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Abstract

Many approaches to quantum gravity —the theory that should
account for quantum and gravitational phenomena under the same
theoretical umbrella— seem to point at some form of spacetime emer-
gence, i.e., the fact that spacetime is not a fundamental entity of our
physical world. This tenet has sparked many philosophical discussions:
from the so-called empirical incoherence problem to different accounts
of emergence and mechanisms thereof. In this contribution, I focus on
the partial order relation of causal set theory and argue that causation
can be characterized as an a-temporal constraint over the kinematic
space defined by the theory. The relation constrains the growth of
a new element/event with respect to the other elements/events of a
given set. Therefrom, the flow of time emerges from the collection of
the possible growths of the given set, where each possibility is char-
acterized by a classical probability assigned by the dynamics of the
theory.

1 Introduction

Perhaps, one of the most challenging enterprises in contemporary theoretical
physics is the development of a unified theory of gravitation and quantum
mechanics: a theory of quantum gravity. The theory is meant to solve some of
the problems that still affect two of the most well-verified theories of modern
science: the general theory of relativity and quantum field theory. Both
these theories deliver, in their own domains of applicability, some astounding
experimental predictions, and yet they both fail to provide a comprehensive
account of some fundamental questions about the beginning of the universe,
black holes, quantum effects of gravity, and many others.
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To make things worse, general relativity (GR) and quantum field theory
(QFT) seem to be fundamentally incompatible with one another to the point
that even a brief (and incomplete) overview is enough to show the conceptual
(and mathematical) difficulties of the unification task. General relativity is
a deterministic theory about spacetime, gravity, and matter. As Wheeler’s
motto famously says: “matter tells spacetime how to curve, and spacetime
tells matter how to move”. Spacetime is treated as a dynamical and con-
tinuous entity that admits no preferred spatial or temporal directions, and
the interactions of the many physical systems that live in such spacetime are
local. Quantum field theory, on the other hand, studies the dynamical fields
that ‘live’ on a non-dynamical background. The theory is characterized by
the uncertainty principle, and thus by the lack of complete localizability. Fi-
nally, quantum mechanics is fundamentally probabilistic and all interactions
are quantized.

Many physicists have tried to combine these apparently incompatible do-
mains, leading to the proliferation of different approaches and theories of
quantum gravity. Despite the many differences of these approaches, one
common feature seems to be that spacetime ought to be treated as an entity
that emerges from the interaction of some fundamental entities. This has
sparked a prolific discussion among physicists and philosophers about issues
such as: the definition of emergence, how to recover the manifest spacetime
from non-spatiotemporal entities, how to experimentally probe a theory of
quantum gravity, and many others.

With the present contribution, I focus on characterizing the fundamental
relation of causal set theory as a constraint over the possible configurations
admitted by the theory. More specifically, Section 2 offers a brief presenta-
tion of the main axioms of the theory and its kinematics. I shall emphasize
the relationship between the causal sets which represents possible classical
configurations of our universe, and the causal tree that represents the multi-
plicity of possible growths.

Section 2 discusses the role of the time parameter in causal set theory
as bookkeeping device for the position of a given event relative to the other
events of the causal set. Then, I maintain that causal relations in CST
are more fundamental than their spatiotemporal counterparts. This latter
claim opens up the possibility for interpreting the partial order relation as a
constraint principle.

Section 4 begins with a brief overview of some common accounts of cau-
sation in philosophy of science. Then, starting from a pluralistic account, I
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will characterize the relation of causation in CST (the partial order relation)
as a constraint over the possible growths of all possible configurations of the
casual sets. Section 5 provides some concluding remarks.

2 Causal Set Theory

With this section I offer a review of some of the fundamental tenets and re-
sults of CST, but deeper reviews and discussions can be found in (among oth-
ers): (Sorkin 2005), (Surya 2019), (Wüthrich 2019), (Henson 2009), (Wallden
2013), (Dowker 2005).

The central idea of Causal Set Theory (CST) is that spacetime is funda-
mentally discrete and its structure is that of locally finite partially ordered
sets that represent possible kinematic configurations of the universe. The
theory follows the sum-over-histories approach for which, starting from a
space of possible histories, one assigns a measure to the individual trajecto-
ries to calculate a final amplitude as sum-over individual histories. The space
of possible histories in the causal set theory consists of discrete structures to
which Lorentzian manifolds are only an approximation, that is, the causal
sets. There are typically two formulations of the theory in the literature and
they are distinguished by the properties of their causal relation. The reflex-
ive formulation, which is also the least common one, makes use of a causal
relation that is reflexive, antisymmetric and transitive. The more common
version of causal set theory makes use of an irreflexive relation which does
not allow for instances of self-causation. Since the latter version is more
common, I shall use it for the rest of this contribution. The theory is defined
by the following six axioms (Dribus 2017, p. 151):

1. Binary Axiom: Classical spacetime may be modeled via a set C, called a
causal set, whose elements represent spacetime events, together with a
binary relation ≺CS on C, called the causal set relation, whose elements
represent causal relationships between individual pairs of spacetime
events.

