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Abstract Input to the Most Navigable Path (MNP) problem consists of the following: (a) a road
network represented as a directed graph, where each edge is associated with numeric attributes of cost
and “navigability score” values; (b) a source and a destination and; (c) a budget value which denotes
the maximum permissible cost of the solution. Given the input, MNP aims to determine a path between
the source and the destination which maximizes the navigability score while constraining its cost to be
within the given budget value. The problem can be modeled as the arc orienteering problem which is
known to be NP-hard. The current state-of-the-art for this problem may generate paths having loops,
and its adaptation for MNP that yields simple paths, was found to be inefficient. In this paper, we
propose five novel algorithms for the MNP problem. Our algorithms first compute a seed path from the
source to the destination, and then modify the seed path to improve its navigability. We explore two
approaches to compute the seed path. For modification of the seed path, we explore different Dynamic
Programming based approaches. We also propose an indexing structure for the MNP problem which
helps in reducing the running time of some of our algorithms. Our experimental results indicate that the
proposed solutions yield comparable or better solutions while being orders of magnitude faster than the
current state-of-the-art for large real road networks.

Keywords Spatial Networks · Road Networks · Routing

1 Introduction

The problem of finding the most navigable path takes the following as input: (a) a directed graph
representation of a road network where each edge is associated with a cost (distance or travel-time)
value and a navigability score value; (b) a source and a destination and; (c) a budget value. Given the
input, the objective is to determine a path between the source and the destination which has the following
two characteristics: (i) the sum of navigability score values of its constituent edges is maximized and,
(ii) the total cost (in terms of distance or travel-time) of the path is within the given budget. In other
words, MNP is a constrained maximization problem.

This problem finds its applications in navigation systems for developing nations. Quite often, street
names in developing countries are either not displayed prominently or not displayed at all. In such cases, it
becomes difficult to follow the conventional navigation instructions such as “Continue on Lal Sai Mandir
Marg towards Major P Srikumar Marg”. In such nations, it is desirable to travel along a path which is
“easily identifiable” by a driver. For instance, consider the example shown in Figure 1. Here, Path 1 is
the shortest path between KFC in Cannaught Place (point A) and the Rajiv Chowk metro station (point
B). The path has a travel time of 10 minutes. However, this route is potentially confusing due to lack
of prominently visible sites and easily identifiable turns. To navigate on this route, one would have to
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heavily rely on a very accurate GPS system (potentially expensive) operating over a good quality map
with no missing roads, both of which may be non-trivial for a common traveler in developing countries.
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Path2(15 mins)

Path1(10 mins)

Path 2 (12 mins)

Path 1 (10 mins)

Fig. 1: Problem illustration

In contrast, consider Path 2 from A to B in Figure 1 with
a travel time of 12 minutes. This route involves going past
some popular sites like the hotel Sarvana Bhavan and the hotel
Radisson Blu Marina, and then taking the first right turn that
follows. Given the challenges associated with transportation
and navigational infrastructure in a developing nation setting,
one may choose Path 2 even if it is 20% longer than the shortest
path. This is because it is easier to describe, memorize, recall
and follow. This option would be even more amenable if the
driver is not well versed with the area.

Furthermore, travelers who are not comfortable using navi-
gation systems while driving, senior citizens for instance, gener-
ally look up the route suggestions before starting their journey.
Such travelers tend to memorize the route based on the sites
en-route to their destination. These travelers would thus be
benefited by our concept of most navigable paths which are
potentially easier to memorize. The concept of most navigable
paths would also help drivers of two-wheelers (predominant
in developing countries) by suggesting routes which are easier
to follow, as it can be difficult to follow step-by-step instruc-
tions on a screen while driving two-wheelers. To the best of
our knowledge, both Google maps (www.google.com/maps) and Bing maps (www.bing.com/maps) do
not have the option of navigable paths. The notion of “navigability” can also be customized for different
sets of user requirements. We discuss some more notions of navigability in Section 2.2 and show that our
algorithms can be generalized to consider these different notions.

1.1 Computational challenges

Finding the “Most Navigable Path (MNP)” is computationally challenging. The MNP problem is for-
malized as the Arc Orienteering Problem (AOP) (a maximization problem under constraints) which is
known to be an NP-hard combinatorial optimization problem [2, 11]. The AOP problem can easily be
reduced [26] to the Orienteering Problem (OP) which is also NP-hard [10, 12, 18]. Another factor which
adds to the complexity of the MNP problem is the scale of real road networks, which typically have
hundreds of thousands of road segments and road intersections.

Challenges in adapting a minimization problem: It is important to note that a maximization prob-
lem such as the MNP problem cannot be trivially reduced into a minimization problem by considering
the inverse of the navigability scores. Even without the budget constraint, the MNP problem involves
maximizing the sum of navigability scores of the output path. Mathematically, it is equivalent to max-
imizing the sum of n parameters, s1, s2, . . . , sn (si denotes the score of edge ei in a path); which is not
equivalent to minimizing the sum of their inverses 1

s1
, 1

s2
, . . . , 1

sn
. Figure 2 shows an example illustrating

this fact. In the Figure, the path s → a → b → d has a higher navigability score. However, when we
consider the inverses of the navigability score and adopt a minimization based approach, we would get
the path s→ c→ e→ d as the solution, which is incorrect.
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Edge label: Cost|Score


Path s->a->b->d :

Sum of scores = 15

Sum of inverse scores = 9/7


Path  s->c->e->d:

Sum of scores = 9

Sum of inverse scores = 1

Fig. 2: Example illustrating challenges of using inverses of navigability scores.

To summarize, one cannot trivially generalize algorithms developed for shortest path problems (e.g.,
[7, 9, 13, 17]) to get an optimal solution for the MNP problem. For the same reason, algorithms developed

www.google.com/maps
www.bing.com/maps


Finding The Most Navigable Path in Road Networks 3

for k shortest loop-less paths problem [14, 20, 28] and route skyline queries [16, 25] can also not be trivially
adapted to solve the MNP problem optimally. This holds true despite the fact that they provide an
opportunity to incorporate the budget constraint by making small changes to their algorithm. Basically,
during the path exploration in [14, 16, 20, 28], any candidate path whose cost increases beyond the
budget is pruned. Note that k would be set such that we obtain at least one path within our designated
budget. We would broadly refer [7, 9, 13, 14, 16, 17, 20, 28] as minimization based approaches.

Note that in addition to lack of mathematical equivalence in the objective functions, the minimization
based approaches do not achieve the following desirable property that an ideal algorithm for the MNP
problem should have: if a user is willing to spend more time (i.e., more budget), then he/she should
be suggested paths with even higher scores that were not valid otherwise. This means that the score
of returned path should increase monotonically with budget value. The minimization based approaches,
when adapted for the MNP problem, do not guarantee such solutions.

Despite the shortcomings of the minimization based approaches, we adapted the advanced route
skyline computation (ARSC) algorithm proposed in [16] as a representative sample of that class of
algorithms for experimental comparison with our proposed approaches. However, our experiments showed
that the proposed algorithms outperform the adaptation in terms of solution quality.

1.2 Limitations of related work

The existing algorithms for the AOP problem (or the OP as AOP can be reduced to OP [26]) can
be divided into three categories: exact, heuristic and approximation algorithms. Exact algorithms have
been proposed in [2, 8]. However, these algorithms cannot scale up to any real world road networks.
For instance, algorithm proposed in [2] takes up to 1 hour to find a solution for a graph with just 2000
vertices.

There have been several works which proposed heuristic algorithms for the AOP [24, 27] and OP
[5, 23] problems. A core requirement of these algorithms is pre-computation of all-pairs shortest paths of
the input graph. This pre-computation step is necessary for ensuring their scalability (as also pointed out
by Lu and Shahabi[19]). However, it is important to note that in any realistic scenario, urban networks
keep updating frequently, for e.g., roads may be added, closed or heavily congested (due to repair or
accidents) etc. Thus, any real-life system for the MNP problem working on large-scale urban road maps
cannot use these techniques which require frequent computation of all-pairs shortest paths.

To the best of our knowledge, the only heuristic algorithm that does not pre-compute shortest paths
is [19]. However, it generates paths with loops. We adapted their solution for the MNP problem. However,
our experimental results indicated a superior performance of our algorithms. Our understanding is that
their algorithm is more suitable when there are very few edges with a non-zero navigability score value.

Gavalas et al.[11] propose an approximation algorithm for the OP problem where edges are allowed
to be traversed multiple times, a relaxation not suitable for our problem as it would be pointless to
drive unnecessarily in a city to reach a destination. Similarly, approximation results were proposed in
[3, 4, 6, 21, 22]. But they would also need to pre-compute all-pairs shortest paths for efficiency, which as
discussed previously is not suitable for the MNP problem in typical real-world scenarios.

