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Abstract 

Complex multi-agent systems, consisting of multiple decision making agents as part of a larger 

collective, are particularly complex control problems, because of the potential for emergent 

(and potentially undesirable or even unsafe) behaviours to arise from the interaction between 

separate agents.  When a number of autonomous systems interact with one another, be they 

robotic systems, intelligent software agents, or autonomous vehicles, they can become a 

complex multi-agent system, potentially prone to emergent behaviours. 

Understanding, controlling and assuring complex multi-agent systems is a difficult challenge 

for the systems engineer, through all stages of the engineering lifecycle.  There is often no 

simple mechanism to control the behaviour of the whole, and no established formal techniques 

for system proving.  The underpinning mathematics is too far removed from the systems of 

years gone by for established techniques to be transferrable.  This thesis takes a fresh look at 

this topic using the mathematical framework of complexity science and theoretical aspects of 

systems science to begin to tackle this knotty problem domain. 

Synchronised robotics is a concept introduced for this PhD to describe systems consisting of 

multiple robotic appendages acting independently based on simple control logic, but 

unbeknownst to the individual robots also acting as part of a carefully choreographed collective 

system.  Synchronised robotics provides an ideal application area from which to develop and 

explore an exemplar scenario.  Production line robotics are the chosen exemplar.  This thesis 

shows how systems science principles can be utilised to represent all kinds of complex multi-

agent system, with different internal network structures between decision nodes mirroring the 

myriad of ways that a systems architect might choose to construct his or her system.  It then 

proceeds to show how to generalise the Markov Decision Process (MDP) formulation to these 

networks, to produce models of interactive autonomy.  This novel approach to systems design 

and proving is brought to life through application to the production line robotics exemplar, for 

which a mathematical model based on the processes and techniques described has been built, 

tested, and initial results obtained demonstrating the potential efficacy of the approach for 

capturing the complex behaviours displayed, providing a control mechanism with improved 

resilience to correcting undesirable emergent behaviours, and pointing a way towards a 

potential future system proving tool for multi-agent systems. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

This thesis has its origins in a small industrial research and development project that ran for a 

few short months in 2007-08 conducted primarily by the author of this thesis.  That study had 

a short duration and a specific remit – to investigate the feasibility of using a particular class 

of machine learning algorithm as a mechanism for enabling an autonomous system to learn a 

preferred route to a specific endpoint and, more importantly, using simulation tools to try to 

illustrate or enumerate the span of the state space actually reached during the learning phase. 

That activity finished a long time ago, concluding that it was feasible to demonstrate in a 

simulated environment that a virtual autonomous vehicle’s breadth of movement during a 

learning phase could be bounded to remain within a desired region, but by weighting the key 

learning parameters to strongly incentivise movement within that region, in which case it was 

questionable whether there was any point in having the autonomous vehicle trying to ‘learn’ to 

do essentially what had to be worked out in advance.  Put simply, there seemed to be little point 

‘learning’ what could just be specified.  It was the correct conclusion for the purposes of the 

original industrial research application, but a frustrating answer in other ways.  In just those 

few months, the imagination of the author had been piqued.  There was clearly a rich field of 

mathematics underpinning the whole field of autonomous decision making under uncertainty, 

interesting paths that could be explored in geometry and computational geometry, and once 

one started to think about the implications of trying to apply mathematical models of decision 

making to multiple autonomous vehicles operating alongside one another, and interacting with 

each other, it was clear there was an interesting gateway into topics such as self-organisation 

and emergence in complex systems. 

As a young graduate research scientist I was intrigued.  Unfortunately, given the frustratingly 

‘correct’ answer to the original research question, the proposed follow-on activity was not to 



 

 

2 

be.  Further research into mathematical techniques that did not have an obviously neat and 

provable solution that would allow the bounding of the range of achievable states was not a 

priority against the funding priorities of the time. 

In my five years in industrial research and development, undertaking numerous projects 

covering a wide range of technologies and applications, this always felt like ‘the one that got 

away’, deserving of far greater attention but seemingly impossible to continue within the 

industrial context of the time, as priorities shifted elsewhere.  I continued to dabble in the area 

in addition to my work, preparing research proposals and exploring the background to some of 

the various promising threads of research, but to no avail as funding streams became tighter 

and more focused on speedy exploitation.  I had interesting work – but not this work, which 

was always tantalisingly there in the background. 

My then employer was supportive of packaging some of my ideas up as a proposal for an 

industrially sponsored PhD, and I had the advantage that a term of the original project funding 

was that results had to published, and so the basic building blocks were already in the public 

domain.  Other elements, such as the underpinning mathematics and how I thought they could 

be generalised to multiple interacting systems, had been beyond the scope of the original 

activity anyway, and had been investigated subsequently to that in my own time.  There was 

all the material needed to embark on a PhD taking a deeper look into these topics and exploring 

some of these research avenues previously only looked on from afar and speculated about. 

It was a long road firstly to start, and latterly to complete, this PhD thesis.  Whilst it was 

originally hoped this study could be more formally linked to my professional interests 

(particularly concerning advanced software architectures and autonomous agents), the fast-

moving world of industrial engineering compared to the multi-year research commitment of a 

PhD made this impractical.  It quickly became clear it would be far easier to manage these two 

threads by separating them, and learning by chance of the Complexity Science DTC at the 

University of Warwick presented an excellent opportunity to pursue another route, whilst 

fortuitously also being a return to my ‘home’ university from my first mathematics degree.  I 

am grateful for the flexibility shown given my unusual route to PhD, with the deferred start, 

and then my need for an extended period of part-time study, all to fit around a career I did not 

wish to put on hold.  Career moves in the meantime have drawn me away from the world of 

full-time industrial research and development into systems engineering, and more recently into 

systems architecting. 
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The elongated period this PhD has taken has enriched this work.  I recognise now, many years 

after starting on this PhD, what a disparate range of fields my personal, academic and 

professional interests have spanned.  These disparate interests have intersected and contributed 

to this study in their different ways: 

• I was a mathematics graduate first, with my skills in this area refreshed and extended 

within the Complexity Science DTC, and this has been supplemented with practical 

experience of undertaking applied mathematical research in both industrial and 

academic contexts. 

• I had a childhood interest in planes, trains and automobiles, and well as in robots, and 

so in retrospect there was an inevitability about me ending up spending part of my 

career researching machine learning and autonomous vehicles (amongst many other 

technology areas). 

• In more recent years, as a systems engineer and more recently as a systems architect, I 

now can appreciate the engineering domain in a whole different light, and naturally I 

have a particular focus on complex avionics systems with increasing levels of 

computational complexity arising from ever more sophisticated algorithms and 

software defined techniques for system control. 

• For the purposes of this PhD I began to develop a number of application areas, but it 

was preferable to prioritise one that was connected to Warwick research interests, and 

the Warwick Manufacturing Group (WMG) introducing me to industrial engineering 

and digital manufacturing has been invaluable.  This assistance has motivated the 

direction of this work and the form of the thesis ultimately produced. 

In a way I would not have anticipated at the outset of this PhD, never mind at the outset of the 

original motivating project all those years ago, elements and themes from all of these disparate 

fields have percolated through to this research, which I hope has given it a richness of ideas 

but also a sense of authenticity that comes from the fact the author has been inspired by real 

world experience. 

With such a rich base of technical material and experiences to choose from, one of the hardest 

parts of this PhD, and of compiling this thesis, has been to select from over a decade’s worth 

of experience in different fields the elements that best form a coherent narrative and make novel 

contributions to their fields, maintaining an emphasis on my core interest of mathematical 

modelling of interacting systems throughout.  A decision was made during this research to 
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focus on developing the mathematical models and applying them to an industrial case study.  

The material presented in the main body of this thesis aims to tell a coherent story from the 

motivating technical challenges, through the systems science perspective that then motivates 

the reintroduction of the mathematical framework first developed and published in my earlier 

work.  This is then generalised, advanced, and taken further in new work and applied to the 

industrial exemplar, thereby demonstrating the novel approach to synchronised robotics that I 

had long believed could be developed out of these fields.  Results from simulation and 

experimentation conducted and published as part of this PhD are included and analysed, and 

put in context as proof of concept. 

Other research conducted as part of this work but which is not core to the main argument is 

included in the form of annexes to this thesis.  This work has not been fully developed due to 

the need to have a primary focus to the thesis, but enough work has been done to capture some 

of these ideas that I would like it to be recorded somewhere for posterity. 

Overall, I want this thesis to achieve its primary objective to show that enough original thinking 

has been conducted by myself, and some valuable results obtained which add knowledge to 

their fields, that merit a PhD.  But I also want it to whet the reader’s appetite with glimpses of 

how much more I could have undertaken, and to show that, even though I am now at the end 

of an already elongated period of study, there are always more interesting threads still to follow. 

1.2 Research Scope 

1.2.1 Autonomous and Learning Systems 

The emergence in recent decades of increasingly advanced and capable autonomous systems, 

including robotic systems, is a phenomenon familiar to essentially everyone in the developed 

world.  Early examples of robotic systems include systems like production line robots, capable 

of undertaking individual activities as part of a production line.  Exploratory probes are another 

widely known example, initially for space exploration, but more recently in terrestrial settings 

such as oceanic observation.  Other applications areas range from bomb disposal robots through 

to domestic aids for children. 

In parallel to the emergence of robotics systems has been the emergence of software-defined 

systems.  Software has advanced exponentially from its beginnings as a few simple lines of 

logic to provide an automatic control mechanism for a system to a major driver of system 
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complexity in its own right.  Instead of merely codifying a number of procedural steps for a 

machine to undertake without needing to be directly under the control of a human operator, it 

is now quite standard for machines to have much programming logic within them undertaking 

ever more complex sequences of operations faster than a human operator ever could. 

Inevitably, the two fields intersected.  Modern techniques in software engineering unlock vastly 

greater opportunities for robotic systems than could have been achieved by earlier generations 

of systems.  Combining the ability to have vehicles, or robotic systems, or in theory any kind 

of physical and/or mechanical piece of technology operating with advanced software 

controlling part or all of its operation, produces automated or autonomous systems. 

Note that for the purposes of this thesis, the question of what differentiates automation from 

autonomy does not need to be explored further.  Autonomous systems are taken hereafter to be 

a general reference to systems which select their actions based on their environment and 

circumstances in which they find themselves.  The principle that there is a need to understand 

and influence the behaviours of these systems arises regardless of the computational 

complexity of the system. 

Automation and autonomy in systems are becoming increasingly prominent in many parts of 

industry.  Throughout the emergence of robotic and autonomous systems, for all the excitement 

and consequent investment into the field driven by the expected benefits of such technology, 

so there has also been scepticism, distrust or a lack of acceptance by some of the new 

technology.  Increasing use of machinery within industry is associated with reduced need for 

manual labour, causing scepticism of the benefits of the technology amongst some in the labour 

movement.  Safety concerns also abound; indeed this is the major barrier to the role out of fully 

autonomous vehicles, something enthusiastically projected by automotive companies on a 

regular basis over the past decade but yet to become a consumer reality.  The problem with the 

introduction of autonomous systems into roles featuring ever greater interaction with humans 

is partly one of societal readiness and willingness, but also one of predictability and assurance 

of how the systems will behave and what their impact will be. 

1.2.2 Control, Assurance and Complexity 

This domain challenges many aspects of the engineering process; specifically, in order to 

certify a new system for use, it is necessary to provide evidence of the likely behaviour of this 

system in all circumstances under which it can realistically find itself.  This is already an 
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expensive and time-consuming process; it will only become more so with the increasing 

complexity of new systems.  Despite the considerable effort and expense invested in systems 

design and validation activities, there is always a risk of defective products, poor design 

features or otherwise undesirable outcomes being obtained. These may just cause 

inefficiencies, but in safety critical systems they could have far more serious consequences. 

Complex systems, consisting of many interacting parts, present particular challenges for 

control and assurance, because of the risk of emergent properties or behaviours arising from 

the interaction of these parts.  Typical systems engineering processes decompose a system into 

subsystems, and the requirements and any performance measures or criteria for that system 

into functional and performance requirements relevant to the individual subsystems.  Once the 

subsystems have been designed, produced, tested and proven to meet the requirements and 

performance criteria for each subsystem, they are then ready to be integrated together into the 

parent system, which should then satisfy all of its functional and performance requirements.  

Or so goes the theory.  Much of the risk within engineering projects comes from integration 

risk, where the integration of separate system elements simply does not work as expected, with 

elements incompatible with each other or conflicting in some way, or functioning but just not 

producing the effects or performance anticipated due to the way that the parts interact with 

each other.  This pattern can reoccur in subsystem development and in wider system integration 

activities, ‘above and below’ the system in question in the logical hierarchy. 

Applied to autonomous systems, there are engineering risks associated not just with ensuring 

that any control software causes appropriate and correct decisions to be made and actions 

undertaken by the system itself, and in its key subsystems, but also with the integration of that 

autonomous system into the wider environment, including with any other collaborating 

autonomous systems.  If there is already difficulty in demonstrating that a control mechanism 

within one autonomous system produces acceptable behaviour, then there is greater difficulty 

in demonstrating that multiple such systems can interact with each other in a way that is 

acceptable for all. 

1.2.3 The Mathematics of Decision Making 

The mathematics of machine learning already exists as a research area, covering a wide range 

of techniques and applications.  Many threads of research into particular problems have been 

undertaken in different application fields and with different mathematical content.  For the 

purposes of this thesis and its particular focus on interacting autonomous systems, the field is 
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narrowed specifically to learning agents.  A mechanical system that takes measurements of its 

environment, and then applies some internal logic or computation to determine what action to 

take next, naturally leads to a mathematical formulation of the decision process based on 

learning agents at key decision making nodes. 

The major blocker for acceptance of learning systems in real world applications has been 

establishing the confidence that the machine will learn acceptable behaviours that do not prove 

to be inefficient or ineffective for achieving whatever objectives the system is designed for, or 

worse are counterproductive or even unsafe.  If there is a mathematical model for the decision 

process, formalising states that can be recognised by a system and actions that can be 

undertaken, then the question is whether it is possible to quantify the span of possible paths in 

state space; that is, to determine limits or bounds for the subset of the state space that a system 

could find itself within from a given starting point. 

This is typically a very difficult problem to solve analytically.  The ‘control’ part of the problem 

can be addressed with techniques from machine learning and other data-driven methods, but 

these do not in general lead to analytical (or even tractable) solutions to the ‘assurance’ 

problem.  Put simply, machine learning or emerging artificial intelligence techniques might 

provide a mechanism for allowing an autonomous system to make decisions, but the 

‘assurance’ part of the problem typically requires a high degree of confidence that the resulting 

behaviour can be understood in advance.  This drives thinking towards assurance arguments 

based on modelling and simulation, but understanding the mathematical underpinnings remains 

important. 

1.2.4 Precursor Work 

It must be declared that some initial work was conducted by the author prior to commencement 

of this PhD.  This was narrowly bounded, but the context still needs to be explained. 

The precursor work was primarily concerned with modelling autonomous systems using 

Markov Decision Processes or MDPs (considering these as multiple parallel Markov chains, 

with an agent that selects actions which influence which chain is gone down – a generalisation 

of the basic Markov chain concept).  The application area was autonomous platform navigation, 

and the objective was to explore how to determine whether the reachable span of the physical 

state space could be shown to be bounded from a mathematical model of the decision process.  

As noted in the introduction, the conclusion was that this could be demonstrated in simulation, 
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but to ensure the autonomous vehicle stayed within a defined ‘acceptable’ region this had to be 

weighted into the learning parameters [22],[23],[24]. 

Several of the building blocks for this PhD thesis were put in place by this earlier activity, not 

least identifying that MDPs provide a natural formulation for agent-based learning, with a 

range of algorithmic techniques available to solve them.  It was also from this work that I had 

the insight that the design of the control mechanism could disincentivise or even prohibit action 

selections that could lead the system into undesirable regions of the state space.  But where in 

that original research context this essentially neutered the argument for any further work (the 

issue being that if you had to specify what to do and what not to do, there was little need for a 

system to learn that which was already known), what occurred to me back then was that there 

might be an alternative way to apply these ideas.  Techniques that might not be suitable for a 

machine learning ‘in the field’ might still provide a novel mechanism for training systems to 

have a degree of adaptivity after any initial learning activity has been completed. 

I also undertook some research into multi-agent systems, and their potential application to 

various engineering problems.  The specific focus of these activities is not relevant to this 

thesis, however outside of work I did start to link the two topics together.  Viewing interacting 

autonomous systems as individual nodes within a multi-agent system begged the question as 

to whether the sort of machine learning applications I had looked at could be applied to multiple 

interacting systems, and from that insight the ideas that underpin this thesis were born. 

1.2.5 Key Research Questions 

The key questions that this PhD has addressed are: 

• Can the underpinning mathematics of autonomous decision making be generalised to 

provide defined mathematical models of interaction between autonomous agents, and 

the effects of interactions between them? 

• Is it possible to apply agent-based modelling approaches to interacting autonomous 

systems, and show that acceptable and effective patterns of collective behaviour can be 

learned? 

• Can these developments be applied to a practical example of interacting autonomous 

systems, and be shown to enable systems to learn an adaptable pattern of behaviour that 

increases their robustness to any emergent effects? 
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The practical example chosen is the optimisation of robotic production lines, which is an 

excellent real-world example characterised by the need to reorganise the configuration (the 

positioning and tasking) of systems based on evolving events. 

Out of scope of this thesis is the specific question of what tools or techniques (whether 

analytical or computational) might exist that could be used to determine ‘bounds’ of 

autonomous behaviour.  Some initial work has been conducted in this area, but to make this 

work manageable as a single PhD this thread of research was parked in order to focus on the 

key research questions defined above.  What work has been conducted against these other 

topics is contained in Annex C to this thesis for posterity. 

1.3 Thesis Structure 

This thesis touches on a number of subject areas across mathematics and engineering.  The 

subject matter represents a fusion of topics from across the various stages of the author’s 

professional and academic career to date.  To put this research in its proper perspective, these 

topics are best presented as layers of subject matter, building up to the novel aspects that are 

the author’s own creation. 

• Chapter 1 (this chapter) is the introduction, and describes the scope of the rest of the 

thesis. 

• Chapter 2 introduces the concept of synchronised robotics, describes where it fits within 

the wider development of robotic systems and how it differs from other related concepts 

such as collaborative or swarm robotics, and introduces a number of application areas 

that will be used throughout the thesis to provide illustrative examples and give context 

to the theoretical discussion. 

• Chapter 3 discusses a theoretical framework for the study of complex interactive 

systems, developed from systems science and tailored by the author for interactive and 

synchronised autonomy. 

• Chapter 4 takes in a more in depth look at some of the particular difficulties that arise 

when trying to design an effective and provable control mechanism for complex multi-

agent systems, and some of the limitations of other approaches and proposals in the 

wider literature. 
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• Chapter 5 provides a step-by-step development of the proposed novel approach to 

producing models of complex multi-agent systems, and details the mathematical 

approach to representing complex autonomous decision making processes, namely 

Markov Decision Processes (MDPs). 

• Chapter 6 takes an in-depth look at the application of the proposed modelling 

framework and solution toolset to the problem of parallel decision making processes, 

and demonstrates how they apply to a range of multi-agent systems, including 

interactive autonomous vehicles and robotic systems. 

• Chapter 7 completes the mathematical development of the models for layering decision 

processes within complex systems, to ensure that the full framework which has been 

developed is captured within this thesis. 

• Chapter 8 pulls these threads together, firstly by introducing the specific exemplar from 

industrial automation that was selected as a case study for this thesis, then by applying 

the mathematical models and tools developed in the previous sections to produce a 

proof-of-concept of the control of synchronised autonomy via machine learning, 

including the use of novel methods to mitigate some unplanned and potentially 

undesirable emergent behaviours.  This chapter also presents the results from the 

simulation activities that have been conducted, and further discussion of what has been 

demonstrated and learned. 

• Chapter 9 contains overall conclusions from the research presented, and a discussion of 

areas where future research might lead. 

This thesis also includes three annexes, which document some of the other research undertaken 

but which is not core to the primary argument through the main body of the thesis.  These 

annexes either add more background to the core material, or present initial steps into other 

research directions and/or other application areas that have been researched but not pursued to 

completion given the need to focus this work for a PhD. 

• Annex A provides greater detail on the simulation environment and algorithms the 

author implemented for this research, including pseudocode for the major functions. 

• Annex B details a couple of other exemplar applications, from which it was originally 

intended to select one to develop further within this PhD.  The automotive industrial 

exemplar was selected due to its clear alignment with wider University of Warwick 
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research activity, and these alternatives I had begun to develop did not need to be taken 

further.  The development of these models, as far as it got, is included here, in part to 

have presented all the work that has been undertaken for the curious reader and so that 

it does not get forgotten.  Additionally, and importantly, it is also to show that the 

potential scope for the techniques developed by this work is not limited to the one 

application area.  There is wider relevance and potential application for this research as 

a general tool to add to the suite of machine learning approaches in the wider domain. 

• Annex C represents a path not taken with the research, but for which some introductory 

work was documented before choosing the path this PhD was going to take.  This path 

not taken was to look into techniques perhaps within the field of geometry to attempt 

to estimate bounds around the state space reached by an autonomous system (or several 

interacting systems), which might be at least another whole thesis of work by itself.  

Some introductory thoughts on how this aspect of the research might have progressed 

are presented for completeness, and hopefully to seed the imagination of me or someone 

else to pursue this alternative path in some future activity. 
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Chapter 2 

2 Interactive, Collaborative and 

Synchronised Robotics 

2.1 Context 

Autonomous systems, including robotic systems, are already a common feature within many 

areas of technology.  An advance long predicted in science fiction dating back generations, 

perhaps most famously by Asimov [2] and his eponymous Laws of Robotics [3] in 1942, 

robotic systems increasingly became part of science fact from the 1980s onwards.  The most 

familiar examples include systems such as robotic appendages and equipment used in industrial 

engineering, where the introduction of such systems increased the power and speed of 

industrial activities as such robotic equipment could undertake activities requiring greater force 

and/or maintaining greater speed than a team of human labourers might have been able to 

manage.  Another early example of autonomous robotic systems was remote exploration 

probes.  An early driver for the development of such systems was the space race of the mid 

twentieth century, where the difficulty and cost of maintaining a human presence in space 

motivated increasing use of unmanned systems.  For deep space exploration, with mission 

times in the years or decades, or for long-duration systems that did not need to be permanently 

manned in order to undertake their assignment, satellites and probes became the tool of choice.  

Now in the early 21st century, sending robotic explorers to the surface of Mars or to the moons 

of the gas giants is familiar to the general public, and the use of such technology has expanded 

to terrestrial applications, not least underwater oceanic exploration and survey activities. 

Modern systems have moved beyond robotic systems which are programmed with relatively 

simple control software to undertake sequences of actions without the direct involvement of a 

human controller, to increasingly automated and autonomous systems able to conduct internal 

logic (at increasing levels of abstraction and complexity) to assist them in deciding what to do.  
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Autonomous vehicles are an emerging feature on the technology horizon, with unmanned 

vehicles a reality in many fields, not least air vehicles.  However, the arrival of autonomous 

vehicle technology has prompted thinking about how far society is willing to go with letting 

machines make decisions for themselves. There are questions not just around cultural 

acceptance, but also more fundamental engineering challenges around systems’ functional 

performance, efficacy and safety of operation, which are hindering the wider uptake of such 

technology.  The most frequent example in the popular press is that of autonomous or self-

driving cars, which have received extensive coverage in recent years heralding the arrival of 

the new technology, yet the technology’s mass market roll-out continues to be deferred as, 

amongst other commercial challenges, there is still insufficient confidence that manufacturers 

can continue to provide high probability guarantees of their reliable and safe performance. 

2.2 Interaction, Collaboration and Synchronisation 

If the problem of providing adequate guarantees of safe operation of singular autonomous 

vehicles continues to be a major unresolved challenge within the engineering domain, the 

problems arising with multiple interacting autonomous vehicles is a more difficult challenge 

still.  As well as each individual autonomous system or robot presenting a challenge to 

demonstrate how to understand, control, and prove the appropriateness of its behaviour, there 

are additional complications arising from the interaction of the systems with each other, 

increasing the potential order of magnitude of difficulty. 

This is a significant frustration because interactive autonomy, and within that interactive 

robotics, is emerging as a rich field of new technologies and potential applications.  It is not 

just a question of being able to deploy multiple autonomous systems or robots within the same 

area to conduct multiple tasks in parallel, and requiring confidence that each will operate 

properly when conducting its activities; if there are any interactions between these systems 

(whether planned or unplanned) then, in addition to these existing challenges, there is further 

complexity from understanding, controlling and proving their interactive behaviour. 

It is important to note that there varying degrees or modes of interaction that one might envisage 

between autonomous systems.  Some working definitions are adopted within this thesis.  It 

should be noted that these are based on working definitions proposed by the author when 

initially investigating these topics, to differentiate the key concepts required.  Given the lack 

of any equivalent definitions identified within the wider literature (synchronised robotics itself 
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being a new term introduced by the author), these definitions have remained in use throughout 

this work and are now presented within this thesis as an original contribution. 

The key concepts defined for the purposes of this work are: 

Interaction: Two or more systems operating in such a manner that the activity of at 

least one of the systems will impact on the activity of at least one of the other systems 

in such a way that the behaviour or performance of the other is observably impacted. 

Collaboration: Two or more systems interacting with each other where at least one of 

the interacting systems involved is purposefully making control decisions in order to 

facilitate this interaction. 

Synchonisation: Two or more systems interacting with each other where none of the 

interacting systems involved is purposefully making control decisions in order to 

facilitate this interaction. 

Essentially, interaction is the umbrella title for the full range of scenarios where multiple 

autonomous systems or robotics systems operate in conjunction, but requiring there to be some 

impact on the behaviour of at least one system as a result of the others.  Simply operating in 

the same location but without affecting each other in any observable way would not qualify as 

interaction.  Within this domain, collaborative autonomy describes where there is some degree 

of awareness of the involvement of multiple systems by at least one of these systems, in order 

to facilitate some form of planning or coordination.  The focus of the case studies explored 

later in this thesis will be on synchronised autonomy, which is the situation where the systems 

are interacting, but with no knowledge of their interactions with other systems – these 

interactions are observed only by the beholder.  This is advantageous in that it allows operations 

without explicit (and potentially complicated and onerous) pre-planning and implementation 

as to how systems should respond to each other, but has the significant disadvantage that there 

is relatively little maturity of thinking about how to control and prove such systems, especially 

when the intent is that they interact and produce more complex collective behaviours. 

2.3 Emerging Technical Challenges 

During the 2000s a huge volume of work was funded by DSTL and others into a range of topics 

under control of robotics and autonomy.  A wide range of techniques were covered.  Because 

of the complexity arising in problems featuring multiple systems (complexity referring to the 
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patterns and behaviours arising from interaction that do not arise from systems in isolation) 

progress was generally more limited with the multiple systems problem. 

Much of the work that was conducted in this area was based on game theory, adopting multi-

agent system architectures.  While there is merit in agent-based architectures (they are intuitive 

and logical on a theoretical level), they came to be associated too closely with particular 

software approaches and toolsets that were not yet sufficiently mature to really deliver what 

the more theoretically minded wanted to see. 

Game theoretic approaches were seen as a likely source for solutions to theoretical multi-agent 

systems problems, but had two major stumbling blocks for exploitation in sectors driving some 

of the early investment such as the aerospace sector.  Firstly, methods based on identifying 

trend behaviours are not good enough in the world of safety certification authorities, who 

require evidence of what a system will or will not do based on rigorous modelling and test 

evidence, not what it should do eventually based on assumptions about convergence to 

equilibrium.  Secondly, it was never entirely clear that robotic or autonomous systems without 

the ability to judge context and reason are best modelled as rational agents in the game theory 

context anyway. 

Active research interest in multi-agent systems has not gone away, but in recent years attention 

has shifted into new control paradigms such as swarm robotics.  This is a very different 

approach to controlling large numbers of robotic systems, through assigning goals to a 

collective of systems and allowing the swarm to distribute activities between them, featuring 

some degree of self-organisation.  Overlapping with this area has been much thinking about 

whether large numbers of interacting systems could be modelled using techniques from 

statistical mechanics or population dynamics. 

Interesting though these fields are, they are not capable of addressing the problem of 

synchronised robotics of interest in this work.  Statistical techniques are only reliable for large 

numbers of systems, but many interactive and synchronised robotics applications will have a 

number of systems merely in the single figures or tens of units – not enough to be able to apply 

statistical techniques, but too many to readily admit tractable analytical solutions.  Swarming 

techniques do not necessarily face the same restriction (although performance might be 

impaired with too few systems in the swarm), but face the additional problem that systems 

within the swarm often need to be able to communicate, which is not always practical nor cost 

effective in some of the envisaged robotics applications, nor even possible in some cases. 
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Consequently, the premise of this thesis is that study of multi-agent systems and techniques to 

mathematically describe their behaviour needs to be revisited, as much of the good recent work 

is difficult or impossible to apply to some of these niche applications. 

2.4 Agent-Based Learning for Synchronised Robotics 

There are a number of benefits expected from adopting an agent-based approach to modelling 

interacting and synchronised robotic systems: 

• Autonomous applications need, by definition, to have at least some devolution of 

control, with systems having local control over their actions.  Autonomous elements 

within a system of systems are naturally framed as agents anyway, and thus the design 

of such systems immediately lends itself to agent-based approaches. 

• Decentralised applications, even if not fully autonomous, may best be operated from 

within an agent-based structure because it provides them with an environment for 

conducting operations and responding to environmental stimuli without a complex 

structure of interfaces and lag in the sending and receipt of instructions and responses. 

• If there is a desire for a highly modular architecture with system elements that can be 

plugged in or pulled out with the system continuing to be operable, then an agent-based 

architecture may be preferable to a heavily integrated top-down system architecture, as 

it reduces or removes the need to re-evaluate the performance of the system every time 

a change is made to it. 

• In many applications, particularly driven by robotics, it is desirable to have a number 

of separate systems operating in coordination with each other.  What sounds simple in 

practice can be difficult to implement, because one can see an exponential explosion in 

the number of combinations of operations that can be performed once the coordinating 

systems become more numerous and more capable. 2 systems with 2 modes of 

operation gives 4 configurations to consider, but 3 systems each with 5 modes have 125 

configurations to consider – it is clear to see how this can rapidly become infeasible 

with dozens of interacting complex subsystems.  Devolving matters to lower level 

authorities makes logical sense, and indeed is exactly what is seen in human and socio-

economic systems, but in technological systems this is not so widespread.  Agent-based 

approaches might help facilitate such evolution. 
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However there are a number of complications that arise from adopting an agent-based 

architecture: 

• Systems design and engineering processes generally struggle with agent-based 

approaches.  Engineers are taught to start with a definition of a system, then from that 

to derive definitions of its principal subsystems and then any lower level components, 

then to design, implement and evaluate these components, and then to begin the process 

of integrating the components together and verifying that the components integrated 

into subsystems meet the subsystem requirements, and that the subsystems integrated 

into the envisaged system meet the system requirements.  Such methodology is deeply 

engrained as the way to do engineering.  It is more difficult to apply with agent-based 

approaches, because a set of loosely coupled agents will often experience emergent 

behaviours and/or demonstrate properties or characteristics resulting from their 

interactions that are not as might have been anticipated from a structured functional 

decomposition of the system.  As such, multi-agent systems continually frustrate efforts 

to apply a traditional engineering methodology. 

• There is little agreement within the software standards community as to the best 

methods or tools to adopt for unrolling agent-based approaches in more complex, safety 

critical systems.  In particular, as the regulatory situation stands at the moment, it is not 

possible to obtain safety certification for multi-agent systems because to do so it is 

necessary to exhaustively demonstrate a near-zero probability of deviation from defined 

patterns of behaviour, something which is clearly difficult to do when it is not possible 

to prove from a system design that there cannot be any unwanted emergent properties. 

• On a more practical level, problems arise in agent-based design with identifying how 

best to decompose systems into simpler parts.  Highly coupled subsystems may require 

re-design or even performance compromise if they are to be separated into distinct 

functional blocks, which is a non-trivial exercise. 

To unlock the expected benefits of agent-based design for complex technological systems that 

have safety critical aspects, it is necessary to think about new and novel approaches to 

modelling and design, particularly when it comes to modelling the interactions between agents 

and generating evidence of what the overall behaviour of a complex composition of agents will 

be. 
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2.5 Example Application Areas 

There are a number of domains that either feature multiple robotic systems that need to interact 

with one another, or where there is the potential for this to occur in the foreseeable future.  

Some of these will be examples of synchronised robotics, where, for practical, cost or 

operational reasons, the systems will not be able to coordinate with each other, or perhaps even 

be aware of each other. 

It is proposed that many of these examples are naturally represented using an agent-based 

approach.  Some of these are summarised below.  As noted in the introduction to this thesis, a 

couple of potential application areas were envisaged during the original conception and 

proposal of this PhD, and some initial work was undertaken to develop these.  Ultimately a 

third application aligned to WMG was identified and this superseded the first two application 

areas.  However, in order to demonstrate the efficacy of the proposed techniques and modelling 

approaches, it is useful to present at a summary level all three example application areas, 

because they feature different attributes and characteristics that are relevant to the theoretical 

aspects of the discussion that follows. 

Therefore, to preview the approach this thesis will be taking to the application of system design 

principles to the building of models of complex multi-agent systems, this section provides an 

initial perspective on what different agents might be present in such systems for each of the 

three application areas, to illustrate the range of agents and complex system structures this work 

will subsequently consider how to design and control.  These three example application areas 

are to help frame the subsequent discussion and to provide context to the theoretical 

developments and the modelling approach. 

2.5.1 Vehicular Navigation and the Logistics Management Problem 

The ‘traditional’ exemplars used widely in the robotics literature often concern robot 

navigation, and of autonomous vehicle route finding.  The introductory paper on Q-learning 

(which will be introduced and utilised later on in this thesis) by Watkins [67] was based on a 

navigation scenario, as were many of the examples within the text by Sutton and Barto [59] 

which served as a tutorial for the author both during the precursory work prior to and then again 

during this PhD [22].  Much of the literature traditionally has been focused on land-based lab 

robots, for understandable practical reasons when it comes to conducting experimental work, 

but also because two dimensional state spaces provide for a simpler state space model as a 
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starting point for testing and simulation.  However, there is nothing theoretically preventing 

application to domains with three or more dimensions, and hence there is increasing 

applicability out in the real world environment, extending into the air and sea domains too (the 

author’s precursor work [22],[23],[24] being an example of such an extension). 

Generalising robot navigation to a multi-agent system is conceptually simple – one can imagine 

a number of individual systems all engaged in autonomous route finding, but in the same or 

overlapping regions and times.  Interaction could be as simple as collision avoidance, where 

this could not be achieved simply by operating in different areas at different times.  More 

complex interdependencies can be envisaged if the routing decisions are not independent of 

each other, for example if there was some required sequencing, or conditionality between 

routing decisions.  For example, if A chooses one route, then B must follow it with a time 

delay, or alternatively B must intersect at a particular time within A’s passage, or B must select 

a separate but complementary route.  In any of these cases, B’s route navigation problem is not 

independent of A’s, yet A and B remain separate decision making agents who will need some 

degree of independent or local decision making. 