2. Measure Axiom: C is equipped with a discrete measure µCS, called the
causal set measure, which assigns to each subset of C a volume equal
to its number of elements in fundamental units, up to Poisson-type
fluctuations
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3. Countability: C is countable.

4. Transitivity: Given three elements x, y, and z in C, if x ≺CS y ≤CS z,
then also x ≺CS z.

5. Interval Finiteness (or) Local Finiteness: For every pair of elements x
and z in C, the open interval

⟨⟨x, z⟩⟩ := {y ∈ C|x ≺ CSz} (1)

has finite cardinality.

6. Irreflexivity: Elements of C are not self-related with respect to ≺CS’
i.e., x ̸≺CS x

An example of how causal set theory models a universe composed of three
elements is represented below, where each node represents a given causal set
with its corresponding events and relations:
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The simplified model individuates two ‘levels’ in causal set theory: one the
one hand we have the individual nodes that represent possible configurations
of classical universes with one, two or three elements:

Scs :
{

, , , , , , ,
}

(2)

On the other hand, the tree-structure represents the multiplicity of possible
growths from one universe-configuration to another. It corresponds to the
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quantum-level of the theory that represents a kinematic scheme Scs of se-
quential possible growths.1 As already pointed out in (Dribus 2017), the two
levels of causal set theory might question the more popular idea that classical
mechanics is less fundamental than quantum mechanics, while here it seems
that the classical nodes are more fundamental than the quantum kinematic
scheme. However, the analogy with the sum-over-histories account of quan-
tum mechanics (see, for example: (Carlip, Carlip, and Surya 2023)) clarifies
the conundrum. Indeed, in the sum-over-histories approach (alternatively,
path integrals), the individual trajectories can be considered as ‘classical’ for
they are individuated by a classical action functional. The quantum proper-
ties emerge as soon as we consider the total ensemble of possible trajectories,
in that each trajectory is assigned a probability amplitude which sums with
all the other possible paths.

Notably, terms such as ‘reduction’ and ‘fundamentality’ become some-
what tricky here. Even without diving deep into the literature, consider the
following two readings: on the one hand it is intuitive to consider quantum
mechanics as more fundamental than classical mechanics —for example be-
cause the former operates at scales smaller than the latter. On the other
hand, quantum mechanics dictates that all possibilities count —for example,
all trajectories in the path integral— and it is only at the classical limit that
such a multitude of possibilities reduces to one. This is especially evident
if we look at how, at the limit ℏ → 0, the many possible trajectories of
quantum mechanics constructively interfere around the classical trajectory,
reducing the path integral to the least action principle.2 Therefore, we shall
rely on a temporary workaround to the problem of characterizing terms such
as ‘reduction’ and ‘fundamentality’: we shall more timidly say that quantum
mechanics and classical mechanics represent different structures and that
while the former interests a specific physically possible scenario, the latter
dictates that all possible physical scenarios count.

I will say more on the dynamics of the theory below, but for now it is
enough to say that it provides a rule for the probabilities of the co-relative his-
tories (or) transitions from one node to another. The most common approach
is the CSG (Rideout and Sorkin 1999) which assigns classical probabilities
to the possible transitions from one causal set to another in the kinematic

1We shall specify the concept of growth later in this paper.
2(Forgione 2020) describes this mechanism of constructive and destructive interference

of possible trajectories in the path integrals formulation of quantum mechanics.
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scheme. For example, in the simplified tree below, the transition from empty
set (∅)d0 to ( )d1 is p(d1 → d2) = 1 and the probability of the realization of
causal set ( )dt is P (dt) = 1/3.3

In the tree above, the transition from empty set (∅)d0 to ( )d1 is p(d1 → d2) =
1 and the probability of the realization of causal set ( )dt is P (dt) = 1/3.

2.1 Why Causal Set?

Thus far, we have seen some of the general features of the theory, but I have
not really mentioned why the use of Hesse diagrams and causal sets can be
useful to recover relativistic spacetime. The central theorem of the causal
set programme is the Hawking-Malament theorem: (Hawking, King, and Mc-
Carthy 1976) and (Malament 1977) —also refered to as the Metric Recovery
Theorem (MRT) by (Dribus 2017) and (Dribus 2013). Broadly speaking, the
theorem proves that: “the causal structure of relativistic spacetime deter-
mines the corresponding metric structure up to smooth conformal isometry”
(Dribus 2017, p. 91). Here, relativistic causal structure means that the fu-
ture timelike and past timelike directions are not dependent on the choice of
frame of reference —and thus causal influences propagate always from causes
to effects.4 Physically, the theorem states that relativistic spacetime can be

3The probabilities assigned by CSG are still classical, and not quantum mechanical,
which testifies the incompleteness of causal set theory as a full-fledged theory of quantum
gravity.

