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Can even-membered liquid crystal dimers exhibit the twist-bend nematic phase? 
The preparation and properties of disulphide and thioether linked dimers
Naila Tufaha , Calum J. Gibb, John M. D. Storey and Corrie T. Imrie

Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK

ABSTRACT
Cyanobiphenyl-based liquid crystal dimers containing a disulfide link in the spacer, the 
4-[4-[2-[2-[4-(4-cyanophenyl)phenyl]alkyldisulfanyl]alkyl]-phenyl]benzonitriles (CBnSSnCB), are 
reported. The alkyl fragment is varied from two to nine carbon atoms, and all eight homologues 
exhibit nematic behaviour. In addition, the dimer containing heptamethylene fragments 
(CB7SS7CB) exhibits a twist-bend nematic phase despite having an even-membered spacer. The 
values of the nematic–isotropic transition temperature, TNI, are higher for dimers containing an 
odd number of carbon atoms in each alkyl fragment. This surprising behaviour is interpreted in 
terms of the C-S-S-C torsion angle being around 88° that ensures that the molecular shape is bent 
irrespective of the parity of the alkyl fragments. For odd-membered fragments, however, the 
average shape is less bent and higher values of TNI are observed. The more uniform molecular 
curvature of CB7SS7CB accounts for the observation of the NTB phase. We also report the behaviour 
of two members of the 4-[4-[3-[2-[4-(4-cyanophenyl)phenyl]alkyldisulfanyl]-alkyl]phenyl]benzoni-
triles (CBnSmCB) which contain a thioether link embedded in the spacer. Both dimers exhibited 
nematic behaviour. The thioether link reduces the value of TNI compared to that of the dimer with 
an alkyl spacer. A much larger decrease in the nematic-twist-bend nematic temperature is 
observed and is attributed to a change in shape.
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Introduction

Liquid crystal dimers consist of molecules containing two 
mesogenic units connected by a flexible spacer, most 
commonly an alkyl chain. These show very different 
behaviour to conventional low molar mass liquid crystals 
consisting of molecules containing a single mesogenic unit 
attached to which are one or two terminal alkyl chains 
[1,2]. The archetypal behaviour of a series of dimers on 
varying the number of methylene units in the spacer 

shows pronounced alternations in the values of, for exam-
ple, the nematic–isotropic transition temperature, TNI, 
and the associated scaled entropy change, ∆SNI/R. 
Dimers having an even number of methylene units in 
the spacer show the higher values. To a first approxima-
tion, the alternation in, for example, TNI may be under-
stood in terms of the average shape of the dimer and how 
this is governed by the parity of the spacer. Thus, for an 
even-membered spacer, the two mesogenic units are more 
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or less parallel, and the dimer is essentially linear. By 
contrast, in an odd-membered dimer, the two mesogenic 
units are inclined with respect to each other and the 
molecule is bent. The linear even-membered dimer is 
considered to be more compatible with the nematic envir-
onment, and hence higher values of TNI are observed. 
Such a simple explanation neglects the inherent flexibility 
of the spacer but will suffice for our purposes [3].

Bent odd-membered dimers have attracted particular 
interest in recent years following the discovery of the 
fascinating twist-bend nematic, NTB, phase for the dimer 
CB7CB that consists of two cyanobiphenyl moieties 
attached through a heptamethylene spacer [4–6]. This 
discovery confirmed the predictions of the NTB phase 
made independently by Meyer [7] and Dozov [8]. In the 
NTB phase, the directors spontaneously form a helix and 
are tilted with respect to the helical axis. Given that chiral 
formation is spontaneous, an equal number of left- and 
right-handed helices are expected. This double degeneracy 
may be removed, however, either by the addition of 
a chiral dopant or the introduction of chirality into the 
molecular structure, and the chiral twist-bend nematic 
phase is obtained [9–12]. A great many odd-membered 
dimers have now been shown to exhibit the NTB phase (see 
for recent examples [13–23]), and it is widely accepted that 
their bent shape is the prerequisite for its observation. 
Indeed, molecular curvature is a common feature to the 
range of other structures known to support the NTB phase 
including rigid bent core materials [24,25], hydrogen 
bonded systems [26–28], higher oligomers [29–34] and 
polymers [35]. Most recently, significant interest has 
focused on the incorporation of sulfur atoms into struc-
tures expected to exhibit the NTB phase (see, for example, 
[36–47]).