(1) Compute a seed path from s to d

(2) Estimate score gain for all 
segments of the seed path

(3) Select segment(s) for 
replacement

(4) Replace segment(s)

Fig. 3: Proposed framework
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1.3 Proposed Solution Framework

Our overall framework for solving the most navigable path problem primarily consists of four steps (as
shown in Figure 3). Firstly, we compute an initial seed path from s to d. In the second step, we estimate
the potential gain in path score that can be achieved upon replacing each segment of the seed path with
a new segment. In the third step, we select a subset of segments of the seed path for replacement with
the goal of improving the navigability score of the solution. Lastly, the segments selected in the third
step are replaced, and while this is being done, we ensure that the total cost of the resulting path is
within the budget value.

1.4 Contributions

A preliminary version of this paper appeared in [15]. In [15], we put forth the problem of finding the most
navigable path and proposed the overall solution framework shown in Figure 4. We used shortest paths
for computing the initial seed path (first step), and used a modified bi-directional breadth first search for
computing the potential increase in score values (second step). We proposed an algorithm called OPTD
for step 3 (details in Section 3.3.3). This algorithm made some simplifying assumptions such as ignoring
the budget constraint while computing the solution. In [15], the budget constraint was applied as a post
processing step. Lastly, we also proposed an index as a heuristic. In this work, we make the following
new contributions over our conference submission:

1. Propose new algorithms for different modules in our solution framework proposed (refer Figure 4).
(a) We explore a new technique for computing the seed path in Step-1.
(b) We propose two new algorithms for the Step-3 called OPTF and SUBOPTF.

2. Add semantic richness to the notion of navigability by extending our notion of navigability to include
parameters such as the number of turns in the path, the navigability scores on the road intersections,
etc.

3. Conduct more thorough experimental evaluation
(a) We conduct our experiments on a much larger road network (of New York, USA) which contained

264,346 nodes and 733,846 edges.
(b) We implemented all the newly proposed techniques and compared them against an adaptation of

a route skyline algorithm [16] and the current state of the art [19] most relevant to our problem
setting.

(c) We introduce new experiments by considering different parameters.
– We studied the effect of score values (of edges) on the performance of algorithms. To this

end, we assigned the navigability scores in two ways: (a) random distribution (conference
submission), (b) normal distribution.

– We studied the effect of different parameters on the solution quality and running time in a
detailed fashion.

– Lastly, we also consider selecting the same seed path, and applying the improvement algo-
rithms of our proposition and that of the state-of-the-art, and compare their performance.

4. Conduct a case study based on a real-life scenario in a developing nation that proves the effectiveness
of our notion of navigability and the proposed algorithms

The rest of the paper is organized as follows. We cover the basic concepts and formally present the
problem definition in Section 2. The proposed framework is discussed in detail in Section 3, followed by a
description of the proposed algorithms in Section 4. In Section 7, we discuss the experimental evaluation.
Finally, Section 8 concludes the paper.

2 Basic concepts and problem definition

Definition 1 Road network: A road network is represented as a directed graph G = (V,E), where
the vertex set V represents the road intersections and the edge set E represents the road segments. Each
edge in E is associated with a cost value which represents the distance or travel-time of the corresponding
road segment. Each edge is also associated with a score value (≥ 0) which represents the navigability
score of the corresponding road segment. We refer to an edge with a score value > 0 as a navigable edge.

Definition 2 Path: A path is a sequence of connected edges < e1 e2 ... en >. For this work, we consider
only simple paths (paths without cycles).
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Definition 3 Segment of a path: A sequence of connected edges, < ei ei+1 ... ej >, denoted as Sij , is
a segment of the path P =< e1 e2 ... en > if 1 ≤ i ≤ j ≤ n. Sij .score denotes the sum of scores of all
the edges in Sij . Likewise, Sij .cost denotes the sum of costs of all the edges in Sij . Sij .start and Sij .end
denote the first and last vertices of Sij .

For example, < (s, a)(a, b)(b, d) > is a path in Figure 2. S23 =< (a, b)(b, d) > is a segment of this
path. S23.score = 14 and S23.cost = 3. All edges of this path are navigable edges.

2.1 Problem definition

Input consists of:
(1) A road network, G = (V,E), where each edge e ∈ E is associated with a non-negative cost value and
a navigability score value.
(2) A source s ∈ V and a destination d ∈ V .
(3) A positive value overhead which corresponds to the maximum permissible cost allowed over the cost of
the minimum cost path from s to d. In this paper, we refer to the term (overhead+cost of theminimum
cost path froms to d) as the budget.
Output: A path from s to d
Objective function: Maximize path.score
Constraint: path.cost ≤ budget.

2.2 Practical considerations while using MNP in real life

While using MNP problem in real life one would have to first define the notion of “navigablity” and then
assign the navigability scores to road segments accordingly. Though the score values may be subjective,
a rule of thumb could be followed. Scores could be assigned over a range (e.g., 0-15) where higher values
(e.g., 10-15) are given to roads which satisfy the stated notion of navigability to a greater extent, and
lower values (e.g., 0-5) otherwise. Following are sample use-cases which define the notion of “navigability”
in some typical developing country scenarios.

Consider a case where a user wants to take a route which has the maximum number of easily identi-
fiable sites (to ease the following of path) on its constituent road segments, while constraining the total
cost to be within the budget. This can be done by assigning higher scores to edges (e.g., 10-15) containing
unique/popular sites like a well-known temple or a prominent building, and lower scores (e.g., 1-5) to
edges with sites like petrol pumps and ATMS. A road segment with no such easily identifiable site may
be given a score value of zero.

One can also implement a slightly different interpretation of navigability by assigning scores based
on the quality of road segments. This is often a requirement in developing nations where the quality of
roads is usually not good. High navigability scores (e.g., 10-15) can be given to roads which are wider
and/or have less number of potholes. In contrast, narrow roads and high number of potholes can decrease
the navigability score of a road. Consequently, the most navigable path would now mean a route which
ensures smoothest drive to the destination, while constraining the total cost to be within the budget.

Lastly, in some cases, a user may want to minimize the number of left and/or right turns in addition
to choosing a path with easily identifiable sites. As discussed previously, road segments with easily
identifiable sites can be modeled by giving high navigability scores to the corresponding edges in the
graph. Priorities for turns can be incorporated by expanding each intersection into multiple nodes and
adding edges that represent all the turns. Later, score can be assigned to these new edges (explained
in detail in Section 5). For example, if one prefers straight (i.e., no turns) routes, then at each road
intersection, we can assign more score (e.g., 14) to the edge that represents a straight route. The edges
representing left or right turns would get a low navigability score (e.g., 5). Consequently, the resulting
routes would have fewer number of turns. In Section 5, we describe our approach to generalize the
algorithms proposed in the upcoming sections to consider turn based notions of navigability.

3 Proposed framework

Figure 4 shows the modules of the proposed framework along with the techniques proposed for each
module. We now explain each of these techniques in detail.

3.1 Computing the initial seed path

We have the following two ways to compute the initial seed path between our given source and destination
nodes:
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1. Shortest Path Seed: We use the shortest path (based on the cost parameter) between our source
and destination node as the initial seed path.

2. Vicinity Based Seed: In this approach, we first select all the edges which have the following two
properties: (a) score value is greater than zero and, (b) they lie within the elliptical vicinity of our
source and destination nodes. We call this set as NavEdgessd. Elliptical vicinity of a source s and
destination d is defined as the set of all edges which lie in an ellipse drawn with s and d as its
two focii and budget as the length of the major axis. Note that in our implementation we use our
proposed Navigability Index for determining these edges efficiently. Details on the Navigability Index
are presented in Section 3.2.2. Following creation of the set NavEdgessd, we randomly pick an edge
(u, v) from this set and compute the following shortest paths (based on the cost attribute). The first
one being between s and u, and the second one between v and d. Let P be the path (between s and
d) created by concatenating these two shortest paths (denoted as s  u → v  d). P is selected as
the seed path if its cost lies within the budget value, otherwise, the same process is repeated until we
get a valid seed path.

(1) Compute a seed path from s to d (2) Estimate score gain for all segments of 
the seed path

Weighted 
Bidirectional Search

Vicinity potential 
estimation

Shortest path 
seed

Vicinity based 
seed

(3) Select segment(s) for replacement

OPTF strategy OPTD strategy

SUBOPTF strategy

(4) Replace segment(s)

Greedy strategy

Fig. 4: Proposed framework

3.2 Estimating score gain for all segments of the seed path

The second step of our framework entails estimation of score gain for all segments of the seed path. For
this, we propose the following two procedures: (i) the weighted bi-directional search and, (ii) Using our
novel Navigability Index to estimate the score improvement potential of a segment. These procedures are
described in detail next. Section 3.2.1 details the weighted bi-directional search procedures. We describe
our Navigability Index based approach in Section 3.2.2.

3.2.1 Weighted Bidirectional Search (WBS)

Input to the WBS algorithm consists of the following: the input road network, the initial seed path, a
specific segment (Sij) of the initial seed path, and a budget value (B′). The goal of the algorithm is to
determine a replacement (S′ij) for Sij such that the following criteria are satisfied:

1. The new segment (S′ij) has a higher score value than the input segment.
2. The resultant path from the source to the destination, obtained after replacing Sij with S′ij , is simple

(i.e., no loops).
3. The total cost of the new segment S′ij is within B′.