A human context to illustrate the challenges might be provided by two individuals who are 

making two separate journeys in different vehicles.  They are starting at different places and 

times, but plan to rendezvous at some mutually convenient point on the way.  A simple problem 

with pre-planning and communication, it becomes more difficult if there are traffic difficulties 

and road closures, and intended routes may not be available, but the activity still needs to be 

completed (perhaps up against time constraints).  One or both individuals may have to replan 

their journey, which may or may not involve changing the location or time of the proposed 

rendezvous.  Take communication or coordination out of the equation (say due to a mobile 

telephone battery becoming depleted) and suddenly one individual may have to plan their new 

route in order to still try to maintain the last known rendezvous point uncertain now about the 

achievability of it given the unknown status of the other.  It should be clear that there is 

significant scope for failure to achieve the objective, or to only achieve it with unplanned 

milage and delay.  Magnifying the problem up with three or four or five people all making a 

sequence of planned rendezvouses, and it is clear how vulnerable any plan might be to 

unplanned interruptions and/or communication failures, and how the number of participants 

will not need to increase too much before the whole operation becomes infeasible. 

How would this manifest itself with autonomous agents?  Since the beginning of this work, 

there has been substantial discussion not just confined to the automotive industry but 
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increasingly in the wider popular discourse, about the potential for large numbers of 

autonomous vehicles to be deployed on the roads and public highways, for example to make 

doorstep deliveries.  Vehicles might be able to access digital mapping data and live traffic 

updates in order to plan and re-plan routes based on a current task or set of tasks, constantly 

adapting as they move around their allocated locale.  Concerns about this include, amongst 

other engineering aspects, the lack of certainty that they will be able to do this effectively.  A 

large proportion of the autonomous vehicles creating a traffic jam because of overly simplistic 

programming leading them all to simultaneously choose a narrow side street as the best strategy 

to avoid delays on the main highway would benefit no-one, and may result in the opposite 

outcome from what the system calculated would happen when it chose that alternative route.  

Systems nominally independent of each other and without coordination between them might 

end up discovering hidden dependencies between their choices. 

The logistics management example was one identified in the original conception of PhD.  At 

the time, the context was to be smaller groups of robotic systems operating within a constrained 

environment such as a delivery warehouse, with a number of robots conducting the picking and 

packing.  The relatively constrained and controlled nature of the environment, and the close 

proximity and timely response of technicians in the case of problems, makes this an easier 

scenario in which to adopt a robotic solution, and unsurprisingly this is something which now 

exists.  But the bigger problem, of the delivery of items out in the wider world, remote from 

direct technical support with much more limited or vulnerable communications and no ability 

to constrain or control external disruptions, means the more general application remains to be 

achieved. 

Given this general discussion of this application area, and the sort of technical challenges and 

considerations that will likely arise, an initial view on what agents and multi-agent system 

structures might arise is presented next.  This is to help add context to some of the theoretical 

discussion in the subsequent sections when features relevant to examples like this arise. 

• The systems in this context are individual vehicles or robots.  The agent or controller 

in each case is that part of the system which decides where and when to go in order to 

best achieve routing or scheduling or tasking requirements placed on that system. 

• For context, a higher level ‘system of systems’ layer could sit above the individual 

systems and be responsible for coordinating and giving instructions or altered 

requirements to the individual systems.  However, synchronised operation occurs when 
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this layer does not exist, or at least cannot be interacted with for some period of time, 

requiring the individual systems to make decisions independently. 

• The subsystems in this context would be systems onboard the vehicle that make 

decisions about what the vehicle needs to do in order to achieve the goal it has been 

given.  So this might include selecting a direction (an agent making a decision to turn 

the drive wheels one way or the other) or selecting a speed (another agent making a 

decision about how much throttle to apply).  More complex systems might have 

additional decisions at this layer, for example choosing when to issue a stop signal if 

an obstacle is detected (another agent making collision avoidance decisions). 

• Optionally, a further layer of internal agents may exist at the level of the individual 

pieces of equipment within each vehicle, for example the actuators and servomotors.  

An agent-based software architecture might allow the control mechanisms for these 

elements to be agents guided by objectives flowed down from the subsystems above.  

The theoretical basis for this level of decision making was the subject of the precursor 

work [24].  This is noted here for context, as this layer of control and any detailed 

consideration about lower-level agent-based software implementations are outside of 

the scope of this thesis. 

• It is possible to generalise these elements into more complex or nested layers of 

systems.  For example, a small group of vehicles could maintain communications 

between their group, but not with other systems or groups of systems further away.  In 

this situation, there might be multiple system layers, with or without an overall 

coordinator layer, then a layer of intercommunicating groups of vehicles each of which 

can be considered a system, then those groups with more than one vehicle have a further 

breakdown to individual vehicles, before the subsystem and component layers.  Other 

generalisations or scaling of these conceptual building blocks can also be envisaged, 

although discussion within this thesis will focus on the simple case. 

 

A visual representation of the types of decision making agents and the layers of the system they 

exist within is provided by Figure 1. 
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Figure 1 – Multi-Agent System Structure: Vehicular Navigation Application Area 

 

A structured network of agents is formed, with dependencies between layers for task allocation 

(described hereafter as vertical dependencies).  One branch of this network (one vehicle and 

its subsystems) could be said to form a multi-agent system in its own right, although this is not 

the conventional usage of the term multi-agent system.  A more conventional multi-agent 

system is the incidence of multiple such branches, with or without the higher-level coordination 

layer.  This becomes complex when there is some interaction or dependency between branches, 

examples of which were described previously (described hereafter as horizontal dependencies). 

Note that the very top layer may not exist, or at least may not be continuously available, 

representing the absence or loss of communication and/or coordination described before.  With 

it, horizontal dependencies may require or result in collaborative behaviour from the multiple 

systems involved, but without it they may instead require synchronised behaviour, as has been 

defined earlier in this chapter. 

Annex B.2 provides some initial mathematical model building for a logistics management 

problem based on the principles described within this section. 
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2.5.2 Networked Smart Systems and the Sensor Coordination Problem 

Vehicles are not the only application area where one can imagine multiple autonomous or 

robotic systems having to coordinate or synchronise with one another.  A further range of 

applications is where autonomous assets (not necessarily vehicles or physically mobile 

systems) are part of an integrated network of autonomous systems (sometimes referred to as 

‘smart systems’).  Non-vehicular examples include applications like communications relay 

points or cameras connected in a network.  These are physically separate systems but they all 

have to work collaboratively for the whole system of systems to perform effectively.  As with 

the vehicular examples, this could be coordinated behaviour or, in the absence of 

communications or even awareness between decision agents, synchronised behaviour. 

The application area proposed and initially developed for this PhD is that of intelligent and 

integrated sensor management.  The idea arises from turning a number of individual sensors 

into a reactive and responsive sensor network.  For example, a sensor node might be a CCTV 

camera.  A number of these might provide wide area coverage of a whole street, city block, or 

other public realm.  These could be simple (a basic CCTV camera simply records), but future 

generations of cameras could be fitted with software that can reorient the camera, adjust the 

focal length or apply filters, to give the camera much greater functionality and versatility.  But 

this gives rise to the question of where decisions are made about how to orient and reorient the 

camera, when and how to adjust focal length, and when to apply or disapply filters.  It is 

hopefully clear how an agent-based structure might be appropriate for this. 

The problem turns into a multi-agent system problem when one imagines applying a number 

of these smart cameras in a network, to optimise surveillance coverage of a particular area.  For 

example, the objective could be the protection of a public asset, or a piece of critical national 

infrastructure.  It might be desirable, if a suspicious person or object of interest is detected, to 

be able to monitor them as they move around, which might involve handing over the task from 

one camera to the next as the monitored object moves from one field of view to another.  If the 

cameras can move, there might be decisions to make about when within a given time period is 

best to hand over, since one or both cameras might have to move to point in a particular 

direction to make the handover, which could compromise the monitoring of other objects.  If 

one camera is already maintaining surveillance of one object, should it reorient to provide 

seamless monitoring of another that has just entered its field of view?  If it is applying a filter 

to clearly identify the object owing to a clash of background colours, should it leave this filter 
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on when tracking the incoming new object, or will this cause it to lose the original object of 

interest?  Are there other assets that could take on one or other of the two activities? 

The problem can be generalised further with the use of different sensor types, for example a 

mixture of cameras operating in the visual range, with other sensors like radars, acoustic or 

vibration detectors, or thermometers.  Radars on vehicles are used to detect the proximity of 

other vehicles and obstacles.  Could these systems be networked with cameras to identify the 

nature of the other vehicles and obstructions in an area, and determine which are hazardous?  

Applications for this can be envisaged in disaster recovery and with the emergency services. 

An alternative application area with similar principles is that of communications systems.  The 

author has previously researched the use of agent-based techniques for controlling frequency 

allocations across a network of closely-located wireless router hubs, to enable local decisions 

about frequency shifting to minimise local interference without extensive installation testing 

and mitigation [21], motivated by and extending earlier work by Bullimore and Briggs [14].  

Since this work contributed to a previous academic degree it is not repeated here.  However, it 

is noted that this application area could be extended significantly further than the narrow scope 

of that work, by considering frequency and communication link reallocation across a wider 

array of devices and antennas to optimise network coverage, stability, performance, or a 

combination of such metrics through greater delegation of decision making to local systems. 

As with the previous section on vehicular navigation, it is now possible to identify the types of 

agents and the types of multi-agent network structures that might arise within a network of 

smart systems.  The basic patterns are similar to the previous example, and are described below 

and represented visually in Figure 2. 

• The systems in this context are the individual cameras, sensors or communications 

devices.  The agent or controller in each case is that part of the system which decides 

what that system needs to do in order to achieve the requirements placed on it. 

• Optionally, there might be a system of systems layer with a coordinating agent sitting 

above these individual systems.  This will not be practical or possible in all situations. 

• The subsystems in this context would be systems within the camera, sensor or 

communications device that makes decisions about what to do in order to achieve the 

goal which that system has been given.  This might include selecting an orientation (an 

agent making a decision to turn the camera one way or another), selecting a focal length, 
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or applying or disapplying a filter.  In the communications context, this could be a 

choice of emitting frequency or bandwidth, or of the time interval within which to emit. 

• Optionally, a further layer of internal agents may exist at the level of the individual 

pieces of equipment within each subsystem, for example the actuators and emitters. 

• It is possible to generalise these elements into more complex or nested layers of 

systems.  It is also possible to imagine these as mobile systems installed onboard 

autonomous vehicles, for example if deployed in crisis or disaster management 

scenarios.  The agent structures for the smart systems then become nested structures 

within a multi-vehicle structure as described in the previous example.  However, the 

discussion within the main body of this thesis focuses on the simpler case. 

 

Figure 2 – Multi-Agent System Structure: Networked Smart Systems Application Area 

As with the previous application area, vertical and horizontal dependencies can be seen.  The 

absence or unavailability of the top layer of the decision tree combined with a lack of ability to 

communicate or coordinate at the system layer, would turn this scenario into a synchronised 

autonomous systems problem.  Annex B.3 provides some initial mathematical model building 

for a sensor coordination problem based on the principles described within this section. 
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2.5.3 Synchronised Robotics and the Automated Production Line Problem 

The third application area identified is that of synchronised production line automata.  A 

modern factory environment, particularly for large-scale mechanised assembly, might feature 

a number of robotic appendages for positioning, adjusting, measuring, welding, finishing, or 

simply for holding in position items on the production line.  For example, two robots might 

hold two items in position whilst a third robot welds them together. 

This is a familiar real-world example of synchronised robotics, but the principles will extend 

to more speculative or futuristic applications which the author has seen proposed, such as for 

automated construction sites with robots replacing manual labour, or the NASA proposals that 

manned exploration of Mars will realistically require habitation facilities to be assembled or 

constructed by robots on the planet’s surface prior to the arrival of any human explorers. 

In general, this application area can be described as being when a number of physically separate 

fixed assets have individual tasks to complete, and the collective of them together have to 

produce a specified output engineered to a particular standard in the shortest possible time.  

There is therefore a non-trivial problem (the ‘ramp up’ problem) for configuring all of the 

robotic assets to be synchronised or sequenced in order to conduct their tasks efficiently.  

Overall organisational efficiency is achieved by minimising ramp up time that ramp up takes. 

As the number of assets and the number of modes and functions of each asset increases this 

becomes a complex problem, increasing the temptation to adopt an agent-oriented approach 

and devolve much of the task planning to lower levels of control. 

Adding the further complication of perturbation (that is, not just identifying a suitable and 

stable configuration for each asset, but placing them in a dynamic environment subject to 

change), necessitating that the system configuration be adaptable in order to maintain 

performance, then an agent-based architecture becomes a natural solution concept which may 

provide some robustness and adaptability to perturbation. 

The basic pattern for a multi-agent system structure emerges, with vertical and horizontal 

dependencies, and the flexibility to imagine the same basic design pattern being extended with 

more levels or nested within other larger multi-agent structures as part of a larger more complex 

deployment.  The primary agents and their structure are described below and represented 

graphically in Figure 3. 
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• The systems in this context are the individual robotic appendages that conduct tasks on 

the production line.  The agent or controller in each case is that part of the system which 

decides what that robot needs to do in order to achieve the requirements placed on it. 

• Optionally, there might be a system of systems layer with a coordinating agent sitting 

above these individual systems.  This will not be practical or possible in all situations. 

• The subsystems in this context would be systems within each robotic appendage that 

make decisions about adjusting the position and orientation of the joints of that 

appendage.  Typically there will be multiple joints in each appendage.  There may be 

additional agents for specific functions such as determining when to turn the welder on 

or off, or when to spray paint or polish, or when to activate a saw or a laser, depending 

on the function of that appendage. 

• Optionally, a further layer of internal agents may exist at the level of the individual 

pieces of equipment within each robot, such as the actuators and functional tools. 

 

Figure 3 – Multi-Agent System Structure: Synchronised Robotics Application Area 

This application area provides the primary exemplar for development within this thesis and 

will be discussed further in later sections, principally in Chapter 8. 
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Chapter 3 

3 A Systems Science Perspective on 

Synchronised Robotics 

3.1 Context 

Complex systems are generally defined as systems that consist of many separate and distinct 

yet interconnected components, where both the system as a whole and the constituent 

components each display behaviour that has some kind of observable impact on the wider 

world attributable to them, but where the behaviour of the whole is not just a composition of 

the behaviours of the constituent parts.  Connecting the components together, even if in an 

intangible way, can lead to behaviour that arises from the interaction of these components that 

is different from the behaviour expected from the components operating in isolation.  

Furthermore, the arrangement of these constituent parts and the connections and linkages 

between them can result in different behaviours being observed at different points or levels 

within the system. 

Sometimes this is referred to as emergent behaviour, although this term can also be used more 

broadly for some similar but slightly different phenomena. 

When it comes to technology, humans are far more used to understanding and controlling 

machines as singular entities.  Complexity, however, can arise from the design choices and 

organisational structures behind systems, man-made or otherwise, and complexity in systems 

should be expected to increase with technological ambition.  Technology developers will 

increasingly have to consider more deeply how they engineer systems, to understand how their 

design choices influence the behaviour of the resulting system. 

To develop mathematical models and techniques for complex systems engineering challenges, 

it is important to begin from the conceptual underpinnings of complex systems science.  

Concepts such as complexity, emergent behaviours and complex and multi-agent systems are 
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sometimes referred to in the wider engineering literature, but often without a consistent 

baseline for what these concepts are and why they have become relevant.  For this thesis, with 

a key focus on control methods for multi-agent systems, it is important to establish a suitable 

conceptual baseline, in order to build the mathematical model on solid foundations. 

This chapter begins with an initial discussion of what is meant by complex systems and systems 

behaviour within this work, and defines what is meant by emergence in this context.  Multi-

agent systems are defined as a class of system which overlaps with complex systems, neither 

being a proper subset of the other.  Organisational or structural paradigms for designing future 

multi-agent systems are discussed, as are other system design considerations such as 

observability.  The impact of these factors on the multi-agent system control problem is 

discussed.  The overall intention of this chapter is to properly baseline the key concepts and 

design assumptions that will underpin the detailed developments in subsequent chapters. 

3.2 Complex Systems and System Behaviour 

3.2.1 The Problem Domain 

Apart from the very simplest and essentially trivial examples, when an engineer refers to a 

system they are typically referring to a collection of components that have been organised or 

combined together in a particular way, usually to fulfil a specified function or set of functions.  

More complex systems are organisations or compositions of other systems, typically to fulfil a 

‘bigger’ function than the simpler systems could have achieved by themselves.  A particularly 

complex system could have many such levels of systems in a hierarchy, naturally giving rise 

to subsystems, systems and supersystems depending on the level within the hierarchy that the 

engineer’s system of concern is to be found. 

Indeed this is not just a peculiarity of man-made technical systems.  As humans, we are familiar 

with large complex systems across all walks of life.  Consider for example the ecosystem, or 

the economy, or large organisations, all of which can provide familiar examples with which to 

illustrate the core problem.  There is a whole which consists of many individual parts.  This 

whole has some kind of tangible presence and observable impact on the wider world, as do the 

individual parts (implicitly assuming some sort of boundary between what is and is not part of 

the system, although not necessarily assuming that it is clearly defined or distinct).  However, 

we also recognise that the actions and behaviours of the whole are not simply the actions and 
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behaviours of the individual parts ‘magnified up’; the arrangement of these parts and the 

connections and linkages between them can result in different behaviours being observed at 

different points or levels within the system.  For example, we are familiar with freak tornados 

that occur despite relatively stable local air mass, and with financial institutions that have 

invested so heavily in products designed to reduce systemic risk they end up massively 

increasing it, and with organisational improvement initiatives intended to reduce bureaucracy 

and improve efficiency in particular functional areas that have precisely the opposite effect 

over the organisation as a whole. 

As humans, we are familiar with all of the examples above, and yet when it comes to 

technology we are far more used to understanding and controlling machines as singular entities.  

It is not just that we personally design and build machines – after all, we humans design and 

build large organisations and, though perhaps less tangibly, we design and build our economy, 

yet these display complex behaviours.  Complexity and emergence cannot simply be dismissed 

as random or unpredictable natural phenomena that we can never really account for.  They are 

a direct consequence of the design choices and organisational structures behind systems, man-

made or otherwise.  The reason they are coming to the fore as significant challenges to the 

systems engineer is simply because until relatively recent times man-made machines were 

rarely complicated enough to produce the circumstances under which such phenomena could 

occur.  But compared to other human constructs such as civil society or the economic system, 

it was just a matter of time before our ambitions for our technology progressed sufficiently far 

that engineers have had to start to consider more deeply how they were designing and 

organising systems, in order to understand how these choices impacted on the subsequently 

observed system behaviour. 

Autonomous systems pose a particular challenge.  Not only does the sort of function to which 

one might wish to apply an autonomous system potentially imply a relatively complicated 

system, with a large number of interconnected components and operational requirements 

increasingly the likelihood of complex behaviour occurring, but, by definition, autonomous 

systems have some degree of decision making capability at least partially independent of a 

human operator (remotely-operated or pre-programmed systems are not regarded as being 

autonomous in this context).  Any degree of devolved decision making capability means that 

the systems engineer responsible for designing a particular system not only has to consider the 

behaviour and expected impact on the whole system from what an individual component is 

expected to do, but also from all the things that it might conceivably choose to do, which clearly 
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can be a significantly greater challenge.  With both the technical complexity of and the 

autonomy granted to systems increasing, so the potential for the system to display complex 

behaviours also increases, perhaps significantly. 

In systems that contain multiple autonomous elements, there needs to be a mechanism that 

enables both the monitoring and the management of these elements to deliver the desired 

overall system behaviour.  Whilst machines may be able to concurrently observe and manage 

a great many more elements than a human, it is desirable to avoid unnecessary complexity in 

this observation or management, and so it may be appropriate to do this at the overall system 

behavioural level.  Furthermore, it should also be possible to constrain the behaviour of a 

complex autonomous system through the design of the individual system elements such that 

the behaviour of the overall system can be controlled. 

3.2.2 Systems 

Traditional control theory might define a system as being those aspects under the influence of 

an operator when trying to complete a task, presumably (though not necessarily) the direct 

influence of the operator.  This implies a clear division between the internal aspects of a system 

which the operator does control and the external aspects which they do not.  These external 

aspects may impact on the operation of the system, whether in predictable or random ways, or 

seen as environmental perturbation or noise. 

For complex systems, although the essence of this traditional perspective remains, some of the 

implied limitations need to be relaxed.  The precursor work adopted a definition of a system 

previously introduced by Thoms [63], which remains relevant for use within this thesis: 

System: A system is that body which is considered as a functioning unit, which is 

formed of many often diverse parts that achieves a purpose. 

This definition places no explicit boundaries on the extent of what is or is not included as part 

of a system.  It does specify a body, implying tangible limitation to the system, but it is allowed 

to be a number of separate components, not necessarily co-located.  It also specifies a 

functioning unit that achieves a purpose, thereby excluding seemingly random coincidences of 

factors that cause a particular outcome. 

Purpose is normally thought of as a system property that drives a desired outcome, and this 

thesis will not attempt to define this any more tightly since the nature of a system’s purpose 

will vary greatly between different types of system.  Note that a system’s purpose can be seen 
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to be analogous to the concept of a system goal, which is the terminology used in much modern 

control theory literature. 

The boundaries, composition and purposes of systems are always in the eye of the beholder.  

When a beholder observes what they think of as a system, they bound what they are observing 

and infer a purpose, and their understanding of that system is against the current context.  It 

should be understood, however, that different beholders may perceive a system in different 

ways – either inferring a different purpose, or considering different components to be part of 

the system, or both.  Consequently, it is likely that in highly subjective situations there will be 

different determinations as to how a system is behaving, which could arise from a difference 

in perspective on what the system in question actually is. 

3.2.3 System Behaviour 

The definition of behaviour from Thoms [63] also remains relevant: 

System Behaviour (general): The manner in which a thing acts under specified 

conditions or circumstances or in relation to other things. 

Where the ‘thing’ in question is a system, and where the conditions, circumstances or relations 

to other things referred to in the definition can be summarised as the system’s state, this can be 

reworded to provide a definition of system behaviour more reminiscent of that within modern 

control theory.  As in the precursor work [25], a slight variation of the definition is therefore 

adopted within this work: 

System Behaviour (specific): The manner in which a system is seen to progress from 

one state to another, which can be quantified by one or more parameters and fits into 

some predefined category of system performance. 

This definition provides that behaviour is to do with actions in context, and corresponds to 

some property that can be observed.  Consequently, the understanding and classification of 

behaviour may be subjective. 

3.2.4 Complex Systems 

When there are a number of separate and distinct systems operating individually, it is possible 

that the actions undertaken by some systems influence the behaviour of others, possibly despite 

the absence of an obvious tangible connection between them.  Whether tangible or not, if there 
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is some implicit connection between systems then they are forming a network, hence the phrase 

‘network of systems’.  ‘System of systems’ is an alternative description meaning essentially 

the same thing.  A multi-agent system is a more specific instantiation, where the individual 

elements that make up the larger system are necessarily intelligent agents, with an independent 

decision making capability but typically without a global world view or a single point of 

control.  Some discussion of these concepts has already been presented within this thesis in 

Chapter 2, with example applications described in Chapter 2.5. 

Despite this multitude of labels, all of these are (or can be) examples of complex systems.  Other 

labels can surely be found elsewhere in the literature.  For the purposes of this thesis, the 

following (also derived from Thoms [63] but adapted in the precursor work [25]) provides an 

overarching definition of a complex system (and of complex behaviours): 

Complex System: A system comprising multiple interacting parts which exhibits 

characteristics and behaviours which are not associated with the individual component 

systems acting in isolation. 

Such systems can exhibit a wide range of behaviours, which can evolve out of the interactions 

between individual components and with the local contextual situation in which they are 

operating.  It is this capability which enables them to respond to different operational 

challenges in different ways, bringing capabilities traditional unitary or monolithic system 

might not have been able to bring but making the human operator’s challenge more difficult. 

Note that with complex multi-agent systems, purpose is a result of the individuals and the 

interaction of the individuals, who may not be aware of the overall system purpose but will be 

working towards their own local goals or purpose.  Generally, such systems should not be 

assumed to have a well-defined purpose or goal commonly understood throughout the system 

(indeed, such inhomogeneity of purpose could well be the cause of any complexity). 

3.2.5 Multi-Agent Systems 

A variety of definitions for an agent and a multi-agent system can be found in the wider 

literature so, to be clear what is meant within this thesis, the definitions used in precursor work 

[25] is again carried forward. 

Firstly, an agent in colloquial English means an entity (typically a person) responsible for 

making decisions on behalf of another entity.  In software engineering, a software agent is a 

piece of software that functions as an agent for another part of the system (which could be other 
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software components, interfacing subsystems, or potentially the human user).  For this thesis, 

it is not necessary to go into detailed discussion of software engineering details and standards, 

as different specific meanings and definitions are in use around software agents.  It is sufficient 

to define an agent as: 

Agent: An entity within a system at which decisions are made which affect the 

behaviour of a part of that system. 

An agent-based system is a system that contains one or more agents.  The precursor work 

considered one agent controlling an autonomous vehicle [23],[24] building on [15],[68]; this 

PhD has focused on the multi-agent situation, where a system contains more than one agent.  

Based on the definitions from the precursor work already given, the following is naturally 

derived as a working definition for a multi-agent system: 

Multi-Agent System: A system that consists of multiple parts each containing at least 

one agent making decisions that affect the behaviour of that part. 

With this general formulation, agents can be arranged without constraint within the system.  

This definition allows for agents to be arranged hierarchically, with a natural ordering or 

layering based on which part of the system may be regarded as a supersystem or subsystem to 

which other parts.  It also allows for them to have no hierarchy whatsoever, all existing in a 

single system layer acting in parallel to one another.  More complex arrangements with 

elements of hierarchy and parallelism can easily be envisaged.  All of these are permissible 

within this general formulation.  As has already been seen with the examples in Chapter 2.5, 

and particularly via the graphical representations of multi-agent system structure contained in 

Figure 1 to Figure 3, this decomposition into hierarchical and parallel is a useful design pattern 

which will reoccur. 

As noted previously, systems, and their boundaries and purposes, are in the eye of the beholder, 

with inherent subjectivity about what each of these things might be in any given context.  

Agents have decision making responsibility for parts of a system, but if the boundaries of these 

parts are subjective then so might be the allocation of responsibility to agents.  Fortunately 

however, these considerations tend to be more applicable to human systems. With 

technological systems, a software agent will typically have defined interfaces and functions, 

and so the structure of the multi-agent system should be objectively definable.  It should be 

noted that advanced concepts such as artificially intelligent ‘self-tasking’ agents might breach 

this assumption and require deeper consideration, but these are beyond the scope of this thesis. 



 

 

35 

Complex and multi-agent systems are closely related phenomena, but they are not the same 

thing.  Multi-agent systems are often complex, and they present a significant challenge to the 

system design process, to understanding and controlling system behaviour, and to system 

assurance. However, multi-agent systems could, in principle, display non-complex 

characteristics and behaviours, if the interactions between the agents are carefully designed and 

constrained and operate in a well-defined environment.  Conversely, complex systems are a 

much broader family than just agent-based systems, covering a wide range of system concepts.  

Some aspects of the techniques developed in this work may be applicable to other forms of 

(non-agent-based) complex system, or to non-complex multi-agent systems, but the specific 

focus of this thesis is on complex multi-agent systems. 

Figure 4 illustrates the relationship between the two concepts by way of a Venn diagram: 

 

Figure 4 – The Relationship between Complex and Multi-Agent Systems 

 

3.2.6 Limitations of this Work 

The field of autonomous agents and related technologies within academia is diverse and in 

general has focused on delivering specific solutions to agent problems at the low level.  This 

thesis is not going to discuss specific examples of agent technology, software standards or 
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techniques used in the implementation of agent-based software.  Instead, this high level 

discussion is to provide the baseline assumptions based on principles from system science, 

from which a mathematical framework for multi-agent decision making can be developed. 

As noted above, agents that can independently evolve are excluded from this work.  Concepts 

from artificial intelligence of agents that are able to define their own scope and purpose might 

not be easily controlled, as they could potentially evolve to remove, limit or work around any 

mechanisms used to control them.  Also excluded from scope are systems that do not have at 

least some degree of localised decision making capability of their own, or which have not been 

designed or implemented to fulfil a specified function or purpose, since any such systems 

(whilst potentially complex, for example many naturally occurring systems) would not make 

sense to be built as multi-agent systems, nor indeed would engineers be likely to be actively 

developing them without specified function or purpose. 

3.3 The Organisation and Structure of Systems 

This section considers the implications of the organisation and structure of a system, and how 

this can influence the observation and the control of such systems. 

3.3.1 Background 

A system, and an observer’s relation to that system, was defined by Thoms [63] as: 

“A system is that body which is considered as a functioning unit, which is formed of 

many often diverse parts, that achieves a purpose. But we need to remember that a 

system is always in the eye of the beholder. When we observe what we think of as a 

system we bound what we are observing, we infer a purpose and our understanding of 

that systems is against the current context. We make assumptions as to what is 

contained in that system and seek to recognise patterns relating those elements to each 

other so that we can understand their complex interrelations.  And yet what we observe 

as systems behaviour is observed at a higher level that any individual cognisant entity 

that it may contain. Our expectation is that the system satisfies the purpose for which 

we perceive it and we will even attribute it with the flexibility to meet changes in its 

environment.” 
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The observer or the beholder may ultimately be the user of a system, but will be the engineer 

or designer of the system in the early system design phase.  An engineer or designer would 

expect to have knowledge of the whole composition of the system, whereas a user may (by 

choice or by design) only see part of the system relevant to them.  There is therefore some 

subjectivity about system organisation and structure of systems just as there is about system 

function and behaviour, and this distinction should be kept in mind when considering the 

implications of organisation and structure on systems. 

When designing a system, the engineer has to define the intended purpose of that system and 

choose architectural rules or patterns that are appropriate to that purpose.  A defined and 

presumably fixed purpose implies a fixed structure to the system, which will not change in 

response to the environment.  Whilst this may be true of, for example, the hardware from which 

the computer on one’s desk is constructed, it is not true of the software that is running within 

it.  The software components are being constantly loaded, run and unloaded in response to 

requests from the user, from the operating system and/or from any networked devices it is 

connected to.  This behaviour is a result of control algorithms or rules that one might recognise 

as reactive autonomy, and the same type of behaviour is exhibited in networks. 

For more sophisticated systems capable of behavioural autonomy, the engineer has to define 

more than just a physical architecture.  They must define an organisation, including the rules 

and constraints that elements must abide by, and this requires them to understand the triggers 

for characteristic network behaviours.  To understand the operator’s perspective on these 

systems, the engineer also needs to recognise the organisational paradigms they may have 

chosen, and the implications their choices could have on the observation and control of both 

the organisational behaviour and of the overall system in its environment. 

The problem space changes further when considering systems with deliberative elements.  

These elements have the capability to decide how to organise their own group structure to 

achieve goals supporting the system purpose.  To understand the operator’s perspective in this 

case, one would need to consider how the operator might recognise the emerging organisational 

structures within the system, as well as the potential control mechanisms. 
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3.3.2 The Impact of Networks on System Behaviour 

Complex behaviours arise from the interactions between independent elements of systems, and 

these interactions mean that elements are implicitly or explicitly forming a network of some 

kind.  Since networks display basic reactive autonomy based on simple rules, one should expect 

that network behaviours might influence the behaviours of complex systems.  For example, 

behavioural agents may learn that interacting with certain other agents gives them increased 

access to the information they need, thereby creating scale free networks based on their 

evolving goals.  Deliberative entities may choose to interact with agents with similar interests, 

thus creating their own small world networks which can grow and evolve over time. 

To understand the behaviour of any system, it is necessary to first recognise the nature and 

cause of the behaviour of any networks within that system, as this network structure is a part 

of the environment that influences what behaviour is observed.  Consequently, it is important 

to briefly recall the types of network organisation that could be present and whose properties 

and characteristics might be influencing system behaviour. 

3.3.2.1 Formal Networks 

Formal networks are networks that have a defined structure and fixed rules.  As such, they are 

inflexible and are applicable only to rigidly defined, unchanging problems. 

In the real world, many networks will need to change and modify themselves.  The example 

application areas described earlier in this thesis could be described using a formal network in 

some cases (the production line automata for example), but this would severely limit the ability 

to operationally and organisationally adapt in other cases (discussed further in Chapter 3.3.3 

below).  To allow for such adaptation, informal networks will need to be investigated instead. 

3.3.2.2 Random Networks 

Random networks are networks which have a defined number of nodes within which 

connections are made, not with any specific intent but randomly.  These networks are known 

to demonstrate sudden changes in information flow due to what is called percolation, which 

occurs when the number and transfer rate of random links exceeds the volume of information 

that is attempting to pass through it. 

Random networks can be recognised by the degree of distribution of the nodes and the 

clustering coefficient (the ‘goodness’ of the links between neighbours). 
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This kind of network structure would be appropriate to a system whose composition varies – 

systems within the system of systems leaving and joining during on-going operation.  This is 

relevant to some autonomous vehicle concepts (discussed further in Chapter 3.3.3 below). 

3.3.2.3 Small World Networks 

Small world networks are networks that use some sort of attribute or property to guide the 

creation of the links between nodes, and hence nodes with these similar characteristics will 

seem to be clustered.  As a result, information that in some way relates to the attribute or system 

property that is guiding the creation of system links will have a shorter path between its source 

and destination that it would have had in a random network. 

Among the properties of a small world network are that it has a relatively small average path 

length and high clustering coefficient.  When this is combined with a small number of longer 

length links, it produces a network that becomes more richly interconnected (biased towards 

information transfer) than random networks. 

This kind of network might be relevant to systems where there are multiple systems that 

cooperate on particular tasks for a period of time, and therefore form a more closely coupled 

cluster within the wider network for the duration of that task.  Whether these clusters form 

through reactive or deliberative autonomy would depend on the application and 

implementation in question. 

An example of this would be the smart sensors application, where closer linkages between 

subsystems might be required during handover of a monitoring task from one smart camera to 

another – for example, seeing links forming between the subsystems of two particular cameras 

as they react to each other to ensure they are pointing in the correct direction and aligning focal 

or filter settings to ensure smooth and continuous coverage.  This would manifest itself as those 

branches of the wider multi-agent system network forging additional denser links between 

agents within those branches that might not otherwise have been observed, forming a denser 

cluster within the larger network. 

3.3.2.4 Scale Free Networks 

Scale free networks grow and evolve over time; they increase not only the number of nodes 

but also the links between those nodes.  As new nodes are added to this type of network, their 

preference is to be connected to nodes with a high degree of connectivity, a process known as 
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preferential attachment.  As a result, plotting the numbers of connections per node results in a 

graph following a power law.  It is this power law that is the key characteristic of this type of 

network and gives it its name of scale free. 

In these networks, the points of vulnerability are the hubs with high degrees of connectivity.   

But because of their ability to evolve, nodes will seek to reconnect themselves to anther node 

with a high degree of connectivity and quickly heal the network.  The internet is a scale free 

network that everyone is familiar with, but one should not seek to interpret intentionality from 

the observation of the flows within it. 