It is often stated, therefore, that odd-membered dimers 
may exhibit the NTB phase, whereas their even-membered 
counterparts cannot. This assumes that varying the parity 
of the spacer sees the average molecular shape change from 
being essentially linear to bent. It is known, however, that 
dimers containing a disulfide link in the spacer behave 
quite differently, although very few examples of such 
dimers and higher oligomers have been reported in the 
literature [48–54]. Specifically, the preferred conformation 
around the S-S link ensures that a dimer in which an even 
number of atoms connects the two mesogenic units is bent. 
It has not been established, however, to what extent the 
liquid crystalline environment can control the conforma-
tional distribution of this highly flexible link, and to inves-
tigate this, here we report the synthesis and characterisation 
of the 4-[4-[2-[2-[4-(4-cyanophenyl)phenyl]alkyldisulfa-
nyl]alkyl]phenyl]benzonitriles, see Figure 1(a). We refer 
to these dimers using the acronym CBnSSnCB in which 
CB denotes a cyanobiphenyl fragment, n the number of 
carbon atoms in each alkyl chain, and SS the disulfide link. 
We have connected the spacer to the mesogenic units using 
methylene linkages as this is known to promote twist-bend 
nematic behaviour [55]. We stress that all the members in 
the CBnSSnCB series contain an even number of atoms 
linking their mesogenic units irrespective of the value of n. 
For comparison, we also report the transitional properties 
of two dimers containing a thioether link in the spacer, the 
4-[4-[3-[2-[4-(4-cyanophenyl)phenyl]alkyldisulfanyl] 
alkyl]phenyl]benzonitriles, see Figure 1(b). These are 
referred to using the acronym CBnSmCB in which n -
and m refer to the number of carbon atoms in each alkyl 
chain and S to the sulfur atom. In the two dimers reported, 
both n and m are odd such that the overall length of the 
spacer is odd. To our knowledge, just one dimer having 

Figure 1. The molecular structures of (a) the CBnSSnCB and (b) the CBnSmCB dimers.
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a spacer containing an embedded thioether link has been 
reported, and this was not liquid crystalline [36]. 

Experimental

The synthetic route used to prepare the CBnSSnCB 
series is shown in Scheme 1. The preparation of the ω- 
bromo-1-(4-cyanobiphenyl-4’-yl) alkanes has been 
described in detail elsewhere [56]. The syntheses of the 
ω-(4-cyanobiphenyl-4’−yl)alkyl-1-thiols and their sub-
sequent oxidative coupling to form the target dimers 
followed the procedures described by Lee et al. [51]. The 
synthetic route used to prepare the CBnSmCB dimers is 
shown in Scheme 2 and described elsewhere by 
Cruickshank et al. [45]. Complete descriptions of the 
synthetic procedures including the quantities of 

reagents used, yields of the final products and their 
intermediates, and structural characterisation data can 
be found in the Supplemental Information.

Structural and purity characterisation

The structures of the final products and their intermedi-
ates were confirmed using 1H and 13C NMR spectro-
scopy using a 400 MHz Bruker Advance III HD NMR 
spectrometer, and by Fourier-transform infrared spec-
troscopy using a Perkin Elmer Spectrum Two FTIR with 
an ATR diamond cell. A Biotage®Selekt system equipped 
with pre-packed silica columns, Biotage®Sfär High 
Capacity Duo 20 μm 100 g, 50 g or 10 g, with a flow 
rate of 120 ml/min was used to purify crude products. 
The purity of the final products was verified using either 

Scheme 1. The synthetic route used to prepare the CBnSSnCB series.