4Alternatively, a relativistic spacetime manifold that satisfies some appropriate causal
conditions can be characterized by a causal relation ≤GR that is a strict partial order.
While (Malament 1977) identifies five such conditions, it is enough for our purposes to list
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reconstructed starting from the description of all the causal relations between
the events populating spacetime. In this sense, Wheeler’s motto: space tells
matter how to move, and matter tells space how to curve emphasizes the pre-
scriptive character of geometry and matter, which is captured by the theory
of general relativity. But, instead of prescribing how space bends and mat-
ter moves, one can provide a description of all the causal relations between
the events populating spacetime. The metric recovery theorem states that
prescriptions and descriptions convey the same information. However, this
latter statement is imprecise and the theorem adds the condition up to smooth
conformal isometry : a tricky requirement that requires some unpacking.

First, we shall begin with the definition of conformal equivalence, (Dribus
2017, p. 87): “two pseudo-Riemannian metrics g and g′ on a smooth manifold
X are called conformally equivalent if there exist a smooth positive function
ω : X → R called the conformal factor, such that g′(v, w) = ω(x)2gx(v, w)
for every point x ∈ X and every pair of tangent vectors v, w ∈ TxX”. In
layman’s terms, two structures are conformally equivalent as long as there is
a function between them that (locally) preserves angles, while the measuring
rods (lengths) might vary. Then, a conformal isometry is a stricter condition
for it imposes the existence of a diffeomorphism between two metrics such
that the metric f ∗ g′ on X is conformally equivalent to g on X. Therefore,
the problem of reconstructing relativistic geometry from its causal structure
is the lack of the conformal factor (that is: scale data) on the relativistic
manifold. This is intrinsic to GR, since the diffeomorphism invariance, for
example, makes it impossible to obtain those scale data from some other
ambient scale (e.g.: an embedding manifold). The workaround to the missing
conformal factor is the axiom of local finiteness for which all ordered intervals
in the causal set have finite cardinality, thereby corresponding to a finite cut-
off which is interpreted as a measure of volume. Therefrom the slogan coined
by Sorkin: Order plus number equals geometry. While the term order stands
for the binary relation on the events of a causal set, the term number stands
for the natural scale —that is, the local finiteness axiom associated with a
measure of volume µCS which consists of counting the elements of a given

the past and future distinguishing condition for which a “relativistic spacetime manifold
X is future distinguishing if and only if for every x in X, and every open set U containing
x, there exists a ‘smaller’ open set U ′ in U , containing x, such that no future-directed
smooth timelike curve through x that leaves U ′ ever returns to it” (Dribus 2017, p. 101),
(Malament 1977, p. 1400).
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causal set C.5 Finally, the term geometry stands for relativistic spacetime.
Continuum based geometry is thus recovered via smoothing at large scales

the structure of causal set C and binary relation ≤CS. More specifically,
(Bombelli et al. 1987, p. 522) suggested that the observables of causal set
theory correspond to topological and metric observables and that the latter
should be expressed in terms of a deeper notion of order:

In this view volume is number and macroscopic causality re-
flects a deeper notion of order in terms of which all the ‘geometri-
cal’ structures of space-time must find their ultimate expression.

This is warranted by the notion of embedding, which consists of an injective
map ϕ : C → (M, g) from a causal set to a pseudo-Riemannian manifold
such that given x, y ∈ C:

x ≤CS y ←→ ϕ(x) ≤M ϕ(y) (3)

But, not all causal sets can be embedded into a spacetime (M, g) and, even
if they can, this does not guarantee that a given spacetime is approximated
by the causal set. One shall require that number approximates spacetime
volume, a stricter condition called faithful embedding (Surya 2019, p. 14):
“every finite spacetime volume V is represented by a finite number of elements
n ≈ ρCV in the causal set”, where ρC = V −1

C . In addition, to recover the
relativistic spacetime one needs to ensure covariance of the distribution of
the elements of the causal set and this is obtained by inducing a random
sprinkling of elements (Poisson process) on pseudo-Riemannian manifolds,
(Surya 2019, p. 16):6

We say that a causal set C is approximated by a spacetime
(M, g) if C can be obtained from (M, g) via a high probability
Poisson sprinkling. Conversely, for every C ∈ C(M,ρC) there is
a natural embedding map

ϕ : C →M

5The use of the counting measure was already suggested by (Myrheim 1978, p. 1): “If
spacetime is assumed to be discrete, then the counting measure is the natural measure,
and the causal counting is the only structure needed. Coordinates and metric may be
derived as secondary, statistical concepts.”

6This amounts to constructing a causal set from a pre-existing manifold, rather than
obtaining the manifold bottom-up from the individual elements of the set.
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where C is an ensemble of causal sets obtained from the imposition of a par-
tial order on the elements of the Poisson sprinkling. It remains to determine
how a manifold-like causal structure can uniquely determine large-scale man-
ifolds. Alas, the uniqueness of the continuum approximation is is warranted
by a conjecture, the Hauptvermutung (fundmanetal conjecture of causal set
theory):

The Hauptvermutung of CST: C can be faitfully em-
bedded at density ρC into two distinct spacetimes, (M, g) and
(M ′, g′) iff they are approximately isometric (Surya 2019, p. 19).

The conjecture is not proven yet, but some work in this direction has been
put forward by, among others: (Bombelli 2000), (Noldus 2004), (Bombelli,
Noldus, and Tafoya 2012).