The WBS algorithm employs a bi-directional search to determine the replacement S′ij . The forward
search starts from the first vertex of the input segment Sij , whereas the backward search starts from
the last vertex of Sij . In each iteration of the WBS algorithm, the forward search determines the best-
successor of the current tail node (denoted as Ftail) of the partial segment it is developing. This is
done by processing the out going edges of Ftail. In contrast to the forward search, the backward search
determines the best-predecessor of the current tail node (denoted as Btail) of the partial segment it is
developing. This is done by processing the incoming edges at Btail. At the beginning of the algorithm,
Ftail is initialized to the Sij .start, whereas Btail is initialized to Sij .end. We now provide details on
computation of the best-successor and best-predecessor.
Determining the best-successor of Ftail: Given the current tail node of the forward search frontier
Ftail, and the target node (current Btail), the algorithm computes the Forward Navigability Potential
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(Γ f in Equation 1) of all the outgoing neighbors u of Ftail. Following this, the neighbor with the highest
Γ f is designated as the best-successor of Ftail. Algorithm 1 details this process.

Γ f (u, Ftail, Btail) = 1 + score(Ftail, u)
cost(Ftail, u) +DE(u,Btail)

(1)

In Equation 1, DE denotes the Euclidean distance1 between the outgoing neighbor u (of Ftail) and
the current tail node of backward search Btail. As per Equation 1, neighbors of Ftail which are closer to
Btail (i.e., lower Euclidean distance), and involve edges with high navigability score values and low cost
values, would get a higher value of Γ f . Algorithm 1 chooses the neighbor which has the highest value of
Γ f .
Algorithm 1 Best-Successor of Ftail (G,Ftail, Btail)
Input: A road network G, Ftail and Btail

Output: Best-Successor of Ftail and its gamma value (Γ f
best)

1: for all OutNeighbors u of Ftail do . only the unvisited Outneighbors
2: Compute Γ f (u, Ftail, Btail)
3: end for
4: Best-Successor of Ftail ← OutNeighbor u of Ftail with highest Γ f

Determining the best-predecessor of Btail:
Analogous to the computation of Γ f , the Backward Navigability Potential (Γ b) is computed using

Equation 2. Here, we consider the incoming edges of Btail. The neighbor with the highest Γ b is designated
as the best-predecessor of Btail.

Γ b(v,Btail, Ftail) = 1 + score(v,Btail)
cost(v,Btail) +DE(v, Ftail)

(2)

Note that if we consider the turn based notions of navigability scores (e.g., a driver preferring route
with minimum turns), then Equation 1 and Equation 2 need to be adapted to include these aspects.
This changes are detailed in Section 5.

It is important to note that both the forward and the backward searches have “moving targets.” In
other words, the value of Btail in Equation 1 (and Ftail in Equation 2) would change as the algorithm
proceeds. To this end, the WBS algorithm employs a design decision to help in quick termination (while
not sacrificing on the navigability score). The algorithm first moves the frontier (forward or backward)
whose next node to be added 2 comes in with a higher value of Γ . The rationale behind this design decision
is the following: a node with higher Γ can imply one or more of the following things: (1) closer to the
current target; (2) higher navigability; (3) lower edge cost. Needless to say that all these circumstances
are suitable for the needs of the WBS algorithm. After advancing the selected search, WBS re-computes
the next node to be added to the other search frontier before it is advanced. For instance, if in the first
step the node added by the forward search had higher Γ , then WBS would first advance the forward
search frontier by updating its Ftail to its best-successor. Following this, best-predecessor of the backward
search is re-computed based on the new value of Ftail. After that, the backward search is also advanced
by updating its Btail to its best-predecessor. Note that in any particular iteration of WBS, both the
forward and the backward searches are advanced.
Putting together forward and backward searches: Algorithm 2 puts together our proposed forward
and backward searches along with a termination condition and a mechanism to collect candidate solutions
during the course of the execution. We now describe both these aspects of the WBS algorithm.

As one can imagine, a natural termination condition for the WBS algorithm would be meeting of
the forward and the backward searches i.e., both the searches color the same vertex. Algorithm 2 uses
this as the primary termination condition as indicated in the while loop on line 3 of the pseudo-code.
In addition to this, the algorithm also terminates, if at any stage, the total cost of the partial paths
constructed so far by the forward and the backward searches happens to be greater than the available
budget B′. This termination clause is indicated in lines 23–25 of Algorithm 2.

1 If the edge costs represent travel-times, then a lower bound on the travel time may be used. This can be computed
using the upper speed limit of a road segment.

2 best-successor in case of forward and best-predecessor in case of backward
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Algorithm 2 Weighted Bidirectional Search (G,P, Sij , B
′)

Input: A road network G, a path P , a segment Sij of P , a budget value B′ = B − P.cost + Sij .cost, Output: A new
segment S′

ij to replace Sij

1: Ftail ← Sij .start, Btail ← Sij .end
2: Mark Ftail as colored by forward search and Btail as colored by backward search
3: while Forward and backward searches do not color a common node do
4: if Ftail and Btail are connected via a 1-hop or 2-hop path then
5: Pcand ← Sij .start Ftail  Btail  Sij .end

6: if Pcand.cost ≤ B
′ then

7: Save Pcand in the set (Ω) of candidate segments
8: end if
9: end if
10: Compute Best-Successor of Ftail & its Gamma, Γ f

best
(using Algorithm 1)

11: Compute Best-Predecessor of Btail & its Gamma, Γ b
best

12: if Γ f
best

> Γ b
best then

13: Ftail ← Best-Successor of Ftail . Move the forward search
14: Compute Best-Predecessor of Btail

15: Btail ← Best-Predecessor of Btail . Move the backward search
16: Mark Ftail and Btail as colored by their respective searches
17: else
18: Btail ← Best-Predecessor of Btail . Move the backward search
19: Compute Best-Successor of Ftail (using Algorithm 1)
20: Ftail ← Best-Successor of Ftail . Move the forward search
21: Mark Ftail and Btail as colored by their respective searches
22: end if
23: if (Sij .start Ftail).cost+ (Btail  Sij .end).cost > B

′ then
24: Break
25: end if
26: end while
27: if Forward and backward searches have colored a common node then
28: Pcand ← Reconstructed path between Sij .start and Sij .end by following the Best-Successors/Best-Predecessors
29: Save Pcand in Ω
30: end if
31: Return the segment in Ω with highest navigability score

During the course of the algorithm, it collects several candidate solutions in a set called Ω (lines 4–9
and lines 27–29 in Algorithm 2). At termination, WBS returns the solution having the highest navigability
score. The primary reason to collect these candidate solutions being that the forward and the backward
searches may not always meet during the course of the algorithm. WBS collects the candidate solutions
in the following two ways:

1. At any time during the exploration, if the current Ftail and Btail are connected through either a
direct edge or two edges then, the segment formed by concatenating this direct edge (or two edges)
with the current partial segments formed by forward and backward search is saved as a candidate
solution in the set Ω. This is done only if the total cost of this candidate solution is less than the
budget B′. This case is illustrated in lines 4–9 of the algorithm.

2. Trivially, if the two search frontiers meet, the partial segments formed by the forward and the back-
ward search are concatenated to create a candidate solution between the first and last nodes of the
original segment Sij .

Example: Consider the graph representation of a road network in Figure 5(a). Each edge ei is labeled
with attributes costi|scorei. We consider the shortest path from s to d marked in red. This path has a
score value 3 and a cost value 3. Let the total budget value be set as 5. If segment < (a, b)(b, d) > of this
path is given as an input to the WBS algorithm, the value of B′ is 5− 1 + 2 = 3.
Iteration one: Ftail ← a and Btail ← d. Since Ftail and Btail are connected via a 2-hop path (a→ f →
d) with cost value 2 and score value 2, we add this path to the set Ω. Therefore, Ω = {a→ f → d}. The
Γ f values are computed as shown in Equations 3, 4 and 5. Therefore, the Best-successor of a is c, and
Γ f

best = 1.236.

Γ f (c, Ftail = a,Btail = d) = 1 + 3
1 +
√

5
= 1.236 (3)

Γ f (f, Ftail = a,Btail = d) = 1 + 0
1 + 1 = 0.5 (4)

Γ f (b, Ftail = a,Btail = d) = 1 + 1
1 + 1 = 1 (5)
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Fig. 5: Example illustrating the working of WBS. Legend: “Cost of edge|Score of edge”

Similarly, the Γ b values are computed as shown in Equations 6 and 7. Best-successor of d is f , and
Γ b

best = 1.5. Since, Γ b
best > Γ f

best, we move the backward search first, i.e., Btail ← f . The Γ b values are now
recomputed taking into account the new value of Btail. The recomputed values are given as: Γ f (c, a, f) =
(1 + 3)/(1 +

√
2) = 1.656, Γ f (f, a, f) = (1 + 0)/(1 + 0) = 1, and Γ f (b, a, f) = (1 + 1)/(1 +

√
2) = 0.828.

∴ Ftail is set to c.