3.3.3 Relevance to the Example Application Areas 

Relating this discussion back to the application areas described earlier in this thesis in Chapter 

2.5, it was clear that network structures could be identified with decision making agents 

operating in parallel but with (perhaps hidden) dependencies on each other – the multiple 

autonomous vehicles, or the individual smart sensors, or the individual robot appendages in 

each case.  A hierarchical structure connecting these agents to various subsystems could also 

be recognised.  Each of these multi-agent systems (and the multiple system layers within these 

multi-agent systems) can be regarded as a network, with each node the location of one of the 

decision making agents, and the dependencies between nodes being the edges. 

Some of the applications would be more naturally represented as a fixed network.  For example, 

the production line automata application would likely feature a fixed number of assets with 

defined roles, and this is unlikely to change (at least during run time).  Nonetheless, failures of 

individual appendages might mean others could not complete their tasks.  With some reactive 

autonomy within the system, it might be (at least theoretically) possible for some other agents 

in the network to adapt to this change.  For example, if two robots are required to lift some 

pieces together for a third robot to weld, then if one robot fails the others might be capable of 

ceasing welding or to return their pieces to rest, as a preferable outcome to continuing to operate 

and achieving nothing more than seared edges of wasted metal suspended in mid-air. 

The vehicular navigation application is a good example of the opposite case of a dynamic 

network.  The number of vehicles within the network operating at any given time may vary.  

This could be because there are defined geographical limits to a particular system (for example, 

traffic control within defined city limits) and vehicles might go beyond these limits on 

individual journeys or re-enter, temporarily leaving and later re-joining the network.  There 



 

 

41 

could also be idle time in between any peak times of operation.  Off peak, a proportion of the 

vehicles might be idle – technically still elements within the system, but not currently in 

service.  Depending on the implementation, one might regard these as having been off the 

network and subsequently re-joining.  Temporary unavailability of communications could also 

lead to the leaving and re-joining of systems from the network, from the perspective of the rest 

of the network.  All of these scenarios, applied to any version of the vehicular navigation 

application, result in the internal structure of the multi-agent system being a dynamic network.  

If there is the capability to ‘accept’ visiting vehicles from outside into the system (for example, 

traffic coordination on a larger scale where vehicles might be permitted to enter from another 

jurisdiction) this might even manifest itself as a random graph. 

Reactive autonomy in this situation might be seen as, for example, a vehicle failing or otherwise 

becoming unable to make a planned journey, with another vehicle redirected to complete this 

task instead.  A more advanced implementation with some degree of behavioural autonomy 

might see lowly utilised vehicles recognising if an uneven distribution of vehicles was 

emerging and choosing to move to more sparsely covered areas in anticipation of future 

demand. 

The engineer or designer of the system has a great deal of flexibility to determine the degree 

of functionality that they might wish to design into the system (notwithstanding the question 

of whether they can get the design approved), but this will have implications on the structure 

of the resulting multi-agent system, including on the internal network dynamics and the 

required network structure.  It will be an important consideration in the development of a 

modelling and analysis approach for multi-agent systems that flexibility be maintained to 

account for this range of solution concepts.  Networked learning agents provide a theoretical 

framework that can remain relevant to all of these examples in a way that other more rigid 

structures might not. 

3.4 Understanding Observed System Behaviour 

To evaluate the behaviour of a system, one first needs to observe the system in order to: 

• Categorise system behaviour into states, and be able to make judgements about current 

and future system states from available local or global information. 
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• Determine whether a system is in a desirable or undesirable state, and whether it is 

likely to remain in desirable or undesirable states. 

• Assess whether the performance of the system will remain within an acceptable state 

(or within a set of acceptable states, or within an acceptable bound), and if not to 

identify suitable actions to take to ensure that it does so. 

There are some key challenges relating to understanding observed system behaviour.  This 

section discusses some of the key challenges related to the observability, classification and 

control of system behaviour that arise when trying to understand the behaviour of systems on 

local and global scales. 

3.4.1 Observability 

In multi-agent systems, the behaviour of the system is intrinsically linked to the behaviour of 

the individual agents.  The engineer needs to be able to answer a number of questions: 

• What to observe? 

• How should one abstract global properties from observing some properties of 

individual agents?  Can these abstracted properties be used as indicators of global 

behaviour or health? 

• With access only to limited information, for instance the knowledge of a subset of 

agent states, or a subset of agent interactions and their state transitions as a function 

of time, then how can this data be extrapolated to give extended patterns of local 

behaviour and useful insights into global behaviour? 

• How to observe? 

• Should the observer be internal or external to the system?  (This could be related to 

the question of how to ensure that the presence of any supervising agents has a 

minimal impact on the behaviour of the agents being supervised.) 

• How is the observer to communicate with and influence the system?  How does this 

add to the load on the resources of the system? 

• As different behaviour can be observed at different levels of granularity within a 

system, then what is the appropriate level for observation and analysis of behaviour?  

Might multiple observers at different levels in the system be required? 
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The observer’s perspective may influence how they will perceive reports from the system.  It 

has been argued that system elements in social systems interact with an understanding that their 

relative perceptions of reality are related [9], and that they may each act against this common 

understanding.  They will have a common understanding of their environment and that they 

will have little understanding of how other social systems perceive their environment.  This 

could be described as an internal system culture [63]. 

This viewpoint has implications for the observer of such a system that the observer may not 

share the same perception as the members of the system against which to interpret their 

observations or the reports that may be provided to them by the system.  Applied to multi-agent 

technological systems, this means that the engineer’s or user’s perceptions of the reports and/or 

data obtained from observing different parts of a system may be interpreted against different 

viewpoints of what that system should be doing and how it is to be regarded against real-world 

context.  This means the system designer will need to understand the issues involved in using 

local information to make global predictions and vice-versa. 

3.4.2 Behaviour Classification 

Mapping observations on to system behaviour leads to a new set of questions: 

• Is it possible to map patterns of local agent behaviour to a pattern of global system 

behaviour?  Is there a functional representation of this relationship? 

• Using only certain features of local behaviour, is it possible to develop a classification 

scheme for global behaviour? 

• Can a specific global behaviour pattern be related back to a specific combination of 

individual agent behaviours? 

• Is it possible to simulate the behaviour of the whole system by using only some 

important constituents and representative interactions?  Or to recreate a pattern from a 

particular set of significant features? 

3.4.3 Control 

Moving towards higher levels of autonomy to deal with changing operational requirements and 

dynamic environments will require control techniques that can be adapted to the evolving 

context.  This prompts the following questions related to control: 
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• What in the system (states, value functions, communication links…) can be changed, 

and under what circumstances? 

• Should there be a single controller or multiple distributed controllers?  If there are to be 

multiple controllers, how would these controllers interact? 

• Should the controller be external to the system, or could there be a self-regulatory 

mechanism within the system? 

• Can global behaviour be influenced by controlling local behaviour? 

It will also be important to understand how to evaluate control techniques: 

• How to judge if the control techniques developed are robust? 

• What techniques are most efficient (in the sense of using minimum computation to 

achieve good control)? 

3.4.4 Relevance to the Example Application Areas 

The considerations in this chapter about observation and control are very general in nature.  

Chosen solutions will inevitably be context specific and the reason for expressing the issues 

raised in this chapter as questions is because there will not be universally applicable answers. 

However a few general comments can be made regarding the example application areas from 

Chapter 2.5.  A higher level system-of-systems layer coordinating the activities of the other 

elements in the system was included as an optional layer of the system for each example.  There 

are other theoretical challenges with this approach (to be discussed later in Chapter 4.3), but a 

more immediate problem for the presentation within this thesis is the impracticality of having 

or at least maintaining this layer, hence the focus on the synchronisation problem that emerges 

when the separate systems within the multi-agent system are still linked in a network of 

dependencies but are no longer able to communicate with each other.  In each example, the 

system-level agent (that controlling the tasking of the autonomous vehicle, the smart camera, 

or the production line robot in each case, or the second layer of agents in the illustrations in 

Figure 1 to Figure 3) acts as a controller for its branch of the decision tree, but in the absence 

of an overall controller for all branches of the whole multi-agent system.  Different structures 

could be envisaged for different applications. 

Chapter 5 will define an approach to constructing a state machine model for such systems, and 

later chapters and annexes will demonstrate how one might apply this general state machine 
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model to each of the example application areas.  Action spaces are also defined as part of the 

model, where an agent choosing an action causes the system to experience a state transition.  

State transitions are the representation of behaviour using this approach, and as the examples 

are all of physical phenomena these will be observable state transitions or system behaviours. 

It should be noted that this is not claimed to be the only way to address the issues identified in 

this chapter.  In particular, digital software systems might wish to consider further what an 

observable behaviour means in their context.  Nonetheless, this thesis develops an approach to 

addressing the issues identified in this chapter, suitable for the example application areas 

identified and potentially for other problem domains too. 

3.5 System Performance 

The next challenge that arises is to understand what measurements are possible and which of 

those measures might be of use. 

3.5.1 General Agent System Measures 

At an individual agent level it should be possible to gain access to the agent’s current status, 

goals, and attribute values.  These values include the agent’s current goal and the values that it 

will use in making its choices. 

The engineer will have to consider how or why an observer would want to investigate a specific 

agent.  It may be more appropriate for the system to include agents (sometimes described as 

master agents or sentinels) that take responsibility for a subsystem of multiple other agents, 

and it is from these agents that the user or operator would seek status information. 

To undertake this type of measurement, the agents (whether any or all agents, or just specified 

agents) would need to be designed to support external interrogation. 

3.5.2 Group Measures 

At higher levels of system abstraction, it might be necessary to measure groups of agents rather 

than individual agents, as the useful measurements may not be a function of the agents 

themselves but of the architecture and network structures in which they reside. 
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To be able to observe and measure group dynamics, the system architecture needs functions to 

support the identification of interactions between agents.  This could include functions allowing 

the identification of: 

• The routing of messages between agents. 

• Group stability and dynamics. 

• Internal group interactions. 

• Lines of communication to other groups. 

• Volume of communication between individual agents within a group. 

• Embedded dimensionality (clustering of nodes). 

To understand what was happening at the group level it would then be necessary to classify 

these measurements. An alternative technique would be to have a ‘group coordinator’ 

allocating roles and assignments, who could provide group level status interrogation facilities.  

Note that this is not the same role, nor would it necessarily be conducted by the same agent, as 

the sentinel role mentioned previously, should that also have been adopted. 

3.5.3 System Measures 

There are other measures that may be useful at the system level.  These measures may be similar 

to the types of measures that one would use for monitoring a traditional monolithic system, but 

in addition the engineer will also need to consider how to measure: 

• The available system behaviours.  (This could be by observing the number of agents 

and the types of agent available in the system and using this to reference a set of defined 

system behavioural patterns.) 

• Degradation modes and effects. 

• System evolution. 

By monitoring the resulting effects from the interaction of the system with the context, it should 

be possible to identify if the agents (or groups of agents) are following any discernible pattern. 

This would enable the observer to predict the evolution of the system behaviour by identifying 

patterns from the current and previous goals.  The completion of each goal at a group level 

could be observable if or when the system nodes (agents within groups) change. 
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3.5.4 Relevance to the Example Application Areas 

It is not difficult to see where measures of individual or groups of agents may arise within the 

example application areas.  Focusing specifically on the production line automata example, as 

the primary example developed later in this thesis, measures that currently describe the state 

and performance of the overall system would include aspects like current position and 

orientation of tools and devices, activity throughput and completion rates, and fault reporting 

as and when required.  Some of these measures might make more sense as a group measure; 

for example measures concerning task throughput and completion would make most sense 

associated with the group of robots collectively supporting the same activity, as there should 

not be any difference in the measure between members of the group.  Overall quality control 

measures such as fault rates only make sense at the overall system level.  Therefore, a practical 

design for such a system would need to ensure that the necessary data for reporting each of 

these measures is available at the appropriate layer of the system hierarchy. 

3.6 Addressing the Key Challenges 

This section considers how constructing models of complex multi-agent systems using the 

mathematical basis introduced in the precursor work [23],[24] and reintroduced and further 

detailed in this thesis (from Chapter 5) can provide a framework for modelling and, hopefully, 

understanding the behaviours observed from such systems.  This understanding might help 

address the key challenges that face the user when observing and trying to classify and control 

the behaviours of such systems. 

3.6.1 System Observability 

The questions related to observability can be classified as:  

• What to observe?  

• If one has access only to limited information, for instance the knowledge of a subset 

of agent states, or a subset of agent interactions and their state transitions as a 

function of time, then how could one extrapolate the data to give extended patterns 

of local behaviour and useful insights into global behaviour? 

• In multi-agent systems, system behaviour is intrinsically linked to agent behaviour, 

so what techniques could be used to abstract global properties from observing some 
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properties of individual agents?  Could these abstracted properties then be used as 

indicators of global state? 

• How to observe? 

• Should the observer be internal or external to the system? 

• If the observer is to be external, how should the system communicate with the 

observer?  How will this add to the load on the resources of the system? 

• If the observer is to be internal, how should this mechanism be implemented?  

Should certain agents be designated as monitoring and/or sentinel agents? 

3.6.2 Patterns of Behaviour 

A system can have static and dynamic patterns of behaviour. 

3.6.2.1  Static Patterns 

At the individual agent level, patterns can be recognised that relate to the individual agent’s 

current state and the triggers that will cause that agent to change to another state.  In systems 

that contain many elements, this way of observing the system quickly becomes impractical due 

to the size of the observation challenge. 

Above this, one can recognise that the agents will interact with other agents within the system 

exchanging information.  These interactions can be considered to link communities of agents 

that may or may not be working together to achieve the same goal.  Where there are multiple 

individuals working together towards the same goal it is likely that their interactions will follow 

a determinable pattern which could be represented with some sort of abstract representation or 

label. 

It may also be of use to consider the spatiality or locality of these groups of agents within the 

system. 

3.6.2.2 Dynamic Patterns 

Agent systems are dynamic systems so it is important to consider how to observe this 

dynamicity without overloading the observer.  Within the system there will be constant changes 

to the internal states of the agents as a result of events in their local environment.  It may be 

useful where there are a number of homogeneous agents to be able to understand if these agents 
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are in similar states (a stable system) or diverse states, which could give an indication as to the 

nature or local context of the agents. 

An engineer will want to be able to observe changes in the interaction between different agents 

as well as interactions between agents working as teams or communities.  In response to the 

environment they will want to be able to observe changes to the volume of communication 

between agents. 

Both of these could be used to attract the observer’s attention in order to get them to observe 

the locality of the agents to understand the change in the context, which in turn could change 

the way in which they interpret the system behaviour. 

There may also be occasions where individual agents become excluded from the dynamic 

system functionality, either temporarily (when they are not required to deliver the current goal) 

or permanently.  Where these agents are heterogeneous, the exclusion of certain agents (or 

types of agent) may provide an indication of the type of goals currently being undertaken by 

the system. 

3.6.3 Observing the Outcome of the Agent/Group Behaviour 

An alternative approach to observing patterns in the agents would be to seek to observe the 

results of their execution within the operational context.  With knowledge of the agents’ 

internal plans and group plans it might be possible to infer the evolving ‘string’ of goals that 

the agents are working towards. 

It should be possible to recognise patterns in these goal sets, which may allow the observer to 

understand possible causes of the agents’ historical behaviour and to predict possible future 

behaviour. 

When considering the challenge of prediction, the observer is interested in being able to predict 

what the system may do in the short term and to be able to understand how the system behaviour 

may evolve in the longer term.  Key to this is the ability to understand the level of uncertainty 

in the observation and how that uncertainty may increase in the future. 

3.6.4 Relevance to the Example Application Areas 

Some of the considerations described in this chapter apply to the example application areas.  

Because of the focus on problems where a coordination layer is not present, the synchronisation 
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problems considered herein clearly feature an external observer (the human user).  If there were 

some degree of human control or a coordinating agent, then it would be necessary to consider 

what the key measures are that would need to be observed and what would be the best 

mechanisms for doing so, in order to facilitate this.  This might take the form of providing 

distribution and grouping data and current task assignments of the vehicles within a fleet of 

unmanned taxis, to assist a planner when deciding where to allocate new task requests. 

The production line automata example would fit naturally into the paradigm of static patterns 

of behaviour; once a system is configured and operating effectively (‘ramp up’ having been 

achieved) it would not normally be expected to change during operation.  A number of robotic 

appendages all conducting their various tasks, but with regularity such that observable and 

repeating patterns of behaviour are apparent to the external human observer.  It should also 

become speedily apparent when physical faults occur, because the patterns will change, where 

a particular appendage no longer acts the way it did before.  The example of the multiple 

autonomous vehicles could display static patterns (for example if they were conducting fixed 

and repeating journeys such as daily logistics deliveries) or dynamic patterns (an autonomous 

taxi service would see patterns determined by external customer demand and would surely not 

follow a static pattern given different service requests coming in from unplanned places and 

times).  The smart sensors application has attributes of both, with a fixed pattern of behaviour 

for routine monitoring and surveillance, but the potential for dynamic patterns to occur if the 

system has greater autonomy to, for example, prioritise tracking of certain objects of interest 

and to allocate and prioritise resources accordingly. 

3.7 Complicated vs. Complex System Behaviours 

It is important at this stage to clarify that complexity of systems does not merely mean there 

are too many individual elements for an observer to keep track of, or that the individual 

behaviours of some or all elements in the system are difficult for an observer to comprehend.  

Colloquially these might be described as complex, but this would be loose language. A 

complicated system does not equate to a complex system. 

For the purposes of this thesis, complicated means that there are many components and the 

properties and behaviours are difficult to comprehend all at once.  However, these complicated 

properties and behaviours may still be entirely logical and predictable, and just because there 

are many components making analysis difficult does not necessarily mean these components 
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are interacting or interfering with each other.  To be complex, there has to be some ‘difference’ 

in property or behaviour caused by interaction (discussed further in the next section on 

emergence).  Complex systems are often complicated, because a complicated system with 

many components and many internal dynamics is more likely to have components interacting 

with each other, but it is not the same as merely being complicated.  Although it is counter-

intuitive terminology, relatively simple systems could be complex.  Only two elements are 

needed for there to be an interaction that changes the combined properties or behaviour, but a 

two-element system is unlikely to be considered complicated.  Complicated and complex are 

therefore descriptors of different system conditions.  Referring to a system as a simple system 

is unspecific as to whether one is referring to the opposite of complicated or the opposite of 

complex, because these are generally not the same thing. 

What impact does this have on the systems engineer?  In one sense, not a lot.  Both complicated 

and complex systems present engineering challenges, in the sense that systems design and 

proving is about determining and designing in required behaviours from a system, and then 

determining and/or demonstrating the appropriateness or suitability of what is actually 

achieved.  Both complicated and complex systems present a difficulty in that it may not be 

straightforward to do this.  Software engineering in particular suffers, because the standard 

approach is, in essence, to test every possible string of commands from every possible state, 

and this can be an enormous number of combinations.  There is a need for tools and methods 

more generally for making this process more efficient and effective. 

However, complex systems present an additional difficulty beyond potentially being quite 

complicated.  If the behaviours and properties of the systems being analysed are not as might 

have been predicted from an analysis of the components themselves, then an analysis of how 

the system is expected to behave from an understanding of what its components will do can be 

logically invalid, presenting a significant stumbling block to standard processes to assurance 

(this is discussed further in Chapter 4.4).  This logical problem does not prevent the assurance 

of complicated systems, although the potentially significant increase in engineering time and 

risk implied by the need to consider everything that an increasingly large and complicated 

system might do is a major complication, but it does prevent the assurance of complex systems 

(or at least it prevents the ‘near-perfect’ level of assurance that traditional processes set as a 

target assumed to be achievable).  Complexity fundamentally challenges the premise behind 

assurance. 
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3.8 Emergent Behaviour 

The definition of a complex system given in Chapter 3.2.4 implicitly defined a complex 

behaviour as well.  Emergent behaviour is a similar phenomenon, but slight variations in 

definition exist which can cause confusion. 

For the purposes of this thesis, the following definitions for emergent phenomena (inclusive of 

but broader than emergent behaviour) and for emergence within a system have been adopted.  

It should be noted that these are original definitions from the author based on the definitions of 

the related concepts from earlier in this thesis. 

Emergent Phenomena: Behaviours, properties or characteristics of a composition of 

elements that are not behaviours, properties or characteristics of the elements 

individually. 

Emergence: The interaction between entities within a system that results in the 

occurrence of some emergent phenomena by the system. 

The key point is that when a number of entities are combined together to make up a larger 

system, it is not merely the superposition of the behaviour of the elements that is observed as 

the behaviour of the combined system.  Put simply, composition is not superposition.  Some 

aspect of the combined system’s behaviour changes from a straightforward superposition of 

elements due to the integration of or interaction between those elements. 

A simple example can be thought of to illustrate the concept based on the autonomous vehicles 

example application area described previously in Chapter 2.5.1: 

• A is designed to travel directly west. 

• B is designed to travel directly east. 

➢ A and B together should pass by travelling opposite but in parallel (assuming 

they do not collide). 

• However, as they near each other, they deviate to maintain separation distance: 

➢ The behaviour observed when A and B are interacting in reality is not the same 

as might have been expected from a simple superposition of expected 

behaviours of A and B. 

➢ This a simple instance of behavioural emergence. 
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This simple example will be seen later in this thesis to be exactly the kind of emergent 

behaviour that one may wish to see in synchronised robotics.  It should also illustrate that 

emergent behaviour is not necessarily a bad thing – collision avoidance in the simple thought 

experiment above, and in the industrial case study that follows later in this thesis, is clearly a 

good thing.  It is desirable for systems to adapt in this way.  It is therefore desirable, if the 

systems in question feature some degree of autonomy, for these behaviours to be allowed, or 

even encouraged if an autonomous control mechanism can support this.  In Chapter 8 later in 

this thesis, these sorts of adaptations are exactly the thing shown to be learnable, creating a 

positive and indeed vital instance of emergence that allows the system to continue operating as 

it should.  The challenge is to ensure that if a system has the means to adapt its behaviour, it 

does so in a safe and appropriate manner. 

The simple example also demonstrates an important characteristic of emergence.  It is not a 

random occurrence.  It is not a matter of stochasticity versus determinism in system theory.  It 

is not in general something that can be dismissed as a long tail ‘black swan’ event.  Entirely 

deterministic systems can display emergence if the interactions are sufficiently complex.  It is 

a consequence of the system design, and of the control mechanisms applied to a system.  As 

such, in any work concerned with novel methods for controlling and understanding the 

behaviour of complex multi-agent systems, there is little more important than properly 

understanding the boundaries, structures and control mechanisms one is using to design and 

manage the system, because it is in those choices that emergence ultimately arises, both 

positively and (if one is not careful) negatively. 

In this chapter, the nature of emergent behaviour is briefly discussed, and how the simple 

definition being used within this thesis differs from some uses of the term within the wider 

literature.  This is important to put the work that has been conducted towards this thesis in the 

proper context. 

3.8.1 Examples of Emergent Phenomena 

The simple example given above was a form of behavioural emergence, i.e. the observable 

patterns of behaviour change when additional elements are added.  Emergence could be wider 

than that, encompassing a range of observable phenomena: 

• Changes in non-functional properties of systems; for example, two systems determined 

to be safe and/or secure may not remain safe and/or secure when they interact. 
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• Run-time behaviours of modern software systems; for example, software programmes 

typically overflow their buffers after a certain run-time, but it can occur that 𝑛 multiple 

parallel programmes overflow their buffers more or less often than 𝑛 times the normal 

run-time. 

• If an information system is considered to be the composition of databases, interfaces 

and, importantly, the processing algorithms themselves, then the output of an enquiry 

could be seen to be a property of the system.  If for example an additional database is 

made available, additional information is processed and the outcome of the same 

enquiry is now different, this could be argued to be an emergent outcome (although 

looking ahead to the discussion in the next subsection about the difference between 

reducible and irreducible properties, this example would be seen by some to be a case 

of a hidden property not observable to the user, rather than pure emergence).  

Nonetheless, data/information fusion being a potential driver of behavioural emergence 

is a consideration in modern data-distributed system architectures, and is of particular 

concern when there is some degree of autonomy to act based on internally processed 

information. 

• Examples in system health management arise when different combinations of system 

components cause different combinations of health status message to be sent, 

potentially changing the prioritisation of remedial actions and hence the status of the 

overall system. 

• Ad hoc networking is prone to such phenomena; for example, the addition or removal 

of nodes causing routing to change (although the same caveat applies when looking 

ahead to the following subsection, that this would not meet the definition of emergence 

amongst all ways of thinking in the wider literature). 

3.8.2 Reducible vs. Irreducible Emergence 

It is important to note that in the wider literature there is sometimes considered to be a 

difference between conventional (sometimes called ‘weak’) emergence (characteristics seen to 

arise from the interaction of components) and ‘strong’ emergence, which distinguishes those 

characteristics which cannot be accounted for at the component level (in essence, 

distinguishing between reducible and irreducible collective behaviour).  For the purposes of 

this thesis, it is satisfactory to consider emergent behaviour to be essentially the same 
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phenomenon as complex behaviours, and these labels will be used interchangeably.  The 

example application areas referred to throughout this thesis demonstrate conventional or 

‘weakly’ emergent behaviours under such a distinction, since they are reducible to the 

interactions between observable entities. 

There is a view that when the unexpected phenomenon that has been observed can be deduced 

from a description of the elements and how they interact, then it is somehow a weaker form of 

emergence than if the cause of the phenomenon cannot easily be deduced. 

It can be countered that ‘strongly’ emergent phenomena such as these must surely be reducible 

to something, even if it is not necessarily a simple or linear mapping between the properties of 

the elements and the whole, or if it is but there are some unobservable system elements or 

system interactions which have the effect of making an emergent phenomenon appear to 

irreducible, and therefore in some way a ‘stronger’ form of emergence. 

Hitchins [35] explains how any particular observer only need consider an appropriate level or 

set of levels of a system.  It follows that the emergence observed from a system is relative, and 

depends on the frame of reference of the observer.  In the assurance sense, the manufacturer of 

small electronic chips might be concerned about unusual electrical discharges on certain 

configurations of motherboards but not on others, but this may be of no significance to the 

network administrator at all.  They have different frames of reference on the system hierarchy, 

and consequently see different ‘emergences’ which may or may not have any impact on each 

other.  Understanding the system is therefore about understanding the layers of the system and 

how they interact with each other. 

The difference between weak and strong emergence would therefore seem to result from 

perceptions of what the system boundaries, purposes and structures are.  Relating back to the 

system theoretic issues discussed earlier in this chapter, and the inherent subjectivity in what 

each of these things might be depending on the viewpoint of the beholder, then it may be argued 

that the difference between weak and strong emergence, or between reducible and irreducible 

properties of an integrated system, would arise in the logical structure of the system model and 

the functional form (mathematically speaking) of the system hierarchy. 

3.8.3 The Engineering Significance of Emergence 

Many engineering practices and processes are based on models of how the products and 

services offered will function or behave.  Usually, these will be based on an understanding of 
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how the component parts function or behave, the process of systems engineering being the 

process of getting more out of the composition than one would have had out of the parts 

themselves.  What becomes a problem is when the result of integrating a complex system 

produces not just the emergent properties that were wanted, expected and designed for, but 

unfortunate side effects that were not.  These could undermine the effective of the system, and 

perhaps even make it unsafe. 

Model-based approaches to understanding and analysing how systems behave may not 

guarantee that only desirable emergence can occur in a complex system, but clearly they may 

be able to help.  The key is to have an approach that explicitly requires the engineer to consider 

the internal structures and interactions, and a mathematical framework for analysing and 

controlling these behaviours.  Consequently, there is a need for modelling approaches that 

‘model in’ complexity and hence emergence, to increase the likelihood of behaviours and 

characteristics being properly accounted for. 

3.8.4 Relevance to the Example Application Areas 

It is possible to imagine potential emergent phenomena that could arise from each of the 

example application areas in Chapter 2.5.  Considering the fleet of autonomous taxis or delivery 

vehicles, an example was given previously of the potential for a number of vehicles to re-route 

to avoid a traffic jam, thereby causing a second traffic jam in another location by all trying to 

use the same avoiding route at the same time.  One can also imagine vehicles re-routing 

autonomously from their planned journeys in order to avoid collisions with each other, as 

described in the thought experiment in this chapter.  Combining these phenomena could lead 

to more complex patterns of behaviour.  For example, a vehicle that makes use of a side street 

to avoid a collision or a traffic jam, may then find its expected opportunity to re-join its original 

route is now blocked by another traffic incident.  The next best route to reach the original 

destination is now a longer route where the system had not originally intended to go nor would 

it have selected merely to avoid the first obstacle.  This might look to an observer like the 

vehicle randomly going off course mid-journey, or be presumed to be a software bug or system 

fault, but it would not be.  This would be a dynamic behaviour pattern derived from the same 

control rules (in this case, routing algorithms) as all the vehicle’s previous movements. 

This example serves to illustrate the importance of some of the abstract concepts discussed 

throughout this chapter.  The unfamiliar observer might wrongly assume a fault or manually 

assume control of the vehicle or some other course of action, which would not be required if 
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there were confidence in the ability of the autonomous multi-agent system to adapt correctly, 

and that it would continue to act appropriately.  For this, there needs to be the ability to collect 

the pertinent data from across the network about the state of the system (the system measures 

described previously) and the right information needs to be presented to the right observer at 

the right system level (for example, a passenger in the vehicle might be content just to be 

informed the vehicle was re-routing due to a traffic jam up ahead, whereas a system supervisor 

might need more detailed information to rule out a system fault). 

This example illustrates many of the issues concerning observability, system measurement, and 

control mechanisms at different system layers within a complex multi-agent system. It 

demonstrates that there may be no real distinction to be made between a reducible (weak) or 

irreducible (strong) incidence of emergence, because different observers will have different 

access to system measures (i.e. what is straightforward to understand for the passenger might 

be harder to understand for a supervisor sitting miles away in a control room, or vice versa).  

All of this demonstrates that careful definition of the system or network structure, and of the 

states, actions and system measures, is vital to understanding how a system is behaving and to 

establishing confidence that any emergent effects can be controlled. 

3.9 The Need to Understand Complex System Behaviours 

Unfortunately, a robust solution to the acceptance challenge for systems exhibiting inherently 

complex or emergent behaviours does not currently exist.  The discussion in this chapter has 

been to document the considerations and the design logic that an engineer or complex system 

designer will have to go through if building a multi-agent system.  Choices around system 

definition and required functionality, internal system structure and organisation of system 

elements, mechanisms for monitoring, controlling and interpreting observed behaviour – all of 

these need to be considered by the designer but, as the discussion on emergent behaviours 

attempts to illustrate, this does not easily provide a general or absolute guarantee that the 

resulting system will not display undesirable behaviours under any circumstances. 

To better understand how human observers can comprehend the behaviours they see displayed 

by complex systems, and how this knowledge can be used to better design and engineer future 

systems to ensure effective and predictable global behaviours, it is necessary to develop 

techniques to understand, quantify and analyse the behaviours of these systems as a whole, 
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which would unavoidably appear to include looking at the internal dynamics of such systems, 

and the modelling and control mechanisms that cause these dynamics. 

The problem can be divided into three principal steps: 

1. Modelling the structure and organisation of a system in a manner amenable to 

subsequent analysis, including the representation of system behaviour and current and 

future system states from available local or global information. 

2. Identifying a suitable control methodology, which captures the operational purpose of 

the system and is capable of influencing the behaviour of the system towards its 

fulfilling of this purpose. 

3. Representing the functional and non-functional requirements placed on the system as 

bounds on the behaviour of the system model, to assess whether the performance of the 

system will remain within these bounds, and if not to identify suitable mitigating actions 

to take to ensure it does so. 

The original intention for this PhD was to research solutions to each of these steps and 

demonstrate the application of the chosen tools and methods through the whole process end to 

end.  In reality this is too large a scope for a single PhD, so only the first stage of this work has 

been undertaken for this PhD and is covered within this thesis (steps 1 and 2 above, 

constructing a mathematical framework and showing how this can be utilised as a control 

mechanism to drive appropriate behaviour within a complex multi-agent system).  However 

there will be pointers throughout to directions that the second stage of the work could take in 

future (addressing step 3 by proving the bounds of a system’s behaviour based on these 

models), and further discussion of this aspect is contained in Annex C. 

Figure 5 below provides a simple illustration of these principal steps, including the future stage 

of tackling the assurance problem.  For clarity, the main topic of this thesis is the Modelling to 

Control stage (referred to hereafter as the MDP approach based on the use of Markov Decision 

Processes as the key building block – see Chapter 5) and what is left for future work is the 

Control to Assurance stage (described later as the IFS approach based on the proposal to 

investigate the application of Iterated Function Systems for this – see Annex C). 
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Figure 5 – The Principal Steps Proposed for Complex System Assurance 

 

Modelling and control of complex multi-agent systems are discussed in the next two chapters 

of this thesis.  Control is discussed in general terms in Chapter 4 as, in the context of multi-

agent systems, mechanisms and design approaches for this is a major subject in its own right, 

and merits further discussion before proceeding with the detailed development.  The 

mathematical modelling is then covered in Chapter 5 onwards. 
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Chapter 4 

4 Controlling Behaviour in Multi-

Agent Systems 

4.1 Context 

Multi-agent systems are an example of an emerging technology that presents a particularly 

difficult systems engineering challenge, given the propensity for such systems to produce 

inherently unpredictable or emergent behaviours.  A real-world operational requirement that 

would motivate the application of multi-agent technology is likely to imply a relatively 

sophisticated system, with a large number of interconnected components and functions that all 

have some degree of local autonomy or decision making capability, some or all of which may 

be independent of any human operator. 

The engineer responsible for designing such a system not only has to consider the expected 

impact on the whole system from what an individual component is expected to do, but also 

from all the things that it might conceivably choose to do, which can be a significantly harder 

problem, and do all this in a context where it may not be clear what the behaviour of the whole 

will be from observation and analysis of the behaviour of the parts, and vice versa. 

How to control such a system will be a difficult challenge.  The difficulty will partly arise from 

the number of agents, but also from their internal organisation and structure, and from the 

degree of interconnectedness between agents – properties which will depend on the system and 

the engineering challenge in question. 

This chapter discusses the multi-agent control problem and the challenges associated with it.  

To motivate the discussion, control paradigms are described.  Then follows further discussion 

on the particular challenges arising with multi-agent systems, where considerations about the 

predictability of observed behaviours from autonomous systems intersect with the potential for 

emergent behaviours arising from complex systems, creating a particularly difficult problem. 
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4.2 Control Paradigms 

Consider as a starting point of discussion, the proposition that there are two distinct design 

approaches for the control of a complex multi-agent system, based on definitions from Deeks 

(the author) and Williams created during a previous attempt to categorise potential control 

solutions [25].  These represent the extremes of a spectrum of possible approaches rather than 

a binary choice between two specific solutions, but considering just these ‘edge cases’ is a 

useful route to highlight the general challenges.  These two distinct approaches are: 

Agent Sentinels: ‘Master agents’ that monitor the behaviour of their peers and decide 

what actions the agents should take.  The Sentinel is the agent ultimately responsible 

for ensuring behaviour is suitable and to correct any excesses. 

Distributed Control: Agents choose their own actions, based on their own (usually 

limited to local) knowledge.  No single agent is ultimately in charge of behavioural 

assurance, relying on the system to either be self-correcting or, perhaps naively, to be 

incapable of straying outside of a range of acceptable behaviours. 

