∧ FψΣ
i ) for infinitely many i, there is some j0 >

max(im, j) with F (ψΘ
j0

∧ FψΣ
j0

) ∈ Γ but �Λtemp
¬(ψΘ

j0
∧ FψΣ

j0
). This, in connection

with DG contradicts the consistency of Γ. Hence the assumption was false and we
obtain that FψΣ

i ∈ Θ for all i ∈ ω.
To finish the proof, we need to ensure that R is a linear order on H. This is,

in general, not true. However, by a classic bulldozing argument (cf. [30]), we can
transform H into a linearly ordered tree H = 〈h,≺H〉 with ≺H minimal element Γ
such that H,Γ � ϕ ⇔ ϕ ∈ Γ. Renaming Γ to t¬χ, h to h¬χ and H to H¬χ finishes
the proof.

Now, we can finally show Theorem 7.5. The completeness direction proceeds by
constructing a special tree model T , with the property that for each (�ϕ�t0 ϕ) ∈ NO

either �ϕ�t0 = T or �ϕ�t0 = ∅. Consequently, it will hold that Tadm = T . The main
task of the construction, hence is to ensure that the histories of T are such that
T ⊆ �ϕ�t0 ⇔ Dϕ ∈ Λ. The corresponding construction bears some resemblance to
the completeness proof for ATL [14].

Proof of Theorem 7.5 Soundness is trivial. For completeness, we show that every
maximally ΛEnkr consistent subset Λ of L2 is satisfiable in an enkratic model. Let
ΛD = {ϕ ∈ L1 | Dϕ ∈ Λ}, let Λ¬D = {ϕ ∈ L1 | ¬Dϕ ∈ Λ} and let Λlit ⊆ Λ be the
set of all literals, i.e., atoms and negated atoms, occuring in Λ. Using Lemma A.1,
we pick linear trees H¬ψ = 〈h¬ψ,≺H〉 with root t¬ψ for each ψ ∈ Λ¬D as above.
Note that all t¬ψ share the same atomic valuation, as this is completely determined
by Λlit. Moreover, note that ¬D⊥ ∈ Λ by DD. Hence ⊥ ∈ Λ¬D and thus the set of
linear trees picked is non-empty.

We have to construct an enkratic model M = 〈T , t0, v,No,�O〉. As tree T we
take the union of the H¬ψ where we identify all t¬ψ. Formally, for a linear tree
H = 〈h,≺H〉, let T>

H be the set of all moments but the first of H. Let

T = {t0} ∪
⋃

ψ∈B

T>
H¬ψ

and ≺T the inherited tree-order, making t0 the root. Finally, the valuation v is
defined by

t ∈ v(p) iff

{
t = t0 and p ∈ Λ
or t ∈ T>

H¬ψ
and t ∈ vH¬ψ

(p).

Finally, we define NO by (�ϕ�t0 , ϕ) ∈ NO iff Oϕ ∈ Λ. Moreover, we pick an arbitrary
well-founded ordering �O on {ϕ | (�ϕ�t0 , ϕ) ∈ NO}.

For the completeness argument, we begin with some observations about the root
t0 of this tree. First we note that, for (�ϕ�t0 , ϕ) ∈ NO(t0), we have �ϕ�t0 = T
if Goalϕ ∈ Λ and �ϕ�t0 = ∅ else. In the former case, we have Dϕ ∈ Λ by GD.
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By construction, this implies that every H¬ψ and hence every branch h/t0 of T
satisfies h/t0 � ϕ, i.e., �ϕ�t0 = T, which is what had to be shown. In the other case,
Goalϕ 	∈ Λ, we have, by Max, that D¬ϕ ∈ Λ. Again by construction, every branch
h/t0 of T satisfies h/t0 � ¬ϕ, i.e., �ϕ�t0 = ∅. The last two observations imply that

NG = {�ϕ�t0 | Oϕ ∈ Λ, Goalϕ ∈ Λ}. (1)