Γ b(f,Btail = d, Ftail = a) = 1 + 2
1 + 1 = 1.5 (6)

Γ b(b, Btail = d, Ftail = a) = 1 + 0
1 + 1 = 0.5 (7)

Iteration two: Ftail ← c and Btail ← f . The Best-successor of both c and f for this iteration is e.
Both searches color the same node in this case. The reconstructed path (a→ c→ e→ f → d) with cost
value 3, is added to Ω, i.e. Ω = {a→ f → d, a→ c→ e → f → d}. The algorithm terminates, and the
segment with the highest Γ value in Ω, i.e. a→ c→ e→ f → d, is returned as the solution.
Time complexity analysis: The number of vertices visited by WBS is O(|V |). No vertex is visited
twice, and each vertex v that gets colored leads to computation of degree(v) number of navigability
potential values. Thus, the time complexity of WBS is O(|E|). Here, |V | denotes the number of nodes
and |E| denotes the number of edges in the input graph.

3.2.2 Estimating the score improvement potential using Navigability Index

Unlike the WBS algorithm described in the previous section, the approach proposed in this section
does not involve computing an actual replacement (S′ij) for estimating the potential for getting a higher
navigability score (within the budget) when the given segment Sij is replaced. Instead, we estimate the
potential by computing a novel metric called as the Vicinity Potential (VP) for segment Sij . A higher
vicinity potential implies greater potential in finding a replacement which has higher navigability score
(than Sij). The Vicinity Potential of a segment is computed using our proposed Navigability Index.
Details of this approach are presented next.

Given a segment Sij and a budget value B′, the vicinity of Sij is defined as the area bounded by the
ellipse with focal points as Sij .start and Sij .end. The length of its major axis is B′. The properties of
an ellipse allow us to claim the following: any path between Sij .start and Sij .end of length ≤ B′ would
not include any edge lying completely outside or intersecting this ellipse.
Vicinity Potential (VP) of a segment: The VP value of a segment Sij is defined as the average
of navigability scores of all the navigable edges lying in the vicinity of Sij . Equation 8 presents this
formally3. Recall that only the edges having a navigability score value > 0 are referred to as navigable
edges (denoted in Equation 8 as ′ne′).

V P (Sij , B
′) =

∑
ne∈ellipse(Sij .start,Sij .end,B′) ne.score

Count(ne ∈ ellipse(Sij .start, Sij .end,B′))
(8)

This definition is based on the intuition that more the number of highly navigable edges in a segment’s
vicinity, the higher would be the probability of finding a segment to replace it. We now introduce an
indexing structure, the Navigability Index, which we use to estimate the VP value of a segment.
Navigability Index for computing the VP values: To compute the VP value of a segment, one
needs to obtain the set of edges that are contained in its vicinity. This computation can be made efficient

3 If edge costs represent travel-times, then the travel-time based budget can be converted to a distance based budget
using the upper speed limit of a road segment.
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using our navigability index. Navigability Index is similar to a regular spatial grid. Each cell in this index
stores two numeric values: sum and count. The sum value of cell (x, y) is set to the sum of scores of all
navigable edges contained in the rectangle bounded between cells (0, 0) and (x, y). The count value of
cell (x, y) is set to the number of navigable edges contained in this rectangle. Given these, the sum and
count values of any rectangle in the grid bounded between cells (i, j) and (m,n) can be computed using
Equations 9 and 10. Here, sum(x, y) and count(x, y) respectively denote the sum and count values of
cell (x, y).

Sum = sum(m,n)− sum(i− 1, n)− sum(m, j − 1) + sum(i− 1, j − 1) (9)

Count = count(m,n)− count(i− 1, n)− count(m, j − 1) + count(i− 1, j − 1) (10)

The proposed index structure computes the VP value for any segment in O(1) index lookups, irre-
spective of the order of the grid index used. This is done as follows: to compute the VP value of Sij , we
take the spatial coordinates of Sij .start and Sij .end as the foci of the ellipse with the length of major
axis= B′. Next, we compute the grid aligned minimum bounding rectangle (MBR) of this ellipse. The VP
value of Sij can then be computed by plugging the bottom-left (i, j) and upper-right (m,n) coordinates
of this MBR in Equations 9 and 10. This makes the computation much faster. The idea of this index
structure was inspired by the work in Aly et al.[1].

3.3 Selecting segment(s) for replacement

Recall that the third step of our framework entails selection of segment(s) for replacement. In this
section, we describe three strategies to select a set of segments for replacement from the seed path.
Two of these strategies (OPTF and SUBOPTF covered in Section 3.3.1 and Section 3.3.2) require the
score-gain (sgain) and cost-gain (cgain) values for each of the segments Sxy of the initial seed path.
Here, sgain of a segment Sxy is defined as the difference in the navigability score values of Sxy and
its replacement S′xy: Sxy.sgain = S′xy.score − Sxy.score. cgain is also defined in an analogous way:
S

′

xy.cgain = S′xy.cost − Sxy.cost. As one can imagine, for using OPTF and SUBOPTF strategies in
module 2 (refer overall framework in Figure 4), we need to use only the weighted bi-directional search
algorithm in module 1. This is because, the navigability index based approach (discussed in Section 3.2.2)
does not give us the cgain values while computing the score gain estimates.

In contrast to the OPTF and the SUBOPTF strategies, our third strategy OPTD requires only the
sgain values for each of the segments Sxy of the initial seed path. Thus, we can use both the weighted
bi-directional search and navigability index based approach for determining the potential score values of
all the segments in the initial seed path.

The rest of this section is organized as follows. We first describe the overall problem of selecting
segments for replacement and illustrate its challenges. Following this, we describe our proposed strategies
OPTF, SUBOPTF and OPTD in Section 3.3.3, Section 3.3.2 and Section 3.3.3 respectively.

Selecting a set of segments to replace from a given seed path is non-trivial. This is because of the fol-
lowing three reasons: (a) segments chosen for replacement may have common edges, (b) budget constraint
and, (c) replacements of the chosen segments may overlap.

Example: As an instance of challenges (a) and (b), refer to Table 1. The table illustrates a sample
scenario on replacing segments of an initial seed path < e1 e2 e3 e4 >. The ten possible segments of
this path are shown along with their sample sgain and cgain values. Here, an entry (0,0) implies that
no solution was found by WBS for that segment. In this example, we can either replace the segment
< e2 e3 > or the segment < e1 e2 e3 >. Replacing both would not be possible as e2 is common to both
segments.

Table 1: Set of all segments of path < e1 e2 e3 e4 >

Segment (sgain, cgain) Segment (sgain, cgain)

< e1 > (7,5) < e2 e3 > (16,10)
< e2 > (7,5) < e3 e4 > (15,10)
< e3 > (5,8) < e1 e2 e3 > (15,18)
< e4 > (0,0) < e2 e3 e4 > (0,0)
< e1 e2 > (15,12) < e1 e2 e3 e4 > (10,15)

In addition, if the allowed overhead was 15 then, the segments< e1 > and< e2 e3 > can be collectively
replaced. Whereas, segments < e1 e2 > and < e3 > cannot be collectively replaced, as their cgain value is
20. We now formalize this idea using the concept of a feasible and disjoint set of segments corresponding
to a path.
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Feasible and Disjoint Set of Segments (FDSS): FDSS of a given path P , is a set of segments such
that no two segments in the set share an edge, and P.cost +

∑
∀S∈F DSS S.cgain ≤ B. In our previous

example, < e1 > and < e2 e3 > form an FDSS. As expected, the central goal would be to determine an
FDSS which results in the highest increase in navigability score.
Computational structure of the FDSS problem: The FDSS problem can be seen as an advanced
version of the 0/1 knapsack problem where certain items are not allowed together (i.e., segments having
common edges). For solving FDSS, one can first enumerate all sets of disjoint segments and then, run
an instance of 0/1 knapsack on each set of disjoint segments. Basically, each set is generated by cutting
a path at k unique locations (0 ≤ k ≤ #edges in the path - 1). However, this technique would have two
computational challenges: (a) knapsack problem is known to be NP-hard, (b) a path with l edges would
have 2l−1 unique sets of disjoint segments. We now describe our three proposed strategies for segment
selection.

3.3.1 Optimal strategy for FDSS selection (OPTF)

Our first strategy for segment selection computes the optimal solution to the FDSS problem. A careful
examination of the FDSS problem reveals that solving for the optimal solution involves overlapping
subproblems. We use this insight in our DP based solution to compute the optimal FDSS.
Selection of FDSS: We compute the solution in a bottom up manner starting with subproblems of size
1, where the size of a subproblem represents the number of edges in the corresponding segment. We denote
the set of feasible solutions for the segment having edges numbered i through j as Fij . This set has pairs of
sgain and cgain values corresponding to all possible ways of replacing a segment within the given budget.
The sets representing solutions of subproblems of size 1 are initialized as Fii = {(S′

ii.sgain, S
′

ii.cgain)}.
F(i+1)i is initialized as {(0, 0)}. Equation 11 gives the set of feasible solutions for subproblems of size >
1.
Fij(i < j) = {(sx, cx) : sx = S

′

ik.sgain+ sy and cx = S
′

ik.cgain+ cy ∀(sy, cy)

∈ F(k+1)j , cx ≤ B} ∪ {(S
′

ik.sgain, S
′

ik.cgain)} ∪ F(k+1)j ,where i ≤ k ≤ j (11)

Here, the variable k denotes the edge number after which the first cut would be placed. For each
possible first cut, we check if combination of S′

ik (solution found by WBS for segment towards the left
of the cut) and solutions in F(k+1)j (set of feasible solutions computed by the algorithm for segment
towards the right of the cut) are feasible. If this combination is feasible, the new (sgain, cgain) pair is
added to the set Fij . Additionally, both S

′

ik and solutions in F(k+1)j are added to Fij . The option for
having no cut is considered when k = j. The optimal solution for the initial seed path containing l edges
(numbered 1 through l) is given by Equation 12.