Both approaches have advantages and drawbacks.  Clearly the sentinel approach would be 

expected to provide a greater degree of control over the individual agents, which is important 

for behavioural and safety assurance of any deployed systems, but too overbearing a master 

essentially reduces the complex system to a more conventional monolithic system, likely losing 

much of the functionality that was desired.  Conversely, distributed control, while a popular 

area of research in recent years, has yet to really address the question of behavioural assurance, 

largely because of the high probability of the occurrence of complex or emergent behaviours 

that are difficult to predict and manage, making it difficult to quantify the potential limits to 

the exploitability of such technology. 

Agents in a multi-agent system act based on their own local knowledge of the system and their 

local environment, and may be influenced by the behaviour of their local peers.  At the time of 

the author’s original attempt to categorise control algorithms [25], a popular area of research 

was to explore approaches to the control of multi-agent systems that involved agents 

‘brokering’ with each other for some sort of utility or resource, the accumulation of which 

guides the agents’ behaviour and thus the overall system behaviour. 

To illustrate by way of example, consider the vehicular navigation application area from 

Chapter 2.5.1 once again.  If the system-level agents controlling the individual vehicles have 
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no knowledge of the wider system configuration and current environment, it will be difficult 

for them to make optimal decisions.  How is any one agent, knowing the workload it currently 

has and the location that it is in, supposed to plan future routes to optimise overall system 

performance?  Does overall optimal system performance mean anything from the perspective 

of an agent without current knowledge about the rest of the system and its current state?  From 

the perspective of an observer of the whole system, it might be optimal if a particular agent 

were to prioritise its current tasks in a particular order so that it travels to an otherwise sparsely 

covered part of the local area in order to relieve a growing backlog of waiting customers in that 

area, whilst transferring some or all of its existing assignments to another vehicle in the current 

location.  From the perspective of the agent however, this might appear to be dumping a number 

of assigned jobs and travelling for no immediately obvious reason to a quiet area.  The agent 

is unlikely to choose to do that based only its own local knowledge, but it might if there were 

greater information sharing about overall system state, and/or some mechanism for task 

brokerage between the agents to balance workload. 

The example illustrates one of the problems with ‘brokering’ approaches, which is that the 

local interactions between individual agents cannot generally be assumed to ‘scale up’ to the 

global behaviour.  One agent, or even a small group of agents, making decisions based on their 

own local area and/or sharing tasks between themselves are not guaranteed to produce the 

desired overall behaviours without guidance.  This then leads back to a requirement for either 

an external controller (defeating the object of using autonomous agents), a coordinating or 

sentinel agent (which is the opposite of a distributed control solution), or looking for solutions 

that involve information sharing and resource arbitrage through as much of the network as 

possible (preferably globally, across the entire network). 

These insights lead to the author’s earlier conclusion (again see [25]) that behavioural 

assurance for systems lacking an external controller or sentinel essentially rely on a variation 

of the efficient market hypothesis, assuming that the information that flows between agents is 

sufficient to correctly identify in real-time the ‘true’ value associated with particular courses 

of action (sometimes called informational efficiency), thereby implying that with access to 

global information from across the network the system should be making the optimal decisions.  

The efficient market hypothesis itself is from economic theory concerning the pricing of assets 

on markets, and proposes that asset prices reflect all the information available to the markets, 

and therefore that the ‘true’ value of an asset is determined by allowing maximum access to all 

relevant data to all market participants and waiting for this ‘true’ value to emerge through 
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market absorption of this data, but the author previously saw an analogy between this process 

and the process of a local agent calculating its optimal course of action through informational 

efficiency with all the agents in its network (seeing the relative value of different actions an 

agent could select as analogous to the relative value of different assets a trader could buy or 

sell).  There are two critically important assumptions made implicitly when relying on this 

hypothesis, namely that the agents themselves are not influencing the brokering process and 

that the so-named informational efficiency is indeed efficient (i.e. the sampling is statistically 

unbiased and sufficiently extensive).  In essence, it is an argument that, with sufficiently plenty 

statistical sampling, a stochastic model will identify the correct solution, which applied to the 

multi-agent systems problem would mean the agents are provided with sufficient information 

to guide them towards efficient solutions without the need for any external direction.  In relation 

to the example described above, the agents can only be expected to realise the true value of 

giving up their workload to local peers and relocating to a seemingly quieter area once they 

have access to full knowledge from across the network. 

There are two major drawbacks with relying on informational efficiency to give confidence in 

a distributed control paradigm.  The first is an immediate blocker for some applications, which 

is that it requires constant (or at least frequently available) and reliable communications across 

the network, so that agents can regularly receive new information.  It does not necessarily mean 

every agent must talk to every other agent, but it does require every agent to talk to at least one 

other agent through which there is a route to obtain information from across the network (i.e. 

some agents could act as information conduits or hubs for others).  As has been discussed 

already, communications may be impractical or even impossible in some application areas.  

Distributed control methods are not going to be a good option in such applications. 

The second, more subtle drawback concerns whether the analogy with the efficient market 

hypothesis and reliance on informational efficiency is valid.  There was already debate at the 

time of the author’s earlier work about whether the hypothesis could be relied upon, given the 

financial crash of the late 2000s was still a recent memory at that time.  It is not proposed to 

take this thesis into the arguments about financial risk modelling.  To summarise, the concern 

is not strictly with the efficient market hypothesis itself, but with a naïve application that relies 

on the validity of the hypothesis without questioning these implicit assumptions under realistic 

circumstances.  Put simply, referring to the two critical assumptions described above, markets 

might not have enough good information on which to make decisions, and the information they 

do have may take too long to process and for a broadly acceptable consensus value to emerge.  
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As such, relying on the markets to speedily or instantaneously have converged to a ‘true’ asset 

value is foolhardy.  Applied to this context, even having access to all the information from 

across the network still does not mean agents will identify the most valuable actions to take, 

because the most pertinent and useful information might not be accessible to any agent in the 

system.  Informational efficiency means that theoretically the agents will eventually converge 

on the best decisions based on what the collective knows, but that does not mean that this will 

be the optimal solution in the eyes of a beholder outside of the system itself, nor that it will 

even reach the decision that it does reach in a timely manner. 

As a result, it is not obvious that a fully distributed control solution can be relied upon to 

converge to optimal behaviour solutions.  This introduces significant doubt as to whether much 

of the earlier research that was prevalent around the time this PhD topic was conceived is 

applicable.  Even in application areas with communication and coordination between agents, it 

is unclear that assurance of overall performance could be proven based on informational 

efficiency arguments, for the reasons given.  Without reliable network-wide communication, 

distributed control methods are not promising, or at least not by themselves.  Agents will need 

an ability to make local decisions without depending on other nodes in their network to cover 

for any periods of communications unavailability, so distributed methods might have a place 

as part of a suite of techniques, but are not something to base an assurance argument on. 

In general, real world systems cannot be labelled as being controlled either by master or sentinel 

agents, or in a truly distributed manner.  It is the premise of this work that these paradigms are 

the two ends of a spectrum of possible control solutions, a different balance of which will be 

appropriate for different systems.  In order to evaluate and provide evidence of acceptable 

behaviour necessary to assure and subsequently exploit a system, a suitable hybrid approach 

might be necessary, which may feature some kind of supervising controller (providing the 

fallback of an intervention mechanism to correct excesses) whilst devolving as much of the 

decision making as is possible to local agents. 

With reference to the example application areas referred to throughout this thesis, the 

requirement for a hybrid approach is already apparent.  Referring again to Figure 1 through 

Figure 3, the system-level agents might be seen as acting more like master agents or sentinels 

for their individual systems.  Were the optional system-of-systems coordination layer used, this 

might also be an appropriate control paradigm to adopt there.  In the absence of this layer, a 

distributed approach to information sharing and arbitrage between system-level agents might 

be appropriate.  In the absence of such communication however, either the system-level agents 
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start behaving as individual systems without regard for the rest of the system (likely leading to 

system inefficiency or ineffectiveness, and possible system failure) or an alternative is found – 

the synchronisation challenge that is the primary focus of this work. 

4.3 Managing Complexity in Multi-Agent Systems 

The characteristics of agent-based approaches that have made them an attractive enabling 

technology (devolved decision making to increase scalability and robustness to dynamic 

environments, to be adaptive and responsive to change, and to allow systems to more readily 

conduct multiple concurrent or synchronous operations) are the very characteristics that make 

such systems prone to complexity.  The potency of agent-based technologies grows with 

increasing numbers of agents, but so does the complexity – the more agents there are in a 

system, the harder it becomes to identify which behaviours are resulting from which decisions, 

and to predict what subsequent actions might cause what subsequent behaviours, due to the 

influence the agents have on each other. 

It is important to realise that these uncertainties in behaviour are not necessarily the 

consequence of fundamental stochasticity in the system.  Such changes in observed behaviour 

could arise in a fully deterministic system that has simply grown too large and become too 

interconnected to effectively model all of the system dynamics.  Mandating deterministic 

implementation, or identifying a mechanism to determine the probabilistic limits implied by a 

controller definition, may eliminate one source of uncertainty in system behaviour, but would 

not solve the underlying problem.  The challenge is to consider how the design choices and 

control mechanisms themselves impact on behaviours, and how this knowledge might be 

applied to understand and better manage complex systems. 

Several approaches to implementing multi-agent systems with a high degree of assurance have 

been considered, all of which attempt to limit the complexity of the system so that it is 

controllable. 

Three primary approaches to managing the complexity within multi-agent systems are: 

• Constraining the size and interconnectedness of the system to limit the possibility of 

complex behaviours occurring. 

• Putting an independent mechanism in place to manage any emergent behaviour if and 

when it occurs. 
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• Designing a system in such a way that the system ‘gets through’ any disruption that 

occurs (i.e. acceptable trend behaviours). 

A brief overview of the idea behind each of these approaches follows.  They are practical 

solutions to some problems, but each approach has limitations and none scale to solve the 

underlying problem of managing complexity in a general sense. 

4.3.1 Constrained Design 

One approach to managing complexity is to limit the scale of system designs, so that the 

number of decisions that a manageable number of agents have to make is sufficiently small and 

take place in a well-understood environment and operational context.  The interconnectedness 

of the agents is low, meaning that the numbers of agents that are significantly influenced by 

the behaviour of others is low, by whatever metric is suitable in context. 

 

 

Figure 6 – Constraining Growth in System Complexity Through Design 

 

The idea is to design the system in such a way that standard processes can be employed, to 

represent just the most necessary functionality of a system in a sufficiently tractable way.  The 
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problem is that, as with any model, if it is simplified too much it is no longer representative of 

whatever it is that it is meant to represent.  Having a small number of agents with a small 

number of connections is only meaningful as a model if those are indeed the characteristics of 

the problem at hand.  This implies that there is a limit as to how much the design of a system 

can be constrained whilst retaining the properties that made an agent-based approach desirable 

in the first place. 

If a tightly constrained model is sufficient as a representation of the necessary functionality of 

a system, then there is a further question as to whether an agent-based system paradigm was 

necessary to begin with.  There would therefore seem to be a relatively narrow window for 

system concepts that genuinely benefit from adopting an agent-based approach that are still 

sufficiently constrained for direct analysis to be practicable. 

4.3.2 Observers and Sentinels 

An alternative mechanism for managing complexity in a multi-agent system is to have human 

or agent ‘monitors’ or ‘sentinels’ to either prescribe the limits of what agents can do or to 

intervene when appropriate.  Prescribing too tightly what individual agents can and cannot do 

is not a true solution, for similar reasons as above, so if there is any possibility of unanticipated 

behaviours then some mechanism to respond or adapt or make changes in response to such 

behaviours should be considered. 

The obvious answer is to have a human operator monitoring the system with the ability to 

overrule the system if considered necessary.  There are two limitations to this solution.  One is 

that it would appear to undermine the point in decentralising functionality to autonomous 

agents if they require supervision, but, more problematically, it is less and less feasible to rely 

on human intervention to ensure acceptable behaviour when the fundamental challenge is the 

increasing complexity of behaviour of systems of increasingly many agents. 

A similar approach is to have so-called ‘sentinel agents’ monitoring and managing the other 

agents.  Logically, this is the same as having an in-built ‘decision filtering’ of some kind to 

override unacceptable decisions, which is an alternative approach the author has seen proposed.  

The problem with such an approach is that it is recursive.  Somewhere in the system, a decision 

making agent must approve or amend decisions made by other agents, or to make them on their 

behalf, and this is in itself a decision whose consequences could impact the network of agents 

in unpredictable ways.  Thus a new problem is created in determining how to assure the 
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decision making of the sentinel agent or decision filter – a ‘Who watches the watcher?’ 

problem.  Ultimately, this is moving the problem around to avoid having to solve it, and does 

not appear to move one closer to an approach to assuring the system as a whole. 

 

 

Figure 7 – The Recursive Assurance Problem of Sentinel Agents 

 

4.3.3 Game-Theoretic Equilibrium 

An alternative approach to managing the complexity inherent in multi-agent systems is to rely 

on results from the field of game theory.  The idea is to model the interactions between agents 

as transactions, with the agents as brokers for utility of some kind; the overall behaviour of the 

system can then be described as a trend behaviour arising from a suitable game-theoretic model, 

such as Nash equilibrium. 

There are two problems with such an approach.  Firstly, requiring the agents to barter with each 

other would appear to constrain the types of multi-agent systems to those instantiations where 
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the agents are cognisant of each other’s existence, which is not necessarily true in many cases 

of decentralised systems. Systems with processes conducted concurrently that are 

fundamentally linked but where bartering between subsystems is not possible, for example 

because there is no communication link between components, would not appear to be 

controllable by a game-theoretic approach. 

Secondly, and the more serious problem from the point of view of assurance, is that trend 

solutions from game-theoretic models provide no guarantees as to the behaviour of a system 

throughout its run-time.  Just because a system will eventually settle down into a predictable 

pattern does not mean it will follow this pattern throughout, leaving open the risk of some 

undesired behaviours along the way.   Learning systems, for example, might be prone to digress 

from what will later be determined to be their optimal strategy during their early period of 

operation, whilst they are still learning this optimal strategy.  Any system, learning or 

otherwise, that is capable of responding to environmental perturbation could make a deviation 

from trend behaviour in response to particular stimuli – the trend behaviour may reveal what 

pattern or configuration the system will ultimately return to, but nothing about the acceptability 

of any digressions from this pattern along the way. 

 

 

Figure 8 – The Problem with Game-Theoretic Equilibrium and Assurance 
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It is believed that the game-theoretic approach has similarities to the earlier work on which this 

PhD builds, looking at stochastic (Markovian) approaches to modelling system behaviour, so 

this is not an entirely inconsistent modelling paradigm.  Furthermore, game-theoretic 

equilibrium (or other similar approaches to representing stable trend behaviours, of which 

many can be found in the domain of modern control theory) may provide a mechanism for 

demonstrating the stability of system behaviours within suitable bounds.   However, at this 

time, it is not obvious that a game-theoretic approach can be used to demonstrate that a system 

is suitably bounded, without which further analysis is premature.  Further consideration is 

required before such an approach could be applied on real systems. 

4.4 The Assurance Challenge for Complex and Multi-

Agent Systems 

The assurance process is, essentially, the systematic detailing of what each component in a 

system is, what it does, and whether this complies with the functional and non-functional 

requirements placed on the system; more specifically, it is the generation of evidence for the 

assessment and demonstration of this compliance.  Numerous techniques exist in conventional 

safety case analysis, such as Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis 

(FMEA), which attempt to identify the likelihood and severity of occurrence and, if possible, 

mitigating actions. 

These and other such methodologies rely implicitly on the predictability of a system’s 

behaviour under the circumstances the system is designed for and expected to operate in. 

However, as a system becomes more complicated, the assurance process becomes more 

difficult, as components start to impact on each other’s behaviour in ways that become harder 

to determine. 

Approaching the assessment from the perspective of ‘What is each component and what will it 

do?’ is unhelpful as a basis for understanding system behaviour when, by definition, the 

behaviour of the whole system is different from the behaviour of its component parts.  

Analysing the behaviour of the whole system becomes an increasingly difficult task. 
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4.4.1 Faults and Failures 

The concepts of faults and failures have particular meanings in the context of the behavioural 

assurance of systems, but a subtle difference in the relationship between them in the case of 

complex systems illustrates the fundamental challenge. 

A fault occurs when a component (hardware, software, or otherwise) operates incorrectly, or 

does not operate at all.  A fault in a component may or may not (depending on the type and 

severity of fault) cause a system failure, which occurs when a particular combination of faults 

prevents a system requirement from being met. 

 

 

Figure 9 – Normal Operation – Component Fault and Possible System Failure 

 

Systems will typically be tolerant of faults up to a certain threshold.  In simplistic terms, a 

safety-critical system will have one or more system requirements which specify that threshold, 

in addition to requirements which specify the behaviour under ‘normal’ conditions.  Assurance 

processes such as FTA and FMEA analyse how the system as a whole is expected to behave 

ordinarily, and how it might behave under combinations of faults, to identify those 

combinations of faults which might cause failures, and to understand the consequences of 

failures.  With complex systems, the challenge is that there is no longer a direct causal link 

between component faults and system failures.  Every component can be functioning as it is 

supposed to, but if the system is complex then the overall system behaviour could be different 

from that desired or expected.  In other words, a system could suffer a failure (systems 

displaying behaviours contrary to requirements) despite not having suffered any faults at the 

component layer. 
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Figure 10 – Complex System Failure Despite Compliance of Individual Components 

 

In its simplest form, the complex assurance challenge is to deal with a scenario that the ‘normal’ 

operating model does not allow for, either demonstrating that such a thing cannot happen, or 

understanding when it might and identifying appropriate mitigating actions.  

That system behaviours do not follow logically from anticipated component behaviours 

fundamentally challenges the assumptions on which traditional assurance is based, which 

makes it difficult to escape the conclusion that the techniques themselves need to be revisited.  

It is perhaps unfair to entirely dismiss established assurance practices as inapplicable to 

complex systems, but the traditional approach is clearly not intended for and is fundamentally 

ill-suited to dealing with these sorts of challenges, and will require some evolution in thinking. 

4.4.2 Boundedness and Stability 

It is not clear how to demonstrate the acceptability of the behaviour of a system when it is not 

clear what that behaviour will even be.  Doing so must involve understanding how the 

compositions of behaviours of the components can cause unusual or unexpected behaviours 

from the whole system.  In the case of complex multi-agent systems, much of the complexity 

arises from the different decision making agents in the system taking courses of actions which 

for that particular agent appear entirely logical but can cause wider consequences through the 

knock-on effects on other agents (examples of which have been presented in earlier chapters).  

Understanding these dynamics leads towards the domain of modern control theory, a domain 

whose purpose is to construct more sophisticated models and approaches to the decision 

making and control process much broader than the traditional control systems of the past. 
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Two particular concepts relevant to this problem are boundedness and stability.  As will 

become apparent later, the proposed method for conducting assurance involves identifying the 

limits of possible behaviour, and in some cases the long-term behavioural trend. 

• Boundedness means that there is a quantifiable outer limit to the system’s state space, 

beyond which its design and control specification will not allow it to go. 

• Stability means that the behaviour converges, or that the span of the state space 

reachable by the complex system decreases over time.  This might mean the system 

behaviour converges to a fixed point, but it more generally means the system ‘closes 

in’ on a stable configuration, such as a periodic orbit. 

• Stability is a stronger criterion that boundedness, in that it can be proven relatively 

easily from the formal mathematical definitions that a stable system is necessarily 

bounded, but that a bounded system need not be stable (for example, entirely random 

movements within a fixed domain). 

The difficult part, and unfortunately the most necessary part from the point of view of 

assurance, is determining whether a system’s behaviour is bounded at all, and if so is it suitably 

bounded to ensure that the behaviours are within acceptable limits.  If it can be shown that a 

system is suitably bounded, then in a general sense this could be good evidence for assurance, 

i.e. evidence that the system stays within suitable limitations.  What the system does within 

these limitations may not matter, as long as those limitations are themselves acceptable. 

Stricter requirements for particular types of behaviour may occur, in which case stability will 

also need to be shown (behaviour either fixed to a specified pattern of behaviour or, 

realistically, closely tracking a specified pattern of behaviour and returning to it in the event of 

perturbation).  The focus herein is on the looser boundedness criterion; that is, how one might 

ascertain, one way or the other, whether a given control specification leads to suitably bounded 

behaviour.  Some discussion of the wider problem, including assessment of boundedness and 

stability, is contained in Annex C. 

Note that assessments of boundedness and stability will only be valid so long as the system 

design, and in particular the controller design, remain the same.  One particular benefit of the 

method considered in this thesis is that updates to the control policy (in other words, changing 

the action to be taken in particular circumstances) will not affect the overall assessment of 

boundedness, due to the generation and assessment of the full span of possible behaviours. 

However, this would not make this approach immediately transferrable to more advanced 
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cognitive or adaptive systems, with the ability to change more than just the control policy but 

also the cognitive structure and/or the architecture of a system, which would invalidate 

predictions of what the reachable span of behaviours from such a system would be (hence the 

earlier exclusion stated in Chapter 3.2.6 that artificially intelligent systems are out of scope). 

4.5 Decision Making and Control 

Whenever a system component chooses the next action to take, it is making a decision based 

on its current state and its overall goal (or goals).  This decision has to be made despite inherent 

uncertainty in both the environment and, potentially, in the system itself – specifically, with 

the outcomes of actions not known in advance and/or with the current state information not 

totally accurate, perhaps because of sensor limitations or an incomplete world model.  The 

vision driving this PhD is that the mathematical apparatus for decision making will transfer to 

the system control problem through the creation of a suitable mathematical model for 

describing structures of complex networks of agents. 

This section explores the analogy between decision making and control that motivates this 

approach, and highlights some important choices that need to be made when deciding how to 

solve such a problem. 

4.5.1 Levels of Control 

By definition, a system having a degree of autonomy implies that direct operator input is small 

or non-existent – at issue is how much indirect control the operator has as a result of their 

programming choices and the degree of autonomy granted to the autonomous system from the 

outset.  Philosophically, one might ask how intelligent the system is, or to what extent the 

system is in control of its own destiny. 

Broadly speaking, one can identify three levels of control, ranked in order of the degree of 

autonomy the system has (i.e. to what extent the system can choose actions under its own 

authority).  This will correspond directly to the degree of flexibility the system has in the event 

of changes in its situation: 

a) The system has an explicit sequence of operations specified. 

b) The system has a decision making process with a fixed policy (so an action is specified 

for each situation the system is expected to encounter). 
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c) The system has a decision making process with an adaptive policy (so an action is 

chosen based on the situations that are actually encountered). 

Approach (a) is clearly unable to cope with any but the most minor changes to the environment.  

This is the level of autonomy one might find in a conventional industrial robot, for example in 

a simple assembly line robot that is not capable of being responsive to the environment or to 

its peers.  Clearly this sort of approach is far too limited to be of any great use in the future 

applications proposed. 

Approach (b) is the level of control where, for each situation in which the system can 

reasonably be expected to be find itself, an ‘optimal’ action is defined which should lead to the 

eventual accomplishment of the system’s objective or mission goal.  However, this policy is 

tuned to a particular model of the environment and so any disturbance may lead to a loss of 

optimality or, in extreme cases, failure to achieve the goal.  This remains one of the single 

biggest limitations to the operation of autonomous systems – if the system only knows how to 

respond to particular scenarios, then it will likely struggle when faced with something 

unexpected, potentially even when the situation appears only slightly different from that which 

the system has been programmed for. 

Approach (c) attempts to overcome the limitations of approach (b) by allowing the system to 

make a constrained modification to its policy in the face of changing circumstances.  This 

makes approach (c) attractive at all levels of decision making, from higher-level strategy down 

to the detailed control of system components.  It is proposed that the ability to change tactics 

following changes to the local operating environment, mission goals or system state, whether 

planned or unplanned, should be right at the heart of the decision making process. 

However, it is important not to forget the more conventional control problem, for which one 

might reasonably expect that approach (b) is an appropriate level of control for a system.  

Approach (c) might then describe an extension required for effective operational decision 

making.  It is further proposed that it is not a clear distinction that approach (b) is for the control 

problem and approach (c) is for operational decision making.  Approach (b) might be suitable 

for operational decision making controllers in relatively static, well-understood or controlled 

environments.  Likewise approach (c) may be necessary for systems that are required to 

continue operating even after the system itself has undergone a change significant enough to 

affect the control problem (such as continuing to operate despite damage).  The exact 
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breakdown of the level of control required at each layer in the hierarchy will depend entirely 

on the nature and purpose of the system in question. 

The challenge is therefore to balance both of these perspectives throughout subsequent 

developments.  It is noted that the principle objection to approach (c) is the lack of a sound 

mathematical basis from which to construct a safety case, or to predict performance with any 

degree of certainty when the operational policy is variable by design.  The novel certification 

ideas from the precursor activity [23], building on initial work by Williams [68], were intended 

for approach (b).  Adapting these techniques to provide guarantees about the boundedness of 

system behaviour for approach (c) would be an extension of these ideas, requiring further 

research.  Further thoughts on this topic are contained within Annex C to this thesis. 

4.5.2 A Graphical Representation of the Levels of Control 

The three different levels of control can be represented graphically.  The following figures 

represent the three approaches described above, illustrating how the degree of autonomy 

granted to the decision making controller relates to the problem of predictability.  In each 

figure, a series of actions chosen are represented as a series of blue arrows, and the green strip 

across the graph illustrates the range of states that can be reached when following this control 

policy, labelled as the environmental boundary.  In the latter two cases, dashed red arrows 

indicate where other actions that could have been selected.  Note that the three approaches to 

control affect the range of states the system can be allowed to reach; the adaptive approach (c) 

in particular is a rather more complicated problem. 

Figure 11 illustrates approach (a), where action selection is explicitly determined.  In this case, 

the system might be better described as automated rather than autonomous (the latter implying 

the ability to choose between different actions), and the range of states the system can find 

itself in is entirely predictable.  In fact, it is a fixed set of reachable states (barring say 

unanticipated mechanical failure).  With such an approach to control and consequently a 

narrow environmental boundary, the system is inflexible and it is limited to fixed and pre-

planned tasks. 

With reference to the example application areas from earlier in this thesis, this level of control 

might be equivalent to a networked camera which had little or no scope to reorient itself or to 

adjust its focal length or filters.  It either cannot do so, or has limited options in line with a pre-

programmed rule set.  In either case, the system is not that ‘smart’ and will not have the 
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flexibility or adaptability required for more advanced and reactive applications.  Alternatively, 

this level of control might correspond to an unmanned vehicle which follows the same specified 

route on a regular cycle.  It would be operating automatically, but with little or no flexibility or 

adaptability.  This level of control would be of limited use for the sorts of autonomous 

operations envisaged in the earlier discussion. 
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Figure 11 – Approach (a): Explicit Action Selection 

 

Figure 12 illustrates approach (b).  At each decision point the range of reachable states is larger 

as there are more actions available for the system to choose between, and thus more possible 

outcomes.  Nevertheless, a fixed policy still constrains the range of reachable states for the 

duration of the operation. 

With reference to the same example application areas, this level of control represents the smart 

camera or the autonomous vehicle now being granted some ability to adapt locally, but based 

on a fixed policy.  In the case of the smart camera, this might manifest itself as having a set of 

strategies whereby when ‘Object X’ is within ‘Region A’ these filters should be applied and 

this range of camera motions are permitted, but when ‘Object X’ is instead within ‘Region B’ 

these alternative filters should be applied and the range of camera motion is restricted.  There 

is therefore some local autonomy, but within a fixed policy.  Alternatively, with autonomous 
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vehicles, this level of control might correspond to having a set of acceptable routes pre-planned, 

with the instruction to choose the one from this pre-approved list that, at the time of selection, 

has the lowest traffic density.  The decision as to which one to use on any particular occasion 

is determined locally at the time, but it will still be predictable based on set rules.  

 

 

 Environment 

Boundary 

Action 

Selection 

Significant variability of 

environment acceptable. 

Action selected from optimal policy (which 

presents state-dependent options) 

 

Figure 12 – Approach (b): Optimal Action Selection from Policy within Fixed Range 

 

Figure 13 illustrates approach (c).  Here, as the operating environment changes (or indeed as 

the system itself changes), the range of reachable states varies.  The overall limits on the system 

behaviour (the environmental boundaries) remain, but what is currently reachable within this 

boundary varies.  If it were acceptable to be in any state within the overall boundaries, then 

approach (b) might be sufficient.  What Figure 13 illustrates is that approach (c) can be utilised 

when system behaviour needs to be refined to accommodate any uncontrolled external factors 

– i.e. when the system needs to be constrained to a range of states more limited than the overall 

boundaries, and this allowable range of states varies as the situation develops. 
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Figure 13 – Approach (c): Optimal Action Selection from Policy within Variable Range 

 

As an example, consider an autonomous ground vehicle crossing a bridge.  The overall 

boundary is clearly fixed by the edges of the bridge.  However, before crossing the vehicle may 

not know what obstacles or other moving vehicles may be on the bridge, which will have to be 

determined as it crosses.  Thus the range of states that really are safe is more limited than the 

overall boundaries, and varies according to what the vehicle encounters as it crosses. 

Note that the reachable range of states may vary continuously, but so long as decisions are 

made at discrete time steps one need only consider the situation at those particular time steps 

(the decision points).  In the future, continuous controllers may be desirable and the continuous 

variation in the range of permissible states will be important.  Note also that there are potential 

complications arising from the fact that earlier action selections directly affect the range of 

permissible states at future times.  Some form of look-ahead in the decision process is 

important, and this feature will be incorporated in the solution techniques discussed later in this 

thesis. 
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Chapter 5 

5 A Mathematical Framework for 

Modelling the Behaviour of Complex 

Multi-Agent Systems 

5.1 Context 

This chapter develops a framework for constructing scalable mathematical models of complex 

multi-agent systems, with the flexibility to be adapted to fit a multitude of different 

organisational structures of systems, and which captures the fact that for each agent 

(represented as a node in a network) there needs to be a local decision making process captured 

mathematically.  Drawing on techniques from the machine learning domain and applying 

suitable simulation tools then provides the necessary toolset to be able to observe, analyse and 

begin to understand the complex behaviours of multi-agent systems.  It shall become apparent 

that the mathematical tools in question also reveal an approach to making multi-agent system 

performance more robust to unplanned emergent behaviours, with some degree of internally 

triggered adaptivity to external perturbation possible. 

This specific modelling technique developed makes use the Markov Decision Process (MDP), 

as originally proposed in the precursor work for single autonomous system applications 

[22],[23],[24], building on concepts proposed by Cade [15] and Williams [68].  This chapter 

will begin by discussing the key modelling assumptions, before introducing MDPs, revisiting 

the formulation from the precursor work, but then substantially extending it to demonstrate 

how it may be adapted to the more challenging domain of complex multi-agent systems. 
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5.2 Modelling Assumptions 

The starting point is to decompose a complex system into subsystems each with a simpler and 

more recognisable purpose, which may be formulated as goals or objectives, and then to 

construct a suitable mathematical model for this decomposed system model that is amenable 

to analysis. 

It is assumed that a complex multi-agent system is a large (but finite) collection of subsystems 

where: 

• Homogeneity of elements is not assumed; entities need not be physically similar nor do 

they need to have common functions or goals. 

• ‘Perfect’ communications and shared knowledge between elements is not assumed. 

• ‘Self-knowledge’ at each element may be imperfect. 

It is not realistic for decisions to be made at one point in the system and be communicated 

instantaneously to all other subsystems to respond simultaneously.  Therefore, it is assumed 

throughout that there is some degree of decentralised or local control: 

• The system, and each of its decision making subsystems, is autonomous in that it has 

some degree of freedom of choice to select its own actions based on its currently 

observed state, independently (or at least semi-independently) of any human operator; 

each subsystem is therefore a part of the other subsystems’ environments, and the 

reasons for the actions of one subsystem may not be apparent or comprehendible to 

another subsystem, for whom it is simply another source of environment perturbation. 

• Each individual element could have an independent decision making capability; more 

generally however, there may be variable granularity of decision making authority 

between different subsets of elements in different contexts. 

• Any cooperation between groups of elements, planned for or otherwise, is on a per-task 

basis and is not a global assumption; any groupings or affiliations of elements within 

the system should not, in general, be seen as fixed groupings or affiliations but instead 

be regarded as transient arrangements. 

It is also assumed that the control model for each system element can be formalised as goal-

driven decision process, with a finite dimensional state space.  Even though the ‘true’ system 
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state may be of much greater dimensionality, the state space representations recognised by each 

individual element can be modelled as a finite, although possibly non-linear, projection. 

5.3 Functional Architecture 

Recall from Chapter 4.2 that there are two distinct design paradigms for the control of a 

complex multi-agent system.  These can be summarised for present purposes as: 

Centralised Control:  A single decision point or ’master agent’ monitors the behaviour 

of other agents and decides what actions should be taken. This ’master agent’ is 

ultimately responsible for ensuring behaviour is appropriate and to correct any 

excesses. 

Decentralised or Distributed Control:  Agents choose their own actions, based on 

their own (usually limited to local) knowledge.  No single agent is ultimately in charge 

of behavioural assurance, relying on the system to either be self-correcting or, perhaps 

naively, to be incapable of straying outside of a range of acceptable behaviours. 

Both approaches have advantages and drawbacks, which were discussed in the previous 

chapter.  In practical applications, a hybrid approach may be the most robust, for the reasons 

discussed previously.  Any modelling framework should therefore be flexible and be able to 

accommodate both approaches, but also address the difficult case of synchronised autonomy 

identified previously as a gap that was not satisfactorily addressed by either control paradigm. 

The approach investigated herein is to introduce a mathematical model of the interaction 

between agents.  This model is derived from the specific decomposition of the complex system 

into its component parts.  Devolving the decision-making into separate elements necessarily 

also splits the state space, the information upon which decisions are based, into separate 

segments, one for each decision element.  The principles involved in this aspect of complex 

multi-agent system design will be discussed later. 

A working model of the decision-making process proposed is outlined in Figure 14.  The 

decisions taken by the system are a sequence of actions, indicated by the multi-way switch in 

Figure 14. 



 

 

83 

 

Figure 14 – The Decision Making Cycle 

. 

Given the current state of the system, the policy determines an action to take.  This action 

causes the system to move within its environment (either a physical move or some other change 

in a system state variable) which results in the next system state (which is not necessarily a 

different state).  This new state then informs the next action selection and, depending on the 

system and application in question, the cycle repeats either indefinitely or until a terminal state 

is reached, after which no further state transitions can occur. 

The decision-making process just described is a generalised form of the Markov Decision 

Process (MDP) which is described more fully in Puterman [56] and more recently by Sutton 

and Barto [59].  This decision-making architecture can be applied to the entire spectrum of 

functional architectures from centralised ‘sentinel’ control to a fully distributed architecture. 

The segmentation of the state space and the decision-control process into smaller subspaces 

and control problems generalises the basic control problem to any appropriate degree of 

granularity in the actual system architecture.  The focus within this thesis is on the specific 

consideration of how to model and account for the interaction between agents in a multi-agent 

system and the affect this has on the overall system behaviour.  The developments across this 

chapter and Chapter 6 will demonstrate how this unified approach to architectural design 

enables the construction of tractable models for multi-agent system behaviours. 
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5.4 Structural Architecture 

The structural architecture of a complex system can be modelled by considering the principles 

which govern how it might be decomposed.  Three criteria are identified which might be used 

to determine this: 

• The environmental scope of each decision.  The environment is partitioned, with an 

agent designated to act in each of these partitions.  This is a form of concurrency; each 

agent is responsible for some part of the environment and operates on it to fulfil the 

system purpose, or goals.  Typically, but not necessarily, each agent would have a 

similar control policy and capability, although its actions would be determined by the 

local environmental conditions. 