In particular, by GD, NG(t0) = {T } if there is some Goalψ ∈ Λ and NG(t0) = ∅
else. In either case we have �X∈NG(t0)

X = T .
Now we can show that our model is as desired, i.e., M, t0 � ϕ iff ϕ ∈ Λ. The

argument is an induction over the complexity of ϕ. As induction base, we show the
claim for ϕ an atom or of the form Oψ,Goalψ or Dψ for some ψ ∈ L1. In the
induction step we then show that if the claim holds for ϕ1, ϕ2 ∈ L2 then also for
¬ϕ1 and ϕ1 ∧ ϕ2. This induction step is trivial. We only need to show the claim for
the induction base.

If ϕ is atomic, the claim holds by definition of the valuation on t0. If ϕ is Oψ for
some ψ ∈ L1, this follows immediately from the construction of NO. If ϕ is Goalψ
for ψ ∈ L1 the claim follows immediately from Eq. 1.

The only non-trivial case is when ϕ is of the form Dψ for ψ ∈ L1. For the left
to right direction, assume M, t0 � Dψ. We have to show Dψ ∈ Λ. First, note that
M, t0 � Dψ implies that

⋂
X∈NG

X ⊆ �ψ�t0 . Since for each X ∈ NG holds that
X = {T } or X = ∅, this implies that T ⊆ �ψ�t0 . Assume for a contradiction that
Dψ 	∈ Λ. By maximality, this implies ¬Dψ ∈ Λ. By construction, there is a branch
h¬ψ of T with T , t0/h¬ψ � ¬ψ. In particular, T 	⊆ �ψ�t0 which is a contradiction.
Hence the assumption was false and Dψ ∈ Λ. For the right to left direction assume
Dψ ∈ Λ. Recall that by construction, every branch h of M satisfies M, t0/h � ψ.
In particular,

⋂
X∈NG

X ⊆ �ψ�t0 which implies that M, t0 � Dψ.

Proof of Theorem 7.7 The proof borrows heavily from the proof of Theorem 7.5.
We only highlight the relevant differences. Soundness, again, is trivial. For weak
completeness, we have to show that whenever there is some ϕ̃ ∈ L� with 	�¬ΛEnkr,�
¬ϕ̃, there is some enkratic model M, w with M, w � ϕ̃. Let such ϕ̃ be given.
Without loss of generality, we can assume that ϕ̃ is in disjunctive normal form, i.e,

ϕ̃ =
n∨

i=1

ki∧

j=1

χi,j

where each χi either is an atom, a negated atom, or of the form Xϕ or ¬Xϕ for
X ∈ {O,Goal,D,�} and ϕ ∈ L1. By Max, we have �¬ΛEnkr,� Oϕ ↔ (Oϕ ∧
Goalϕ) ∨ (Oϕ ∧ D¬ϕ). We can hence assume, without loss of generality, that every
disjunct

∧ki

j=1 χi,j of ϕ has the property that for each χi,j of the form Oψ, either
Goalψ or D¬ψ appears as some of the χi,j′ with j′ ≤ ki. Likewise, as �¬ΛEnkr,�
¬�ϕ ↔ (¬�ϕ ∧ ¬Dϕ) ∨ (¬�ϕ ∧ Dϕ), we can assume that for each χi,j of the form
¬�ψ, either ¬Dψ or Dψ appears as some of the χi,j′ with j′ ≤ ki. Moreover, by
GO, we can assume that for each χi,j of the form Goalψ, also Oψ appears as some
of the χi,j′ with j′ ≤ ki Finally, by DD, we can assume that for each i ≤ n ¬D⊥,
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appears as some χi,j′ with j′ ≤ ki. To show that ϕ̃ =
∨n

i=1

∧ki

j=j χi is satisfiable in
an enkratic model, it suffices to show that one of its disjuncts is satisfiable in an
enkratic model. Hence, it suffices to show the claim for i = 1, that is for ϕ̃ of the
form

∧k
j=1 χj . Let such a ϕ be given and let X = {χ1, . . . χk}.

