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Microplastics in agriculture – a
potential novel mechanism
for the delivery of human
pathogens onto crops
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Mulching with plastic sheeting, the use of plastic carriers in seed coatings, and

irrigation with wastewater or contaminated surface water have resulted in

plastics, and microplastics, becoming ubiquitous in agricultural soils. Once in

the environment, plastic surfaces quickly become colonised by microbial biofilm

comprised of a diverse microbial community. This so-called ‘plastisphere’

community can also include human pathogens, particularly if the plastic has

been exposed to faecal contamination (e.g., from wastewater or organic

manures and livestock faeces). The plastisphere is hypothesised to facilitate the

survival and dissemination of pathogens, and therefore plastics in agricultural

systems could play a significant role in transferring human pathogens to crops,

particularly as microplastics adhering to ready to eat crops are difficult to remove

by washing. In this paper we critically discuss the pathways for human pathogens

associated with microplastics to interact with crop leaves and roots, and the

potential for the transfer, adherence, and uptake of human pathogens from the

plastisphere to plants. Globally, the concentration of plastics in agricultural soils

are increasing, therefore, quantifying the potential for the plastisphere to transfer

human pathogens into the food chain needs to be treated as a priority.

KEYWORDS

human health, irrigation, microplastic-soil-crop interactions, plastic pollution,
plastisphere, wastewater
Introduction

Globally, more than 800 million farmers are involved with urban agriculture, and about

a quarter of these practice market-oriented farming (Qadir et al., 2010). Urban and peri-

urban farmers in low- and middle-income countries (LMICs) can enhance household

income by producing perishable crops such as leafy vegetables for sale in local markets

(Zezza and Tasciotti, 2010), which is crucial for providing a continual supply of vitamin-
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rich vegetables to the community. Importantly, such production of

fresh vegetables and leafy greens is fundamental for alleviating

hidden hunger (the deficiency in micronutrients, vitamins, and

minerals in the diet) in urban and peri-urban areas (Chagomoka

et al., 2017).

Farmers growing crops in LMICs often use wastewater [in this

paper we refer to ‘wastewater’ as the use of raw, partly treated, or

diluted wastewater, from predominantly domestic sources] for

irrigation as it provides a free source of nitrogen and phosphorus

(and thus, less money spent on fertilisers), and can be more reliable

or cheaper than other surface water sources. Use of wastewater in

urban vegetable farms not only lessens the pressure on water

resources but also increases water productivity through reuse of

water and nutrients (Qadir et al., 2020; Minhas et al., 2022).

Wastewater (either untreated or secondary/tertiary treated

wastewater) also makes up a significant proportion of irrigation

used in agricultural systems in the USA, Australia, and many other

countries with arid and semi-arid regions, e.g., Saudi Arabia,

Tunisia, Pakistan. However, wastewater irrigation is often

associated with enteric pathogens (Partyka and Bond, 2022) and

more recently microplastics (defined as plastic particles < 5 mm),

which in the last few decades have become ubiquitous in the

environment (Uddin et al., 2020; Pérez-Reverón et al., 2022).

Polymers such as polyethylene (PE), polypropylene (PP), and

polystyrene (PS) can originate from either a primary source (e.g.,

from cosmetics, or manufacturing processes), or as a secondary

source following the fragmentation of larger pieces of plastic.

The sources and migration pathways of microplastics in more

intensive agricultural systems, e.g., in China, have been

comprehensively reviewed (Jin et al., 2022; Yu et al., 2022), with

the main soil inputs coming from mulching with plastic sheeting,

the application of seed coatings containing plastic carriers, and

irrigation (Zhou et al., 2021; Pérez-Reverón et al., 2022).

Importantly, plastics (and microplastics) in the environment

become rapidly colonised by microbial biofilms formed by the

microbial secretion of extracellular polymeric substances onto the

plastic surface and can provide a novel hydrophobic ecological

habitat capable of supporting diverse microbial communities. Such

biofilm situated at the interface between the plastic surface and the

environment has been termed the ‘plastisphere’ (Zettler et al., 2013),

and is hypothesised to provide a protective environment that

enables microorganisms to grow in hostile habitats and facilitate

their dispersal (Amaral-Zettler et al., 2020). However, the

plastisphere can also contain bacterial and viral human pathogens

capable of retaining their virulence and infectivity (Moresco et al.,

2021; Metcalf et al., 2022; Ormsby et al., 2023), and therefore

microplastics have the potential to act as a significant vector of

pathogens, particularly if they have been in contact with a source of

faecal contamination.