• The functional scope of each decision.  The functions of the system are partitioned, 

typically using dependency as an ordering relation.  If, for example, the partitioning 

results in three agents, a, b and c, where a -≻ b and b -≻ c (to be read as a depends on 

b and b depends on c, i.e. information flows from b to a and from c to b) then a -≻ c, 

but b -/-≻ a and c -/-≻ b.  This results in what engineers would recognise as a layered 

architecture. 

• The disjoint goals of the system.  A system may have a number of independent (or 

nearly independent) goals.  Each agent can, therefore, be designed to satisfy a single 

goal (or subset of goals), rather than the complex goals of the complete system.  Indeed, 

it should be expected that the individual agents would not even need to be aware of the 

goals of the complete system. 

These criteria, however, are only appropriate for a ‘loosely coupled’ system in which each 

agent has a greater interaction with its environment than it does with its peers.  At the other 

extreme of this axis of decomposition lies the tightly coupled systems such as cellular automata, 

where interactions with neighbours are given a similar weighting to those with the 

environment. 

Figure 15 illustrates the sort of structures which might result in the state space from these 

strategies. 
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Figure 15 – State Space Structures 

 

The essential problem for the designer is to find a representation of the system state space 

which adequately captures the behaviour of both the component agents and to corresponding 

(potentially coterminous) subsystems and to the system as a whole, and which, moreover, 

allows behaviour to be predicted sufficiently to assure compliance with the system performance 

requirements.  A number of strategies have previously been proposed [23]: 

• Decompose the state space into mathematical subsets.  Each subset represents a 

partition of the environment in which concurrent agents operate.  Typically the subsets 

will be nearly disjoint.  The intersections represent intercommunication between agents, 

which will be of the form ‘agent A is in state X’. 

• Decompose the state space into mathematical subspaces.  This is a specialised form of 

subset which has a more constrained structure.  In particular, where each subset will, in 

general, have access to the same state variables as the original state space, in the 

subspace model only some of these variables are available to each agent.  

Communication between agents takes place through shared variables.  This is the model 

to adopt for a layered structure. 

• In a tightly coupled system one can form, around each agent, a ‘local approximation’ 

of the global state space.  This allows an agent to be designed and analysed 

independently from the influence of other agents, but with a well-defined mechanism 

to incorporate that influence later.  In other words, it allows (at least to a first 

approximation) the local and global decision-making to be decoupled. 



 

 

86 

What will be required for a mathematical formulation of such system models is a method to 

decompose the state space around, and then to implement a simple control process on top of, 

this three axis structure.  This will need to incorporate interdependencies between partitions to 

represent the complexity in system behaviour. 

In particular, in order to be relevant to the complex multi-agent systems problem domain, the 

mathematical approach selected will need to be capable of modelling the difference between 

local and global views of the state space. 

5.5 Constructing a Hierarchy of Decision Processes 

The decision making process for a complex system is an interaction between various (possibly 

competing) requirements, and the resulting behaviours are typically the composition of many 

separate and distinct actions.  What is required is a mathematical framework for modelling and 

analysing system behaviour that decomposes this complex and interrelated set of requirements 

and actions into a composition of simpler processes. 

The first key concept behind this thesis is the idea that the controller of an autonomous system 

will have to be segmented into individual processes and subsystems, in order to capture 

mathematically how the control inputs for specific system components affect the state of other 

components.  Such decomposition in itself is a conventional approach to modelling complex 

controllers.  However, the number of states required for even a coarse description of a system 

can be large – combinatorial explosion of the state space is common as the model complexity 

increases, which can make the analysis of the system difficult if not impossible.  Establishing 

a series of operational layers within the system could help, although care will still have to be 

taken to keep this decomposition sufficiently coarsely grained for the model to be tractable. 

Although hierarchical controllers are not a new idea in control theory, the innovation in this 

thesis is to pursue this idea within the context of an analogy between decision making and 

control, and, moreover, take this forward into complex multi-agent systems.  A system 

component that has to select a control input in a given situation is making a decision based on 

its current state and its environment, therefore the mathematical apparatus for decision 

processes should be applicable to the control problem.  The decision making apparatus will be 

introduced in Chapter 5.6; this section is concerned with the decision hierarchy that must be 

constructed for the system in question. 
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There are likely to be many different ways of describing a hierarchical decomposition of a 

system, all a variation on the basic idea that a system is composed of a number of subsystems, 

which are in turn composed of a number of sub-subsystems, and so on down into the inner 

workings of the system.  Layers in a hierarchy represent the ‘depth’ of a subsystem, or the 

number of distinct systems or processes that sit on top of it before one sees the output from that 

component.  However, working with the notion of a decision hierarchy requires a slightly 

different perspective of hierarchical decomposition.  The immediate way to think of what might 

be termed as hierarchical decision making would be to have strategic decisions, tactical 

decisions, and, at the bottom layer, the control problem, analogous to the layered perspective 

one might have with operational decision making.  An autonomous system has to balance these 

layers throughout its operations, considering strategic objectives like its progress towards its 

overall objectives (its ‘mission goals’) alongside its control level problems such as the number 

of volts to apply to a particular mechanism.  One might expect there to be interaction between 

different mission goals or operational constraints at the various levels of decision making.  Note 

that this description of the system levels is just as an example; the actual number of levels in 

the hierarchy depends entirely on the system in question. 

Figure 16 below introduces the three hierarchical dimensions that are characteristic of a 

decision making problem.  The layers typical of hierarchical decomposition are present, 

described here as the layers of operational decision making (which may be regarded as 

strategic, tactical, and control layers).  However, each decision layer can be further decomposed 

into series of parallel and concurrent decision processes.  A parallel decision process refers to 

the process of choosing an action with regards to concurrent functional requirements, and a 

concurrent decision process refers to the process of many parallel system elements choosing 

actions that together support a single requirement.  The key point is that one can identify one-

to-many and many-to-one relationships between goals or requirements to be fulfilled and 

actions to be taken. 

A useful way to interpret this model is to consider the three ‘dimensions’ of decision making 

as the ‘layers’ which partition the state space (the ‘level’ the decision is made at), the 

‘concurrency’ which partitions the scope of each action, and the multiple goals which partition 

the requirements, consistent with the logical structure presented in Figure 15. 
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Figure 16 – Hierarchical Decomposition of Decision Making 

The benefit in decomposing the decision making into these simpler processes is that they are 

linear, and require only relatively minor modifications to the standard model and to the typical 

algorithmic solution methods to enable their representation and solution as MDPs (to be 

defined in Chapter 5.6.2).  It will then be only a small step further to compose these simple 

linear processes to give a many-to-many relationship between goals and actions which can then 

also be solved algorithmically. 

Note that the approach to complex multi-agent system design being built up in this thesis has 

been developed for general application across a full range of system organisational constructs, 

featuring as many layers and agents in different hierarchical structures as the designer requires.  

Particular attention will be paid later to parallel systems, because these are characteristic of the 

synchronised autonomy challenge described in Chapter 2 and identified as the primary focus 

for this PhD, but at this stage of introducing the conceptual building blocks the full hierarchical 

framework is presented. 

Referring back to the exemplar application areas described within Chapter 2.5, it is useful to 

consider how this theoretical construct of the dimensions of decision making aligns to those 

real world examples.  The descriptions of the examples were based around the idea of system 
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layers, referring to the natural or logical ordering within systems based on information 

dependencies and information flow.  These correspond closely to the operational decision 

layers, in that the impact of a decision made at the lowest component layer (actuators, 

servomotors, digital filters…) is a contributor to the current state and future decision making 

of the subsystem of which they are part, and so on up the hierarchy.  Figure 1, Figure 2 and 

Figure 3 have been presented in such a way as to highlight groupings of agents in layers, but 

one can also see how there may be multiple competing requirements or objectives to be 

balanced within the same system level. 

Before proceeding with a worked example in detail, it is important to clarify a key distinction 

between the two presentations despite the similar layout of the earlier figures compared to 

Figure 16 (and to Figure 17 and Figure 18 which follow): 

• The nodes in Figure 16 represent required system actions or outcomes (with the author 

having previously introduced the terms parallel and concurrent in this context to 

differentiate the two in the precursor work [23],[24] before reintroducing them here). 

• The nodes in the earlier figures in Chapter 2.5 represent agents making decisions. 

• It may be the case that an agent is dedicated to each control point or decision, i.e. if a 

system has to send 5 control signals to 5 subsystems, it is designed and implemented 

with precisely 5 agents, one for each decision.  It may also be the case that different 

agents can be incorporated to focus on decision making for separate but concurrent 

requirements placed on that system, potentially (notwithstanding the challenges 

described in Chapter 4.2) brokering some mutually acceptable solution between 

themselves.  In general however, this appears to be a simplistic and prescriptive 

approach, and is not a requirement.  The actual software design and implementation 

need not be so constrained and other factors will determine how many agents are 

required, probably based on other considerations like natural or practical subsystem 

boundaries. 

• In conclusion, despite the apparent mirroring of the structure between the hierarchical 

decomposition of decision making captured in Figure 16 and the representations of 

candidate agent networks in  Figure 1 to Figure 3, these are not intended to represent or 

imply mandatory one-to-one mappings of decisions to agents.  A decision to be made 

might, but does need to, correspond to an agent, and a layer of decision making might, 

but does not need to, correspond to a group of agents at the same level of the system. 
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5.5.1 Parallel and Concurrent Decision Making 

This section considers the decomposition of an operational level in a decision hierarchy into 

its component decision processes occurring at that level.  The parallel decision process refers 

to a decision process that involves selecting one action in support of multiple goals.  At each 

operational level, however, there is a second dimension to consider, namely the decision 

process that involves selecting multiple actions in support of a single goal.  The exact 

formulation will depend on the particulars of the system, but the key feature is the distinction 

between having parallel goals to fulfil and concurrent actions to select at each separate 

operational level in the system.  Complexity can arise on any one level as the influence one or 

more of the concurrent actions selected has on the selection of another action supporting a 

different goal (or combination of goals). 

To support multiple goals, one might anticipate a large number of state variables to be 

necessary, proportionate to the number of goals as well as the complexity of the overall system.  

It will be important to structure the problem with the smallest practical set of state variables 

and possible actions in order to keep the analysis as simple as possible, and the hierarchical 

decomposition is then the process of apportioning the whole set of states and actions into the 

decision domains for which they are required. 

To illustrate this approach it useful to consider a practical example that features a decision 

model with two interrelated action selections and two dependent system goals.  There is one 

action to be selected in support of the two goals, and one of the goals is supported by both 

actions.  This is the simplest a decision model can be while featuring both parallel and 

concurrent decisions, but in practical applications there will be as many goals and actions as 

required by any given system. 

With reference to the production line automata application area from Chapter 2.5.3, consider a 

system consisting of a number of robotic appendages conducting a variety of tasks on a 

production or assembly line in series.  There will be robots or teams of robots conducting 

specified tasks on items on the production or assembly line (called units hereafter for 

convenience).  Suppose that one of the tasks is a quality control and repair activity.  Units on 

the line reach this stage, and the requirement is that the units be checked with a scanner to 

ensure they are undamaged or unblemished, and if not, that they be corrected.  One can imagine 

that this could consist of applying polish to remove any smears detected, or applying further 

spray paint or lacquer to any imperfections from an earlier treatment, or filling any detected 
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gaps with an adhesive.  Each unit that arrives will have to be scanned all over to check for 

imperfections, and then if any are identified these will need to be fixed.  For convenience, the 

possibility of any irredeemable units needing to be discarded is not considered. 

In this scenario, the system designer might identify that there are two system goals to be 

achieved here: 

1. To ensure that each unit is scanned all over to identify any faults or imperfections. 

2. To ensure all faults or imperfections are fixed. 

Suppose that units need to be lifted into the air while the sensor scans it all around.  This is at 

least a two robot task – one robot arm to support the unit in the air, and a second fitted with the 

sensor that will conduct the scan.  Whether the applicator is fitted to the same arm as the scanner 

or if there are yet more robots involved is not critical, but for simplicity here it is assumed to 

be fitted alongside the scanner. 

The system designer might further identify that there are two actions (or sets of actions) that 

the system will need to determine: 

1. Determining the pattern of movement that is required to fully scan the unit for 

imperfections in the shortest time.  This could involve choosing one pattern from a set 

of pre-determined patterns if there is regularity to the types and shapes of units, but in 

more advanced concepts (for example a highly digitised production line capable of 

delivering bespoke variations of items that may display customisation from unit to unit) 

this may be something that has to be determined each time.  In either case, a suitable 

scan pattern needs to be determined somehow. 

2. Determining when to turn the applicator on and off.  A speedy and efficient solution, if 

reliable autonomy can be achieved, would be to have faults or blemishes dealt with as 

soon as they are detected.  In advanced concepts, this might involve a local decision in 

real time as to which colour of paint or type of polish to apply, depending on what 

imperfection has just been detected. 

The system has to determine two actions to take – the relative motion of the two robot arms, 

and the use of the applicator.  With autonomy and real-time adaptivity, these might need to be 

continually reassessed during the task; for example, following the discovery of a blemish, 

determining the appropriate treatment, pausing the scanning motion to undertake this treatment, 

and then seamlessly resuming the scan once the treatment is complete. 
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Figure 17 below illustrates this example as parallel and concurrent decision processes, where 

there are three elements (labelled as decision outcomes 1, 2 and 3 in the figure) resulting from 

these decision processes: 

 

Figure 17 – A Graphical Representation of Parallel and Concurrent Decision 
Processes (Production Line Automata Application) 

 

Figure 17 illustrates: 

• The selection of Action 1 is a parallel decision process: 

• One action selection is made that has to simultaneously satisfy more than one 

goal. 

• In simple instantiations, this may be a one-off selection from a list of options; 

in more complex instantiations, this may be an on-going process of continually 

assessing and adjusting in order to maintain the best course of action. 
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• For this particular example, this means that the movement pattern (i.e. the series 

of relative movements of the two arms to ensure the scanner can see all around 

the unit that is lifted into the air) has to be selected and maintained with regard 

to both goals – to satisfy the requirement to fully scan the unit from all sides, 

but also to be responsive or adaptable enough to adjust movements when 

necessary to conduct any necessary repairs. 

• The selection of Action 1 and Action 2 simultaneously is a concurrent decision process: 

• Both actions need to be selected correctly in order to achieve one of the goals. 

• No matter how optimal the strategy is for meeting one goal (for example, a 

speedy scan pattern of the unit), the other element is also required to be able to 

complete the goal (in this case the system also needing to be able to correctly 

fix the fault). 

In a more general formulation, if the selection of action 𝑎𝑖 affects system progress towards 

multiple goals, this action selection is a parallel decision process.  Not only should the outcome 

following the selection of action 𝑎𝑖 reflect the progress towards all relevant goals, but the 

control policy that leads to the selection of 𝑎𝑖 should reflect the dynamics and requirements of 

all relevant objectives.  Thus the selection of action 𝑎𝑖 can be seen as a competition or 

collaboration between components (depending on the context), where multiple system goals 

need to be balanced when selecting which action to take. 

Equivalently, if the selection of two actions 𝑎𝑖 and 𝑎𝑗 affects the progress of a system towards 

a common goal, this selection is a concurrent decision process.  The separate control policies 

that lead to the selections of 𝑎𝑖 and 𝑎𝑗 should both reflect the dynamics and requirements of 

this common objective.  This generalises to higher dimensional problems with more than just 

two actions 𝑎𝑖 and 𝑎𝑗 in the logical way. 

It is deliberate that action 𝑎𝑖 chosen by the parallel decision process is coupled to the other 

action selection by the need to mutually support a common system goal.  This coupling of 

parallel processes at each operational level is the essence of the complexity that can arise in 

hierarchical decision making.  The vision for general hierarchical decision processes is that 

they can be decomposed into a network of such parallel goals and action selections divided 

across different operational layers, the exact structure dependent on the particulars of the 

system in question.  The model above, with two goals and two coupled actions to select on a 
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single layer, is the simplest such form of hierarchy (besides essentially trivial cases that feature 

only one of the dimensions of hierarchical decision making). 

Note that decision processes interacting with each other might be implemented as two separate 

agents within the same system assigned different tasks.  Each agent is independent from the 

other since neither of them is under the direct control of the other.  However, the actions 

selected by one of the agents may well change the state of the system for the other, even though 

the other has not done anything to prompt this.  Alternatively, the action taken by the first agent 

may somehow change the environment, and then future actions selected by the second agent 

may not have the same effect as they had previously.  Furthermore, the second decision process 

can similarly affect the first.  The decision making processes of the agents are fundamentally 

linked despite the agents themselves being separate with distinct roles. 

5.5.2 Layered Decision Making 

Parallel and/or concurrent decision processes such as those above could feature on multiple 

layers of a decision hierarchy.  Series of interlinked and concurrent goals and action selections 

on multiple operational levels require the system designer to also consider how the decisions 

made at different operational levels affect each other. 

It is not difficult to think of examples of layered decision problems featuring decisions to be 

made and actions to be selected at distinct planning and control levels as well as, crucially, 

featuring the interaction between them (for example, a robotic system’s overall controller, 

concerned with the delivery of the overall system objectives, and individual servomotors 

concerned only with the appropriateness of their individual positions and orientations).  At 

either level there could be further segmentation into parallel goals and/or concurrent actions. 

To illustrate this approach, it useful to further extend the example from the previous section to 

now incorporate the decision making interactions with a second system layer.  This is the 

simplest a decision model can be while featuring all three of the hierarchical dimensions from 

Figure 16 (i.e. each of parallel, concurrent and also now layered decision making), but in 

practical applications there will be as many goals, actions and system layers as is required by 

and appropriate for any given system. 

Continuing the example from before, suppose that all the decision making previously described 

and illustrated in Figure 17 takes place within the highest layer of the system (or at least, the 

highest layer of the relevant part of the system).  Two decision processes result in two action 
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selections (or more realistically, two control signals).  The system has been designed so that 

the detailed specification of exactly how these actions will be undertaken is delegated to a 

lower system level – resulting in a set of lower level decision processes and action selections. 

A simple instantiation of this problem across two layers contains all the decision making 

previously described on a higher level planning or deliberation layer, with a lower level of 

control or configuration layer decisions still to be defined.  The decisions to be made at this 

level will be about detailing how to implement the decisions that have come down from above: 

• When a scan pattern is determined by the higher layer (or more specifically, when 

required relative positions have been provided), this will then prompt lower level 

decisions about how each of that arm’s joints need to be adjusted to support the new 

plan of action.  This will be the case in both arms, as they have to align to ensure the 

correct relative positions are maintained as required. 

• The arm fitted with the scanner and applicator will have additional lower level decisions 

to make concerning the orientation of the function head, which will also be subject to a 

decision process to ensure that it remains aligned with the higher level requirement. 

• Furthermore, there is also the second action determined by the higher level – when to 

apply or disapply the applicator.  It may be that a lower level of decision making is 

required here not just to turn the applicator on and off when directed, but potentially to 

make further decisions about applicator pressure, angle, or composition – or even to 

choose which substance or colour to apply based on a local determination of the nature 

of the imperfection or blemish being treated. 

It should be noted, with reference to Figure 3, that this planning layer of the decision hierarchy 

might be delivered by agents corresponding either to the system layer or to the system-of-

systems layer of that illustrative example, and the new configuration layer of the decision 

hierarchy might be delivered by agents corresponding to the subsystem layer.  However this is 

not the only way to implement this, and the layers do not need to be seen as equivalent. 

Figure 18 below illustrates the full range of decision processes that have been described.  Note 

that the two control or subsystem layers refer to separate decision processes within each of the 

two robotic arms, the first being the support arm that only has to deal with the movement 

challenge, and the second being the applicator arm that has both the movement and the 

additional applicator challenge.  Parallel and concurrent decision processes can be seen to 

emerge within these lower level decision processes where dependencies exist. 
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Figure 18 – A Graphical Representation of Parallel, Concurrent and Layered Decision 
Processes (Production Line Automata Application) 
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5.6 Modelling Complex Systems 

5.6.1 The Mathematics of Decision Making 

This section begins the development of the proposed mathematical model for representing and 

understanding the behaviour of complex multi-agent systems.  This development is deliberately 

generic, focusing on modelling concepts and possibilities; since every system is different, any 

solution will need to be tailored to the particular structure and context of a practical system 

implementation. 

Markov Decision Processes (MDP) methods for decision-control problems were recommended 

(albeit not in the context of multi-agent systems) in the author’s precursor work for several 

reasons, including specifically their generality of application, the guarantee of convergence of 

solution in most ordinary circumstances, and their (relative) tractability compared with 

alternatives.  All of these reasons remain valid for the more advanced complex multi-agent 

systems applications studied in this PhD, subject to adaptations and extensions which will be 

described herein. 

MDPs provide a mathematical framework suitable for modelling decision making processes in 

inherently uncertain situations.  That their description is context free and flexible is the reason 

MDPs can be applicable to many decision making and optimisation tasks in numerous research 

fields, and accordingly they are the key building block in this work.  In the next section, MDPs 

are defined and some of the possible solution methods described, hierarchical variations of 

which will be developed and applied later in this thesis. 

Chapter 5.6.2 provides a brief summary of the key MDP concepts.  Chapter 5.6.3 discusses 

their relevance and application to learning systems.  Chapter 5.6.4 introduces the Q-value 

formulation of the MDP which operates on state-action pairs, and provides a natural 

formulation for agent-based systems.  Chapter 5.6.5 provides some background to the range of 

solution techniques available.  Chapter 5.6.6 defines the solution technique selected for use 

herein (Q-learning).  Chapter 5.6.7 then describes the novel approach introduced in this thesis 

for adapting the MDP formulation to apply to multi-agent systems.  Chapter 5.6.8 also 

introduces for context the Partially Observable Markov Decision Process (the POMDP), an 

alternative tool that is theoretically a more complete framework for autonomous decision 

making, but unfortunately is considerably harder to solve, with no guarantee of convergence to 

a solution. 
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5.6.2 Markov Decision Processes 

Note that across the extensive literature, Markov processes are described using various 

different notations.  For consistency within this thesis and its associated publications, 

definitions and notations have been adopted that are consistent with the well-known text by 

Sutton and Barto [59]. 

The key building blocks for an MDP formulation of a decision-control problem are: 

• As is the customary approach in modern control theory, the current situation, or the 

system state, is described by a (finite) set of variables 𝑠 ∈ 𝑆, which summarise the most 

pertinent factors influencing the system. 

• Working in discrete time, the change in state each time step is a state transition.  In an 

ordinary Markov chain, the sequence of observed state transitions can be regarded as 

the behaviour of the system. 

• MDPs also have defined actions 𝑎 ∈ 𝐴, a (finite) set of choices available to the system 

at each time step that influence which state transition occurs next (not necessarily 

deterministically).  Where Markov chains are passive, modelling behaviour rather than 

control, the addition of an action selection process gives systems the capability to 

choose between different courses of actions, or to switch between different branches of 

a tree of Markov chains.  It is this choice that progresses a system from reactive to 

higher levels of autonomy. 

• The system earns a numerical reward 𝑅𝑠,𝑠′
𝑎  for each state transition 𝑠 → 𝑠′ that follows 

the selection of each action 𝑎. 

• Providing all obtainable rewards are finite, and providing that all state transitions are 

probabilistically well-defined (all probabilities between 0 and 1, with the sum over all 

possibilities equal to 1), MDP solution algorithms can identify (offline or online, 

analytically or learned) those actions to take in particular states that return the greatest 

expected cumulative reward (see [59]). 

• The policy 𝜋(𝑠, 𝑎) is an association of action selections to current states (not necessarily 

deterministically).  In general, it defines the probability of choosing action 𝑎 when in 

state 𝑠.  The solution to an MDP is expressed as the optimal control policy, which 

identifies those actions to take to maximise the expected return. 
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• A system has a goal, which drives behaviour by inspiring the definition of suitable 

rewards.  Desirable behaviours supporting the system goal should be rewarded better 

than undesirable behaviours which do not.  Maximum attainable reward should 

correspond to the completion of the goal (or the closest it is possible to get to it).  

Expected cumulative returns are used to avoid the obvious pitfalls with greedy policies 

that seek to maximise the immediate reward to the potential detriment of longer term 

performance. 

Note that implicit in this model is the Markov Property that the optimal action can be decided 

on the basis solely of the current state.  Also note that, as Puterman [56] shows, under mild 

constraints there can exist an MDP in which the policy is deterministic, i.e. in which for each 

state there is a single action which will be selected for optimal behaviour.  It is on this basis 

that one can claim predictable behaviour from the decision process. 

Note that different choices of action will typically result in different state transitions and thus 

different rewards.  The decision process is that of choosing which action to select when in a 

particular state, based on what transitions and rewards would be expected to result from such 

a choice.  The main advantage in using MDPs instead of traditional control methods is that this 

formulation can incorporate uncertainty in the model or the environment by calculating (or 

estimating) the expected return following each action selection. 

The biggest challenges for the engineer designing an autonomous system controller are firstly 

to ensure that the MDP is suitably defined to reflect the impact that the different variables can 

have on the behaviour of the system (the fidelity of the state and action spaces 𝑆 and 𝐴 

compared to the real world), and secondly to ensure that the goals, conveyed via the reward 

scheme, really do prompt the desired behaviour.  The optimal control policy is optimal with 

respect to the defined reward scheme; whether the behaviour caused by this policy is what was 

desired depends on how well the goals and rewards were aligned in the first place 

(notwithstanding any environmental perturbation that can also be a factor in some contexts).  

Clearly there is a delicate balancing act in the initial design phase that will need to be 

considered.  This will be highly specific to individual applications, with no uniform solution. 

The basis for most MDP solution techniques is the Bellman value equation.  The notion of the 

value equation first appeared in Bellman [8].  Variations of the definition can be found in the 

wider literature, but this thesis will adopt the formulation from Sutton and Barto [59]: 

 𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [𝑅𝑠,𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′   
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where the value 𝑉 of state 𝑠 is the expected return 𝑅𝑡 (assuming one is following and continues 

to follow policy 𝜋).  Expected return is the expected cumulative reward defined in the logical 

way as the probability-weighted reward expected from each action, summed over all possible 

actions.  Note the recursive formulation, with 𝑅𝑡 consisting of the expected next reward 𝑅𝑠,𝑠′
𝑎  

and the (possibly 𝛾-discounted) value of the possible successor states 𝑉𝜋(𝑠′), summed over all 

possible successor states 𝑠′.  This enables many algorithmic solution methods to solve even 

large models in reasonable time, either searching for an explicit analytical solution for a fixed 

world model, or applying machine learning techniques to identify the currently best understood 

solution for a dynamic world model. 

Note also that the values of the state transition probabilities 𝑃𝑠,𝑠′
𝑎  and the action selection policy 

𝜋(𝑠, 𝑎) will depend on the particulars of the system in question.  It will be necessary to define 

these for each set of states and actions, unless working with a machine learning algorithm which 

does not require a priori knowledge of the transition probabilities because, by definition, it 

learns them (either offline from observation or online from experience). 

MDPs are not the same as simple Markov chains, which have neither rewards to receive nor 

decisions to make as to which action selection will maximise that reward.  This distinction can 

be thought of as a Markov chain describing a path that is being followed, where an MDP is a 

process to select which of several paths is the best.  Each possible sequence of actions one 

could select when in a given state produces a Markov chain, and the solution to the MDP is the 

Markov chain identified as giving the system the best expected overall result, calculated using 

the rewards. 

A few other comments about MDPs are made at this stage: 

1. The state is a description of the important properties of the system at a given time.  They 

could include the system’s position, velocity, temperature, bearing, or any other 

variable that affects system operation and impact upon the decision making.  What 

should be a part of the state depends on the system in question and the context.  

However, one should be careful to include only necessary state information as, although 

MDPs can theoretically model vast amounts of state information, high dimensionality 

systems will be difficult or impossible to solve efficiently or accurately and may 

consume excessive computing resources in the system.  Choosing an appropriate state 

space representation is critical to making the process practicable. 
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2. Any variables outside of the control of the system are part of the environment.  The 

environment can affect the transition probabilities of a system, in that external 

influences on a system can affect its performance.  The probability of an action causing 

a particular state transition is sensitive to the environment, reflecting the fact that the 

control input from an autonomous system’s controller may be more or less effective 

than expected due to adverse environmental conditions.  This is an aspect of decision 

making under uncertainty – actions may not have the consequences they are expected 

to have.  They may not even have the consequences they had last time that action was 

taken when operating in a dynamic environment. 

3. Markov Decision Processes are so named because they require adherence to the Markov 

Property.  This means the system’s current state contains all the information on which 

the next action selection is based.  Ignoring the results of previous action selections 

which could inform the current choice may not seem like an optimal way of making 

decisions.  However, for two reasons, assuming that the Markov Property is satisfied is 

rarely a problem in practice. Firstly, the use of value functions allows the system to 

learn from these prior action selections implicitly.   Secondly, a potential workaround 

exists where pertinent pieces of historical information can either be stored as or derived 

from current state variables (in the latter case, in the way past position is derivable if 

current position and recent velocity are known).  However, care would have to be taken 

to avoid prohibitive exponentiation of the dimension of the state space to ensure that 

only a valuable proportion of information was being stored or recovered. 

4. Alternative definitions for MDPs exist.  Often the difference is merely in the choice of 

notation or indexing convention, but in some of the literature the difference in definition 

is more fundamental.  One common variant is the definition of the related POMDP (see 

Chapter 5.6.8).  Another defines the MDP as a quintuple, with the fifth element the 

decision making epoch – the set of times at which decisions have to be made.  [An 

alternative approach to modelling episodic patterns of behaviour is proposed later in 

this thesis.] 

5.6.3 Using MDPs to Model Learning Behaviours 

It is sometimes easy to identify which actions return the greatest expected immediate reward – 

in fact, these will sometimes be defined, so it is known for certain which action it will be.  More 

useful for real applications is to maximise the expected cumulative reward over many 
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transitions, usually known as the expected return 𝑅.  Note that, for analytical reasons (to ensure 

the expected return is finite), future rewards in the series are usually weighted by a discount 

factor 𝛾 ∈ [0,1], thus giving: 

 𝑅 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾
2𝑟𝑡+2+. . . . = ∑ 𝛾𝑘𝑟𝑡+𝑘

∞
𝑘=0  

where 𝑟𝜏 is the reward earned from the transition made at time 𝜏.  The discount factor 𝛾 has the 

effect of reducing the contribution of earlier rewards, weighting the expected value towards 

more recent rewards.  This is important in a dynamic environment, where earlier rewards may 

no longer be representative of what would happen were that state to be reached again in the 

future, where giving too great a weighting to earlier rewards might give false confidence about 

the future.  The value of 𝛾 will need to be chosen to reflect how important these earlier findings 

are expected to be.  Weighted near 0 and they are ignored almost completely, whereas weighted 

near 1 rewards are treated near equally, assuming little dynamism in the surrounding 

environment.  Where in that range the ‘best’ value of 𝛾 is to be found will vary from case to 

case and may require some experimentation to determine. 

Using expected returns reveals a key characteristic of MDPs – it is not necessarily best to select 

the action with the greatest expected immediate reward (defined as the greedy policy).  Actions 

with poorer expected immediate rewards may be better in the long run if they cause a transition 

to a state from which greater future rewards can be gained than might otherwise have been the 

case.  This is related to the question of how much flexibility and thus potential risk an 

autonomous agent can take in support of its mission goal, or how suboptimal its behaviour can 

be before it starts operating ineffectively or unsafely. 

In general, the goal of an MDP is to identify the actions to take to maximise the expected return.  

Therefore in practice, setting an appropriate reward scheme is the key to coaxing the right 

behaviour out of a system that follows the decisions made by an MDP.  If the system has a goal 

(or goals), then the rewards should be carefully defined so that actions which take the system 

towards its goal give better rewards than those which do not.  The expected return from a given 

state (also known as the value of that state) is then a measure of how good it is to be in that 

state with respect to the overall goal.  It is a key consideration at the design and testing stages 

to ensure that the rewards defined for state transitions really do guide the system in the way 

that is intended.  This means that the optimal control policy of the MDP would then correspond 

to a decision making mechanism for an autonomous decision maker. 
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A simple example to illustrate these key features of MDPs is provided below.  Imagine that a 

cow is grazing in a field divided in two by a stream.  The simplest structure for a decision 

problem is to give the cow a choice of whether to cross the stream and graze on the other side 

or to stay where she is on the current side.  Rewards of -1 are incurred for a crossing, since the 

cow is at that point getting her feet cold and wet whilst not consuming any grass, but positive 

rewards of 1 and 4 are earned when on either side of the stream, depending on whether the cow 

is in the left or right hand side of the field which have different amounts of grass.  Figure 19 

below represents this simple problem.  It is acknowledged that this description is artificially 

simple, for example there is no consideration of what might prompt the cow to make a decision 

or of whether the grass will run out, altering the probability of making a transition to the other 

side of the field.  MDPs are capable of modelling these situations should this be desired. 

 

cross : R = -1 

cross : R = -1 

graze : R = 1 

graze : R = 4 

SL 
SR 

 

Figure 19 – MDP Illustrative Example (1) 

 

Clearly, for this simplified description of the problem, the optimal policy solution is to stay on 

the right hand side SR when there, and if on the left hand side SL to make one crossing to the 

right hand side and then graze there (although there may be complications if one chooses to 

discount rewards as to when to make the crossing, but these are not considered here). 

This simple model assumes the cow can at any time choose to move between the two fields.  

Sometimes the model may have to be more constrained.  An alternative would be to enable the 

cow to cross into another field where the grass appears to be a lot greener but is then unable to 

return, say because the rickety bridge collapsed after the cow crossed it.  In this case, although 

the grazing was better on the other side it was not the optimal policy in the long term to cross, 

because the cow may run out of food much sooner and be trapped. 
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Figure 20 shows a state model that represents this situation, where the crossing earns better 

immediate reward, but represents a terminal state (no further transitions are possible) and 

clearly demonstrates the potential fallacy in pursuing immediate reward over expected 

cumulative return.  The optimal policy was in fact to stay put, and the safer choice of action 

was to not cross the bridge. 

 

S0 S1 

a0 R = 1 

a1 R = 5 

 

Figure 20 – MDP Illustrative Example (2) 

 

5.6.4 The Q-Value Formulation 

An alternative formulation for an MDP extends the idea of the value of a state to the value of 

an action from a given state.  The expected return from the current state if action 𝑎 is taken 

next is then a measure of how good that choice of action is for achieving the system goal, given 

the current state.  Unlike state value  𝑉𝜋(𝑠), state-action value (known as the Q-value) 𝑄𝜋(𝑠, 𝑎) 

can be calculated without a model of the consequences of each possible action that could have 

been selected, which can be difficult anyway but, when there is uncertainty in the model or the 

environment, could also be inaccurate or misleading. 