In a similar fashion as in Theorem 7.5, let ΛD = {ρ ∈ L1|Dρ ∈ X}, let Λ� =
{ρ ∈ L1|�ρ ∈ X}, let Λ¬D = {ρ ∈ L1|¬Dρ ∈ X} and let ΛAt = {χ ∈ X|χ =
p or χ = ¬p}. Note that Λ¬D 	= ∅ as ⊥ ∈ Λ¬D. As At is infinite, we can pick
an atom p0 that does not occur in any of the formulas in X. Pick a valuation
Λlit extending ΛAt, i.e., some maximally consistent Λlit ⊆ {p,¬p | p ∈ At} with
Λlit ⊇ ΛAt such that ¬p0 ∈ Λlit. By a slight adaptation of Lemma A.1, there
are linear trees H¬ψ = 〈h¬ψ,≺H〉, with root t¬ψ for each ψ ∈ Λ¬D, such that
H¬ψ, t¬ψ � ¬ψ and H¬ψ, t¬ψ � χ for every χ ∈ ΛD ∪ Λ� ∪ Λlit. Moreover let
Λ♦/D = {¬ρ ∈ L1|¬�ρ ∈ X and Dρ ∈ X} the set of formulas that are possible
without being a derived goal. By another slight adaptation of Lemma A.1, there
are linear trees H′

ρ = 〈h′
ρ,≺′

H〉 with root t′ρ for each ρ ∈ Λ♦/D such that H′
ρ, t

′
ρ � ρ

and H′
ρ, t

′
ρ � χ for every χ ∈ Λ� ∪ Λlit.

Before constructing the desired enkratic model, we show the following claim:
There is a formula ρ0 such that H¬ψ, t¬ψ � ρ0 for all ψ ∈ Λ¬D, but H′

ψ, t′ψ � ¬ρ0

for all ψ ∈ Λ♦/D. To see this, note that by definition of sets ΛD and Λ♦/D, every
member of Λ♦/D is of the form ¬χ with χ ∈ ΛD. Let ρ0 =

∧
¬χ∈Λ♦/D χ. We hence

have that H¬ψ, t¬ψ � ρ0 for all ψ ∈ Λ¬D, but H′
ψ, t′ψ � ¬ρ0 for all ψ ∈ Λ♦/D i.e.,

ρ0 has the desired property.
Now, we construct a enkratic model M = 〈T , t0, v,NO,�O〉 satisfying ϕ̃ as

follows. We pick linear trees H¬ψ for each ψ ∈ ΛD and H′
ψ for all ψ ∈ Λ♦/D as

above. As p0 does not occur in any of the formulas in X and ¬p0 ∈ Λlit we can
assume wlog that p0 is globally false on all H¬ψ and H′

ψ. With these, we define a
tree T as in the proof of Theorem 7.5. By the previous claim, there is formula ρ0

such that H¬ψ, t¬ψ � ρ0 for all ψ ∈ Λ¬D, but H′
ψ, t′ψ � ¬ρ0 for all ψ ∈ Λ♦/D. Since

p0 is false everywhere, ρ = ρ0 ∨Gp0 has the same property. Moreover, since p0 does
not occur in X, we also have that Oρ,¬Oρ,Goalρ,¬Goalρ are all not contained in
X. Define the neighborhood NO by (�ϕ�t0 , ϕ) ∈ NO iff Oϕ ∈ X or ϕ = ρ. Finally,
as priority relation �O, we pick any well-founded ordering on {ϕ | Oϕ ∈ X} ∪ {ρ}
that has ρ as maximal element.