FDSSopt = {(sx, cx) : (sx, cx) ∈ F1l, cx ≤ ci, sx ≥ si ∀(si, ci) ∈ F1l} (12)

Example: Consider the sgain and cgain values given in Table 1 for path < e1, e2, e3, e4 >. The set
of feasible solutions for subproblems of size 1 are initialized as: F11 = (7, 5), F22 = (7, 5), F33 = (5, 8) and
F44 = (0, 0) (refer Figure 6). To compute F12, we would consider the first cut being made either after edge
e1 (k = 1) or after edge e2 (corresponds to no cut, k = 2). For k = 1, we check if combination of S′

11 and
solutions in F22 are feasible. Recall that S′

11 refers to the solution found by WBS for segment S11 in Step-
1 of the framework (as shown in Table 1). The new (sgain, cgain) pair is given as (7+7,5+5)=(14,10).
Since this pair is feasible, we add this to F12 along with the pair (7,5). For k = 2, we check if S′

11 and
solutions in F32 are feasible. Since F32 is initialized as (0,0), we add to F12 the pair (15,12). Thus, the set
of FDSS for subproblem < e1, e2 > is {{< e1 >}, {< e2 >}, {< e1 >,< e2 >}, {< e1, e2 >}}. Proceeding
in this manner we compute F14, which gives us the optimal solution as (29,20).

1 2 3 4

1 (7,5) {(14,10),(15,12),(7,5)} {(19,18),(23,15),(14,10),
(12,13),(20,20),(15,18)}

{(19,18),(23,15),(29,20),
(20,20),(15,18),(10,15)}

2 (7,5) {(12,13),(16,10),(7,5),
(5,8)} {(12,13),(16,10),(22,15)}

3 (5,8) {(5,8),(15,10)}

4 (0,0)

i
j

Fig. 6: Illustration of example for OPTF and SUBOPTF strategies
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This method for optimal FDSS selection computes solutions to the distinct subproblems only once.
However, this computation is exponential in terms of both space and time. Lemma 2 proves this claim.
Proof of optimality of the FDSS selected is given in Lemma 1.

Lemma 1 OPTF computes the optimal FDSS.

Proof. We prove this claim through contradiction. Let FDSSopt = (so, co) be reported as the optimal
solution by the algorithm. We assume that there exists a way of replacing segment Sxy, represented by
the pair (sk, ck), such that sk > so and ck ≤ B. Clearly, (sk, ck) is the correct optimal solution. Since
(sk, ck) is a feasible way of replacing Sxy, the definition of Fxy implies that (sk, ck) ∈ Fxy. This further
implies that (sk, ck) ∈ F1l. ∴ by Equation 4, (sk, ck) would be computed as the optimal solution. This
contradicts our assumption that (so, co) is reported as the optimal solution.

Lemma 2 For a path with l edges, OPTF takes O(3l) time and space to select the optimal FDSS.

Proof. The number of distinct subproblems of size i = l−i+1. The total number of distinct subproblems
=

∑l
i=1(l−i+1) = θ(l2). Let us now consider the time it takes to compute the set F for each subproblem.

Each element of F can be computed in O(1) time. Let si denote the maximum size possible of set Fxy,
where i = y−x+1, i.e., si denotes the maximum possible number of feasible solutions for some subproblem
of size i. For i = 1, we have s1 = 1. For i > 1, we have:
si =

∑i−1
k=1(2 ∗ sk + 1) + 1

= (2 ∗ si−1 + 1) + (
∑i−2

k=1(2 ∗ sk + 1) + 1)
= (2 ∗ si−1 + 1) + si−1 = 3 ∗ si−1 + 1
Thus, the size of F increases exponentially with the size of the subproblems and |F1l| is O(3l).

3.3.2 SUBOPTF: Sub-Optimal strategy for FDSS selection

Since our first strategy for segment selection (OPTF) consumes an exponential time and space, it is not
practical to use it for real-time applications. Therefore, in our second strategy (SUBOPTF), we drop
the constraint of optimality of the solution. First, we explain the method used for selection of FDSS by
this algorithm. We select a set of segments in a more efficient way than the OPTF strategy. The FDSS
selected may not be the optimal solution but the total score gain of the computed FDSS is guaranteed
to be greater than or equal to that of the segment with the highest value of sgain.

Selection of FDSS: Here, the set of feasible solutions for a subproblem is replaced by a single, local
optimal solution. The solutions of subproblems of size 1 are initialized as fii = {(S′

ii.sgain, S
′

ii.cgain)},
and f(i+1)i is initialized as {(0, 0)}. The subproblems are then solved in increasing order of size using
Equation 13. The function max defined in Equation 14, computes the local optimal from a set of feasible
solutions S. The final solution is then given as f1l.

fij(i < j) = max{{(sx, cx) : sx = S
′

ik.sgain+ sy and cx = S
′

ik.cgain+ cy ∀(sy, cy)

∈ f(k+1)j , cx ≤ Budget} ∪ {(S
′

ik.sgain, S
′

ik.cgain)} ∪ {f(k+1)j},where i ≤ k ≤ j} (13)

max(S) = (sx, cx) where (sx, cx) ∈ S, sx ≥ sy and cx ≤ cy∀(sy, cy) ∈ S (14)

Example: The values marked in red in Figure 6 show the local optimal solutions corresponding to
SUBOPTF for the example given in Table 1. The final solution in this case too is (29,20).

Lemma 3 For a path with l edges, SUBOPTF takes O(l3) time and consumes θ(l2) space for FDSS
selection.

Proof. Since, the total number of distinct subproblems is θ(l2), and each subproblem has a single
(sgain, cgain) pair as its solution, the algorithm consumes a total of θ(l2) space. Let us now consider the
time it takes to compute the solution for each subproblem. The maximum number of cuts possible for
any subproblem is l. For each possible cut in a given subproblem Sij , a maximum of three elements are
added to the set S which is passed as input to the max function. For the value of cut variable as k, these
three elements include S′ik, fkj and S′ij . Thus, the size of input to max for a subproblem is O(l), which
can be computed in O(l) time. This gives a total time of O(l3) for the SUBOPTF segment selection
strategy.
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Lemma 4 The total score gain of the FDSS selected by SUBOPTF is guaranteed to be no less than that
of the segment with the highest sgain value.

Proof. Let Sxy be the segment with the highest value of sgain. Consider the solution fxy = (s, c)
computed by SUBOPTF corresponding to the segment Sxy. The two solutions will be different if either
of the following two conditions holds true:
1. s > S

′

xy.sgain

2. s = S
′

xy.sgain and c ≤ S′

xy.cgain

In either case s ≥ S′

xy.sgain. But since S′xy.sgain is the highest sgain value, we have that s = S
′

xy.sgain.
∴ fxy = S′xy. This would imply that the solution f1l has an sgain value no less than that of S′xy.

3.3.3 OPTD: Optimal strategy for DSS selection

In our third segment selection strategy, we drop the feasibility constraint from the FDSS definition to
define what we call as a Disjoint Set of Segments:
Disjoint Set of Segments (DSS): DSS of a given path is a set of segments such that no two segments
in the set share an edge.

The reason for dropping the feasibility constraint becomes clear in Section 4 on proposed algorithms.
The OPTD strategy for segment selection is a DP based algorithm that selects the optimal DSS. Input
to this algorithm is the set of sgain values for all segments of the initial seed path, that are computed
using WBS. We observe that the DSS problem exhibits the optimal substructure property. We exploit
this property to design a DP based solution to compute the optimal DSS which takes θ(l3) time, and
consumes θ(l2) space (for a seed path with l edges). The central idea in this DP formulation is to consider
the DSS problem analogous to that of the rod cutting problem. Our initial seed path P becomes the
“rod” being cut. We aim to “break up this rod” into pieces such that the total score gain obtained by
replacing the pieces formed is maximum.