Finally, a few words on the most common dynamical approach to causal
set theory: the causal sequential growth (CSG), see: (Rideout and Sorkin
1999). According to the CSG exploratory model, a causal set is built via
evolutionary steps i.e., by adding one element to the set at each transi-
tion. Each transition (co-relative history) consists of a morphism between
two causal sets, thereby making spacetime a dynamical entity that evolves
following a co-relative history. As it was mentioned earlier, the kinematic
scheme of the theory describes the potential evolutionary steps of a given
causal set, while the dynamics (CSG) supplies with (classical) probabilistic
weights each possible transition.

3 Emergence of Time

The presentation of the theory, thus far, has left the notions of causation and
time evolution somewhat blurry. Indeed, the individual causal sets do not
track a proper time evolution in that they are part of the kinematic scheme.
Also, the causal relation of CST does not correspond to a strictly forward in
time relation, but this should not be much of a surprise since the relativistic
nature of spacetime admits spacelike separated events.7 For example, while

7To be more precise, the classical sequential growth dynamics imposes a locality condi-
tion called Bell Causality. The condition states that the probability of the growth of a new
element depends only on its past, and it is not affected by spacelike separated elements.
The condition guarantees a form of locality to the dynamics of the theory by imposing
that the probability of growth of a new element does not depend on the totality of the
causal set.

9



the sequence ( )→
( )

might suggest a passage of time from one causal set

to the other, the co-relative history ( ) → ( ) has the same probabilities
to occur. It follows that the causal relation between the elements of a causal
set accounts for related events that are spacelike separated. Furthermore,
the partial order relation of causal set theory is hardly a causal relation in a
traditional sense, and that is because causal sets are not enough to relate each
cause to the corresponding effect. The point was raised in (Wüthrich 2019,
p. 13) and it is justified by the fact that not all timelike or null relations have
causal efficacy: “given an event, we take neither all events in its past lightcone
to be its causes, nor all events in its future lightcone to be its effects”. Again,
this validates the idea that the causal relation differs substantially from its
everyday counterpart: “the causal relations of causal set theory of course
differ from that attributed to events in our ordinary lives. Nevertheless,
given the tight relationship between the fundamental relation of causal set
theory and the causal structure of relativistic spacetimes, we take it to be
legitimate to dub this relation a ‘causal relation’”.

However, while the relation between causal structure and the partial or-
der of CST is warranted by the Hawking-Malament theorem, things get more
complicated if we consider the CSG dynamics proposed by (Rideout and
Sorkin 1999). The birth of new elements of a given causal set is a stochastic
process where the time parameter tracks the growth of the set while re-
maining independent of the actual order of the corresponding elements. For
example, consider the following causal set with different labellings:

21

65

7

3
4

41

62

7

3
5

(4)

The time parameter associated to each event is gauge invariant, that is, it is
invariant under label transformations. This is true under the condition that
no events can grow in the past of their parent event. In the sets above, for
example, the event marked as 6 could not be replaced by event 7, for this
would be a violation of the relativistic causal structure. One might object
that event 4 in the right-causal set violates the same relativistic structure
since it precedes event 2. However, the two events are not causally connected
and thus there is no order relation between them. The question about which
event comes first bears no physical meaning.8

8The same goes for the events labeled 4, 5, 6 in the left causal set, and 4, 2, 6 in the
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But then, if the time order is gauge invariant, how should we recover a
more traditional phenomenological passage of time? The physical passage of
time grows by accretion of partially ordered spacetime events and spacetime
can be described in terms of its causal structure.9 This means that the causal
structure is captured by the local partial order because there are points in a
causal set that cannot be said to be preceded by other points.10 For example,
(Dowker 2014) emphasizes how in general relativity each physical system is
locally associated with a world-line that is causally ordered. Then, in causal
set theory: “[a] sequential growth model is a model of a physical world which
becomes in a manner compatible with the lack of a physical global time”
(Bento, Dowker, and Zalel 2022, p. 8). In this sense, the occurrence of a
given event is due to the partially ordered causal history (or co-history) that
births that event, while causal relations constitute the local ordering of events
within a given causal set. Time plays the role of an independent parameter
used to keep track of the different positions of the events with respect to each
other within the causal set. The physical passage of time, on the other hand,
emerges in causal set theory as the resulting effect of the stochastic birthing
of a given event, in the context of a yet unspecified process of cancellation of
the many possible causal histories. The analogy with the sum-over-histories
approach is that the classical history emerges at the classical limit from the
mutual cancellation of the many possible histories of the quantum ensemble
due to the stochastic character of each of such histories.

3.1 Causal Theory of Spacetime and Fundamental Causal
Relations

If we accept that the passage of time is an emergent property in causal set
theory, then we might be able to decouple the partial order relation (causal
relation) from the notion of time. The issue is not new in the literature,

right causal set.
9Even if we were to recover the relativistic spacetime from causal sets, one might still

object that a mathematical result and derivation is too dry. Yet these are problems that
apply also to other approaches to quantum gravity and involve issues such as empirical
incoherence and the epistemological desiderata for a theory of quantum gravity (see, for
example, (Wüthrich 2012)). I shall leave these considerations aside and, in view of our
purposes here, I emphasize that the causal relation of causal set theory still evades a more
precise characterization.