Scheme 2. The synthetic route used to prepare the CBnSmCB dimers.
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high-resolution mass spectrometry using a Waters 
XEVO G2 QToF mass spectrometer operated by 
Dr Morag Douglas (University of Aberdeen) or by ele-
mental analysis using an Elementar vario MICRO cube 
at the Sheffield Analytical and Scientific Services. 
Samples were analysed in duplicate for carbon, hydro-
gen, nitrogen and sulfur.

Thermal characterisation

Differential scanning calorimetry (DSC) was performed 
using a Mettler Toledo DSC1 differential scanning calori-
meter, equipped with a TSO 801RO sample robot. The 
instrument was calibrated using indium and zinc stan-
dards. All the analyses performed used a heating profile 
composed of heat, cool and reheat segments with a 3-min 
isotherm between each segment, and a heating rate of 
10°C min−1 under nitrogen gas. The thermal data 
reported were extracted from the cooling trace and 
the second heating trace. The data reported are average 
values measured for two different samples.

Polarised light microscopy was performed using an 
Olympus BH2 polarising optical microscope equipped 
with a Linkam TMS 92 hot stage. The samples were 
viewed either sandwiched between untreated glass micro-
scope slides, or in cells of either 1.6 or 3 µm thickness, and 
coated with ITO conducting and polymer aligning layers.

Computational methods

Quantum mechanical density functional theory calcula-
tions were performed to determine the geometric para-
meters and electronic properties of the CBnSSnCB and 
CBnSmCB dimers. Geometry optimisation was per-
formed using Gaussian G09W [57] at the B3LYP/ 
6-311 G(d,p) level of theory. For the disulfide dimer 
CB4SS4CB, the all-trans conformation was tested by 
locking the CSSC torsion angle at the B3LYP/6-31  
G(d) level of theory and compared with the non- 
constrained molecule at the same level of theory. For 
visualisation of the models, Mercury [58] and QuteMol 
[59] were used, while for visualisation of ball-and-stick 
models, electrostatic potential surfaces and dipole 
moments, GaussView 5 [60] was used.

Results and discussion

The CBnSSnCB series

The transitional properties of the CBnSSnCB series are 
listed in Table 1, and all eight homologues exhibit 
a monotropic nematic phase. This was assigned on the 
basis of the observation of a characteristic schlieren texture 

containing both two and four brush point singularities and 
which flashed when subjected to mechanical stress when 
sandwiched between untreated glass slides; a representative 
texture of the nematic phase is shown in Figure 2.

Upon cooling isolated droplets of the nematic phase 
shown by CB7SS7CB, the schlieren texture changed to 
give a rather blocky texture at 40°C, see Figure 3. This 
was a reversible change upon heating, and is strongly 
suggestive of a nematic–twist-bend nematic, NTB, phase 
transition [55]. Upon cooling, this lower temperature 
phase, crystallisation occurred rapidly at around 38°C. 
To confirm the assignment of the lower temperature 
liquid crystal phase, a binary phase diagram was con-
structed using mixtures of CB7SS7CB and CB15CB 
[61], the structure of which is shown in Figure 4. 
CB15CB has been characterised using a range of tech-
niques including resonant soft X-ray scattering studies 
(RSoX) confirming its phase behaviour: it melts into the 
NTB phase at 96°C, TNTBN = 103°C and TNI = 121°C. 
CB15CB was selected for this purpose given its similar 
spacer length. Complete miscibility of the two materials 
was observed over the whole composition range inves-
tigated, and each binary mixture exhibited two nematic 
phases. At higher temperatures, a conventional N phase 
was seen and identified based on the observation of the 
characteristic schlieren texture described earlier. At 
lower temperatures, the NTB phase was observed, and 
identified by the formation of a brushstroke schlieren 
texture, see Figure 5. At the N-NTB phase transition, 
there was a cessation of the optical flickering associated 
with director fluctuations in the N phase. The binary 
phase diagram constructed using these mixtures is 
shown in Figure 6. The melting points of the mixtures 
show eutectic-like behaviour. The nematic–isotropic 
transition temperatures decrease in essentially a linear 
manner upon decreasing the mole fraction of CB15CB, 
XCB15CB, in the mixture. The values of the twist-bend 
nematic–nematic transition temperature, TNTBN, also 
decrease in essentially a linear fashion on decreasing 
XCB15CB although we note that these data are somewhat 
more scattered. The extrapolated value of TNTBN for 
CB7SS7CB based on this phase diagram is 40°C, in 