The long-term effects of plastics and microplastics in soil and

crop systems are currently undergoing intense research focus (e.g.,

Li et al., 2022; Zhou et al., 2022; Li et al., 2023). Yet, despite this, the

potential risk to human health of growing vegetables in soils

containing pathogen-colonised plastics, and further irrigating

crops with wastewater contaminated with both faecally associated

pathogens and a potentially high load of microplastics, has never
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before been considered (Figure 1). Therefore, the aim of this paper

is to explore the potential for human pathogens adhering to plastics

and microplastics to enter agricultural systems and be introduced

into the food chain.
Transfer of plastics into agricultural
systems: co-pollutant potential
for human pathogens to enter the
food chain?

An increasing proportion of soils used for crop production are

heavily contaminated with plastics (Chen et al., 2020). Globally, the

volume of plastic in soils is predicted to increase due to practices

such as plastic mulching and seed treatments (Li et al., 2022)

together with the effects of rapid urbanisation, and particularly in

LMICs, weak infrastructural capacity for waste management

(Ferronato and Torretta, 2019). Recently, a meta-analysis by

Zhang et al. (2022) has demonstrated that plastic residues in soil

can alter nutrient cycling and inhibit plant growth, which is likely to

be driven by plastics modifying the functioning and diversity of soil

microbial communities, e.g., by potentially stimulating enhanced

nutrient and carbon cycling (Bandopadhyay et al., 2018; Xiao et al.,

2022). However, in addition to soil type and environmental

conditions, the consequences of plastics in soil are determined by

a number of other factors including size, shape, concentration, and

polymer type (Iqbal et al., 2023). Recently, degradable ‘bio-plastics’

have been suggested as an alternative to plastic mulching, although

current reports have indicated variable consequences for crop yield,

soil health, and nutrient cycling (Brown et al., 2023; Chu et al., 2023;

Reay et al., 2023).

The presence of human pathogens on the surfaces of

environmental plastic pollution has been well documented over

the last decade (Metcalf et al., 2022) particularly in marine systems

(Bowley et al., 2021). Microplastics and human pathogens often

come into close contact with each other in aquatic systems, either

during transit through wastewater treatments plants (WWTPs) or

in contaminated surface waters, e.g., from agricultural run-off,

direct defecation from livestock, or from sewage discharge

(Figure 1). The preference for many bacterial species to colonise

the surfaces of plastics (or to attach to the biofilm on the plastic

surface) rather than remain planktonic has led to the hypothesis

that microplastics can become enriched with human pathogens and

increase their persistence and dissemination in the environment

(Junaid et al., 2022).

In-situ delivery of microplastics colonised by human pathogens

could be facilitated by irrigation with wastewater, which is common

in LMICs where most vegetables are grown in river-valleys, where

in the dry season wastewater constitutes the only available surface

water for irrigation (Qadir et al., 2010). More widely, crops are

irrigated with surface waters from rivers, streams, and lakes, which

are commonly contaminated with treated or untreated wastewater

effluent (Shehu et al., 2022). Estimates of global annual inputs of

microplastic into the environment includes 1015 particles entering

the aquatic environment in treated effluent, and a further 1016
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particles released in untreated effluent (Uddin et al., 2020).

Therefore, there is a high likelihood that crops are already being

irrigated with water containing microplastics that are colonised

with human pathogens (Figure 1).

Other routes for microplastics to enter agronomic systems

include the use of organic fertilisers, composts, or biosolids

(Weithmann et al., 2018; Vithanage et al., 2021). The application
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of animal manure to fields, or the rotation of grazing livestock, can