Recalling the value equation, again using the formulation from Sutton and Barto [59]: 

 𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [𝑅𝑠,𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′  

𝑉𝜋(𝑠)  is the value of the current state 𝑠 (equal to the expected return from that state) when 

following policy 𝜋, with 𝑃𝑠,𝑠′
𝑎  and 𝑅𝑠,𝑠′

𝑎  the corresponding transition probabilities and rewards, 

and with discount factor 𝛾 ∈ [0,1].  The above equation defines the probability-weighted 

expected return, considering the expected reward from the next state transition and the expected 

cumulative return beyond that, which is summarised as the (discounted) value of each of the 
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possible next states 𝑉𝜋(𝑠′).  This then gives rise to the alternative formulation using action 

values (Q-values) defined by the action value equation: 

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = ∑ 𝑃𝑠,𝑠′
𝑎 ∑ 𝜋(𝑠′, 𝑎′)𝑎′ [𝑅𝑠,𝑠′

𝑎′ + 𝛾𝑄𝜋(𝑠′, 𝑎′)]𝑠′   

The intuitive relationship between state values and state-action values can be expressed as 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 𝑄𝜋(𝑠, 𝑎), which can be simply derived from the definitions as expected 

cumulative returns, the detail of which can be seen in [59]. 

The value equations show the overall value of state 𝑠 under policy 𝜋 to be the probability-

weighted average of the values of each of the candidate actions 𝑎 ∈ 𝐴 when in state 𝑠 and 

following policy 𝜋.  Whether state values 𝑉𝜋(𝑠) or action values 𝑄𝜋(𝑠, 𝑎)  are more appropriate 

depends on context; both are valid theoretically (provided some relatively mild analytical 

conditions are satisfied).  Note the superscript 𝜋 is often dropped as it is usually implicit that 

the value of a state or action is with respect to the policy being followed, but it may be more 

important to retain it for analysis of systems featuring multiple interacting agents; these agents 

would be following their own non-identical control policies, which would require consistent 

labelling and accurate enumeration. 

5.6.5 Solving the MDP 

Typical solution methods for MDPs involve value or policy iteration based on the Bellman 

value equation.  Providing the total number of states and actions is finite, there is guaranteed 

to be an optimal action (or possibly a set of equally optimal actions) to take in any given state 

that will maximise the return from then on (provided the same analytical conditions as above 

are satisfied), as proven in [59].  Thus finite MDPs have a solution in the form of an optimal 

policy 𝜋∗, which defines which actions to take when in each state to achieve the maximum 

expected return 𝑉∗(𝑠) for each state 𝑠 ∈ 𝑆.  Formally, 𝑉∗(𝑠) ≥ 𝑉𝜋(𝑠) for all states 𝑠 ∈ 𝑆 and 

for any alternative policy 𝜋 (or the obvious equivalent formulation using Q-values). 

Applied to this thesis, the question is whether one of these optimal policies results in 

predictable and appropriate behaviour.  If none of them do, then the question becomes what is 

the next-best policy that does.  A deeper question would be, if a trade-off between optimality 

and appropriateness is necessary, then is it even possible to achieve an operational requirement 

or goal without operating at an unacceptable level of risk. 
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The idea behind both formulations is that the expected return from a particular state is defined 

as a one-step recursion of the current estimates of the values of all the reachable states, 

amenable to iterative estimation and evaluation solution methods.  One improves the estimate 

of the optimal policy by updating the current best estimates of the value of the previous state 

(or state-action pair) with the reward obtained when the transition has occurred, which updates 

all related values through the recursive relationship defined by the Bellman value equation. 

Typical solution techniques range from dynamic programming to Monte Carlo-esque statistical 

sampling, and hybrids of the two.  What is most useful depends on the context.  Dynamic 

programming is useful when the full model is known (i.e. all 𝑃𝑠,𝑠′
𝑎  and 𝑅𝑠,𝑠′

𝑎  are defined, as well 

as 𝜋(𝑠, 𝑎) when appropriate) because then the value equations form a system of simultaneous 

linear equations (albeit possibly a large system).  There will be an optimal solution to this 

system of value equations, and iterative dynamic programming solutions will find it relatively 

quickly given the potentially high dimensionality of the state space.  Although applied to 

POMDPs (a generalisation of the MDP which will be discussed further in Chapter 5.6.8), it 

was dynamic programming methods that were applied in much of the early literature, including 

Bellman’s original text [8].  Where the MDP is applied to a control problem like the 

hierarchical composition of subsystems (as opposed to a decision-making-under-uncertainty 

problem) this is not unreasonable, as in many contexts system behaviour will have been 

carefully specified. 

However MDPs can still be solved when parts of the model are unknown, albeit sometimes 

only asymptotically given operational or computational constraints.  A solution is guaranteed 

to exist so long as the relatively mild modelling requirements are satisfied (being finite, using 

discounts, and so on) – although it should be noted that an optimal solution may only be a 

transient solution (a ‘currently optimal’ solution) if the environment is changing.  Sampling 

methods applied with a careful selection of sampling policy (to ensure state space exploration) 

will give data that might be used iteratively to improve the state or action value estimates, and 

similar solution algorithms will converge to a solution. 

Monte Carlo sampling methods are not appropriate where safety assurance is required, because 

they typically require the current series of operations to complete before an unsafe action can 

be identified as such, by which time it is already too late to prevent it.  However, compared to 

dynamic programming methods, Monte Carlo methods are just the other extreme of a spectrum 

of possible solution algorithms.  Hybrid methods often give effective solutions, typically 

involving the use of sample data (in the form of learned data, data from a model, or observed 
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data) to update the values (and thus the current optimal policy) through successive policy 

evaluations, improving the model and/or the performance of the system as the solution 

algorithm progresses. 

5.6.6 Q-Learning 

The solution technique that will be used in this thesis is one of these hybrid solutions borrowed 

from the world of reinforcement learning known as a Q-learning algorithm, which calculates 

the optimal policy solution to an MDP from iterative updates to the action value equation (the 

Q-value variant of the tradition Bellman value equation) based on its practical experience and 

observations (i.e. rewards).  It is a form of iterative policy learning where the current array of 

Q-values is updated according to the update rule: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

or more intuitively: 

𝑄(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 max𝑎𝑄(𝑠𝑡+1, 𝑎)) 

where 𝛼 ∈ (0,1) is the learning rate of the Q-learner and all other variables are as defined 

previously.  𝛼 is a parameter that defines how much weight new information should have 

compared to the old estimate when updating value estimates.  Clearly 𝛼 = 0 would correspond 

to no weight being given to new information at all and thus no changes to Q-values regardless 

of what transpires, whereas 𝛼 = 1 would correspond to responding instantly to new 

information with no weight given to prior knowledge at all, a purely reactive or ‘knee jerk’ 

response insensitive to learning trends in observations over time.  In general, α will need to be 

tuned to the environment, with smaller values of α for more slowly evolving environments and 

greater values of α for highly dynamic environments, where the relatively fast changes to the 

environment reduce the value of older learning more quickly. 

The solution to an MDP is the optimal control policy, which defines the optimal action (i.e. the 

most value-maximising action) one should take from the current state. 

• During the learning phase of a reinforcement learning technique such as Q-learning, 

one would want the system to sample different combinations of states and actions in 

order to gather data about the ‘true’ values of these actions, with the value array (or Q-

value array) serving essentially as an aggregation of all current knowledge (subject to 

suitable parametric weights).  One may define an ‘exploration’ strategy or state space 
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sampling strategy.  Given ample time, exhaustive state space exploration or simple 

random walks on the state space (or state-action space) will suffice, but more 

considered alternatives based on prior knowledge of the valuable parts of the state space 

to sample may help to speed learning up considerably. 

• During the execution phase, it can be assumed that most or all of the time one would 

want the system to choose the optimal action.  ‘Most of the time’ allows occasional 

sampling of supposedly non-optimal paths in order to re-sample the wider state space, 

essentially testing for any changes of which the system was unaware.  Should the 

environment (or the rest of the system in the case of a multi-agent system) have changed 

during run time, the system may be able to detect this through sampling, iterating its 

value array, and observing that some state or state-action pairs have become more or 

less valuable over time.  This will not always be possible as it will be inappropriate for 

some systems such as safety critical systems to purposefully take poorer decisions in 

this way, and thought should be given as to whether or to what extent such systems 

should be enabled for ‘online’ learning (forbidding it completely, setting an extremely 

low sampling rate, or allowing sampling but only within that subset of actions 

determined to be acceptable). 

• Most of the time (as determined by a sampling strategy) for a system continuing to learn 

online, and all of the time for one that cannot, the action to take is the one which 

maximises value.  The optimal policy is the policy which maximises the value from 

each state-action pair within state space 𝑆 and action space 𝐴, which in the Q-value 

formulation will be: 

𝜋∗(𝑆, 𝐴) = 𝑚𝑎𝑥𝜋(𝑄𝜋(𝑆, 𝐴)) 

• The optimal action (or a set of equally optimal actions) is that action to take under the 

optimal control which maximises expected return from the relevant state, which in the 

Q-value formulation will be: 

𝑎∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝜋
∗(𝑠, 𝐴)) 

Q-learning across networks is a generalisation of the standard formulation given above by 

having a set of parallel iterative updates to the Q-value arrays maintained at each node in the 

network.  The author has previously introduced this and demonstrated how it can be applied to 

random networks and node-by-node frequency reassignment [21]; however the developments 
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later in this thesis will be the first time networks of Q-learners are known to have been applied 

in this manner within the domain of complex multi-agent systems. 

Note that the definition and notation for the Q-learning technique given above are, as usual and 

for consistency, taken from Sutton and Barto [59].  However, since selecting Q-learning as the 

preferred solution technique for this work, Watkins' original thesis [67] that first introduced Q-

learning has been tracked down, and it is a pleasant coincidence that the problem originally 

tackled (a strategy-control problem for a boat, where strategy means the navigation problem) 

is very similar to the vehicular navigation example discussed throughout this thesis.  This was 

an unexpected but welcome discovery, and a validation of this choice of solution technique for 

decision-control problems.  However, what has not been discovered in the wider literature is 

any prior attempt to extend the Q-learning formulation to multiple such decision making agents 

within a complex multi-agent system, which is the innovation in this work. 

Note also that although Q-learning is defined here and is the solution approach preferred for 

the exemplar application (see Chapter 8), it is not the only possible solution technique, as the 

discussion earlier in the subsection indicates.  Alternative approaches might be more suitable 

for calculating, maintaining and updating optimal control policies depending on the problem 

domain in question. 

5.6.7 Generalising the MDP to Multi-Agent System Structures 

The discussion thus far has concerned the MDP as a suitable mathematical formulation for the 

decision-control process being undertaken by a single decision maker.  The focus of this thesis 

is to generalise this approach for more complex systems structures consisting of multiple 

interacting decision makers. 

There are a number of modifications needed to apply this model to more complex structures of 

decision nodes. This section summarises some aspects that are original contributions by the 

author but originated in the precursor work that motivated this PhD [23],[24].  The concepts 

need to be re-introduced here as part of the background before proceeding from Chapter 5.7 

with the original contributions conducted as part of this PhD. 

Suppose one can identify 𝑚 relevant state variables and 𝑛 actions that need to be taken: 

• A state becomes a state m-tuple: 
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𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑚) is a tuple describing 𝑚 relevant variables 𝑠𝑖, 𝑖 ∈

{1,2, . . . , 𝑝𝑖}, where there are 𝑝𝑖 < ∞ options to describe the current state of the 

𝑖th variable. 

• An action becomes an action n-tuple: 

𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) is a tuple describing the 𝑛 actions 𝑎𝑗 , 𝑗 ∈ {1,2, . . . , 𝑞𝑗} that 

need to be decided upon, where there are 𝑞𝑗 < ∞ options for the 𝑗th action. 

• A numerical reward should be generalised to become a reward function: 

The combined reward function 𝑅 = 𝑓(𝑅𝑠,𝑠′
𝑎 |𝑠, 𝑎) defines the reward that is 

obtained from the whole set of actions 𝑎 selected given the current state 𝑠, which 

could be a simple sum of rewards or could be something more complicated if 

necessary to incentivise behaviour effectively.  The exact functional form of 𝑅 

will be determined by the properties of the system in question. 

Each state and action tuple can be treated as elements of higher dimensional state and action 

spaces respectively, and so one can adapt the Bellman value equation in the logical way: 

 𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′

𝑎
[𝑅 + 𝛾𝑉𝜋(𝑠′)]𝑠′  

A more detailed construction of such a higher dimension Bellman value equation making use 

of the higher-dimensional generalisations defined in this chapter will be presented as part of a 

step-by-step worked example later in this thesis in Chapter 6.3.2. 

Even in the simple case, the Bellman value equation actually describes a system of 

simultaneous equations.  Generalised to higher dimensions, this could be expressed as a messy 

family of tensor equations, but doing so adds little practical value.  Thinking algorithmically, 

this system is better expressed as an array (potentially a high-dimensional array), and solution 

algorithms can work iteratively on elements of this array just as they would on an ordinary 

system of simultaneous linear equations. 

Note that as with all the single decision node developments discussed previously, the variation 

on the Bellman value function instead based on the value of actions given states 𝑄𝜋(𝑠, 𝑎) can 

also be adapted for the complex multi-agent systems problem using tuples similar to the above.  

This version is useful for machine learning implementations, and it is the Q-value formulation 

that was adopted for the experimental work reported later in this thesis.  In more general 
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application, the system designer will have a choice between formulations, depending on the 

problem in question and the appropriateness of the different solution algorithms. 

5.6.8 Partial Observability and the POMDP 

A well-known extension to the MDP comes about by removing the requirement to have explicit 

information about the current state of the system – incorporating any uncertainties in the 

system’s knowledge of its current state.  If, for example, such uncertainties arise due to physical 

limitations on the system’s sensors, then the Partially Observable Markov Decision Process 

(POMDP) is an alternative model that incorporates this.  Formally, the POMDP is a quintuple 

similar to the quadruple of the MDP, but with an additional (finite) set of observations and the 

set of states from the MDP replaced by a set of belief states in the POMDP.  As the name 

suggests, a belief state is a probability distribution of the belief the system has of being in a 

given state, given the most recent observation and the last action taken.  However, state 

transitions are now transformations of probability distributions, and thus the analysis and 

solution of a POMDP model is considerably more difficult than for a normal MDP. 

Some solution methods for POMDPs do exist, but they typically require either explicit state 

transition models (which can be unreliable, or even unobtainable when operating in 

unpredictable environments), approximation to an MDP (which begs the question of why not 

just use a suitable MDP in the first place), or a highly involved and possibly intractable 

numerical solution.  Thus a choice has to be made between the benefits of incorporating any 

uncertainties in the measurement or observation of state information by using a POMDP model, 

or the benefits of making the assumption that state information is sufficiently well represented 

without the need for explicit state transition models. 

For all of these reasons, and given all the application areas discussed within this thesis relate 

to decision making in observable environments, it is proposed that simpler MDP models should 

be the preferred basis for the modelling and analysis techniques being developed on the 

assumption of full (or in practice, sufficient) observability of the current state.  Then an 

appropriate state space representation and standard MDP solution techniques will solve the 

decision problem, with the added benefit of not having to work with specified transition models 

and/or potentially intractable numerical solutions.  The possibility of a state space quantisation 

suggests that there is scope within this approach to incorporate some degree of uncertainty in 

state information, with the states the MDP works with themselves being just an approximation 

to a larger underlying (often continuous) state space. 
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It is recognised, however, that there are foreseeable applications where specifically including 

partial observability might be desirable, including multi-agent applications where systems need 

to work with hidden variables, i.e. state information that they cannot observed (or at least, 

cannot fully observe).  This might arise in models where it is not possible to approximate away 

any uncertainty or noise in the input sensor data, for example when data is incomplete or broken 

up, such as might happen in some signal processing and frequency management applications.  

However, this is a topic beyond the scope of this thesis. 

5.7 Application to Complex Multi-Agent Systems 

This chapter will begin to pull together these approaches to formalising structures of systems 

and a mathematical formalism to overlay onto these structures, and illustrate how these might 

be applied to complex multi-agent systems. 

Consider a generic multi-agent system with a large number of distributed system elements 

responsible for a variety of subtasks.  In a larger system it is not difficult to imagine a situation 

where there are many competing demands for resource, and the system as a whole has a 

difficult challenge to meet all of these simultaneous goals.  This scenario contains many of the 

characteristics of the sort of system described in the previous sections: 

• Multiple Goals:  There can be many separate and distinct requirements and goals 

placed on a system and it may be more practical and expedient to have them addressed 

individually by different agents or groups of agents (both for computation efficiency 

and to be responsive to locally dynamic requirements). 

• Complexity:  Applying resource to one requirement might deny this resource to other 

requirements, thereby creating a network of implicit dependencies between distinct 

tasks.  This could make the system susceptible to complex or emergent behaviours. 

• Local vs. Global Perspective:  Although one would hope that the cumulative effect of 

all the decisions made by local agents in response to local requirements would address 

all the requirements on the whole system, clearly this may not be so.  There are likely 

to be trade-offs between local and global needs.  (Examples of these sorts of local/global 

conflicts have been given previously, for example the discussion about autonomous 

taxi’s local need to remain with a customer-rich location but the wider system’s global 

need to disperse assets to maintain coverage and responsiveness.) 
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Consider the overall structure of such a system: 

 

The whole system 

Groups assigned 
particular goals 

Individual agents 

Community (common 
goal profile and policy) 

 

Figure 21 – A Graphical Representation of Generic Multi-Agent System Structure 

The layers of ‘whole system’, groups, and agents are analogous to the layers of the motivating 

examples from Chapter 2.5, where groups are naturally defined as the ‘branches’ of the multi-

agent network corresponding to individual vehicles, sensors, or automata in each of the three 

examples.  The presentation here allows for groups to exist as a more general construct and not 

be limited to groupings imposed by physical alignment or co-location. 

Communities is a new term being introduced to describe the potential for emergent groupings 

of agents that may not correspond to the agents’ usual or formal grouping, based on these agents 

having common (or overlapping) goals and policies leading them towards co-dependent 

patterns of emergent behaviour.  This will be explored further in Chapter 5.8.2. 

The requirements placed on the system in the form of resource allocation requests have to be 

assigned to those agents capable of fulfilling them, which could involve ‘percolating’ the 

requirement through the network until an agent (or group of agents) capable of fulfilling the 

requirement can be tasked (not dissimilar to the approach taken in swarm robotics).  However 

this is a specific approach which assumes that tasks and agents are, at least to some degree, 

interchangeable – with multiple homogeneous sub-entities capable of the same task.  This will 

not be the case in the general formulation, where tasks may have to be undertaken by particular 

specified agents due to their equipment specialism, and a swarming technique is unlikely to be 

useful for this.  Understanding which agents end up with which distribution of goals, and the 
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mechanism for managing this allocation, should help the system designer understand the 

behaviour that the different agents subsequently display. 

As a basic template, to provide a baseline to show that the concepts and mathematical 

framework developed thus far can be practically applied to a complex multi-agent system, one 

can logically apply the MDP construct to this generic resource management problem on local 

and global levels: 

• Locally: (the agents themselves) 

• States:  Suppose there are n ‘types’ of resource which an agent can provide.  The 

state of each agent could then be described by an n-vector, with each element 

describing either the quantity or proportion of resource available. 

• Actions:  An action by an agent is the provision of resource to a task.  This could 

be represented as a quantity or proportion of the available resource to be ‘spent’. 

• Rewards:  A simple reward scheme would be for an agent that fulfils a requirement 

to receive a positive reward of, say, +1 for each requirement fulfilled.  Maximum 

attainable reward should then correspond to the fulfilment of as many requirements 

as the agent’s resources allow. 

• Globally: (at the system level) 

• States:  At the system level, the pertinent pieces of state information are the number 

or proportion of requirements fulfilled, and the overall capacity of the system.  In 

the simplest case, this could be represented by a 2-vector containing scalar values 

for these proportions.  However, this does not contain any information about the 

resource distribution.  A more detailed alternative could be a cellular automaton, 

with cells for groups within the system and separate 2-vectors for the state of each 

cell. 

• Actions:  The action here, in the simplest formulation, would be an intervention or 

overrule of individual agent(s).  This would be represented in the same way as at 

the local level (which conveniently should make the algorithmic implementation 

simpler). 

• Rewards:  The system could receive rewards, say, of -2 for each requirement 

accepted but not fulfilled and of -1 for every ‘exhausted’ agent at each time step.  

Maximum attainable reward should then correspond to fulfilling all user 
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requirements as expediently as possible, but by balancing the load across agents 

where possible.  If using the cellular automaton approach, these rewards could be 

for each individual cell, and the total reward for the system would be the sum of 

rewards over all cells. 

One can envisage many possible future applications for complex multi-agent systems 

functionally similar to this generic template.  Indeed, some of the more challenging problems 

that might be envisaged would arise when autonomous agents of all different kinds are part of 

larger deployment which includes combinations of, for example, autonomous, or least semi-

autonomous, vehicles, communications systems, sensor platforms, or semi-automated 

operations management tools.  The purpose of introducing this template is not because it is a 

ready-made solution for all problems, which it clearly will not be, but to build confidence that 

there may be recurring design patterns that can assist the system designer in the construction 

of control mechanisms for such heterogeneous deployments. 

5.8 Local and Global Behaviours 

Perhaps the biggest challenge with understanding the behaviour of systems lies in 

understanding how the behaviours of the individual components ‘fit’ as part of the larger 

system.  With complex systems, by definition, this is much harder because of the differences 

between local and global behaviours.  The key challenge for this work is to demonstrate that 

the mathematical framework for decision making (and, by extension, to system control) can 

account for complex phenomena, provide a basis for understanding it, and potentially control 

or at least constrain its consequences.  It is proposed that the approach developed can fulfil 

these aims after some further modifications, and it is this that is explored in this section. 

5.8.1 Emergence 

It should not be assumed that all components of the system are assigned complementary and 

consistent goals, even if that is what the system designer intended to do and thinks they have 

done.  Sometimes, it may not be possible even to assume there was any such intent, if the 

system has come together as an ad hoc composition of elements originally designed by different 

people.  Consequently, it is important to understand how complex emergent behaviours are 

accounted for within the proposed framework.  Understanding the underlying reason for the 
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emergent behaviours may provide a basis for understanding how to limit or constrain them, or 

at least to understand the impact they might have. 

The key is to understand and qualify what the different goals of the individual agents are, and 

how they impact on the wider system.  This challenge is best illustrated through a simple 

example, which is intended to illustrate this phenomenon in a recognisable, albeit simplified, 

autonomous vehicles scenario. 

Imagine there are a number of deployed Unmanned Air Vehicles (UAVs) on a surveillance 

assignment over a particular operational area.  The commander requires a redeployment of 

these UAVs, to concentrate on two particular locations, x and y. 

• All systems west of line L are instructed to fly to location x. 

• All systems east of line L are instructed to fly to location y. 

Whatever the actual implementation of the systems onboard the UAVs, the decision making 

process can be represented as an MDP provided that states, actions and rewards can be defined 

in a suitable way, at whatever level of state space granularity is appropriate.  For example, for 

the UAVs to the west of L assigned the goal of flying to location x: 

• The state of each UAV could be its actual geographic location.  This could be a rather 

large state space, depending on the level of granularity demanded.  A simpler alternative 

would be a cellular lattice covering the area, with state then being the index of the 

currently occupied cell.  Other alternative state space structures can be envisaged. 

• The action taken is the direction in which the UAV chooses to move.  This could be 

given as an actual vector, but a more tractable alternative might be, with the cellular 

lattice state space as an example, a discrete step to one of the neighbouring cells. 

• The reward received by the system should reflect the goal the system is meant to 

achieve.  The goal here is to travel to point x, so a simple reward scheme would be to 

give the system a negative reward, say -1, for any action which takes the system away 

from x (to incentivise travel towards x, as opposed to simply sitting in a holding pattern 

and not moving away from x). 

The maximum attainable reward (of zero) is achieved so long as the system is continually 

closing on the target.  If time is of concern, then applying a discount factor of less than one in 

the Bellman value equation will have the effect of reducing the expected return as the number 

of time steps increases, with the maximum attainable return achievable by following the 



 

 

117 

shortest possible route to the target (typically the direct path).  There are of course many 

possible variations on this basic model, for example to visit waypoints, avoid obstacles, or 

arrive at a specified time, but these are not required for the simple example discussed here.  

These are all fundamentally instantiations of the basic autonomous vehicle navigation problem 

covered by Watkins [67], Sutton and Barto [59], the author’s precursor work [23], and 

extensively in the wider literature. 

A similar model could be applied to the other set of systems lying east of L and set the task of 

flying to location y.  One might expect that this completes the task.  Both sets of systems are 

assigned goals, and suitable onboard decision making software should be able to determine that 

the optimal policy to achieve these goals is to travel in a direction that reduces the distance 

between the system and its assigned target.  Indeed, this might be exactly what does happen.  

But a naïve implementation of these models does leave a potential hole. 

 

 

L 

Goal 1: Fly to x 

Rewards, say: 0 for a step 

towards x, -1 for a step 

away. 

 

The optimal policy 

generated should be an 

inward path towards x. 

Goal 2: Fly to y 

Rewards, say: 0 for a step 

towards y, -1 for a step 

away. 

 

The optimal policy 

generated should be an 

inward path towards y. 

Goals 1 and 2: 

There are many ways to combine rewards., 

but say: 0 for a step towards x, 0 for a step 

towards to y, -1 for a step away from x, -1 

for a step away from y (i.e. a simple 

composition). 

 

One possibility for the optimal policy is for 

a direct path to the midpoint z – behaviour 

not implicit in either parent policy. 

x y z 

 

Figure 22 – An Example of Simple Emergence 

 

Consider a system sitting on border L.  All will depend on the precise implementation, but, if 

the original programmer did not fully think through the nuances of his or her code, then a valid 

interpretation of the situation is that a system located on border L is assigned both goals.  In 

this case, the reward a system earns will be a composition of rewards relating to each of the 
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goals.  If the combined reward were of the simplest form (adding the two rewards together) 

then hopefully it is clear that the optimal policy will be for a direct approach to the midpoint 

between x and y - the system would incur no negative rewards as it is approaching both 

locations simultaneously, and once it gets there the optimal course of action is to stay there, 

since anything else moves away from at least one of the two targets and incurs a cost. 

Clearly this behaviour is not what the system was intended to do, nor presumably what it was 

expected to do, yet it could arise in a relatively straightforward way from a naïve 

implementation.  If systems have multiple goals placed on them, with ‘mixed’ incentives 

flowed down to them, then this fused reward scheme generates a new policy, and the optimal 

policy for this system might be the best possible compromise rather than the desired outcome.  

The generated policy is observably different to the parents, and the observed behaviour is not 

implicit in the policies expected of either set of systems. 

Referring back to the general discussion on the nature of emergence in Chapter 3.8.2, note that 

this is an example of the so-called weak emergence rather than strong emergence, because the 

emergent behaviour is reducible to the behaviour of the components (notwithstanding the 

earlier assertion that there is no substantive difference between weak and strong emergence 

other than perspective). 

Admittedly this is an artificially simple example: 

• There are fairly obvious ways of fixing this to get the behaviour intended (for example, 

specify explicitly whether on the line L means go left or go right). 

• The operator or his commander may not be concerned if z and all points travelled 

through on the way to z are acceptable states, and the affected systems are not otherwise 

required. 

• Some may not count this as complex or emergent behaviour in the commonly used 

sense of the word, as it is simple enough that one might reasonably have been expected 

to foresee it.  Nevertheless, this is an emergent behaviour under many interpretations 

of the term, including under the working definition used within this thesis given in 

Chapter 3.8, and in more complicated models such situations could certainly be far less 

foreseeable and hence cause more significant problems. 

This example is intended to illustrate that unintended, emergent behaviour can result even from 

simple compositions of MDPs, and thus it is not hard to imagine it occurring in more complex 
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setups where it was not obvious to foresee, not clear why it happened, and could easily cause 

deviations into undesirable states.  Key to the proposed approach to understanding complex 

system behaviour is to understand the distribution of goals and actions throughout the 

constituent parts of a complex system, or the goal profile.  This is vital because, assuming one 

adopts a goal-driven approach to behaviour, goal distribution determines reward distribution, 

which determines policy and hence behaviour.  Understanding how the goals and rewards are 

distributed should explain why the behaviours are as they are. 

More formally: 

• System A is part of a subset of entities that have a goal 𝐺𝐴. 

• There would have to be a reward scheme that incentivises actions that support 

or progress goal 𝐺𝐴. 

• States, actions and rewards combine to produce a policy 𝜋𝐴 that maximises the 

expected return by progressing System A towards goal 𝐺𝐴. 

• System B is part of a subset of entities that have a goal 𝐺𝐵. 

• There would have to be a reward scheme that incentivises actions that support 

or progress goal 𝐺𝐵 

• States, actions and rewards combine to produce a policy 𝜋𝐵 that maximises the 

expected return by progressing System B towards goal 𝐺𝐵. 

• System C is part of both subsets, and has to achieve both goals 𝐺𝐴 and 𝐺𝐵. 

• There would have to be a reward scheme that incentivises actions that support 

or progress both goals 𝐺𝐴 and 𝐺𝐵 (for example by using some kind of combined 

reward function, see Chapter 5.6.7). 

• A composition of states, actions and rewards combine to produce a policy 𝜋𝐶, 

but note that there is no reason to assume this will be the same as either of its 

parent policies 𝜋𝐴 𝑜𝑟  𝜋𝐵. 

• Consequently System C, similar to both System A and System B, could have a 

notably different policy from either System A or System B. 

• Since policy drives behaviour, it should not be unexpected if System C’s 

behaviour is observably different from the behaviour observed from either of 

System A or System B. 
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The purpose of this apparent digression is to demonstrate another property of MDPs that make 

them suitable for this task – emergent behaviour can appear not through magic but as a logical 

consequence of the hierarchical MDP architecture already developed.  It might be premature 

to declare this as a definitive answer for how to understand emergence, but this is a start towards 

understanding what it is about system behaviour that can cause complexity, which should help 

with understanding and responding to it. 

5.8.2 Communities 

How does connecting the distribution of different types of goals and rewards to different 

combinations of agents within a system help?  If one continues to assume goal-based decision 

making by individual agents, that the number of such agents is finite, and, critically, that there 

is no assumption of homogeneity (systems will not all have the same role; they may not even 

be the same types of system), then it is proposed that: 

• If the system can be divided into subsets of components (unitary subsets if necessary) 

with common goal profiles, and hence common policies, this information could be used 

to identify where there is a possibility of emergence, and where there might be a need 

to reassess behavioural predictions and possibly intervene (i.e. an early-warning 

system). 

• Even better, if each subset with a common goal profile and a common policy can be 

represented as an MDP, it should be possible to directly apply the hierarchical MDP 

framework to model the behaviour of such systems (i.e. a predictive tool, which could 

mature into a control mechanism, although that is beyond the current scope). 

The number of possible groups of agents with common goal profiles is potentially large (there 

are 2𝑛 possible groupings of 𝑛 agents, meaning an exponentially increasing number of 

possibilities).  However, with a finite number of agents, the number of possible subsets of 

agents within the system, including the empty set and the whole set that need to be included 

for analytical reasons, will also be finite, albeit large (for the reader familiar with set theory, 

what is being describing is the power set of the set of components). 

It is assumed that when goals are assigned to the system, they are only assigned to particular 

agents within the system (which will obviously depend entirely on the context).  If there are 

multiple goals placed on a system, then some of these goals will be passed down to the relevant 

subset of agents.  Looking at the problem the other way around, one ends up with a collection 
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of agents with different goals.  If agents have the same combination of goals placed on them, 

or a common goal profile, they form a community (where a component with a unique goal 

profile is defined as a unitary community). 

Figure 23 below provides a graphical representation of goal assignment and community 

formation within a collection of agents. 

 

 

Figure 23 – A Graphical Representation of Agent Communities 

 

How does the grouping of agents into communities of components help?  Goals will have to 

be passed to agents by some sort of indexing mechanism.  Exactly what this means will be 

context specific; however, there will be some sort of logical association of goals and rewards 

to systems (and not necessarily an a priori prescribed association – there is no theoretical 

reason preventing agents changing their group memberships, if this is permissible within any 

other system or environmental constraints).  If this indexing can be reversed then, provided the 

empty and whole communities are included in the model, what will have been constructed is a 

A 
D C B F 

E 

Goal 1 is assigned to A, B and 

C 

Goal 2 is assigned to C and D 

Goal 3 is assigned to E and F 

Goal 4 is assigned to F 

A and B both have goal 1 

C has both goals 1 and 2 

D has goal 2 

E has goal 3 

F has goals 3 and 4 
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with a common goal 
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C, D, E, and F are unitary 
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goal profiles 

Group to which a 

goal is assigned 
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common goal profile 

and (it is assumed) a 

common policy 
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topological space.  Working from a formal mathematical basis should make it easier down the 

line to apply analytical techniques to the observed behavioural data, such as applying metrics 

for the magnitude or separation of sets, or other potentially useful statistical tools for classifying 

behaviours, or for measuring the boundedness of behaviour. 

However, the most important reason is that identifying where goals and rewards have been 

composed indicates where an observer of a multi-agent system should not assume optimal 

policies are as they might have been presumed to be.  This information is vital if one is to 

understand observed behaviours and to know what might be possible if wishing to influence 

subsequent behaviour.  It might also be a useful tool for behavioural assurance to be able to 

identify where a system is vulnerable to emergent behaviour, potentially allowing the 

prediction of the possible consequences of any emergent behaviour, but at least helping to 

predict the bounds of any such behaviour. 

5.8.3 Decomposing a Complex Multi-Agent System into Communities 

For completeness, this section provides more of the mathematical justification for investigating 

the topological communities model. 

The domain of interest of a system is defined by variables such as ‘those elements involved’ 

and the ‘physical’ and ‘logical’ problem domains.  Exactly what these variables are depends 

entirely upon the type of system and the operational context in question.  The ‘position’ of an 

element within the domain could reflect its geographical position, but will also represent its 

current mission state, or its identity, or any other pertinent information that describes its state 

with respect to the variables of interest.  Note that the ‘boundary’ of the domain may also 

evolve with time. 

The domain of interest is covered (using this phrase in the analytical sense from topological 

theory) by a set of ‘missions’ or, in the common MDP terminology, goals.  Each mission 

represents an objective to be achieved within that subset of the domain. 
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Domain of 

Interest 

Topological cover 

produced by a 

family of ‘missions’ 
 

Figure 24 – Topological Basis for Agent Communities 

 

Missions may overlap within the domain (which does not just mean in the geographical sense), 

and each element may be assigned to multiple missions.  This has already been described within 

the general discussion of various application areas within Chapter 2.5 and within the developed 

example of the coupled decision making of agents within production line automata in Chapter 

5.5, illustrated via Figure 17 and Figure 18.  Certain goals end up being shared between 

different agents in physically separate parts of the system, for example the agents responsible 

for manoeuvring the two robot arms concurrently are in separate physical systems but are 

operating towards the same goal.  They are forming a community within the wider system, 

which is a different association that does not correlate with their physical installation or their 

place within the decision control hierarchy. 

To develop this further: 

• Each ‘mission’ set is implemented as an idealised MDP with a number of state variables 

{𝑥1, 𝑥2, 𝑥3, . . . }. 

• Each variable assumes a value determined, at any given instant, by its ‘location’ in the 

domain. 