10Disconnected points are not simultaneous either, for there is no notion of global time.

11



as, for example, (Russell and Slater 2022, p. 381) expressed it in terms of
reduction and fundamentality: “can time be derived from causality, or must
we retain temporal order as fundamental, and distinguish cause and effect
as the earlier and later terms in a causal relation?” An affirmative answer is
defended by the causal theory of spacetime (CTS), which maintains that the
structure of spacetime can be recovered from causal structures. Again, the
idea is supported by Hawking and Malament’s causal metric hypothesis, but
also by authors such as H. Reichenbach and B.V. Fraassen. Most recently,
(Baron and Le Bihan 2023) have revitalized the debate and defended a version
of the causal theory of spacetime for which spacetime relations are grounded
on causal relations.

Baron and Le Bihan (2023) present two approaches to the causal theory
of spacetime: the identity theory and the non-identity theory. The identity
theory comes in two flavors: strong and weak, which are distinguished based
on whether spacetime-relations are characterized as causal relations a priori
or a posteriori respectively. The problem with the a priori approach is that
one could think of a world in which there are spatiotemporal relations but
not causal ones (see: (Baron and Le Bihan 2023)). For that to be true, we
would need to imagine a completely idle universe without matter, since any
form of dynamics would imply some form of causal relations. Although this
might be a metaphysical possibility which shall be left to later discussions, a
completely idle and empty universe is not representative of our universe.

Another objection, originally raised by (Smart 1969) is that we should
not identify clear terms with terms that are less clear: “To elucidate the
concept of space-time in terms of the concept of causal connectedness seems
to be to elucidate the comparatively clear by reference to the comparatively
unclear” (Smart 1969, p. 394). Surely, reply (Baron and Le Bihan 2023),
the past decades have brought more clarity to the notion of cause, especially
in philosophy of science. However: “[w]hile we have developed theories of
causation that have some level of precision, what we take to be the most pre-
cise of these —the interventionist account coupled to the structural equation
framework— typically foregoes any reductive ambitions and takes causation
to be an unanalysed primitive. Arguably, causation is still less well under-
stood than spacetime” (Baron and Le Bihan 2023, p. 3). Perhaps, an even
more precise notion of causation could be based on the idea of functional
dependency (Russell 1912), especially with respect to the use of hyperbolic
partial differential equations as best representations of Humean causation
(Smith 2000). Since it is not my intention here to discuss new possible
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definition of causation in science, I shall simply accept that the notion of
spacetime is better defined than that of causation —as also supported by
both Baron and Smart.

With respect to the weak approach to the non-identity theory, the main
objection also comes from (Smart 1969, p. 394): “It is difficult to see how
the causal theory of time is applicable to theories which allow for the exis-
tence of events which are neither causes nor effects of other events”. The
objection, which is dubbed by (Baron and Le Bihan 2023) as the problem of
causal indolence, is indeed severe for it applies to both the strong and weak
approach. Because of the identification of spacetime relations with causal
relations: “any spatiotemporal relation must be a causal connection, which
means that there cannot be any entities that are causally idle so long as
they bear spatiotemporal relations to other entities (which they must if they
are located in spacetime)” (Baron and Le Bihan 2023, p. 4). The causal
indolence objection consists of three different sub-problems: (1) there might
be spacetime regions that are free of matter and energy, (2) the existence of
timelike connected events that are causally disconnected, and (3) the exis-
tence of spacelike events that would need superluminal signals to be causally
connected. The first sub-problem resembles in kind the problem of the strong
approach to the identity theory, which I have addressed above. The second
sub-problem, argues Baron, is not clear in that there cannot be timelike con-
nected events that are not causally connected. Everything that is in the
past-lightcone of a given system constitutes a cause, independently of how
weak that connection might be. Perhaps the strongest case for such an ar-
gument is to conceive of the Big Bang as a universal common cause for the
entire universe. Alternatively, we can consider the formation of our sun as
something in our past lightcone and thus as a cause of my writing this paper.

With respect to the third problem—that is, the existence of spacelike sep-
arated events requiring faster-than-light signals to be causally connected—
(Grünbaum and Grünbaum 1973) already suggested to trade causal connec-
tions with causal connectability. However, the trade-off is not a viable solu-
tion since, when it comes to spacelike events, a causal connection is not even
a possibility unless we reject special relativity. Therefore, suggest (Baron and
Le Bihan 2023), one needs to look at another way to address the problem
of causal indolence. Their solution is to give up on the identity approach
and characterize the relationship between spacetime and causal relations as
an ontological dependence. The suggestion is that spacetime relations are
grounded in causal relations, thereby making the latter more fundamental
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than the former: “our view is that spatiotemporal relations are grounded in
a pattern of more fundamental causal relations between events” (Baron and
Le Bihan 2023, p. 10). This would constitute a solution to the problem of
causal indolence because spacelike connections between two events would be
grounded in the absence of a causal relation: “in particular, if two physical
events are not linked by a fundamental causal relation, then that grounds a
spacelike connection at the spatiotemporal level” (Baron and Le Bihan 2023,
p. 11). The account is further refined by adding that being part of a causal
structure is a necessary requirement for any spatiotemporal connection, in
such a way that all events in a causal set would be in some causal connection
with some other events, thereby avoiding isolated elements of the set.11 One
more addition to the non-identity approach is that the total causal structure
of a given causal set is rule governed in the sense that physical laws dictate
what events are causally connected, but also what events can be and cannot
be causally connected.