We can now show that M, t0 � ϕ̃. Since ϕ̃ =
∧

ψ∈X ψ, it suffices to show that
M, t0 � ψ for all ψ ∈ X . If ψ is an atom or negated atom, this follows immediately
from the construction. The same holds if ψ is of the form Oϕ,¬Oϕ or �ϕ. If ψ is
of the form ¬�ϕ we have by our assumption that either Dϕ ∈ X or ¬Dϕ ∈ X. In
the first case ¬ϕ ∈ Λ♦/D and H′

¬ϕ, t′¬ϕ � ¬ϕ and hence M, t0 	� �ϕ. In the second
case ϕ ∈ Λ¬D and H¬ϕ, t¬ϕ � ¬ϕ witnessing again that M, t0 	� �ϕ.

For the remaining cases, we define subtrees S and S ′ of T by S =
⋃

{H¬ψ | ψ ∈
Λ¬D} and S ′ =

⋃
{H′

ψ | ψ ∈ Λ♦/D}. Since for each Oψ ∈ X also Goalψ ∈ X or
D¬ψ ∈ X, we can use the same argument as in the previous theorem to show that
for Oψ ∈ X, we have that S ⊆ �ψ�t0 if Goalψ ∈ X, and �ψ�t0 ⊆ S′ if D¬ψ ∈ X.
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Since �ρ�t0 = S, and ρ is the �O maximal element of {ϕ | Oϕ ∈ X}∪{ρ}, we get that
�ϕ�t0 with Oϕ ∈ X can only be in NG if �ϕ�t0 	⊆ S′, i.e., if Goalϕ ∈ X. Moreover,
since S ⊆ �ϕ�t0 whenever Goalϕ ∈ X, we get that NG = {�ϕ�t0 | Oϕ,Goalϕ ∈
X}. By our assumption that Oϕ ∈ X whenever Goalϕ ∈ X, this simplifies to
NG = {�ϕ�t0 | Goalϕ ∈ X} and hence ��ϕ�t0∈NG

�ϕ�t0 = S. From there, the same
argument as in the previous theorem implies that M, t0 � ψ if ψ ∈ X is of the
form Goalϕ or Dϕ. If ψ is of the form ¬Dϕ, note that there is, by construction, a
branch h¬ϕ with M, t0/h¬ϕ � ¬ϕ. Since h¬ϕ ⊆ S and ��ϕ�t0∈NG

�ϕ�t0 = S, this
implies M, t0 � ¬Dϕ. Finally, if ψ is of the form ¬Goalϕ, we need to distinguish
whether Oϕ ∈ X or not. If not, we have, by construction, that (�ϕ�t0 , ϕ) 	∈ NO,
which immediately implies that M, t0 � ¬Goalϕ. For the case that Oϕ ∈ X, we
have by construction that also D¬ϕ ∈ X. For this case, we have shown above that
�ϕ�t0 ⊆ S′, which implies �ϕ�t0 	∈ NG. Again, we get M, t0 � ¬Goalϕ as desired.

Proof of Lemma 8.4 We begin with showing that ≺′
T is a tree-order on T ⊗ S.

Transitivity is immediate, as ≺′
T is transitively closed. For irreflexivity assume the

contrary, i.e., assume that there is some (t′, s′) with (t′, s′) ≺′
T (t′, s′). Hence there

are (t′, s′) ≺′
im (t2, s2) ≺′

im . . . ≺′
im (tn, sn) = (t′, s′). By definition of M ⊗ E , this

entails that t′ = t1 ≺im t2 . . . ≺im tn = t′. In particular, we get t′ ≺T t′, as ≺T is
the transitive closure of ≺im. But this contradicts the fact that ≺T is irreflexive.