Algorithm 3 DP algorithm for computing optimal DSS
Input: sgain values for all segments of seed path, Output: Optimal DSS
1: for spsize = 2 to l do . Subproblem size
2: for i = 2 to l − spsize+ 1 do . First edge of segment
3: j ← i+ spsize− 1 . Last edge of segment
4: fij ← 0 . Initializing optimal solution for Sij

5: for k = i to l do . Edge after which first cut is placed
6: if Sik.sgain+ f(k+1)j > fij then
7: fij ← Sik.sgain+ f(k+1)j

8: end if
9: end for
10: end for
11: end for

Equation 15 represents the underlying recurrence equation for our DP based solution. Here, fij

denotes the optimal solution for a sub-problem having edges numbered i through j. The optimal solution
for the initial seed path containing l edges is given by f1l. Variable k denotes the edge after which the
first cut in the optimal solution is assumed to be placed. For each possible first cut (i.e. for each value of
k), we check the sum of sgain values of Sik (solution found by WBS for segment towards the left of the
cut) and f(k+1)j . f(k+1)j is the optimal break-up computed by this algorithm for the sub-problem having
edges (k+ 1) through j. The option for having no cut, is considered when k = j. The base conditions for
this recurrence equation are: fii = Sii.sgain (subproblem of size 1) and f(i+1)i = 0. Algorithm 3 presents
a bottom up procedure for computing this recurrence equation.

fij = max
i≤k≤j

(Sik.sgain+ f(k+1)j) (15)

Example: Figure 7 shows the computation of the optimal DSS for the sgain values given in Table 1.
The optimal DSS in this case is {< e1, e2 >,< e3, e4 >}, which has a total sgain value 30.

Lemma 5 For a path with l edges, MSR(OPTD) takes O(l3) time and consumes θ(l2) space to select
the optimal DSS.
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1 2 3 4

1 7 max{7+7,15}= 
max{14,15}= 15

max{7+16,15+5,15}= 
max{23,20,15}= 23

max{7+22,15+15,15+0,10
}= max{29,30,15,0}= 30

2 7 max{7+5,16}= max{12,16}
= 16

max{7+15,16+0,0}= 
max{22,16,0}= 22

3 5 max{5+0,15}= max{5,15}
= 15

4 0

i
j

Fig. 7: Illustration of example for OPTD strategy

3.4 Replacing segments

The final step in our framework entails replacement of the selected segments from the seed path. After a
set of segments has been selected, we attempt to replace all segments in the FDSS or DSS returned. For
this, we follow a greedy approach. We pick segments from the FDSS/DSS in decreasing order of their
sgain values. This is done in order to maximize the score gain, since it may not be possible to replace
all segments of the seed path. As the segments are picked in decreasing order of their sgain values, their
replacements are computed using WBS, and the path is updated after each computation of replacement.

4 Proposed algorithms

In this section, we explain five algorithms that use solution techniques described for the modules of the
proposed framework (Figure 4). Note that more algorithms can be designed using a different combination
of the solution techniques explained for each module.

4.1 MSR(OPTF): Multiple Segment Replacement algorithm using OPTF strategy for
FDSS selection

Algorithm 4 presents the steps in MSR(OPTF). After the seed path has been computed, the sgain and
cgain values are computed for each segment of the seed. Next, we compute the optimal FDSS, and then
replace the segments in the FDSS returned. Note that, in step 4 we compute the replacements again using
WBS. This is done to ensure that the path remains simple when it is updated, since the replacements
computed in step 2 may not be disjoint.

Algorithm 4 MSR(OPTF)
Input: Road network G, source s, destination d, Budget B Output: Path P from s to d
1: Compute the initial seed path P from s to d
2: Estimate the sgain and cgain values for each segment S of P by invoking WBS on S
3: Compute the optimal FDSS for P using the OPTF strategy
4: Replace the segments in the FDSS returned

Time complexity analysis: For the time complexity analysis of our algorithms, we do not consider
the complexity of initial seed path computation.

The second step of MSR(OPTF) estimates score gain values for all segments of the seed path using
WBS. For a path with l edges, this takes O(l2|E|) time since the total number of segments in the path is
θ(l2). The optimal FDSS is then computed in the third step using the OPTF strategy in θ(3l) time (by
Lemma 2). Step four involves updating the path by calling WBS on all segments in the optimal FDSS.
Since the maximum number of segments in an FDSS can be l, this step requires O(l|E|) time. This gives
a time complexity of O(l2|E|+ 3l) for MSR(OPTF).

4.2 MSR(SUBOPTF): Multiple Segment Replacement algorithm using SUBOPTF
strategy for FDSS selection

The steps in MSR(SUBOPTF) are the same as that of Algorithm 4 for MSR(OPTF) except the method
used for selection of FDSS (Step 3). Here, we use the SUBOPTF strategy to select the FDSS.
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Time complexity analysis: The time complexities of the second and fourth steps of MSR(SUBOPTF)
are O(l2|E|) and O(l|E|) respectively (same as that of MSR(OPTF)). The time taken by the third step
of this algorithm, that entails selection of an FDSS, is O(l3) (by Lemma 3). Thus, the time complexity
of MSR(SUBOPTF) is O(l2|E|).

As the segments in the selected FDSS are replaced in the fourth step, the feasibility constraint may no
longer hold for the replacements computed earlier. This situation arises when the replacements computed
earlier share edge(s), and thus the new replacement returned by WBS in the fourth step changes in order
to ensure that the final path has no loops. It is for this reason that we drop the feasibility constraint for
computing the set of segments to be replaced in our next algorithm that uses the OPTD strategy.

4.3 MSR(OPTD): Multiple Segment Replacement algorithm using OPTD strategy for
DSS selection

The working of MSR(OPTD) differs from that of MSR(SUBOPTF) in its third step. The third step of
MSR(OPTD) entails computation of the optimal DSS using the OPTD strategy. The other steps of the
algorithm remain the same.
Time complexity analysis: The time complexities of all four steps of MSR(OPTD) are the same as
that of MSR(SUBOPTF). This gives a complexity of O(l2|E|) for this algorithm.

4.4 VA-MSR(OPTD): Vicinity Aware Multiple Segment replacement algorithm using
OPTD strategy for DSS selection

Recall that MSR(OPTD) computes the sgain values for all the possible segments of the initial seed path.
In other words, given an initial seed path with l edges, MSR(OPTD) calls the WBS algorithm θ(l2) times
to get the score gain value of each of the possible segments. Following which, it determines the optimal
set of segments (DSS) for replacement. Invoking θ(l2) instances of WBS may not be computationally
scalable. To this end, this algorithm considers the VP value of each segment. The VP values serve as a
proxy to the sgain values of the segments in the initial seed path.

Algorithm 5 VA-MSR(OPTD)
Input: Road network G, source s, destination d, Budget B Output: Path P from s to d
1: Compute the initial seed path P from s to d
2: Estimate the sgain value for each segment S of P by computing the VP value of S
3: Compute the optimal DSS for P using the OPTD strategy
4: Replace the segments in the DSS returned

Algorithm 5 presents the pseudocode for VA-MSR(OPTD). Given the initial seed path, the second
step of VA-MSR(OPTD) involves computing the VP values of all segments of the seed path. In the third
step, the optimal DSS is computed based on the VP values of segments. Next, the WBS algorithm is
invoked to determine the actual replacements for the segments in the optimal DSS.
Time complexity analysis: The time complexity of the second step of VA-MSR(OPTD) is θ(l2),
since VP values are computed for θ(l2) segments, and each such computation takes O(1) time. The
complexity of the remaining steps is the same as the steps of MSR(OPTD). Thus, the time complexity
of VA-MSR(OPTD) is O(l|E|+ l3).

4.5 MSR(OPTD)-KSEEDS: Multiple Segment Replacement algorithm using Vicinity
Based Seed for seed path selection and the OPTD strategy for DSS selection

The comparative performance of the four proposed algorithms described in Sections 4.1 through 4.4,
against the performance of the related work, indicated to us the relevance of the seed selection step. Our
results indicated that the seed selection step plays an important role in determining the solution quality.
Thus, in the MSR(OPTD)-KSEEDS algorithm we select K seeds, and then apply the improvement
algorithm of MSR(OPTD) on all the K seeds. These seeds are selected using the vicinity based seeds
approach. Finally, we return the solution having the highest navigability score.
Time complexity analysis: The complexity of MSR(OPTD)-KSEEDS algorithm is K times that of
the MSR(OPTD) algorithm, i.e., O(Kl2|E|).
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5 Generalization of proposed algorithms for Turn based navigability

In this section, we show how the proposed algorithms can be modified to consider turn based notion
of navigability. We consider the application where a user would like to maximize the number of easily
identifiable sites on the road segments, and minimize the number of left and right turns. For this, the
edges in the graph can be assigned scores based on the number and type of prominently visible sites on
the corresponding road segments.

To model a turn, the node representing a road intersection in the graph can be expanded into multiple
nodes. Edges can be added between these nodes to represent the types of turns that can be taken from
each node, i.e. left, right and straight. Figure 8 depicts this scenario. Here, the node a has been expanded
into nodes a1 through a8. A total of twelve edges have been added to model all the turns possible at the
road intersection a. For example, the right turn from edge ca to edge ab, is now modelled as edge a7a4
in the expanded graph. Using this concept, we can now assign scores to the new edges in the expanded
graph that represent the scores corresponding to the turns. The scores can be assigned based on some
fixed order of preference, say 15, 10 and 5 for straight, right and left turns respectively.

Fig. 8: Expansion of node a to model the turns at road intersection a

In our proposed system, turn based notion of navigability can be incorporated in the WBS algorithm
(refer Section 3.2.1). This is done by adapting the expressions (Equation 1 and Equation 2) used for
computing the forward and backward navigability potential of the neighbors in the WBS algorithm.