increase the abundance of microplastics in the soil (Beriot et al.,

2021; Yang et al., 2021), which has likely originated from the

ingestion by livestock of microplastics in feed, feed bags, and

containers (Wu et al., 2021). The high concentrations of

potentially zoonotic and human pathogens in livestock faeces

(e.g., E. coli O157, Salmonella spp., Campylobacter spp.) provides
FIGURE 1

(A) plastics and microplastics (orange circles and fibres) can enter agricultural systems from contaminated irrigation water, livestock faeces, and
organic fertilisers, or from the breakdown of larger pieces of plastics such as from mulching film or polytunnels. Once in the environment, plastic
quickly becomes colonised by microbial biofilm, termed the ‘plastisphere’ (orange circles with black dots), which often contains human pathogens;
(B) the plastisphere can increase survival and dissemination of human pathogens and could facilitate their transfer to the rhizosphere and the
developing roots, or onto the surface of leaves and fruit, either directly through irrigation, or indirectly through splash from the soil; (C) once
microplastics have adhered to plant tissue it is not known whether human pathogens in the plastisphere could subsequently be transferred to the
plant; however, it is difficult to remove microplastics from plant leaves (even by washing), and so they could remain attached during the harvesting
and retail processes and thus increase the potential for human pathogens to enter the food chain.
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the opportunity for microplastics being transported through the

livestock gut to have already become colonised with pathogens

before they enter the soil. Furthermore, microplastics have also been

extracted from wildlife faeces including rats, mice, hedgehogs, and

voles, increasing the potential loading of contaminated

microplastics into agricultural soils (Thrift et al., 2022).
Can plastics act as a vector for
the transfer of human pathogens
onto crops?

Contaminated irrigation water is a well-known vehicle for

transferring human pathogens onto crops (Alegbeleye et al.,

2018), either by direct application onto the leaves or fruit, or

indirectly, via splash from contaminated soil. Such pathways

could also deliver colonised microplastics onto crops, either from

microplastic-contaminated irrigation water or from microplastics

being splashed up onto the plant from the soil (Figure 1). Once on

the plant surface human pathogens are susceptible to a range of

abiotic stresses in addition to any plant-specific defence responses

(Zarkani and Schikora, 2021; Elpers et al., 2022). Enteric pathogens,

such as E. coli and Salmonella, are poor at withstanding

environmental factors such a UV irradiance and desiccation, and

day length and temperature can affect the potential for epiphytic

persistence on the leaf surface and consequently the concentration

of viable or infectious cells remaining post cultivation (Alegbeleye

et al., 2018). However, human pathogens in the plastisphere are

offered some protection from environmental stressors by being part

of a biofilm (Amaral-Zettler et al., 2020), which may facilitate

survival on the surface of the plant and increase the potential for

dissemination to other areas of the plant.

Recently, it has been demonstrated that nanoplastics and

microplastics can be taken up and accumulated by plants, with

apparent negligible effects on plant physiology (Azeem et al., 2021).

Nanoplastics can enter plants through cracks or via the stomata,

whereas due to their larger size, it is more likely that microplastics

aggregate and are adsorbed onto the plant surface (Mateos-

Cárdenas et al., 2021). Plant morphology and leaf topology will

determine the strength of the interaction with microplastic

particles, with the potential for microplastics to become trapped

by trichomes and adhere to mucilage and exudates (Bi et al., 2020).

The plastic polymer will also influence how strongly microplastics

bind to leaves, with the charge on the plastic surface and the

chemical bonds between the microplastic and the leaf surface

making some microplastics extremely difficult to remove from

crops such as lettuce, even after washing with water (He et al., 2023).

Plastic particles as large as 1 µm can enter the root tissue of rice

seedlings and subsequently, driven by the pull of transpiration, be

transported to the shoot (Liu et al., 2022). Although particles this

size will not be colonised by bacteria, there is the potential for

adherence of human viruses to microplastics of this size. Enteric

viruses, such as rotavirus, which are commonly detected in treated

effluents, surface waters, and irrigation water (Omatola and
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Olaniran, 2022), can bind to microplastics in the environment

and remain infectious (Moresco et al., 2022). Human viruses

preferentially bind to the biofilm of the plastisphere but

depending on the pH and isoelectric point of the virus, are also

capable of adhering to naked plastic particles through processes

such as non-ionic forces (Moresco et al., 2021). Once associated

with the plastisphere, human viruses (specifically, non-enveloped

viruses) remain stable and seem to be protected from inactivation

factors (Moresco et al., 2021), which could allow the transport

through the plant vascular system and provide protection from

changing environmental conditions and allow the pathogen to

evade any plant-mediated defence response (Zarkani and

Schikora, 2021).