Finally for inverse linearity, let (t, s) ∈ T ⊗ S. We need to show that

P = {(t′, s′) ∈ T ⊗ S|(t′, s′) ≺′
T (t, s)}

is linearly ordered by ≺′
T . Let (t′, s′), (t̃, s̃) ∈ P be given. We have to show that

(t′, s′) ≺′
T (t̃, s̃) or (t̃, s̃) ≺′

T (t′, s′). By assumption, we have that t′, t̃ ≺T t. By
construction and the assumption that ≺T has the order type of the natural numbers,
there is n′ ∈ ω such that (t′, s′) = (t′0, s

′
0) ≺′

T · · · ≺′
T (t′n′ , s′

n′) = (t, s) with
t′0 ≺im · · · ≺im tn′ and s′

0Rims · · · Rimssn′ . Likewise, there is ñ ∈ ω such that (t̃, s̃) =
(t̃0, s̃0) ≺′

T · · · ≺′
T (t̃ñ, s̃ñ) = (t, s) with t̃0 ≺im . . . ≺im t̃ñ and s̃0Rims . . . Rimss̃ñ.

By definition of a practical update model, Rims is a unique predecessor relation,
i.e., xRimsz and yRimsz implies x = y. We hence have that s′

n′−1 = s̃ñ−1, s′
n′−2 =

s̃ñ−2 . . .. The same reasoning yields that t′n′−1 = t̃ñ−1, t′n′−2 = t̃ñ−2 . . .. Since
(T,≺T ) is a tree, we have that t′ ≺T t̃, t̃ ≺T t′ or t′ = t̃. Without loss of generality,
we assume the first, the other cases being similar. Since t′ ≺T t̃, we have n′ > ñ and
hence t̃ = t′n′−ñ. By the above, this implies that (t̃, s̃) = (t′n′−ñ, s′

n′−ñ), and hence
(t′, s′) ≺′

T (t̃, s̃).
Finally, we have to show that the tree order ≺′

T is serial. To this end, let (t, s) ∈
T ⊗S. We have to show that there is some (t′, s′) ∈ T ⊗S with (t, s) ≺′

T (t′, s′). Note
that by seriality of T , there is some t′ with t ≺T t′. By our discreteness assumption,
we can pick t′ such that t ≺im t′. Next, we claim that there is some s′ ∈ S with
sRimss

′ and M, t′ � pre(s′). Note that this claim implies that (t, s) ≺′
T (t′, s′),

finishing the proof. So let us show the claim. Assume not. That is, assume that
M, t′ 	� pre(s′) for all s′ ∈ S with sRimss

′. Hence, M, t′ � ¬pre(s′) for all s′

with sRimss
′. This shows that {¬pre(t) | sRimst} is consistent, contradicting the

assumption that S is a practical update model.
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Proof of Lemma 8.5 Since M ⊗ E is an expansion of E , the set S = {�ψ�
(t0,s0)
M⊗E |

�ψ�t0
M ∈ NM

G } in M ⊗ E is consistent. By assumption, nM
G is �O-upward closed

in {ϕ | (�ϕ�t0
M, ϕ) ∈ NM

O } and hence also in {ϕ | (�ϕ�t0
M⊗E , ϕ) ∈ NM⊗E

O }. In
particular, the ≺Lex maximally consistent subset of {�ϕ�(t0,s0) | (�ϕ�(t0,s0), ϕ) ∈
NM⊗E

O } contains S. This shows that nM
G ⊆ nM⊗E

G .

Proof of Lemma 8.7 Assume for a contradiction that nM
G ⊂ nM⊗E

G . This implies
that nM

G ≺M
Lex nM⊗E

G . Hence, by construction of the neighborhood NM
G , the set

{�ϕ�t0
M | �ϕ�t0

M⊗E ∈ NM⊗E
G } must be inconsistent, i.e., there is no history h of T

such that h ∈ �ϕ�t0
M for all ϕ with �ϕ�t0

M⊗E ∈ NM⊗E
G . This, however, is impossible:

NM⊗E
G is by definition consistent in M ⊗ E , i.e., there is some history h of M ⊗ E

with h ⊆ �ϕ�t0 whenever �ϕ�t0 ∈ NM⊗E
G . Since M ⊗ E is a restriction of M, h is

also a history of M, showing that {�ϕ�t
M | �ϕ�t

M⊗E ∈ NM⊗E
G } is consistent.
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