• This process is repeated until the desired ‘resolution’ is achieved. 

• At some point, the ‘idealised MDP’ should become a realisation of a decision layer in 

a physical system element. 
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x1 

x2 

x3 

 

Figure 25 – Increasing Resolution of the Topological Model 

 

This process can, potentially, provide an extremely finely grained representation of the state of 

all the agents within the system, and of how this determines the policies of these agents and 

consequently the behaviours that emerge.  An additional benefit from the communities model 

is that, combined with some aspects of the hierarchical MDP model already developed in the 

earlier chapters, many of the characteristics of the different organisational paradigms discussed 

earlier in this thesis in Chapter 3.3 would be reflected in the mathematical model one would 

use for the decision making processes. 

The purpose of this discussion is to bring the argument back around to the consideration of the 

layers and dimensions of decision making within complex multi-agent systems described in 

Chapter 5.5.  The choice of MDPs for the precursor work was motivated by their practical 

attributes and amenability to iterative solution, which is appropriate for many autonomous 

systems applications.  The motivation for researching these topics subsequently was that MDPs 

might have been more suitable a modelling paradigm than ever originally appreciated at the 
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time of the precursor work, if a deeper link could be established between hierarchies of MDPs 

linking communities of agents within a multi-agent system, and the topological structure.  This 

realisation suggests a more rigorous analytical approach to the vexed question of how to prove 

complex multi-agent system behaviour might not be fanciful.  These aspects unfortunately fall 

into the second half of the proposed research and thus became beyond the scope of this PhD.  

However some of the anticipated next steps are described with Chapter 9.2.5 amongst the 

conclusions and recommendations from this thesis, and pointers to where it was expected this 

work would lead are to be found within Annex C. 

Finally, it should be noted that whilst this approach to community detection is presented in 

order to complete the description of the mathematical background established within this PhD, 

which is believed to be a novel approach to the multi-agent system domain, it is not claimed 

that this is the only possible mechanism for community detection within networks.  The 

innovation in this PhD is to link the formation of communities of agents within networks with 

the rigorous approach to modelling the decision control hierarchy, however analytical 

approaches to community detection is not without precedent.  Newman’s work on modularity 

maximisation [49] is one existing example which takes a different approach from that proposed 

here, focusing on identifying nodes in graphs with a number of edges (potentially representing 

agent’s communal associations?) that have spiked above equivalent nodes in random graphs, 

suggesting some communal event might have occurred.  Whether techniques such as these can 

be linked to or otherwise support the proposed approach is an area deserving of future research. 
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Chapter 6 

6 Parallel Decision Making and its 

Application to Interactive 

Autonomous Systems 

6.1 Context 

When a system controller has to make a decision, it is often not a singular decision.  If a system 

has multiple simultaneous goals, the consequences of a decision may affect the system’s 

progress towards more than one of these goals.  Conflict can then arise when decisions that are 

beneficial towards one goal are detrimental towards another. 

The development of a hierarchical decision progress begins with the simpler formulation 

introduced in Chapter 5.5 and named the parallel decision process.  The concept is that two or 

more separate decision processes take place simultaneously, the desired action from each 

process influencing the others. These processes could either arise from distinct system 

components with a resource conflict, or they could arise in a single system that has multiple 

mission goals that cannot be achieved simultaneously, requiring that a choice be made between 

them. 

A simple example might serve to clarify this.  Consider the control architecture of an industrial 

robot arm with joints at ‘shoulder’, ‘elbow’ and ‘wrist’ in a scenario where obstacles constrain 

the movement.  (This is a simplification of the example from Chapter 5.5.1, leaving out the 

‘applicator’ tasks therein for simplicity here.) 
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Target 

  

Figure 26 – A Visualisation of a Robotic Arm 

 

Unless any obstacles are placed in particularly difficult positions, there is no single correct 

solution for the angles required at all three joints.  This suggests that two architectures are 

possible: a top-down approach in which a central controller performs all calculations and 

dictates the control actions to be applied; and a bottom-up approach in which top-level ‘goals’ 

are satisfied by independent controllers at each joint.  For example, the ‘wrist’ controller, 

knowing the dimension of the ‘hand’ and the location of the target, might define a range of 

acceptable locations for the joint.  This is propagated back to the ‘elbow’ controller, which 

determines an acceptable range for the elbow joint, and so on. 

This bottom-up approach is an example of a parallel decision process where each controller 

makes its own decision about its position, based on the overall goals and the behaviour of its 

partners.  Even in this simple scenario it is easy to speculate on how different performance 

goals may compete.  Certain solutions, for example, might cause greater wear to occur at a 

particular joint, but result in lower overall power consumption.  The optimal control policy for 

all three controllers must find an acceptable balance of the relevant factors. 

One may notice the contrast between the top-down and bottom-up approach, where the former 

requires one controller to select multiple joint positions contributing to a single overall state, 

while the latter features multiple independent controllers considering the expected range of 

possible positions when choosing their own individual positions.  Referring to the hierarchical 

dimensions discussion in Chapter 5.5, here one can see that the two different approaches to the 

control problem correspond to different dimensions of the decision hierarchy.  Discussion here 

focuses on the bottom-up approach to control, corresponding to the parallel perspective on 

decision making (one action towards multiple goals), because this approach is the one clearly 

relevant to problems featuring multiple interacting systems.  This chapter presents a detailed 

worked example showing how a parallel decision process can be modelled with parallel MDPs, 
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and develops the necessary mathematics to enable solution of this with relatively minor 

modifications to standard MDP solution techniques. 

It should be noted from the outset that there is no theoretical limit to the number of parallel 

decision processes.  The problem will be with the inherent complexity that will arise in larger 

models, which could potentially increase exponentially with the number of decision processes 

– at worst, one could end up with an autonomous control equivalent to the n-body problem.  A 

careful construction and segmentation of the control model should limit these difficulties but, 

to illustrate the core principles, in this initial treatment the focus is on the simplest two-process 

problem. 

It should also be noted that the parallel decision process with two goals is not an instance of 

game theory, as the autonomous system acts in response to its state and environment rather 

than to a second player, but it may help to think in terms of simple games (note though they 

are not generally going to be zero-sum games, where the net gain or loss to the all decision 

makers balances out, nor are they likely to be symmetric games, where decision makers have 

mirrored goals).  The worked example developed in this section has obvious relevance to the 

world of autonomous vehicles, namely having a goal to reach a specified target location without 

being intercepted. However, the inspiration for this example actually came about by 

considering the game theory analogy.  The example is developed from a problem typical of 

many simple computer games: get to the exit without getting caught by the monster.  It can be 

seen that the two problems are structurally and logically similar, and not dissimilar from the 

many analogous problems in the real world, dynamic obstacle avoidance the most immediate 

and thus the motivating example behind this section.  [Note that despite providing the 

inspiration for the worked example that follows, the game theory approach itself has not been 

considered in any further detail, for the reasons given in Chapter 4.3.3.] 

The following chapters detail the two decision processes that occur concurrently throughout 

this task and construct the MDP that will model this decision problem.  Note that whilst the 

example developed in this section is of a parallel decision problem at the strategic or planning 

level of decision making (in the language of Chapter 5.5), a similar approach could be applied 

to the parallel decomposition on any other decision control layer, an obvious possibility being 

to have two separate and distinct components of a system in conflict over some limited or 

constrained system resource at a lower level control or execution layer, such as the positioning 

of the robot arm joints in the example illustrated by Figure 26. 
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6.2 A Worked Example: Dynamic Obstacle Avoidance 

An example of parallel decision making is provided by the familiar autonomous systems 

problem of dynamic obstacle avoidance.  Suppose an autonomous vehicle has a goal to reach 

some specified target location, and that there is another entity in the local area blocking its path. 

The autonomous vehicle has two mission goals – to reach its target location and to avoid a 

collision with the other entity.  The optimal policy for achieving the former could cause conflict 

with the latter when the other entity is on the desired path to the target location.  The system 

controller has to make a navigational decision that respects both mission goals. 

In Figure 27 below, observe a simplified representation of this problem.  The target location is 

in a passageway or channel, with the (red) autonomous vehicle initially at one end.  It has a 

mission goal to reach the (green) target location, and the optimal policy for that goal in isolation 

is trivial.  However, the presence of a second entity in the passageway is a problem – without 

prior knowledge of the control policy being followed by this other entity its movements may 

be unpredictable, and it becomes a dynamic obstacle that the first vehicle must navigate around. 

 

 

? 

Target   

Figure 27 – Dynamic Obstacle Avoidance 

 

A navigational decision made at any one time by the controller of the autonomous vehicle has 

to contend with the fact that the controller does not know what the relative position of the two 

systems is likely to be after it has made its move, because it does not know in advance what 

the probabilities of particular moves are for the other entity. 

Since each interacting entity is a part of the environment for the other (since neither is under 

the direct control of the other) this sort of problem can be seen as a Level 2 or Level 3 control 

problem (referring to the levels of control as described in Chapter 4.5), depending on the degree 

of sophistication and flexibility required, and is suitable for an MDP-based solution. 
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6.2.1 Decision Process One: Reach a Target 

The first step is to introduce the two goals of the parallel decision process individually.  Firstly, 

imagine an autonomous vehicle has to reach a target location X.  For this simple example, one 

could imagine this target is the only bridge across a river which the vehicle is required to cross, 

or a location where the vehicle needs to hold position in order to receive a signal.  In the 

computer game context that inspired this example, the aim could be to get the player’s avatar 

to the exit and on to the next level.  Rather than tackle the continuous control problem, for 

computational simplicity one can model the environment as being a local area (for example a 

room) divided into a grid, and model the movement of a system as steps between cells. 

For this simple introduction, a relatively course grid will be used.  A typical grid dividing up a 

room is illustrated below, with cell X representing the target point the autonomous system is 

trying to reach, the exit from the room in this case.  An arbitrary cell in the grid will be the 

starting position – any cell will do, except the cell containing point X (which would result in a 

rather trivial example).  In Figure 28 below, all the other cells have been labelled with a state 

number which uniquely describes each grid position.  The target cell is therefore cell 24, and 

in the language of Markov chains and MDPs this is a terminal state since no further state 

transitions will occur following a transition into cell 24. 

 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 X

25 26 27 28 29 30

31 32 33 34 35 36
 

Figure 28 – Discrete Enumerated State Space 

 

An MDP model for this situation should have the autonomous system presented with a set of 

actions in the form of moves between cells, with the ultimate goal of reaching the exit – cell 

24 in this case.  At each time step, the state of the system is simply the cell number the system 
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is currently in and a simple set of actions to choose from would be a choice of moves of up, 

down, left and right – to keep the problem simple, diagonal moves, jumps, and stationary moves 

(standing still) are not available as options, although these or other moves could be included if 

so required.  If the system is up against a wall, a move into the wall leaves the state unchanged 

(so a move downwards from cell 34 leads to cell 34). 

Transition probabilities are fortunately trivial in this model – each action leads to one particular 

state with probability 1 and any other state with probability 0.  A system starting in cell 9 and 

choosing right will definitely end up in cell 10 with no chance of ending up anywhere else.  

Although the transitions are trivial in this case, it is only because this is an artificially simple 

example for illustrative purposes.  In general, actions could cause one of several different 

possible state transitions, with corresponding transition probabilities between 0 and 1, and the 

state space dynamics are not necessarily certain (i.e. the transition model can be non-

deterministic).  An example of this will be provided by the second constituent part of the 

decision process. 

The final component of an MDP that has to be defined is its reward scheme.  For each state-

action pair (that is, for each current cell number and selected next action), the designer will 

need to define the numerical reward that corresponds to how well the autonomous system is 

doing regarding achieving its goal, remembering that the expected cumulative reward 

(expected return) should be maximised by selecting actions supporting and ultimately 

achieving the goal.  There are of course many ways to define the rewards, and the choice of 

reward scheme affects the performance of the decision process. 

For this model, a simple reward scheme would be to reward each move with the negative of 

the minimum number of moves away from the exit which the move leaves the system requiring.  

Thus a move into cell 24 has reward 0, a move into cells 18, 23 or 30 has reward -1, a move 

into cells 12, 17, 22, 29 or 36 has reward -2, and so on through to a move into cell 1 having 

reward -8, being the furthest (8 steps away) from the exit.  Then the maximum (least negative) 

return is obtained by getting to the exit in the fewest steps possible, and any series of actions 

that gets the autonomous system to cell 24 with minimum cost is an equally optimal policy. 

For example, the optimal policy starting from cell 9 is for a series of 5 moves, 3 moves right 

and 2 moves downs which gives a return of -10 by the time the system reaches the exit.  From 

the reward map (see Figure 29 below), it is clear that any combination of these first five moves 

is equally optimal for this model – they all take 5 steps with a return of -10, whereas any other 
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series of moves to cell 24 takes more than 5 steps and gives a poorer (more negative) return 

than -10.  Note though that this is a particular property of this simplified example and would 

not generally be true.  One of the possible optimal routes is highlighted in Figure 29 below: 

 

-8 -7 -6 -5 -4 -3

-7 -6 -5 -4 -3 -2

-6 -5 -4 -3 -2 -1

-5 -4 -3 -2 -1 0

-6 -5 -4 -3 -2 -1

-7 -6 -5 -4 -3 -2
 

Figure 29 – The Reward Map (with an optimal path highlighted) 

 

Each state (in this case each cell) has an associated value, which is the expected return from 

that state.  This is obtained by using the Bellman value equation as defined in Chapter 5.6.2: 

 𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [𝑅𝑠,𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′   

where here states 𝑠, 𝑠′ ∈ 𝑆 = {1,2. . . . .36}, actions 𝑎 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡}, a transition 

from 𝑠 to 𝑠′ following action 𝑎 has transition probability 𝑃𝑠,𝑠′
𝑎  (which here is 0 for all bar one 

of the 𝑠′ for which it is 1) and a corresponding reward 𝑅𝑠,𝑠′
𝑎 , with discount factor 𝛾 ∈ [0,1] and 

the probability of choosing action 𝑎 when in state 𝑠 defined by the policy 𝜋 such that 𝑃𝑟(𝑎|𝑠) =

𝜋(𝑠, 𝑎).  Note that terminal states have a value of zero by definition (as there will be no further 

actions or transitions of any kind from a terminal state, and hence no future rewards), so 

𝑉𝜋(24) = 0. 

As an example, assuming that one is equally likely to select each of the four possible actions, 

so 𝜋(𝑠, 𝑎) = 𝑃𝑟(𝑎|𝑠) =
1

4
  for each 𝑎, then the value equation for state 18 will be: 

𝑉𝜋(18) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [𝑅𝑠,𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′   

=
1

3
[𝑉𝜋(12) + 𝑉𝜋(17) − 5]  
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since 𝑅18,12
𝑢𝑝 = 𝑅18,17

𝑙𝑒𝑓𝑡
= −2, 𝑅18,18

𝑟𝑖𝑔ℎ𝑡
= −1 and 𝑅18,24

𝑑𝑜𝑤𝑛 = 0 from the reward scheme defined 

above, with 𝛾 = 1 for simplicity and 𝑉𝜋(24) = 0 by definition.  Repeating for each of the 

other states will produce a set of 36 simultaneous linear equations for the state values 

(effectively 35, since the terminal state’s equation is trivial).  The solution could be computed 

directly, admitting a set of state values as the solution to the simultaneous value equations.  

When the model is not artificially simple like this example, the solution can be found by 

estimating an initial value for each state (apart from the terminal state, which has to have value 

zero) and using dynamic programming techniques to search for a solution to the system of 

equations.  This would be the technique of choice as the dimensionality of the state space 

increases and direct calculation becomes impractical. 

Problems like this have been well explored in the MDP literature and a full solution does not 

need to be re-produced here.  It is sufficient to note that with the framework for calculating the 

value functions established, the solution to the decision problem is the optimal policy which 

determines those actions which cause transitions to the highest-valued reachable states.  In this 

example, this means the policy determines the direction that is expected to take the autonomous 

system to the state with the greatest (or least negative) value amongst the reachable states 

(which in this case means one of those cells immediately next to the current cell).  It is hopefully 

clear that optimal (or equally optimal) paths such as that highlighted in the figure above will 

be the result, as one would expect.  Hopefully, it is also clear that the rather obvious answer 

arises because of the simplicity of the problem tackled here; such methods will also solve far 

more complicated decision problems in a similar way. 

6.2.2 Decision Process Two: Avoid Another Entity 

The navigation task described in the previous subsection is by itself quite straightforward.  In 

practice, it can be complicated by not allowing the autonomous system full knowledge of its 

state, putting obstacles in its way, or other such encumbrances.  The focus here is on parallel 

decision making, so the complication introduced next is a second agent that the first system 

must try to avoid.  This situation is analogous to, for example, avoiding a hostile entity like the 

‘monster’ in a computer game, or real world examples such as evading a missile intercept, or 

evading detection, or navigating around an uncooperative or erratic vehicle. 

Parallel decision processes means that at any given time step the autonomous system has 

decisions to make in each process simultaneously.  If a second decision process took place over 
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a similar time interval but chose actions at different points in that interval, the choice of action 

at any one time could be based on only the one process, and any direct conflicts between the 

two processes’ choices of actions are circumvented.  Since the ultimate aim would be to have 

continuous decision making, where simultaneity is unavoidable, common time steps and 

simultaneous decision making are assumed throughout. 

Consider the second decision process in isolation, temporarily ignoring the navigation task.  

Pursuing the computer game analogy, one can imagine the system is being chased by a monster 

(or more generally, a second agent outside of the first agent’s control).  This can be framed as 

a decision process with a goal to avoid the monster. 

In this problem, states are not best thought of as fixed positions relative to a grid, because as 

the monster moves around the values of specific positions vary.  A position that at one time is 

a long way from the monster with a relatively high value associated with it could, at some later 

time, contain the monster and be the worst position possible.  For simplicity, the assumption is 

made that the system can see the whole of the surrounding area and knows the position of the 

monster (i.e., full observability of the state space).  As such, one option for the state space 

representation is to define the system state as being the number of steps away from the monster 

that the system is at that time, using a state space representation that is relative to the other 

entity.  Note that as the total number of states has to be finite for standard solution methods to 

be useful, there needs to be a cut-off point, a state that means the monster is a certain distance 

or more away.  However, it is not necessary to consider this here, since when the two decision 

processes are combined it will be apparent that a maximum separation is imposed on the model 

anyway by the choice of state space geometry. 

The choice of actions is again a choice of where to move next (up, down, left or right), and the 

reward associated with each move depends on how much closer or farther away from the 

monster that move leaves the system.  Thus one can define: 

• States 𝑠 ∈ {𝑆0, 𝑆1, 𝑆2, . . . } = { In the same cell as the monster, 1 move away from the 

monster, 2 moves away from the monster…} – these states are relative positions. 

• Actions 𝑎 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡} – to keep the number of variables down (and for 

consistency with the navigation problem), diagonal moves, jumps, and stationary 

moves (standing still) are forbidden. 

The Markov property is obeyed because one’s relative position to the monster at previous times 

is irrelevant to where it is now, at least in simple homogeneous environments, with no 
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complications arising from local geography or other constraints imposed on movement.  Thus 

this is an MDP, with rewards associated to actions set to encourage the system to keep its 

distance from the monster – fulfilling the goal of not encountering the monster. 

An immediate concern with the reward scheme is to specify what precisely the system is 

expected to achieve.  Not encountering the monster can be interpreted as either ‘move as far 

away from the monster as possible’ or ‘stay a safe distance from the monster’.  A reward 

scheme that merely punishes the system when it gets too close to the monster but does not 

differentiate between distances greater than some threshold would likely produce different 

behaviour than a reward scheme which gives greater rewards the further away from the monster 

the system gets.  Indeed in the latter case, the optimal policy would clearly be to run as far 

away from the monster as possible, which may not be realistic.  Looking ahead to when the 

two decision processes are combined, one will notice that the ‘run-away’ option is not 

appropriate here.  What is required is a reward scheme to guide the system to follow the ‘stay 

a safe distance from the monster’ principle, a model for which is developed below. 

It is important that the monster is moving.  A stationary monster could be modelled with only 

minor changes to the model for the first decision process by, say, defining a zero transition 

probability for any move into the cell containing the monster, which defeats the object of 

having an on-going decision process.  The aim here is to introduce an unpredictable element to 

the control problem – where the system can select an action, but the transition probabilities are 

no longer simply 0 or 1 as in the simple navigation case as the position the system will end up 

in relative to the monster after making a move is not known in advance. 

This problem is illustrated in Figure 30 and Figure 31 below.  The system is in a cell two steps 

away from the cell containing the monster.  Two steps difference places the system in state S2.  

Note that a state could be regarded not as a single cell but as a collection of cells; state S2 is 

thus a union of eight cells.  Figure 30 illustrates the two agents starting positions, the cells 

marked respectively green and red for the system and the monster. 

The system now faces a choice of possible actions.  The policy it follows has yet to be defined, 

but assume that for some reason a move to the right is selected.  Intuitively, a move in any 

direction other than down will take the system to state S3, whereas down (towards the monster) 

would take the system to state S1.  The problem is that the choice of action does not specify 

the outcome state by itself – the movement of the monster also influences it. 
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S4

S4 S3 S4

S4 S3 S2 S3 S4

S4 S3 S2 S1 S2 S3 S4

S4 S3 S2 S1 S0 S1 S2 S3 S4

S4 S3 S2 S1 S2 S3 S4

S4 S3 S2 S3 S4

S4 S3 S4

 = Monster S4

 = System
 

Figure 30 – Initial System State 

 

S4

S4 S3 S4

S4 S3 S2 S3 S4

S4 S3 S2 S1 S2 S3 S4

S4 S3 S2 S1 S0 S1 S2 S3 S4

S4 S3 S2 S1 S2 S3 S4

S4 S3 S2 S3 S4

S4 S3 S4

 = Monster S4

 = System
 

Figure 31 – System State After a Move Right From Both Agents 
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As Figure 31 illustrates, the move right does not place the system in S3, as might have been 

expected.  If the monster moves to the right as well, it will still be only two steps away and 

hence the system is still in S2.  Because the state is relative it changes with the movement of 

both entities.  Thus the system will receive the reward for a transition from state S2 to itself, 

rather than the reward for a transition from S2 to S3 that might otherwise have been expected.  

Considering all four possible moves the monster could have made, a move to the right by the 

system may have looked like a move to S3, but in fact that was never going to be the case – it 

was a move to either S2 or S4 depending on the move made by the monster.  With the additional 

assumption that the movement of the monster is unpredictable, this has become a stochastic 

decision process, with different transitions resulting as the environment changes around the 

system. 

This model is a simple illustration of the problems that can arise when operating in dynamic 

environments.  One solution is to specify a model for the environment – essentially a ‘best 

guess’ type of solution.  An alternative is to use reinforcement learning techniques, so the 

autonomous system can learn for itself which are the best actions to take.  If there is a defined 

policy behind the movement of the monster (a control policy unknown to or hidden from the 

system), then a good learning process should eventually identify it and the system can act as if 

it had known its opponent’s policy to begin with.  The benefit of this approach is that it does 

not require prior modelling information.  The downside is that the system must have a learning 

phase (or at least a training phase) before it can operate optimally. 

For the purposes of this current example, consider the simpler but potentially less realistic 

approach of assuming a known model for the control process of the other agent.  Possibilities 

include assuming that the monster matches the movement of the system, or that it always heads 

directly towards the cell the system was just in.  Alternatively, one could define a ‘dumb’ 

monster, just as likely to move in one direction as in any other.  There are of course other 

possibilities where the monster can move in all directions but has preferences for certain 

directions, producing a probability distribution over possible actions. Whichever policy is 

chosen as most appropriate to a particular context, the sum of the probabilities of choosing the 

individual actions must be equal to 1, since the monster must choose one and only one of the 

possible options. 

Once a policy and the resulting transition probabilities are defined, corresponding rewards have 

to be defined as well.  As with any other MDP, the rewards should be chosen in such a way as 

to guide the autonomous system towards the desired goal, and the maximum return should be 
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gained from fulfilling the goal or, as in this case, the poorest returns received when failing (i.e. 

running into the monster).  As discussed above, the goal here can be interpreted as ‘stay a safe 

distance from the monster’, and the choice of reward scheme should reflect this.  One 

possibility for a reward scheme which does not reward running unnecessarily far away (and 

hence should not induce this behaviour) is presented below. 

 

Transition into state: S0 S1 S2 S3, S4….

Reward: -10 -5 -1 0  

Figure 32 – Example Reward Scheme 

 

Following this reward scheme (or something similar), and using the defined states, actions and 

suitable transition probabilities, makes this a complete Markov Decision Process.  As with the 

navigation problem, it is not useful to solve it explicitly here, but hopefully it is clear how such 

problems can be tackled.  The resulting optimal policy solution defines the actions the system 

should take from each state in order to maximise its expected return and thus achieve its goal. 

6.2.3 The Parallel Decision Process 

The two decision processes outlined above can now be combined into a single problem.  There 

will be two goals – to get out of the room and to avoid the monster.  Clearly however the 

decision making becomes more complicated when a conflict arises between the goals of the 

two processes, such as if the monster is blocking the system’s route to the exit. 

This situation is illustrated in Figure 33, Figure 34 and Figure 35 below.  In each figure, green 

represents the cell containing the system and red represents the cell containing the monster that 

the system has to evade.  Note the way the state information (specifically the relative separation 

information) changes between time steps. 

This is a convenient point to introduce the convention that states will be represented by n-tuples 

depending on the number of pertinent bits of information needed to describe the state of the 

system (as described in Chapter 5.6.7).  In this case, this results in state pairs containing two 

pieces of pertinent state information – the cell number and the relative position to the monster.  

Thus, for example, the top left most cell of the grid in Figure 33 is state (1, S6) because it is 

cell number one (in accordance with the navigation problem) but its state relative to the monster 

is S6, representing 6 cells separation (in accordance with the evasion problem).  Note of course 
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that this is merely one option for a state space representation; there are alternatives.  Choosing 

an appropriate representation is a key part of the problem for the system designer (as discussed 

throughout Chapter 5). 

 

1, S6 2, S5 3, S4 4, S3 5, S2 6, S3

7, S5 8, S4 9, S3 10, S2 11, S1 12, S2

13, S4 14, S3 15, S2 16, S1 17, S0 18, S1

19, S5 20, S4 21, S23 22, S2 23, S1 24, S2

25, S6 26, S5 27, S4 28, S3 29, S2 30, S3

31, S7 32, S6 33, S5 34, S4 35, S3 36, S4

 

Figure 33 – Starting Positions of the Two Agents 

 

1, S5 2, S4 3, S3 4, S2 5, S3 6, S4

7, S4 8, S3 9, S2 10, S1 11, S2 12, S3

13, S3 14, S2 15, S1 16, S0 17, S1 18, S2

19, S4 20, S3 21, S2 22, S1 23, S2 24, S3

25, S5 26, S4 27, S3 28, S2 29, S3 30, S4

31, S6 32, S5 33, S4 34, S3 35, S4 36, S5

 

Figure 34 – Positions of the Two Agents After One Time Step 
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1, S6 2, S5 3, S4 4, S3 5, S4 6, S5

7, S5 8, S4 9, S3 10, S2 11, S3 12, S4

13, S4 14, S3 15, S2 16, S1 17, S2 18, S3

19, S3 20, S2 21, S1 22, S0 23, S1 24, S2

25, S4 26, S3 27, S2 28, S1 29, S2 30, S3

31, S5 32, S4 33, S3 34, S2 35, S3 36, S4

 

Figure 35 – Positions of the Two Agents After Two Time Steps 

 

Note that action n-tuples will also be used in later developments, when different types of action 

are required simultaneously (such as a change in direction and velocity simultaneously), but 

for this illustrative example only a single action needs to be chosen (a move up, right, left, or 

down) because both individual decision processes were deliberately constructed with the same 

set of actions to choose between. 

After two time steps, the system has moved from state (9, S3) to (15, S1) to (21, S1).  With 

regard to the first process (navigating out of the room), the moves from cell 9 to cell 15 and 

from cell 15 to cell 21 have rewards of -4 and -3 respectively, since cell 15 is 4 steps and cell 

21 is 3 steps from the target cell by the exit.  The return at this stage is -7, and were the system 

operating in isolation three moves to the right would result in the system escaping from the 

room in optimal time (5 steps, with a return of -10).  Note that in this example, for simplicity, 

it is assumed that the return is a simple undiscounted sum of rewards (i.e. 𝛾 = 1) even though 

this is not analytically required for problems with unconstrained run times. 

However, rewards and returns can also be calculated with regard to the second decision process 

(dodge the monster).  The first move from S3 to S1 and the second move from S1 to itself have 

rewards -5 and -5 (using the reward scheme proposed in the previous section), and so a return 

of -10 (with the same caveat about discounting as above).  The moves taken thus far have 

produced a poorer return with respect to the second decision process, and continuing to follow 
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the optimal policy for the first process with a move to the right could be disastrous, as is clear 

from the last figure. 

Clearly there is a question to answer as to which reward scheme should be used to generate a 

policy and thus guide the autonomous system’s decision making.  Or put another way, there is 

a question as to what one should do when the supposed optimal policy is no longer optimal due 

to a conflict between mission goals. 

6.3 The Mathematics of Parallel Decision Processes 

6.3.1 Combined Reward Functions 

One answer to the question posed above could be to follow the policy corresponding to the 

mission goal considered to be the more important.  For example, the policy could be to head 

directly towards the exit regardless of the position of the monster, and if you are caught then 

so be it.  However, this effectively reduces the problem to a single decision process with a 

stochastic element to the transition rewards corresponding to the probability of getting caught 

on route.  To be a truly interactive decision process, choosing one process as more important 

and side-lining the other cannot be allowed – both processes should be equally important.  As 

such, neither reward scheme should be preferred over the other, and the policy that governs the 

interacting decision processes must be generated from a reward scheme that respects the goals 

of both processes.  What is required is a combined reward function for an action and the 

corresponding transition between state pairs. 

Any candidate for a combined reward function must reflect how that choice of action and the 

resulting transition have contributed to the system’s progress towards each of the goals it has 

been set.  Some kind of average reward would seem to be the obvious solution.  However, in 

the same way that the behaviour of a system with a single decision to make is sensitive to the 

numerical values given to the rewards, so the behaviour of a system with parallel decisions to 

make will be sensitive to the choice of reward function used, whether this be a simple arithmetic 

average or otherwise.  There is no definitive answer to what the appropriate reward function 

should be beyond the general statement that it must reflect the reward schemes and/or mission 

goals of each decision process. 

Note that in the general case, where a system may have to choose several distinct actions (and 

where one might be using action n-tuples), a reward would have to be defined for each set or 
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combination of actions that could be chosen when in each state.  In the most general context of 

all, one will require a function that determines the reward following the selection of each 

possible action n-tuple and for each corresponding possible transition between state m-tuples.   

In practice, the state and action representations should be chosen to be as simple as possible, 

and in this example the basic concept is illustrated with by a single action selection and a 

transition between state pairs. 

The problem that could arise with taking an average reward is that averages are potentially less 

sensitive to extreme reward values, particularly in the case of extremely costly actions.  

Diluting the cost of extremely bad actions in one decision process when it coincides with what 

would otherwise be a good choice of action in the other decision process could be a serious 

shortcoming.  In the example developed here, a move simultaneously towards the monster and 

the exit may not register as significantly different to another move if the cost of getting closer 

to the monster is balanced out by the reward for getting closer to the exit. 

One crude solution is to set the extremely costly actions with such a high cost they still 

outweigh the other possible actions even when averaged with the best rewards in the other 

processes.  For example, the reward for encountering the monster in the evasion process is -10, 

costlier than any of the rewards possible in process one.  This reward could be much harsher, 

say -100 or -1000, but this risks guiding the system not just to never go there but to never go 

anywhere near there – solution techniques based on iteratively improving value estimates and 

policies are sensitive to extreme values.  Earning an extreme reward value early in the algorithm 

run-time could discourage the system from actions it might otherwise have considered 

acceptable, at least during the training/learning stage before an optimal policy has been 

identified but possibly permanently if the rewards set were so extreme it altered what was 

identified as an optimal policy.  The question of how to set the combined reward function is 

related to the issue of how much risk a system can be permitted to take, and thus to the broader 

issue of safety assurance for an MDP-based control algorithm.  It should also be clear that 

setting rewards of ±∞ for particularly desirable or undesirable actions cannot be allowed. 

In general, there will often be a trade-off between setting rewards that easily distinguish 

particularly good or bad actions and potentially biasing the system so heavily for or against 

these actions that it changes, inhibits or even cripples the system’s operation.  The sensitivity 

of one set of rewards to the other is a critical factor affecting the performance of the parallel 

decision process, particularly the scaling of the rewards of the two (or more) processes relative 

to each other.  Ironically, it is conceivable that it might sometimes be safer overall to permit 
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some slightly riskier behaviour in the short term, because not doing so might risk the system 

ending up immobilised and unable to do anything at all – the appropriate safety criteria, as 

usual, depend entirely on the type of autonomous system in question and its operational 

requirements and environmental context. 

An alternative solution is to consider using more sophisticated averages than the simple 

arithmetic average; selecting a reward function that behaves in a manner suitable for the 

operational requirements of the system.  Given that the reward schemes for the two decision 

processes in the example developed in this chapter are similar in terms of the relative 

magnitudes of the individual rewards (and are thus more vulnerable to underestimating the risk 

when extreme rewards are diluted), and given that all the rewards used are negative values, the 

function: 

  𝑟 = −𝑒𝑥𝑝(−(𝑟𝑎 + 𝑟𝑏)) 

where:  𝑟 = combined reward 

 𝑟𝑎 = reward from process a 

 𝑟𝑏 = reward from process b 

is proposed as a function that will produce appropriate reward values for this problem – the 

rewards behave like a simple average reward until at least one of the two individual rewards 

gets disproportionately negative compared to the other, at which point the combined reward 

starts to decrease exponentially and magnify the cost (an exaggerated warning).  This function 

should be less sensitive to the problem of diluting the effect of particularly costly actions and 

thus provide a more realistic reward function to guide the autonomous system towards 

behaviour optimal to both of its mission goals. 

It should be reiterated that this choice of reward function is not a prescription for all problems.  

It is specifically chosen for the properties of this particular example, and other options exist – 

infinitely many in fact.  The question of which reward function to use will be as much a part 

of the design of the controller as the choice of state space representation or the selection of the 

numerical reward values themselves, and will depend on the design and purpose of the system 

in question. 
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6.3.2 Generalising to Higher Dimensions 

Two generalisations of key MDP concepts proposed in Chapter 5.6.7 have now been featured 

in this chapter’s worked example (states are now state m-tuples and rewards are now reward 

functions), and in order to solve the parallel decision process using standard techniques (with 

only minor modifications) the next step is to consider how to integrate these generalised 

concepts into the MDP framework. 

Recall that the basis for most MDP solution techniques is the Bellman value equation, which 

was defined in Chapter 5.6.2 as: 

 𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [𝑅𝑠,𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′    

with all variables as previously defined.  The concept of a state needs to be replaced with a 

state pair (or in general, a state m-tuple). 