In sum, the non-identity approach establishes a relation of grounding
between spacetime and causal relations in causal set theory. Instead of saying
that spacetime relations can be expressed in terms of causal relations, (Baron
and Le Bihan 2023) set forth a form of ontological dependence such that
causal relations become more fundamental than spatiotemporal ones. Then,
the explanation of the causal connectability between events is due to the total
causal structure and to the rules that dictate the possible causal connections
within such a structure. However, the total causal structure, as seemingly
interpreted by (Baron and Le Bihan 2023), is simply a given causal set. The
total causal structure is simply the structure represented by all the events
within the set and by the relation of partial ordering between such events. In
addition, the introduction of some unspecified rules (or physical laws) adds
one additional layer to the ontology of causal set theory and brings about the
difficulty of explaining what such rules would consist of. Yet, it remains that
causal relations ought to be more fundamental than spacetime relations. This
conclusion, though, is independent from the use of the non-identity theory
and becomes evident from more general considerations. For example, the
fact that the structure of relativistic spacetime can be expressed in terms
of causal relations (up to a conformal factor) is but one of the pillars on

11Notably, one might advance the objection for which mathematical objects might be
in a spacelike relation with physical events, but a proper response would involve tackling
the debate on the existence of mathematical entities, which I shall not do it here.
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which causal set theory stands. The fundamental discreteness of the theory
is not required for the validity of the metric recovery theorem, and the use
of the counting measure to define a natural scale for volume is a strategy
to overcome the up to conformal factor condition. What follows is that the
theory, by identifying discreteness as one of its fundamental axioms, naturally
requires a mechanism for recovering the continuum of relativistic spacetime.
12 It is then natural to assume that the fundamental objects and relations
of the theory should be more fundamental than the continuum spacetime
relations proper of the theory of relativity. In other words: if discreteness
plus causal relations imply spacetime relations, it is only natural that the
causal relations among the discrete entities should be more fundamental than
the relativistic spacetime relations.

4 Causation as Constraint

Thus far, I have argued that causal relations are more fundamental than
spacetime relations; yet this does not help us clarify the former without any
use of the latter. The problem was already mentioned by (Smart 1969), in
that we should not be explaining a clear concept starting from a less clear
one. One possibility is to provide a clear account of causation in physics
to explain well-defined spatiotemporal relations with well-defined causal re-
lations. Completing the task is no small feat, as many philosophers have
already tried to offer a clear notion of causation (in both physics and other
disciplines). Here, without a pretense of completeness, I will review some of
such attempts with a special focus on the interventionist account.

Regularity theories of causation, see: (Andreas and Guenther 2021), re-
duce causation to instances of specific pattern of succession (this is in contrast
to notions of causal efficacy and causal power). Some fundamental principles
of the regularity theories are: the constant conjunction of the same types of
events, the contiguity in time and space, the asymmetry between causes and
effects. The central idea is that a given event A that is lawfully followed by
an event B can be considered as the cause of B. One of the objections to
this cluster of theories is that modern science is based on repeatability, and
that a single instance of one event following another should not necessarily
constitute a causal connection. One could respond that a lawful connection

12Notably, this is a difficulty proper of almost every theory of quantum gravity, and not
only of causal set theory.
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implies that causal connection indeed requires repeatability. Yet, this might
constitute too strong of a constraint since the correlation between two events
does not always constitute an instance of causation. A possible solution
would be to provide an underlying mechanism that explains the relation of
causation between the two events, but such mechanisms are not always pos-
sible —for example, the speed of light is a causal constraint that does not
have an underlying mechanism.

Another approach to causation is represented by the counterfactual the-
ories, originally developed by (Lewis 1973). These theories analyze causal
relations in terms of counterfactuals of the form: ‘if I were you, I would
accept the job’. An objection to such theories is that they do not always
distinguish counterfactuals from causal relations, as made evident by the ex-
ample above. The fact that I am not you can hardly count as a cause for not
accepting the job.