Table 1. The temperatures and associated scaled entropy 
changes of the CBnSSnCB series. The data have been measured 
using DSC unless stated otherwise.

n TCrI/°C TNTBN/°C TNI/°C ∆SCrI/R ∆SNI/R

2 138 – 107* 8.91 –
3 151 – 105 9.37 1.04
4 132 – 80* 12.5 –
5 142 – 97* 12.6 –
6 102 – 78 10.6 0.85
7 111 40* 95 16.8 –
8 76 – 69 17.4 1.39
9 94 – 84 17.7 2.04

*Measured using the polarised optical microscope.
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excellent agreement with the value measured experi-
mentally, confirming the phase assignment.

The dependence of the transition temperatures on 
the number of methylene units, n, in each alkyl 

segment for the CBnSSnCB series is shown in 
Figure 7. Both the values of the melting point and 
TNI tend to decrease on increasing n, and superim-
posed upon this is an alternation in which the odd 
members of n show the higher values. As we described 
earlier, the alternation in the value of TNI on increasing 
the number of methylene units in the spacer for a series 
of dimers may be attributed to the change in the shape 
of the dimer as the parity of the spacer changes [1,2]. 
For the CBnSSnCB series, however, two methylene 
units are added each time, and the parity of the spacer 
remains constant with an even number of atoms always 
connecting the two cyanobiphenyl units. Within this 
framework, the odd-even effects seen for the melting 
points and values of TNI on increasing n appear coun-
ter-intuitive. Similar behaviour has been observed for 
other dimers containing a disulfide linkage in the 
spacer [51,54]. Furthermore, we have seen that 
CB7SS7CB shows the NTB phase, and given that this 
is an even-member dimer, this is a highly surprising 
observation.

Figure 2. (Colour online) The schlieren texture of the nematic 
phase shown by CB6SS6CB (T = 77°C).

Figure 3. (Colour online) The optical textures seen for isolated droplets of CB7SS7CB in the (a) nematic (T = 94°C), (b) twist-bend 
nematic (T = 40°C) and (c) crystal phases (T = 38°C).

Figure 4. Molecular structure of CB15CB.

Figure 5. (Colour online) (a) The schlieren texture of the N phase (T = 87°C) and (b) the brushstroke texture of the NTB phase (T =  
106°C) for the XCB15CB = 0.6 mixture.
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In order to understand the surprising behaviour seen 
in Figure 7, we calculated the molecular structures of 
CB6SS6CB and CB7SS7CB, and these are shown in 
Figure 8. The C-S-S-C torsion angle in both dimers is 
around 88° and presumably arises from lone pair repul-
sions of the sulfur atoms. This angle does not depend on 
either the chain length, n, or parity as neither increases 
the steric bulk around the disulfide bond. Although the 
disulfide torsion angle does not vary with n, it is clear in 

Figure 8 that two significantly different shapes are 
adopted by these dimers depending on the parity of n. 
CB6SS6CB adopts a U-shape in which there is a twist 
along the molecular axis, Figure 8(a), whereas 
CB7SS7CB is more linear and the two mesogenic units 
are more or less parallel. This difference arises because 
the bent nature of the odd-membered methylene frag-
ments in CB7SS7CB counters the effect of the dihedral 
angle associated with the disulfide bond, whereas the 
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linear alkyl fragments in CB6SS6CB simply extend the 
molecule and the dispositions of the mesogenic units 
reflect the dihedral angle arising from the disulfide 
bond. We note that constraining the disulfide bond to 
an all-trans conformation increased the calculated 
energy, supporting the view that it has a preference for 
the gauche conformation in systems lacking steric con-
gestion [62]. 