Equation 16 and Equation 17 detail the adapted versions of the Equation 1 and Equation 2 to consider
the turn based notions of navigability. Here, Ftail and Btail denote the current tail nodes of the forward
and backward search frontiers respectively. F ′

tail and B
′

tail denote the tail nodes of the forward and
backward search frontiers in the immediate previous iteration of WBS. u and v denote the outgoing
neighbors of Ftail and Btail respectively. The function turnscore(x, y, z) gives the fixed score based on
the type of turn traversed as one goes from edge (x, y) to edge (y, z). For the experiments we computed
the type of turns on the fly, and compared the Γ values based on the modified definitions.

Γ f (F
′

tail, Ftail, u,Btail) = 1 + score(Ftail, u) + turnscore(F ′

tail, Ftail, u)
DN (Ftail, u) +DE(u,Btail)

(16)

Γ b(B
′

tail, Btail, v, Ftail) = 1 + score(v,Btail) + turnscore(v,Btail, B
′

tail)
DN (v,Btail) +DE(v, Ftail)

(17)

6 Dominance zones of proposed algorithms

In this section, we describe the dominance zones of the MSR(OPTD) , MSR(OPTD)-KSEEDS and
MSR(SUBOPTF) algorithms. To explain the comparative usage of the MSR(OPTD) and MSR(SUBOPTF)
algorithms, we consider the example in Section 3.3 for the path < e1e2e3e4 >. The solution given by
the SUBOPTF strategy for this example is < e1 >< e2 >< e3e4 >, which has a cgain value of 20 and
sgain value of 29. The solution given by the OPTD strategy for this example is < e1e2 >< e3e4 >, with
cgain and sgain values as 22 and 30 respectively. The sgain values suggests that the OPTD strategy
outperforms the SUBOPTF strategy in this case. However, this may not hold. Let’s consider two cases,
i) Budget = 25, ii) Budget = 20. In the first case, OPTD clearly outperforms SUBOPTF. However, in
the latter case SUBOPTF outperforms OPTD as both segments in the SUBOPTF solution cannot be
replaced collectively because of the budget constraint. Therefore, in case of tight budget constraints the
MSR(SUBOPTF) algorithm is more likely to return a better solution.



Finding The Most Navigable Path in Road Networks 17

A case where SUBOPTF would outperform OPTD in terms of running time is when the replacements
computed for the different segments do not overlap with each other. In this case, we can skip the fourth
step of the algorithm that involves calling WBS for the segments selected for replacement. Here, the
solutions computed in step two would make a feasible solution.

The MSR(OPTD)-KSEEDS algorithm computes K seed paths, applies the MSR(OPTD) algorithm
to each seed path, and returns the best result. It is therefore more likely to return a more navigable path,
but it would also take a higher computation time. Depending on the constraints on the budget and the
running time, one can select the algorithm that has a higher chance of giving a better solution in that
setting.

7 Experimental evaluation

Performance of the proposed algorithms was evaluated through experiments on four real-road networks
of different sizes. We first describe our datasets, followed by a brief on the algorithms implemented and
the experimental setup.
Datasets: All datasets constituted directed spatial graphs with vertices as road intersections and edges
as road segments (shown in Table 2). Datasets 1 and 3 were obtained from OpenStreetMap4. Dataset
2 can be accessed from this url5, and dataset 4 from this url6. Cost of each edge corresponded to the
metric of distance. Navigability score values of edges were generated synthetically. The experiments were
performed in two settings, using both random and normalized distributions to assign score values to the
edges. For both settings, the navigable edges were distributed uniformly across the space. The edges were
assigned scores in the range [0,15]. A fixed percentage of edges were assigned a non-zero score and the
remaining edges were assigned a score value of zero.

Table 2: Description of datasets

Dataset Place Vertices Edges

1 Delhi 11,399 24,943
2 California 21,048 39,976
3 Beijing 55,545 95,285
4 New York 2,64,346 7,33,846

Baseline algorithm: Given the score gain values of all segments of the initial seed path, a naive
algorithm would be to replace the segment with the highest sgain value. We call this algorithm the
Single Segment Replacement algorithm (SSR), and use it as the baseline algorithm.

Algorithms implemented:We implemented four of the five proposed algorithms for MNP: MSR(SUBOPTF),
MSR(OPTD), VA-MSR(OPTD) and MSR(OPTD)-KSEEDS. MSR(OPTF) was not implemented since
it explores an exponential search space for selecting the optimal FDSS. Further, two algorithms from the
related work were implemented, modified versions of ILS(CEI)[19] and ARSC[16], hereafter denoted as
ILS(CEI)∗ and ARSC∗. The adaptation done in ILS(CEI)∗ is twofold. First, it yields a simple path as the
solution. Second, unlike the original algorithm which performs the same iteration until some time thresh-
old, our adaptation performs a single iteration of the original ILS(CEI) algorithm and then terminates,
which is similar to the working of the proposed algorithms.

ARSC∗ adapts its original algorithm to include the budget constraint of MNP. The weights of the
edges are considered as inverse of navigability score values. The objective function of the algorithm is:
Minimize

∑
ei∈path

1
scorei

, subject to
∑

ei∈path costi ≤ budget. The algorithm prunes the search space
using lower bound estimates on the attribute score, computed by preprocessing the input graph to create
a reference node embedding. To reduce the search space further, we used the euclidean distance to
destination as a lower bound on cost, and ignored vertices for which this estimate exceeded the budget.
Datasets 1, 2 and 3 were processed to create the reference node embeddings with 40 reference nodes,
which were selected at random initially and later set as the medoids of their cluster. Given the size of
Dataset 4, we did not create a reference node embedding for this dataset due to a long pre-computation
time.
Experimental setup: All algorithms were implemented in Java language on a machine with a 2.6 GHz
processor and a 32 GB RAM. The shortest paths were computed using the A∗ algorithm. For the VA-

4 https://www.openstreetmap.org
5 https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
6 http://users.diag.uniroma1.it/challenge9/download.shtml

https://www.openstreetmap.org
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://users.diag.uniroma1.it/challenge9/download.shtml
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MSR(OPTD) algorithm, the orders of the grid indices built for datasets 1, 2, 3 and 4 were 300 × 300,
500 × 500, 1000 × 1000 and 200 × 200 respectively. The idea was to create 1km × 1km grid cells in
each navigability index. To study the effects of change in the available overhead, we set the overhead as
a fraction of the length of the shortest path. An overhead of x% implies that the total length allowed
for the resultant path is: shortest path length + x% of the shortest path length. The statistics reported
for an overhead of 0% represent the values for the shortest path. We report the average statistics for 100
random query instances for all three datasets.

The rest of this section is organized as follows: In section 7.1, we analyze the comparative performance
of the proposed algorithms. Section 7.2 compares the performance of the proposed algorithms against
that of the related work. In section 7.3, we show the results for the turn based notions of navigability.

7.1 Comparative analysis of proposed algorithms

The experiments in this section were performed on datasets for which the score values on the edges were
generated in the random distribution setting.
Effect of increase in overhead on the score of a path: This experiment was conducted to evaluate
the change in the score value of a path as the overhead value is varied. Figures 9 and 10 show the results
for different percentage distributions of navigable edges. The score value corresponding to overhead value
of 0% marks the navigability score of the shortest path. The remaining points mark the score value of
the navigable paths for different overhead values.

For most of the cases, MSR(OPTD) and MSR(SUBOPTF) perform the best. This is due to the fact
that both the algorithms perform a multiple segment replacement, and also estimate the actual score
gains in step 2 using the WBS procedure.
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Fig. 9: Effect of overhead value on score of a path; Random distribution of scores with 60% navigable
edges; Path length = 40 kms
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Fig. 10: Effect of overhead value on score of a path; Random distribution of scores with 30% navigable
edges; Path length = 40 kms

Effect of increase in overhead on the running time: Through this experiment we studied the effect
of variation in overhead value on the running time (absolute clock time) of our algorithms. We observe
in Figure 11 that VA-MSR(OPTD) takes the least time of all algorithms, which is due to the indexing
scheme used in the algorithm to estimate the VP values of all segments. SSR performs the second best
as it replaces only a single segment, followed by MSR(OPTD) and MSR(SUBOPTF).
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Fig. 11: Effect of overhead value on running time; Random distribution of scores with 60% navigable
edges; Path length = 30 kms
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Fig. 12: Effect of path length on running time; Random distribution of scores with 60% navigable edges;
Budget value = 30%

Effect of increase in path length on the running time: Figure 12 shows the results of the experiment
conducted to measure the change in running time on varying the path length. For datasets 1, 2 and 3,
it can be observed that VA-MSR(OPTD) performs the fastest, followed by SSR, MSR(OPTD) and
MSR(SUBOPTF), in that order. Also, the rate of increase in running time for VA-MSR(OPTD) is
steady as compared to that of the other algorithms. This is attributed to the indexing scheme used in
VA-MSR(OPTD). However, for dataset 4 the running times for all algorithms is almost the same.