The process account of causation focuses on the perduration and progres-
sion of phenomena, rather than on their instantaneous occurrence. Dowe
(2000), Salmon (1998), and others, tie the notion of causation to a process
of transfer of a conserved quantity between two systems. For example, the
transition of a ball through a gaseous medium is a causal process in that we
could easily mark the ball with, say, a Sharpie, and observe that the mark is
transmitted throughout the entire process. Further refinements of the the-
ory will individuate as markers some conserved physical quantities such as
momentum or energy (see, for example: (Dowe 2000) and (Salmon 1997)).
However, the account seems to fail at distinguishing which events or factors
constitute a cause, in that the transmission of a marker does not guarantee
that the marker is also a cause for a given event. For example, (Woodward
2005, p. 357) points out that “the feature that makes a process causal (trans-
mission of some conserved quantity or other) tells us nothing about which
features of the process are causally or explanatorily relevant to the outcome
we want to explain”. In addition, the account seems to fail at explaining the
lack of those marks as a cause for a given event. For example, statements
such as: “I killed the plant by not watering it” (Beebee 2004) are considered
as cases of causation by omission, which expresses an instance of causation
without the transmission of any mark.

The interventionist account proposed by (Woodward 2005) suggests that
the proper way of characterizing causation is in terms of manipulations of
some variables within a given causal structure. Then, causes are factors
that when intervened upon produce a change in a system that was otherwise
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unexpected. The view has much in common with the counterfactual view,
but it is restricted to specific classes of phenomena, thereby avoiding some
of the vagueness problems of the counterfactual theory. The interventionist
approach treats causation as a primitive notion that can be elucidated in
terms of total cause where: X is a total cause of Y if and only if under some
intervention on X there is an associated change in Y . The definition makes
no use of spatiotemporal terms and fits well with the needs of causal set
theory. Furthermore, the concept of changing a variable within the system
can be interpreted modally, so that interventions need not be taking place
in spacetime —this is because the variation of the values of X and Y can
be intended as being within the space of possibilities defined by the theory.
In addition, the manipulation of one of the variables does not need to add
an external factor to the system. Indeed, (Frisch 2014) and (Pearl 2009)
suggest that the variable itself is the cause and the intervention amounts to
the changing of the value of the variable. This applies to causal set theory
in that the change of the variable corresponds to the addition of an element
to the causal set, where the modal aspects of the interventionist account
consists of the many possible ways in which one element can be added to a
given set.

There are two possible issues with the interventionist account though.
The first one is already pointed out by (Ben-Menahem 2018) and main-
tains that the manipulation of a given variable to explain causal connections
might be too limited at times. For example, many laws of physics that seem
to convey causal connections are expressed in terms of hyperbolic differential
equations. Even without entering the debate on what constitutes a physical
law, we can simply consider the 1-d wave equation utt − c2uxx = 0 which
can be used to model a vast number of physical phenomena (plucked strings,
vibrations of elastic beams, springs, and others). The mathematical form of
those equations requires the input of some additional data (for example: po-
sition u(x, 0) = f(x) and momentum ut(x, 0) = g(x)) to obtain a well-defined
solution. In general, these data are applied to the dynamical equation to ob-
tain a solution at a subsequent instant of time. The interventionist approach
seems to work fine with phenomena modeled by this type of equations, since
the manipulation of the initial conditions determines a change in the solu-
tion of the equation at a subsequent instant of time. But, the account is also
limited in that it is not always the case that the initial conditions required
by the mathematical formalism are the sole cause for a given event.

Perhaps, one could add to the causal history of the system those vari-
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ables that also contribute to the corresponding effect. Then, to determine
whether the new variables play the role of (co)causes, one can verify that by
changing the value of the variables corresponds a change in the corresponding
effect. However, if the two variables X and Y —respectively the supposed
cause and effect— are related by association laws, namely laws that express
mutual functional dependence between variables, then an intervention on X
would produce a change in Y , but the other way around would also hold,
thereby conflicting with the asymmetric character of causal relations.13 An-
other objection is raised in (Blanchard 2023) and is based on the difficulty
of addressing the causal efficacy of wholes and parts in the interventionist
account. With respect to composite objects, the change of value of a vari-
able due to intervention ought to either keep the variables associated to the
individual parts fixed, or to allow for a change of behavior of the individual
parts. However “[t]he first strategy runs the risk of making wholes causally
excluded by their parts, whereas the second strategy is in danger of mistak-
enly ascribing to composite objects causal abilities that properly belong to
their parts only” (Blanchard 2023, p. 20).

In addition, the interventionist account of causation falls short of ex-
plaining the causal relations in causal set theory. For example, consider the
simplified causal set tree below. The variable subject to manipulation would
be the last event of a given node (causal set) from which the new event is
born. Because of transitivity, the formation of a causal connection between
the two events on the left-branch, that is the transition → , can be consid-
ered as the cause for the top causal set . However, the same goes for the
right-branch of the tree, that is, the transition → can be considered as
the cause for the same top causal set. The interventionist account does not
distinguish between the two branches as possible different causal transitions.
One could argue that both causal sets and (causally) contribute to the
top one, but this would conflict with the fact that the different nodes are
part of the kinematic scheme of the theory and are thus not physical realiza-
tions.14 The same argument runs against the counterfactual approach, for
counterfactual statements would not be able to distinguish the cause of the