Thus, the alternation in the values of TNI on 
varying the parity of n seen in Figure 7 may be 
interpreted in terms of the accompanying change in 
molecular shape between two bent shapes, see 
Figure 8. For odd members of n, the overall mole-
cular shape is less bent and, hence, higher values of 
TNI are seen. This interpretation is supported by the 
values of the scaled entropy change associated with 
the nematic–isotropic transition, ∆SNI/R, listed in 
Table 1. For the CBnCB series, a pronounced alter-
nation is observed in ∆SNI/R on varying the parity of 
n; for example, for CB6CB, ∆SNI/R is 2.63, whereas 
for CB7CB, it is just 0.22 [63]. The much larger value 
of ∆SNI/R for CB6CB, an even-membered linear 
dimer, reflects a higher conformational contribution 
to the overall entropy change, and more significantly, 
a larger long-range orientational order [64,65]. For 
the CBnSSnCB dimers, the values of ∆SNI/R are 
more in keeping with those observed for odd- 

membered dimers; for example, for dimers of com-
parable length, the value of ∆SNI/R is 0.91 for 
CB13CB [63] and very similar to that of CB6SS6CB 
of 0.85. This reinforces the view that the CBnSSnCB 
dimers exist in bent conformations. Furthermore, the 
larger values of ∆SNI/R shown by the dimers with an 
odd value n than those of similar length but even 
values of n reflect the difference in molecular biaxi-
ality [66,67] supporting the view that for odd values 
of n, the dimers are, on average, less bent.

A twist-bend nematic phase has been observed for 
just CB7SS7CB. We have noted already that molecular 
curvature is a prerequisite for the observation of the NTB 

phase and it may appear counter-intuitive that the NTB 

phase is observed for the less bent of these dimers. It has 
been established, however, that the uniformity of mole-
cular curvature is an important consideration on the 
stability of the NTB phase [68], and this is greater for 
dimers having an odd value of n, see Figure 8. We also 
note that the less bent shape of CB7SS7CB compared to, 
for example, CB6SS6CB, Figure 8, facilitates better 
interactions between the mesogenic units, and this com-
pensates for the loss of entropy due to the additional 
polar order in the NTB phase. This, in turn, counteracts 
the larger bend angle in CB7SS7CB than CB6SS6CB 
such that a higher value of TNTBN is observed for the 
more linear of these molecules.

Figure 8. (Colour online) Molecular structures of (a) CB6SS6CB and (b) CB7SS7CB as determined by geometry optimization (DFT/ 
B3LYP/6-311G(d,p)). The views on the right are along the S-S bond.
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We note that a nematic–nematic transition was 
reported for the ether-linked analogue of CB7SS7CB, 
namely CBO6SS6OCB [52,53], on the basis of the tem-
perature dependence of the birefringence. Specifically, 
a small discontinuous decrease in the nematic range was 
seen, indicative of a weak first-order transition, after 
which the value of birefringence continued to increase 
[53]. Although it may be tempting to speculate that this 
is also an NTB-N transition, this profile is not consistent 
with that characteristically observed for the N-NTB tran-
sition, which is often associated with a small jump to 
higher values in the birefringence, and a subsequent 
decrease on cooling the NTB phase. This characteristic 
behaviour has been accounted for in terms of the for-
mation of the oblique helix [69]. It would appear, there-
fore, that the N-N transition seen for CBO6SS6OCB is 
not a NTB-N transition.