7.2 Comparative analysis of proposed algorithms and related work

Effect of the overhead value: Figures 13 and 14 depict the results of our experiments on datasets 1,
2, 3 and 4 for shortest path lengths of 20kms, 40kms, 30kms and 10kms respectively. Here, we also show
the results for the MSR(OPTD)-KSEEDS algorithm.
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Fig. 13: Score and running time values with increasing overhead for Datasets 1 and 2; Random distri-
bution of scores with 60% navigable edges; K = 4 for MSR(OPTD)-KSEEDS

For dataset 1, score values are best achieved by ILS(CEI)∗, followed by MSR(OPTD)-KSEEDS, MSR(OPTD)
and ARSC∗, in that order (Figure 13(a)). However, there is a significant difference in the computation
time of the four algorithms (Figure 13(b)). For instance, at 30% budget value, MSR(OPTD) takes only
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0.01 seconds. Whereas, ARSC∗, MSR(OPTD)-KSEEDS and ILS(CEI)∗ take 0.2, 0.4 and 2.84 seconds
respectively.

For dataset 2, MSR(OPTD)-KSEEDS performs the best in terms of solution quality until the budget
value of 20% (Figure 13(c)), and beyond this value ILS(CEI)∗ takes the lead. In terms of running time
(Figure 13(d)), MSR(OPTD) and ARSC perform better than ILS(CEI)∗ and MSR(OPTD)-KSEEDS.

Figure 14 shows the results for datasets 3 and 4. In terms of the solution quality, MSR(OPTD)-
KSEEDS performs the best for both datasets (Figures 14(a) and 14(c)). The comparative performance
of ILS(CEI)∗ and MSR(OPTD) varies across these two datasets. ARSC performs the least for dataset
3. The results corresponding to ARSC were not computed for dataset 4 due to high values of pre-
computation time. In terms of running time (Figures 14(b) and 14(d)), MSR(OPTD)-KSEEDS and
MSR(OPTD) are orders of magnitude faster than ILS(CEI)∗ and ARSC. An important observation in
this result is that the score value for ILS(CEI)∗ and ARSC∗ decreases with increase in overhead. As
explained earlier, for an algorithm for MNP it is desired that the score value should not decrease with
increase in the available overhead.
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Fig. 14: Score and running time values with increasing overhead for Datasets 3 and 4; Random distri-
bution of scores with 60% navigable edges; K = 4 for MSR(OPTD)-KSEEDS
Effect of the initial seed path: This experiment was conducted to study the effect of applying the
improvement algorithms of MSR(OPTD) and ILS(CEI)∗ on the same initial seed. Figure 15 shows the
results for dataset 4. We considered two seed paths, the shortest path (Figures 15(c) and 15(d)) and
the seed path selected by ILS(CEI) (Figures 15(a) and 15(b)). Here, we apply the original algorithms
except their method of selecting the initial seed. It can be seen from the results that MSR(OPTD)
gives a better navigability score, and runs orders of magnitude faster than ILS(CEI)∗. The difference in
the results is more significant for the case where the shortest path has been selected as the seed. The
significant difference in the running times can be attributed to the fact that ILS(CEI) performs multiple
shortest path computations for computing the replacement for each segment.
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Fig. 15: Applying the improvement algorithms of MSR(OPTD) and ILS(CEI)∗ on the same seed; Nor-
malised distribution of scores with 70% navigable edges, Path length = 10 kms

7.3 Results on generalized algorithms for Turn based navigability

The experiments in this section were conducted on the implementation based on turn based navigability
(explained in Section 5). Here, we considered the datasets created in the random distribution setting
with 60% navigable edges. In each experiment, we report the average statistics for hundred queries.
Effect of turn score values on the number of turns: In this experiment, we vary the fixed preference
score value assigned to each type of turn (straight, left and right), and study its effect on the number of
turns of each type in the path returned. The results of this experiment for dataset 2 are shown in Figure
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16. MNP I denotes the solution corresponding to the the MSR(OPTD) algorithm. MNP II denotes
the solution corresponding to the generalized version of the MSR(OPTD) algorithm based on turn based
navigability. SP denotes the solution corresponding to the shortest path. Here, the label x_y_z for turn
scores denotes that a score value of x was assigned for straight turns, y for left turns, and z for the
right turns. We observe that the number of turns of each type changes in accordance with the difference
between the fixed scores assigned to the different turns.
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Fig. 16: Turns of each type for increasing values of turn scores; Path length = 30 kms; Budget value =
40%

As desired, with increase in the difference between the scores assigned to the straight, right and left
turns, the number of straight turns in the solution for MNP II increases, and the number of left and
right turns decreases. Figure 17 shows this change for each type of turn separately. Here, the first point
on the x axis (S=0, R=0, L=0) denotes the values for MNP I.

N
um

be
r o

f l
ef

t t
ur

ns

2

2.35

2.7

3.05

3.4

0_0_0 7_4_1 15_10_5 25_15_5 35_20_5

MNP II Shortest path

N
um

be
r o

f s
tra

ig
ht

 tu
rn

s

5

6

7

8

9

0_0_0 7_4_1 15_10_5 25_15_5 35_20_5

MNP II Shortest path N
um

be
r o

f r
ig

ht
 tu

rn
s

3

4

5

6

7

0_0_0 7_4_1 15_10_5 25_15_5 35_20_5

MNP II Shortest path

Fig. 17: Turns of each type for increasing values of turn scores; Path length = 30 kms; Budget value =
40%
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Effect of turn score values on the score of path: Through this experiment we study the change in
the navigability score of the solution as the difference between the fixed scores assigned to the straight,
left and right turns is increased. Figure 18 shows the results of this experiment done on dataset 2 for
queries with shortest path length of 30 kms, and a budget value of 40%. We observe that the score value
decreases for the case of MNP II. In general, this is a trade-off between the score of solution and the
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turns of each type. As the turn score values are increased, straight turns increase, left and right decrease,
and the navigability score of the solution decreases. Thus, the score values for turns can be set as per
user requirement.
Effect of budget value on the score of path: Figure 19 shows the score value for the shortest path
and MNP II path (with fixed preference scores for the straight, left and right turns for MNP II as 25,
15 and 5 respectively). As can be seen, the score values are higher for the shortest path. These results
correspond to dataset 2 for queries with shortest path length of 30 kms, and a budget value of 40%.

7.4 Case Study

In this section, we include a real-life case study. We consider a source and destination query, and compare
the routes suggested by Google Maps to that produced by the MSR(OPTD) algorithm. Figure 20 shows
the three routes suggested by Google Maps for traveling from IIIT-Delhi to Kandy’s Pastry Parlour. The
routes are ranked based on the travel time, Path 1 followed by Path 2 and then Path 3. For the disjoint
portions of these routes, it can be seen that Path 1 and Path 2 cross the residential and market areas
of Kalka Ji, which have narrow lane roads. These lanes are usually very busy during the evening hours.
Further, all the three paths also have a significant number of turns. As shown in Figure 21, we consider
the road segments and intersections of the road network relevant for this example to create a subgraph
with 20 vertices and 44 edges (most of the edges shown in the figure are bi-directional).

Fig. 20: Example query on Google Maps Fig. 21: Subgraph with 20 nodes and 44 edges

Fig. 22: Labelled Graph Fig. 23: Navigability Scores Fig. 24: Costs

Further, we annotate this graph and assign navigability scores and costs to its road segments, as
shown in Figures 22, 23 and 24 respectively. The score values are assigned on the scale of 0 to 15, and
consider the presence of some prominently visible site and width of the road segments. For example,
the edge connecting vertices 15 and 16 is assigned a score value of 14, as it corresponds to a four lane
road segment that crosses two metro stations, Kalkaji Mandir and Nehru Enclave. The cost values are
assigned based on the travel time. We provide this graph as input to the MSR(OPTD) algorithm to
see the results for the same source and destination query. The shortest path computed in this case is
highlighted in red: 1 –> 2 –> 3–> –> 4 –> 5 –> 6 –> 7 –> 20 –> 8 –> 9 –> 13 –> 14 –> 18, which
has score and cost values of 25 and 30 respectively. The most navigable path returned for a budget value
of 20% is 1 –> 2 –> 3–> –> 4 –> 5 –> 6 –> 15 –> 16 –> 18 (includes the segment highlighted in
green), which has score and cost values of 42 and 34 respectively. As can be seen, the path returned by
MSR(OPTD) includes wide lane roads with prominently visible sites, and has a lesser number of turns.

8 Conclusions

In this paper, we introduced a novel problem of finding navigable paths that have the potential to suit
the needs of travelers in developing nations. We formulated the Most Navigable Path (MNP) problem as
a constrained maximization problem, and proposed five heuristic algorithms to solve it: MSR(OPTF),
MSR(SUBOPTF), MSR(OPTD), VA-MSR(OPTD) and MSR(OPTD)-KSEEDS. We proposed an index-
ing structure for MNP that estimates the potential of a segment of path in giving a better alternative
path. This estimation can be done in constant time, irrespective of the granularity of the index which
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makes our algorithms far more efficient than the state-of-the-art algorithms. We demonstrated the effec-
tiveness of our algorithms through experiments on four real road network datasets.
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