13The argument was raised and commented in (Kistler 2013).
14One could also reply that, as mathematical possibilities, every possible causal set

contributes causally to the realization of a subsequent causal set. This would be similar
to saying that the possible trajectories individuated by a path integral causally contribute
to the total transition amplitude. This approach would require the backing of some form
of mathematical realism, and we thus leave it to later works.
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realization of the top-node.
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Perhaps, to solve the impasse of characterizing causal relations, we can fo-
cus on the order relation among the events of the causal set. That the binary
relation ≤ is characterized as a partial order is evident in some other reviews
of causal set theory such as (Wüthrich 2012) and (Dowker 2006). There, a
causal set is defined by the pair ⟨E,≤⟩ where E is the set of elements and ≤ is
the binary relation of partial ordering between those elements. For example,
(Wüthrich 2012) defines the relation ≤ as inducing a partial order on a set
C, that is, the relation is transitive, reflexive and antisymmetric. Similarly,
(Dowker 2006) describes causal sets as partially ordered sets with a rela-
tion of precedence that satisfies: transitivity, non-circularity, and finiteness.
Another example is (Surya 2019), who defines a causal set as a set with an
order relation ≺ that is acyclic, transitive, and locally finite. Notably, (Surya
2019, p. 12) defines locally finite the property: ∀x, y ∈ C, |I [x, y]| <∞, where
|I [x, y]| ≡ Fut(x) ∩ Past(y). This definition of local finiteness implies a no-
tion of time in the form of past and future. One can avoid the use of temporal
notions by giving a different definition of local finiteness that does not use
spacetime terms —for example, one could use the notion of cardinality as
we mentioned above. Leaving aside the slight differences in the properties
of the binary relation, in all these accounts causation is defined in terms of
the order of the events of the set without making use of any spatiotemporal
terms. This suggests that to give an account of the causal relation of causal
set theory we might have to rely on a a-temporal approach to causation.

Most recently, (Ben-Menahem 2018) defended a pluralist account of cau-
sation which has roots in the works by (Cartwright and McMullin 1984),
(Cartwright 2004), (Godfrey-Smith 2009), and others. Ben-Menahem (2018)
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characterizes causation in terms of constraints, similarly to how the lightcones
of special relativity constrain the possible causal interactions for a given sys-
tem. While causation “appears to be the basis for the very structure of
spacetime” (Ben-Menahem 2018, p. 28), the pluralistic account consists of
approaching the notion of cause as a cluster of irreducible constraints im-
ported from our theories. The view opposes the tradition of searching for a
single notion of cause that can be applied to all sciences and suggests that
causal notions provide explanations and descriptions of possible changes in
our physical world: “causal notions and constraints, I suggest, are employed
to describe, predict, and explain change. They tell us which physical pro-
cesses and changes in the physical world are possible, and which are not”
(Ben-Menahem 2018, p. 14).

We can thus interpret the order relation of causal set theory as a con-
straint over the possible growths in the kinematic space defined by the theory.
In this terms we have a causal relation that is more fundamental than the
spatiotemporal ones —and thus makes no use of spatiotemporal terms. The
a-temporal partial order between the elements of a given causal set is then
embedded within the total kinematic space, which assigns a probability am-
plitude to each possible partially ordered growth. A quantum model for the
interference between the different nodes has not been developed yet, but the
underlying intuition is that the interference between nodes should select at
some limit a causal set history that represents the dynamical evolution of
our universe. To interpret the causal relations as constraints is fitting with
the three main claims of this contribution. The two levels of the theory,
classical and quantum, are compatible with the constraint interpretation of
the causal relation. Indeed, the elements of the individual sets are sorted by
the partial order relation —whose definition can vary slightly depending on
the formulation of the theory. The causal relation acts as a super-selection
rule over all the possible growths by limiting those that would violate the
conditions necessary to the recovery of relativistic metric. The second claim
was that physical time in causal set theory is derived from the more fun-
damental causal relation. Again, this is also compatible with the constraint
interpretation, for there is no addition of temporal terms and no changes in
how physical time would emerge starting from causal sets. Finally, the con-
straint interpretation, under the pluralist view suggested by (Ben-Menahem
2018), limits the case to causal set theory. In addition, it defines causation
in terms of partial order relations, which are as clear as the spatiotemporal
relations of relativity theory, thereby voiding the objection raised by (Smart
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1969). Notably, the account remains tentative especially because causal set
theory is not a complete theory yet, as demonstrated by the fact that the
dynamics used here, the classical sequential growth, is only classical.

5 Conclusions

In this contribution I have offered a brief overview of the main axioms of
causal set theory, with a focus on the analogy with the sum-over-histories
account, and on the relationship between the nodes representing individ-
ual causal sets and the causal tree representing the multiplicity of possible
growths. I have then introduced the Malament-Hawking theorem, which
plays a central role in relating causal set theory to relativistic spacetime and
its causal structure. After the review of the theory, I discussed the role of
the time parameter in terms of bookkeeping device for the growth of new ele-
ments of a given set with respect to other events. What emerged is that it is
possible to consider the causal relations as more fundamental than spacetime
relation. Finally, after reviewing some accounts of causation in the context
of philosophy of science, I suggested that starting from a pluralistic account
of causation, we can interpret the relation of partial order as a constraint on
the possible growths defined by the theory.
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