The CBnSmCB dimers

We now turn our attention to dimers containing 
a thioether link in their spacer, CB5S7CB and CB7S9CB 
(Figure 1) and their transitional properties are listed in 
Table 2. Both dimers showed a conventional nematic 
phase, identified on the basis of the observation of 
a characteristic schlieren texture described earlier, and 
shown in Figure 9. Upon cooling the nematic phase of 
both dimers, no other liquid crystal phase was seen prior 
to crystallisation. To estimate a virtual value of TNTBN for 
CB5S7CB, a phase diagram was constructed for binary 
mixtures of CB5S7CB and CB13CB [63], see Figure 10. 
The latter was chosen given the similarity in spacer 
length. The mixtures exhibited a monotropic conven-
tional nematic phase across the complete composition 
range, and a monotropic twist-bend nematic phase for 
mixtures with mole fraction CB13CB, XCB13CB ≥0.40. The 
phases were assigned based on the observation of char-
acteristic optical textures as described earlier. The melt-
ing points of the mixtures show only a weak dependence 
on composition. The values of TNI and TNTBN decrease in 
essentially a linear fashion on decreasing XCB13CB, and 
the gradient of the TNTBN line is larger. The virtual value 
of TNTBN for CB5S7CB estimated by extrapolation of the 

TNTBN line is 73°C although we note that this extrapola-
tion is rather long and so the value should be treated with 
some degree of caution. Attempts to confirm this esti-
mated TNTBN were unsuccessful because the nematic 
phase of CB5S7CB could not be supercooled to this 
temperature prior to crystallisation.

The melting point of CB5S7CB is 13°C higher than 
that of CB13CB, whereas this is reversed on comparing 
the melting points of CB7S9CB and CB17CB, the latter 
being 7°C lower. The insertion of the thioether link into 
the spacer reduces the value of TNI compared to that of 
the corresponding dimer with an alkyl spacer by around 
13°C. A much larger effect is seen, however, in the value 
of TNTBN. For CB5S7CB, the estimated value of TNTBN is 
some 38°C lower than that of CB13CB. A similar reduc-
tion in TNTBN is observed for CB7S9CB on comparing 
the lowest temperature to which the N phase may be 
cooled prior to crystallisation to the value of TNTBN 

observed for CB17CB.
The space filling model for CB7S9CB with the spacer 

in the all-trans conformation as determined by geome-
try optimisation is shown in Figure 11. It has been 
suggested that a gauche conformation about the CH2-S 
bond is slightly favoured by around 0.4 kJ mol−1, and 
that this arises from a favourable electrostatic interac-
tion between the negatively charged sulfur atoms and 
positively charged CH2 groups [70]. As described in 
more detail elsewhere [21], however, this value is likely 
to be substantially different in a liquid crystal environ-
ment which will preferentially select more linear con-
formations [71]. Thus, we consider the all-trans 
conformation to be a better representation of the aver-
age molecular shape in discussing the transitional prop-
erties of these dimers. The CSC bond angle is around 
100° compared to the CCC bond angle of 109.5°and this 
induces a slight curvature of the spacer compared to an 

Table 2. The transition temperatures and associated scaled 
entropy changes of the CBnSmCB series. The data have been 
measured using DSC. The transitional properties of the members 
of the CBnCB series having the same spacer length are also listed.

Dimer TCr- /°C ∆SCrI/R TNTBN/°C TNI/°C ∆SNI/R Ref

CB5S7CB 119 11.0 – (107) 1.14
CB13CB 106 9.40 (105) 122 0.91 [63]
CB7S9CB 92 13.6 – 105 1.55
CB17CB 99 15.3 (97) 117 1.45 [61]

Figure 9. (Colour online) The nematic schlieren texture exhibited 
by CB7S9CB (T = 95°C).

8 N. TUFAHA ET AL.



all-trans alkyl spacer. This distortion opposes the overall 
molecular curvature. As we noted earlier, the uniformity 
of molecular curvature appears to be an important fac-
tor in stabilising the NTB phase and this small change in 
shape between the CBnCB and CBnSmCB dimers may 
account for the significantly lower values of TNTBN seen 
for the latter, reinforcing the view that the NTB-N tran-
sition is predominantly shape driven.