Following the transfer of human bacterial pathogens such as

Salmonella enterica to a leaf surface the expression of specific

adhesive factors by the pathogen, e.g., fimbrial and nonfimbrial

adhesins, can facilitate adhesion to the plant surface (Elpers et al.,

2022), and may also be involved with adhesion to plastic surfaces

(Yang et al., 2020). However, once microplastic particles have

adhered to a plant surface, it is not known whether potential

human pathogens in the plastisphere can then subsequently be

transferred to the plant surface (either passively, by being shed

from the plastisphere biofilm, or actively, by responding to

chemotactic signals from the plant), or whether they would

remain in the relative safety of the plastisphere. Either way, the

plant microbiome, including phyllosphere communities, are

likely to play an important role in any transfer of human

pathogens from the plastisphere onto plants. In the short-term

therefore, there is the potential for the co-pollutant risk of

ingestion of both human pathogens and microplastics adhering

to, or associated with, the surfaces of leaves or fruits eaten raw

(Figure 1), whilst any toxins produced by specific foodborne

pathogens in the plastisphere could remain even after cooking

(Tavelli et al., 2022).
Plastisphere - rhizosphere interactions

Contamination of agricultural soil with plastics is becoming

ubiquitous, yet despite a growing knowledge of the diversity of soil

plastisphere communities (Wang et al., 2022; Li et al., 2023) there

remains little information on potential human pathogens colonising

plastics in soil (Gkoutselis et al., 2021; Luo et al., 2022; Zhu et al.,

2022). Plastics in agricultural soil can become contaminated by

human pathogens through the introduction of livestock manure

either as an organic fertiliser, or through direct deposition –

similarly, open defecation can introduce human faeces into

agricultural soil – or through irrigating soil with contaminated

water. Binding to plastic surfaces in soil can facilitate the survival of

human pathogens by providing a protective niche from abiotic

stress, microbial grazing, and competition (Amaral-Zettler et al.,

2020), and thus increases the potential for contact with roots

or tubers.

The interaction of human pathogens with plant roots, and

subsequent internalisation, has been well studied, with evidence
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for entry of bacterial pathogens through junctions in zones of lateral

root emergence, following attraction by nutrients in root exudate

(Zarkani and Schikora, 2021). Agricultural soils heavily

contaminated with microplastics could allow potential human

pathogens in the plastisphere continual access to the rhizosphere

and developing roots over the course of the growing season,

particularly if the plastisphere increases pathogen persistence in

soil (Figure 1). Similarly, the opportunity for splash contamination

of the aerial parts of crops would be greater if the inoculum

potential of soil was amplified by the presence of human

pathogens colonising microplastics. Bacterial pathogens (e.g.,

Salmonella) leaving the plastisphere in response to chemotactic

signals in the rhizosphere could subsequently become pre-

conditioned by plant exudate, with up-regulation of genes

involved with virulence prior to internalisation in plant tissue

(Jechalke et al., 2019). The potential for plastics to deliver human

pathogens to the roots is unknown; however, in contrast to being in

a biofilm, free-living bacterial enteric pathogens are likely to be

more stressed, which often leads to higher expression of virulence

(Zarkani and Schikora, 2021) with significant consequences for

human health following ingestion.
Conclusion

Although the potential for plastics in agricultural systems to be

colonised by human pathogens is high, there is a lack of

understanding of whether the interaction with crops is significant,

and any more of a risk than free-living pathogens being introduced

in water or soil. Therefore, in tandem with basic research on the

potential risks of this novel delivery mechanism of pathogens to

human receptors, there is an urgent need for both qualitative and

quantitative risk assessments. Although the risk to human health

from pathogens in the plastisphere has yet to be quantified, with

limited evidence of virulence or pathogenicity of pathogens

associated with the plastisphere (Beloe et al., 2022), the presence

of anti-microbial resistance genes in the plastisphere is well known,

particularly in soil (Zhu et al., 2022). Microbially diverse biofilm

communities on plastics in soil increases the potential for multidrug

resistance genes being transferred to human pathogens in the

plastisphere, with more profound consequences for human health

if transferred to ready to eat crops (Yang et al., 2022).

Providing the data to understand the risks of human pathogens

in the plastisphere should now clearly be a priority as the

concentrations of plastics in agricultural soils increases. Although

the human health effects of ingesting microplastics at

environmentally realistic concentrations is still being debated

(Koelmans et al., 2022), the effects of ingesting microplastics

colonised with human pathogens has never been quantified.
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Microplastics bound to ready to eat crops are difficult to remove

by washing (He et al., 2023) and so could be acting as a vector for

delivering human pathogens onto and into crops and subsequently

provide a novel vehicle for human pathogens to enter the

food chain.
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