A second factor to be considered is the change in the 
electronic properties of the dimer associated with the 
insertion of the sulfur atom into the spacer. The calcu-
lated electrostatic potential surface for CB5S7CB is 
shown in Figure 12 alongside its ball-and-stick model 
showing the direction of the molecular dipole moment. 
The molecular dipole moments of CB5S7CB and 
CB7S9CB are 7.06 and 7.47 D, respectively, and these 
are higher than that calculated for CB17CB of 6.44 D but 

oriented in the same direction [61]. It may have been 
anticipated that stronger dipole interactions between 
the CBnSmCB dimers would drive higher melting 
points, and this is indeed the case comparing 
CB5S7CB and CB13CB. Upon increasing the length of 
the alkyl fragments, however, this effect will be diluted, 
and the melting points are expected to become more 
similar as indeed they do. It should also be noted that 
the packing efficiency of the dimers will play a role in 
determining the melting points. The reduction in local 
packing efficiency arising from the insertion of the 
sulfur atom into the spacer is likely to be small given 
that the van der Waals volume of sulfur is around 10.8  
cm3 mol−1 and similar to that of the CH2 group of 10.23  
cm3 mol−1 [72], and this difference may be accommo-
dated, at least to some extent, by the increased flexibility 
of the thioether chain. This rather subtle combination of 
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Figure 11. (Colour online) (a) Space filling model for CB7S9CB and (b) viewed along the spacer.
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electronic and steric effects accounts for the less regular 
effects on the melting temperature seen for these 
dimers.

We now turn our attention to the nematic–isotropic 
transition, and as we have seen, the insertion of a sulfur 
atom into the spacer reduces this by around 13°C 
(Table 2). It is interesting to note that the insertion of 
a sulfur atom into the spacer of a semi-flexible main 
chain liquid crystal polymer reduces the value of the 
liquid crystal-isotropic transition temperature by around 
the same margin as seen for these dimers [73]. This 
reduction presumably reflects the reduction in shape 
anisotropy arising from the larger CSC bond angle and 
the larger sulfur atom as described earlier. It is possible 
that these effects will be offset, to some extent, by 
increased dipolar interactions. It is interesting to note 
that the values of ∆SNI/R for the corresponding dimers 
with and without a sulfur atom are essentially the same, 
and wholly characteristic for an odd-membered dimer 
containing a long spacer. This strongly suggests that their 
respective shapes are rather similar.

Conclusions

In the introduction, we noted the widely held view 
that even-membered dimers cannot exhibit the NTB 

phase. We have shown, however, that this statement 
must be used with care, and CB7SS7CB does indeed 
exhibit the NTB phase even though the mesogenic 
units are linked by an even number of atoms. This 
surprising observation may be accounted for in terms 
of the torsion angle around the C-S-S-C bond, and 
how the bend this introduces into the molecular struc-
ture is counteracted by that associated with the odd- 

membered alkyl fragments. Although dimers contain-
ing both odd- and even-membered alkyl fragments are 
bent, those with odd-membered fragments are less 
bent and the curvature more uniform. This accounts 
for both the alternation in the values of TNI on varying 
n in which odd values of n show the higher values, 
and the observation of the NTB phase for CB7SS7CB. 
The shape change associated with insertion of a single 
sulfur atom into the alkyl spacer for the CBnSmCB 
dimers is much less pronounced, and consequently 
a smaller change in transitional properties is seen. 
These have been attributed to the combination of 
a reduction in shape anisotropy arising from the larger 
sulfur atom, and smaller CSC bond angle, coupled 
with increased dipolar interactions. As would be 
expected, the reduction in the stability of the NTB 

phase is more pronounced given its particular sensi-
tivity to molecular shape. It is also apparent that the 
behaviour of the dimers is rather similar to that of 
semi-flexible polymers, casting new light on the beha-
viour of the latter. The generality of our observations 
now has to be tested by the characterisation of a wider 
range of dimers including disulfide and thioether links 
in the spacer.
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