Firstly, note that since there is one of the above Bellman value equations for each state, a 

common representation of the set of state values is to arrange them as a state value vector: 

 𝑉𝜋(𝑠) = (
𝑉𝜋(𝑠1)
⋮

𝑉𝜋(𝑠𝑚)
)  

Each element of the vector is the value of state 𝑠𝑖, 𝑖 ∈ {1,2, . . . 𝑚} defined by the appropriate 

Bellman value equation.  Recall that, for the usual MDP solution methods to be applicable, the 

number of states has to be finite, and so this vector is finite.  The ordering of the states within 

the vector is arbitrary, although logical orderings often present themselves in many state space 

representations. 

To illustrate the adaptation of this framework for state pairs, suppose there are two state 

variables 𝑠 and 𝑡, then system state is described by the state pair 𝑠 = (𝑠, 𝑡).  It is not necessary 

to establish a relationship between the value of the state pair 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠, 𝑡) and the values 

of the individual states 𝑉𝜋(𝑠) and 𝑉𝜋(𝑡) independently.  There are two reasons for this. 

Firstly, although in the example in this section the two pieces of state information are drawn 

from the two individual decision problems (cell number is derived from the navigation task 

and relative separation is derived from the evasion task), in general such a clear division may 

not always apply.  For example, suppose the two pieces of state information were location and 

time and the goal was to intercept someone.  The value of either the location or the current time 

is not useful in isolation; in this context they are only meaningful together. 
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Secondly, the value function is an expected return, and so the laws of probability apply.  It is 

likely that individual state values 𝑉𝜋(𝑠) and 𝑉𝜋(𝑡), even in a context where they do make sense 

individually, will generally not be statistically independent of each other. 

Thus each state pair is to be treated as a separate element of a higher dimensional state space, 

avoiding the temptation to assume the value of a state pair is the sum or product of the values 

of its individual arguments (if this even has any recognisable meaning in the physical world).  

As such, the natural representation for state pairs is to use a matrix of state values, with the two 

components of the state information (the two arguments of the state) ordered along the rows 

and columns of the matrix: 

 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠𝑖, 𝑡𝑗) = [
𝑉𝜋(𝑠1, 𝑡1) ⋯ 𝑉𝜋(𝑠1, 𝑡𝑚)

⋮ ⋱ ⋮
𝑉𝜋(𝑠𝑛, 𝑡1) ⋯ 𝑉𝜋(𝑠𝑛, 𝑡𝑚)

]  

Here, the state pairs are ( )
ji tss ,=  for 𝑖 ∈ {1,2, . . . . . 𝑛}, 𝑗 ∈ {1,2, . . . 𝑚}, the above comments 

about ordering and finiteness still apply, and it should additionally be noted that there is no 

reason this needs to be a square matrix (i.e. 𝑛 ≠ 𝑚 in general).  Then in the same way that with 

conventional state vectors the Bellman value equation defines each element of the vector, so 

here an adapted version of the Bellman value equation will define each element of the above 

matrix.  When working with more general state m-tuples, this will be an m-dimensional value 

array, but applied to this example results in the state value matrix: 

 𝑉𝜋(𝑠) = [
𝑉𝜋(1, 𝑆0) ⋯ 𝑉𝜋(1, 𝑆10)

⋮ ⋱ ⋮
𝑉𝜋(36, 𝑆0) ⋯ 𝑉𝜋(36, 𝑆10)

]  

The state information relating to the position within the room is ordered down the rows and the 

state information about the relative position with respect to the monster is ordered across the 

columns in the logical way (although they could have been ordered arbitrarily).  Note that the 

matrix is finite because there are only 36 cells within the room and there can never be more 

than 10 steps between the two agents (when not permitting diagonal steps), hence 11 possible 

relative position states including S0.  It might be argued that 396 states are unnecessarily many 

for such a simple problem, but this approach is merely to illustrate how to adapt the MDP 

solution algorithms to handle parallel decision processes.  Remember also that the entire 24th 

row and 1st column is zero, since being in cell 24 or being zero steps away from the monster 

are terminal states and have zero value by definition. 
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In the same way that the set of value equations for each state in the state vector forms a family 

of simultaneous linear equations, one could attempt to write this matrix formulation as a family 

of messy matrix equations (possibly utilising some tensor algebra), but this is not recommended 

and does not bring any clarity to the problem for present purposes.  The important point is that 

the solution algorithms can work iteratively on elements of this matrix rather than elements of 

the normal state value vector. 

Although there are no theoretical constraints to working in higher dimensional state spaces, 

there will be computational implications for some algorithmic solution techniques.  m-

dimensional state space m-tuples would have to be expressed as elements of an m-dimensional 

array in the solution algorithms.  However, reducing state space dimensionality as far as 

possible is always desirable so as not to cause exponential increase in solution run time, which, 

as well as being impractical, might also cause it to be unsuitable as a learning model if 

computation in real time is too slow. 

The next step to address is how to incorporate the combined reward function into the MDP.  In 

a parallel decision process such as this worked example, there are two rewards earned with 

respect to two decision processes: 

𝑟𝑎 = 𝑅𝑠,𝑠′
𝑎  and 𝑟𝑏 = 𝑅𝑡,𝑡′

𝑎  

Writing the combined reward function as: 

�̃� = �̃�(𝑟𝑎, 𝑟𝑏) = �̃�(𝑅𝑠,𝑠′
𝑎 , 𝑅𝑡,𝑡′

𝑎 )  

where the functional form of �̃� is determined by the properties of the system in question.  For 

this example, the functional form proposed in the previous section was: 

 �̃� = �̃�(𝑟𝑎, 𝑟𝑏) = −𝑒𝑥𝑝(−(𝑟𝑎 + 𝑟𝑏)) . 

It is this combined reward function that should be used to calculate the value of a state pair, 

and thus �̃� rather than 𝑅𝑠,𝑠′
𝑎  that should be used in the Bellman value equation. 

Thus one can now write the amended Bellman value equation for state pairs (or m-tuples) as: 

 𝑉𝜋(𝑠, 𝑡) = 𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [�̃� + 𝛾𝑉𝜋(𝑠′)]𝑠′  

where 𝑠′ = (𝑠′, 𝑡′) is one of the possible next state pairs the system could transition into, and 

thus the sum over 𝑠′ in the above equation represents a sum over all the elements of the value 

matrix (or the more general value array). 
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The values of the state transition probabilities 𝑃𝑠,𝑠′
𝑎  and the action selection policy 𝜋(𝑠, 𝑎) will 

depend on the particulars of the system in question.  It will be necessary in general to define 

these for each pair (or tuple) rather than for each individual state variable, because of the 

problems potentially arising with the statistical independence (or otherwise) of state variables, 

as noted above (unless one is working with a machine learning algorithm which does not 

require a priori knowledge of the transition probabilities). 

Finally, it is important to note at this stage that an equivalent matrix of action values, adapting 

the Q-value variant of the Bellman equation (as defined in Chapter 5.6.4), could be formulated 

in a similar way, but where each element in the m-tuple of state values 𝑉𝜋(𝑠) has to be replaced 

with its own mn-tuple for each state-action value 𝑄𝜋(𝑠, 𝑎) (assuming n is the number of 

possible actions), adding another dimension to the value matrices.  This means the equivalent 

Q-value presentation would be extremely messy to write out on paper as an illustration (hence 

using the traditional state value formulation in this worked example).  However, when 

implementing such a model in code, all this means is adding another dimension to a digital 

array (although this may have an impact on solution run time for large problems). 

6.4 Implications for the Control of Multi-Agent Systems 

Building up an example of a parallel decision process throughout this chapter motivates the 

detailed development and simulation of this kind of model later in this thesis.  However, from 

the general discussion in this chapter, some observations can be made about what appropriate 

and inappropriate behaviours might mean in this context, from the point of view of a systems 

engineer potentially adopting such a process. 

The worked example was of a navigational task that could be structured as two distinct decision 

processes with separate but potentially competing goals.  Whilst simplified in order to proceed 

step-by-step through a worked example, the general principles are clearly applicable to a larger 

number of autonomous vehicles trying to avoid one another (each agent being a part of the 

others’ environment which needs to be avoided, or in other words each agent could act as one 

of multiple ‘monsters’ from the perspective of its peers).  The potential generalisation of this 

worked example to variations of the vehicular navigation examples of complex multi-agent 

system applications from Chapter 2.5.1 is clear.  Considering the multiple moving systems to 

be manoeuvring robot appendages which also have to seek to avoid collisions with one another 
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also makes this applicable to the production line robotics exemplar from Chapter 2.5.3 (and 

which is the basis for the experimentation and simulation activity presented in Chapter 8). 

The worked example is characteristic of the kind of higher level strategic or planning layers of 

decision making for directing physically moving objects, but the structure of the problem and 

the solution approach can be duplicated at other layers of the decision process, the example 

given previously being of two separate and distinct system components competing for the same 

limited system resources.  An example of this might be two agents controlling two separate 

mechanisms in a robot, both of which decide that they should activate now when there is only 

enough power for one.  This could also apply to systems whose constituent entities are not 

physical objects with easily recognisable patterns of behaviour; for example, this could apply 

to digital systems, where some or all of the actions and consequential state transitions are 

virtual. 

One might imagine that whatever system proving methodology is applied to determine how 

safe one’s system is might need to be different (or at least to be tailored) for the different levels 

of decision making.  The discussion that follows focuses on the strategic or planning layer, 

since that is the realm of the worked example and the most easily recognisable layer of most 

application exemplars throughout this thesis.  However, thinking about state spaces abstractly, 

it is proposed that system proving can be addressed in similar ways across decision layers 

following general principles. 

Desirable or appropriate behaviour may be loosely defined as behaviour which remains within 

any parametrically defined limits or operating envelope that the system is designed, permitted 

or desired to remain within, which should be individually determined for the system being 

assessed.  Within the worked example, safety is naturally interpreted as remaining some 

suitable distance away from the monster. 

However, one may also want to consider a second condition of not being too far away from the 

exit.  Continuing with the computer game analogy, given a ticking clock or a restricted number 

of moves, then being too far away from the exit could prevent the player from completing the 

game – a failure even if one successfully avoids the monster. 

This is analogous in the vehicular navigation domain to maintaining safe separation from other 

vehicles while also not diverting too far off course and not having enough fuel or battery power 

to get to its target location (its pick up or drop off point).  Alternatively with production line 

automata, this is analogous to maintaining safe separation from the other automata one is 
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manoeuvring in the vicinity of, while not moving too far out of position that the assigned tasks 

cannot be satisfactorily completed. 

These second considerations are more of an operational efficiency issue than a safety issue in 

the traditional sense – if an autonomous vehicle runs out of battery and cannot complete its 

task then in many scenarios this is annoying and inconvenient but not actually unsafe in the 

sense of harming anyone (although one can imagine scenarios where this may not be the case 

due to knock on effects following a failure to complete a task).  However, it is still a valid 

consideration from the point of view of whether the system is behaving in a suitable way to 

ensure it is still able to achieve its purpose.  This leads again to the issue of bounding, 

constraining or guiding the decision process so that the system in question remains within a 

specified region of the state space, and so mathematically it is part of the same problem of 

ensuring desirable or appropriate behaviour. 

Continuing with the computer game analogy, two key operational requirements can be 

determined for the system: 

1. To maintain a sufficient separation from the monster. 

2. To remain sufficiently close to the target. 

The next question is then what ‘sufficiently’ means, and again this is a judgement that has to 

be made based on the system in question.  Recall that when using MDP-derived control 

policies, implicit in the reward scheme are the criteria for which the system has calculated an 

optimal policy to cope with.  If the operational criteria are different then this policy is not 

guaranteed to be optimal.  Care must be taken when selecting the reward scheme so that it 

accurately reflects the behaviour desired from the autonomous system.  In short, determination 

of an acceptable operating region for a system to remain with must be consistent and coherent 

with what the system is being incentivised to do. 

Referring back to Figure 32, the rewards are defined to be negative when there are two or fewer 

steps between the system and the monster, thus implying the edge of the safe operating region 

is the set of cells that are three or more steps away from the monster.  [Note that normally this 

thought process is the other way around – the safe operating criteria would be established as 

part of the system requirements capture, and the reward scheme would follow later as part of 

the solution design that should be specified to meet these requirements.  The logic is reversed 

here only because of the order in which the problem has been presented.] 
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Admittedly arbitrarily, suppose one also imposes the criteria that for operational reasons it 

would be unsafe to be more than five cells away from the exit (for example, being that far away 

might be deemed too risky and likely to compromise one’s ability to complete the game).  Then 

the safe operating region is the union of cells that are simultaneously three or more steps from 

the monster and five or less steps from the exit.  This is illustrated in Figure 36 below, where 

the states that satisfy these criteria in the current situation are shaded yellow. 

 

Figure 36 – Initial Safe Operating Region 

Although in principle the autonomous system in cell 14 has four possible actions to choose 

from, the safety criteria restrict this to just two safe options, because the other two would take 

the system outside of the safe operating region.  In practice, the action space of notionally four 

options has undergone action filtering, and the system at this decision point has a reduced 

action space.  In this situation, the optimal policy would have been to choose one of these two 

actions anyway, so this is an example of optimality and safety agreeing. 

However, even this simple example can quite rapidly become more complex.  Suppose the 

system follows its optimal policy and heads towards the exit whilst remaining within the safe 

operating region.  If the monster makes two moves downwards, the next two situations are 

illustrated in Figure 37 and Figure 38, with the safe operating region (those cells both three or 

more steps from the monster and five or less steps from the exit) again shaded yellow. 
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Figure 37 – Safe Operating Region After One Time Step 

 

 

Figure 38 – Safe Operating Region After Two Time Steps 
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After one time step, notice that the system has selected an optimal move that has kept it within 

the safe operating region of the state space.  But also notice that the shape or structure of this 

safe operating region has changed.  Some parts of it have become disconnected from the rest 

of the safe region, and thus one might choose not to include these as part of the safe operating 

region at all since the system cannot reach them safely anyway as things stand (there is no 

requirement for a safe region to be contiguous, although it might have practical implications if 

not as there may be a requirement, implied or explicit, to traverse only through the safe 

operating region).  A move in any direction is classed as a safe move at this point, given the 

position of the monster, but clearly the optimal moves will be those which keep the system 

moving closer to the exit.  Suppose a move to right is chosen, as this is a move towards the exit 

and so at that point in time it is one of the optimal actions.  What can be seen from Figure 38 

is that what might actually happen is that despite following the optimal policy, the system has 

nonetheless unexpectedly drifted out of the safe operating region.  This is not because the 

optimal policy was wrong nor because the action did not have the result intended, but because 

the local environment has changed, and thus the safe operating region has changed.  The safe 

path to the exit the system might have had has moved and is now along the opposite edge of 

the room.  In light of the move the monster made, a move downwards which at the time was 

suboptimal would in retrospect have turned out to be better for the system than the supposedly 

safe and optimal move right, demonstrating the trade-off between optimality and 

appropriateness inherent in these problems and the difficulties with operating in dynamic 

environments. 

This example is admittedly rather artificial.  One could argue that the system should have 

known the move down would have been more likely to be safe given the current position of 

the monster.  But then a counterargument could be made that in practice the system may not 

be in a fully observable environment – say if its sensors can only look in the immediate 

direction of travel, then at the previous time step it could not have known where the monster 

was and thus could not reasonably have predicted its subsequent movements, or that a move 

which appeared to keep the system within the safe operating region actually would not do so.  

The problem is fundamental – even if performance criteria can be defined quite easily, if the 

operating environment is dynamic then which subsets of the state space correspond to 

appropriate, desirable or safe operating regions is also dynamic.  A transient safe operating 

region with a changing shape is a significant complication to the analysis.  Methods for dealing 
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with this would be a significant further branch of research beyond the scope of this thesis 

(although some introductory discussion on the subject is contained within Annex C). 

Figure 36 to Figure 38 may illustrate an artificial example, but they illustrate it well – it is not 

a simple problem predicting how the safe operating region will evolve in a dynamic 

environment, and even in a relatively static environment it may not be easy to identify which 

actions represent the best trade-off between optimal performance and appropriate or safe 

operation.  What is required is for a learning system in such a scenario to have the ability to 

filter its own actions to guide it towards action selections that should keep it within an 

appropriate operating region (however that is to be defined for any given problem), whilst also 

having the ability for onboard adaptation in the event of unplanned environmental change 

inhibiting this. 

6.5 Application to Interactive and Synchronised 

Autonomy 

In this thesis, the description interactive autonomy is taken to mean any interaction between 

two or more autonomous systems where the behaviour of one impacts another (with a formal 

definition proposed in Chapter 2.2).  These interactions could be collaborative, cooperative or 

competitive – the key point is that there is some kind of dependency where one’s actions affect 

another.   An interaction could take the form of assisting each other towards a common mission 

goal, not interfering with each other’s progress towards separate but simultaneous mission 

goals, or deliberately acting to disrupt the operation of another system.  Synchronised 

autonomy is a subset of these situations, where the autonomous systems in question are all 

acting in a unitary fashion unaware of each other and not programmed (or perhaps not even 

capable of being programmed) to coordinate actions with their peers, but are nonetheless 

required to perform their functions in a synchronised pattern in order to achieve the overall 

system objective (or objectives). 

The aim of the remainder of this chapter is to provide an introduction to the application of the 

parallel decision making framework to the interactive autonomy problem, building on the 

simple example of the dynamic obstacle avoidance problem developed in detail previously.  

Chapter 6.5.1 will discuss the analogous relationship between collective operations and 

hierarchical systems that motivates the common adoption of the parallel MDP approach.  
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Chapter 6.5.2 will develop an example of a pair of interactive automata in a simplified scenario, 

to illustrate that the collective behaviour of the composed system is a function of the individual 

behaviours of each (although not in general a simple additive combination).  The nature of the 

interaction will in some respects extend and in other respects constrain the effectiveness and 

scope of each individual action.  Practical implementations will, as usual, be sensitive to the 

particular characteristics of the problem in question; the example presented is an extension of 

the worked example developed throughout this chapter for illustrative purposes.  Chapter 6.5.3 

contains a brief aside on the potential impact should a system designer choose to use the 

partially observable formulation of the decision-control problem. 

6.5.1 Collective or Hierarchy: Analogous Perspectives 

Returning to the dynamic obstacle avoidance example developed from Chapter 6.2 onwards, 

suppose that the other entity is another autonomous system with some independent decision 

making capability, with mission goals of its own to fulfil.  With both systems engaged in 

separate operations but influencing each other, this is an example of interactive autonomy. 

The parallel decision process is a composition of two (or more) separate decision processes 

taking place simultaneously, the choices of action taken by each process influencing the other.  

Any situation where two or more autonomous systems are compelled to interact because their 

mission goals, resources or locations overlap is an example of dependent parallel decision 

processes.  In the same way that separate, but dependent, mission goals in a single system can 

be incorporated into a single parallel decision process, so also can separate but dependent goals 

in a collective of systems be analysed as a composition of parallel decision processes.  Each 

element of the collective of systems can be seen as a subsystem of an overarching system, and 

the mathematical framework developed in Chapter 5.6 can be applied to collective operations, 

with rewards now describing the overall gain or cost to the collective from the actions of the 

individuals. 

It was noted above that parallel decision processes are not strictly a game theory problem, 

because the autonomous system is acting in response to its state and environment rather than 

to other players.  Clearly this assertion is no longer applicable as two systems interacting is 

precisely what is now being proposed for this framework to apply to – each system is a part of 

the environment of the other, with a relative state to each other.  However, notwithstanding 

this, this is still not a game theory problem, due to the other reasons described earlier in this 

thesis, primarily in Chapter 4.3.3. 
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6.5.2 An Example: The Guard-Intruder Scenario 

The worked example scenario can be extended by introducing an active ‘guard’ or ‘sentry’ 

whose goal is to prevent an ‘intruder’ from approaching a particular location.  The resultant 

gestalt, or whole-system, behaviour can be illustrated as a function of the intruder policy. 

In general, systems in such situations will make decisions which will often be based on what it 

is anticipated that the other systems will do (much like people would do in human interactions).  

Challenges may arise over both the quantity of state information that will exist in a collective 

of autonomous systems, and the difficulty of obtaining such information.  It is not difficult to 

imagine scenarios where communication between systems is limited or impossible, for 

technical and/or operational reasons.  Competitive interactions, which require autonomous 

systems to interact with uncooperative and potentially hostile counterparts, are particularly 

unlikely to feature much (if any) communication between the competing systems.  In this latter 

case in particular, a system must make operational decisions without any ‘voluntary’ input from 

the other entity.  Since the effectiveness of a selected action will often depend on the 

simultaneous and independent actions of the other systems, the decision making process is 

fundamentally linked to the process of predicting the intent of observed entities. 

Applied to the worked example, the guard and intruder are a generalisation of the earlier 

‘player’ and ‘monster’, in that both are now considered to be agents taking purposeful 

decisions, with ‘intent’.  However, from the perspective of either one of these systems, the 

other is effectively playing the same role as the earlier monster, by obstructing the system as it 

attempts to reach a particular location or vice versa.  In the developments up to this point the 

policy of the guard has been kept fixed so that differences in collective behaviour are solely a 

function of the change in the policy of the intruder (a random monster has a 25% chance of 

taking any of the four optional directions, subject to the obvious restrictions at the edges).  The 

intruder will have no knowledge of the control policy of the guard, and so the guard is in a 

practical sense part of the intruder’s environment just as the monster was before.  Lacking any 

knowledge about the guard, it can assume no better than that the guard could move in any 

direction at any time.  It may become apparent or deducible following sufficient observation if 

the guard has a more sophisticated control policy than a uniform distribution, but this will not 

in general be the case from the outset of the interaction, and may not be possible at all if the 

first system is neither equipped for nor capable of recognising or interpreting any observed 

patterns of behaviour from the other system. 
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The focus of this discussion is on the application of the parallel decision process created for 

competing subsystems to apply to collective (and ultimately to synchronised) autonomous 

operations.  In summary, a simple, and in scenario terms ineffective, guard policy could be 

implemented in which the guard merely moves towards the last perceived position of the 

intruder.  This means that it is forever pursuing, but never catching, the intruder.  This is similar 

to the monster in the earlier example simply chasing the primary system or, looking ahead, to 

a system being trained to deal with the case of trying to avoid a collision with another who is 

making life as difficult as it can by choosing the most awkward counteractions possible. 

How this scenario might play out can be seen in Figure 39 below, where the policy of the 

intruder (blue) is to avoid the guard (red) and approach the ‘protected location’ at the origin. 

 

 

Figure 39 – Hostile Intruder Policy 

 

There is a distinctive collective behaviour visible in this interaction, made obvious by the 

contrast with the behaviour illustrated in Figure 40.  In this figure the intruder behaviour is 

simply to avoid the guard.  The goal of approaching the origin has been removed from the 

calculation of its policy. 
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Figure 40 – Benign Intruder Policy 

 

This is, of course, a trivial example, produced merely to illustrate that a significant observable 

difference should be apparent in the gestalt behaviour.  However, the purpose of these simple 

visualisations is to highlight one of the key difficulties faced by an autonomous system whose 

operations require interaction with another uncontrolled entity, which is that the system will 

typically have to consider the states of the other systems it is interacting with as it selects its 

action, else very different patterns of joint behaviour can result.  This is analogous to the 

dynamic obstacle avoidance problem described in Chapter 6.2, where the estimation of the 

likely state transitions (specifically, the estimation of the current control policy) of the other 

entity affected the expected returns from particular action selections and thus impacted upon 

the policy.  One might imagine an endless cycle of nested beliefs about the other entities in an 

interaction, significantly complicating the decision making process.  Candidate approaches for 

tackling this problem, besides the obvious option to simply assume a particular policy on the 

part of the other entity, include revisiting the potential application of game theoretic approaches 

to interactive decision making (although this will be highly sensitive to issues such as whether 

one is dealing with zero sum games, and the concern raised previously as to whether Nash 

equilibrium solutions are appropriate to this problem domain, for example in this case if 

systems have different rules of engagement) or to stimulated dialogue approaches (see [16] or 

[26] for alternative approaches to tackling this, only the latter of which involved the author, but 

for which both are subject matter beyond the scope of this PhD). 
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6.5.3 Revisiting Partial Observability 

Note that one significant difference between this example and that developed previously is that 

there are prescribed system dynamics (i.e. it is stated in the problem definition what the 

probabilities of making particular state transitions are).  Despite there being uncertainty over 

exactly where the system would end up relative to the other system, since the movement of the 

other system was obviously unknown to the system at the decision point, there were only a few 

possible options.  Even though the exact end state could not be known, some aspects of it 

(absolute position) would be known and other aspects (relative position) was known to be a 

finite set.  The MDP framework (and dynamic programming solution methods) could handle 

this, provided one makes reasonable assumptions as to what the probabilities of each possible 

transition might be.  The reason this is not the preferred approach, proposing instead a 

reinforcement learning solution technique, is to avoid having to prescribe these transition 

dynamics, even probabilistically, because this still requires an implicit assumption about the 

policy of the other entity, which could be highly uncertain or ambiguous.  Where a dynamic 

programming method will require assumptions about the other entity’s policy in order to 

construct even probabilistic transition models, reinforcement learning methods need make no 

such assumptions and, providing there is sufficient state space exploration, will implicitly learn 

the policy of the other entity and factor it into the assessment (although that is in itself an 

assumption that the control policy of the other entity is fixed). 

This problem with providing the decision process sufficient information about the state of its 

counterparts suggests that bringing partial observability back into the problem may provide an 

alternative approach to that illustrated above.  Referring back to Chapter 5.6.8, the key 

difference between the MDP and the POMDP is that states are replaced with belief states – 

probability distribution over the state space – and observations are included as an additional 

element in the model.  Action selections are then based on the last action and the current 

observation, which in turn transforms the belief state according to how the observation has 

changed.  Unfortunately, this is computationally difficult (often intractable), and in any case, 

prescribing how one believes the state has changed is not far removed from prescribing exactly 

how the state changes, which one might not want to do in a dynamic operating environment 

with the inherent uncertainty that entails.  Put simply, it might be considerably more work and 

a harder computational solution for little or no improvement in model fidelity or accuracy. 

While the purpose of this short discussion is merely to consider the merits of the potential 

reintroduction of the POMDP formulation for this problem, it is important to consider the sort 
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of example for which one might wish to do this.  Referring again to the dynamic obstacle 

avoidance example, supposing a probability distribution of possible next positions of the 

mystery entity could be defined (even if it were simply a two-dimensional Normal distribution 

centred on the currently observed position – similar to the ‘dumb monster’ from before, equally 

likely to go in any direction) then a POMDP solution technique would allow, in theory, for all 

the possible future positions to be included in the decision making process (weighted by the 

likelihood of their occurrence).  Of course, to actually implement this and solve it with the 

techniques currently available, the distribution might have to be quantised into a set of 

probability measures at sample points around the currently observed position, which is then 

not far removed from the earlier MDP approach with specified transition probabilities (or 

learned transition probabilities if working with a machine learning technique). 

Despite the challenge around determining the control policies of other interacting entities, and 

the way this appears to prompt a re-visit of the POMDP approach, in practice the same concerns 

and difficulties around the use of the POMDP previously discussed in Chapter 5.6.8 arise again.  

Questions remain about whether the POMDP is a viable way forward for interactive autonomy 

applications.  However, it would be remiss not to note that this may admit a useful formulation 

to this problem given the inherent uncertainty, and hence the potential for a subjective belief 

of the likely next state of interacting peers and of the overall system’s state dynamics in a 

complex multi-agent system.  Exploring this issue is beyond the scope of this thesis but would 

be an interesting future direction for further studies (see further recommendations in Chapter 

9.2.4). 
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Chapter 7 

7 Extending the MDP to Hierarchical 

Decision Processes 

7.1 Context 

This chapter will further extend the mathematical framework introduced in Chapter 5 to also 

encompass multiple layers in the internal architecture of complex systems.  Combined with the 

developments in Chapter 6 into the mathematics of parallel decision processes, this completes 

the mathematical formalism needed to effectively model the decision making processes within 

a complex multi-agent system that can be decomposed into a hierarchy of decision nodes, as 

described in Chapter 5.5. 

This chapter does not include a detailed worked example of layered or fully hierarchical 

decision processes in the way Chapter 6 did for parallel decision processes.  This is because 

the exemplar multi-agent system application developed and implemented as part of the PhD is 

a parallel process and so this thesis necessarily has to concentrate on those aspects.  It is also 

to clearly differentiate the work undertaken as part of this PhD from the author’s precursor 

work, which took entirely the opposite approach of developing a simple example of a layered 

system – and a much simpler exemplar with no interacting peer systems or emergent 

behaviours to contend with. 

However, it is still important that this thesis tells a complete story, and the mathematical 

formulation proposed for the wider range of complex system organisations and structures 

proposed in Chapter 5.5 requires further extension of the mathematical models to accommodate 

multiple layers of decision nodes within complex systems.  This chapter develops the 

mathematical content required to extend the models developed in this way, illustrating how to 

incorporate interactions up and down between layers of a system.  Although the multi-agent 

system exemplar developed after this is naturally modelled as a set of parallel decision 
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processes, the material developed in this chapter provides the tools that could be used for 

building models for other applications where layering is explicit (including the alternative 

applications described in Chapter 5.5 and the detailed example illustrated via Figure 17 and 

Figure 18, or alternatively those example application areas documented in Annex B). 

7.2 The Mathematics of Hierarchical Decision Processes 

It is first necessary to incorporate multiple action selections (via action n-tuples, similar to the 

state m-tuples introduced previously), and the influence of decisions made at different levels 

of the hierarchy (and the communication of these influences through the reward functions). 

As discussed in Chapter 5.6.5, typical solution techniques for MDPs involve a value or policy 

iteration process conducted using the recursive Bellman value equation: 

 𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [𝑅𝑠,𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′  

where all variables are as defined in previous sections.  In Chapter 6.3 this was refined for the 

case of parallel decision processes.  Specifically, states were generalised to state m-tuples (and 

thus the set of state values typically written as a state value vector became an m-dimensional 

array of state values), and rewards from multiple decision processes were combined to provide 

a total system reward by means of a combined reward function �̃� = �̃�(𝑟1, 𝑟2, . . . . ) that need not 

be merely the arithmetic average reward if an alternative functional form is more appropriate.  

The refined value equation that results (for the two state variable problem) is thus: 

 𝑉𝜋(𝑠, 𝑡) = 𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎 [�̃� + 𝛾𝑉𝜋(𝑠′)]𝑠′  

which will extend to higher dimension state spaces in the logical way. 

For the full hierarchical decision problem, it is necessary to additionally incorporate processes 

involving the selection of multiple different types of action simultaneously in support of a 

single mission goal.  This immediately means that not only do states have to be generalised to 

state m-tuples, but so do actions have to be generalised to action n-tuples. 

Fortunately, the changes that need to be made to the model are not too severe.  In general, the 

action n-tuple selected at a given decision point can be written 𝑎 = (𝑎1, 𝑎2, . . . . 𝑎𝑛) for 

individual actions 𝑎𝑖, 𝑖 ∈ {1,2, . . . . 𝑛}.  Each action n-tuple 𝑎 should be treated as an element of 

a higher dimensional action set rather than as some functional product of individual actions, 

for the simple reason that individual actions 𝑎𝑖 could be totally unrelated (for example, the 
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actions being a direction to move and an electronic signal to send, which are completely 

different types of action). 

Different actions can be selected by the various layers in the decision hierarchy (different 

strategic actions and control actions in a simple two-layer example).  But then different state 

information is required to make decisions at different layers of the hierarchy.  The medium 

through which an MDP determines its performance towards its goals is, as usual for MDP 

models, via a reward scheme, and so in the hierarchical model spreading reward between layers 

of the hierarchy appears to be a natural approach to modelling the way in which the different 

layers of the hierarchy influence the progress of the overall system.  Therefore, for a generalised 

hierarchical MDP, there should be a set of functional value arrays, one for each layer of the 

hierarchy, each of which consists of its own state and action arrays but, crucially, each using a 

combined reward function containing all the rewards from all levels of the hierarchy, with the 

rewards acting as the communication channel between layers of the hierarchy, influencing the 

action selection process. 

Specifically for a two-layer scenario, if poor control decisions affect the system’s progress 

towards its strategic goals (or vice versa) then each layer of the hierarchy will only learn this 

through consideration of the combined reward, otherwise layers of the hierarchy in isolation 

will operate according to what is best just for them and not resolve any arising conflicts.  For 

example, the control layer might think it is making good choices if it is receiving good rewards, 

but if these actions are unexpectedly hindering strategic progress then the system will not learn 

this and adapt to it without also receiving the negative rewards being accumulated at the 

strategic layer.  It is the combined reward from the whole system that informs each individual 

layer about the overall whole-system performance.  All the same comments as in the previous 

section about the importance of choosing an appropriate functional form for the combined 

reward function are still relevant, and a good choice of functional form for the reward function 

should allow for segmentation of the states and actions, making the system simpler to model 

and solve and, ultimately, to analyse and understand. 

To bring this together into a single hierarchical MDP model, it is necessary to introduce one 

final mathematical concept – the Kronecker product (or a more general tensor product for 

higher dimensions).  This product is defined as the following 𝑛𝑝 × 𝑚𝑞 matrix: 

  𝐴⊗𝐵 = [
𝑎11𝐵 ⋯ 𝑎1𝑚𝐵
⋮ ⋱ ⋮

𝑎𝑛1𝐵 ⋯ 𝑎𝑛𝑚𝐵
] 
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  =

[
 
 
 
 
 
 
 
 
 
𝑎11𝑏11 ⋯ 𝑎11𝑏1𝑞 ⋯ 𝑎1𝑚𝑏11 ⋯ 𝑎1𝑚𝑏1𝑞
⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

𝑎11𝑏𝑝1 ⋯ 𝑎11𝑏𝑝𝑞 ⋯ 𝑎1𝑚𝑏𝑝1 ⋯ 𝑎1𝑚𝑏𝑝𝑞
⋱

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋱

𝑎𝑛1𝑏11 ⋯ 𝑎𝑛1𝑏1𝑞 ⋯ 𝑎𝑛𝑚𝑏11 ⋯ 𝑎𝑛𝑚𝑏1𝑞
⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

𝑎𝑛1𝑏𝑝1 ⋯ 𝑎𝑛1𝑏𝑝𝑞 ⋯ 𝑎𝑛𝑚𝑏𝑝1 ⋯ 𝑎𝑛𝑚𝑏𝑝𝑞]
 
 
 
 
 
 
 
 
 

 

 

where 𝐴 and 𝐵 are (not necessarily square) 𝑛 × 𝑚 and 𝑝 × 𝑞 matrices: 

 𝐴 = [

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

]   and 𝐵 = [

𝑏11 ⋯ 𝑏1𝑞
⋮ ⋱ ⋮
𝑏𝑝1 ⋯ 𝑏𝑝𝑞

] 

These are often referred to as block matrices because of the way they are constructed with each 

block of the matrix actually being one of the constituent matrices multiplied by the element of 

the other corresponding to that region of the matrix. The whole matrix contains all 

combinations of products of elements of the constituent matrices arranged by block.  Note that 

there are tensor products that can be used to generalise this to higher dimensions, but this two-

dimensional matrix version is sufficient to illustrate the principle. 

This block matrix (or the more general block array) formulation is useful because one can form 

simple matrices (or arrays) of states and actions and use a Kronecker product to combine these 

into one complete array containing all possible combinations of states and actions, in a form 

suitable for a value or policy iteration algorithm.  A block matrix at each level of the hierarchy, 

with combined rewards function used in the value estimations at different layers, will then 

provide the mathematical apparatus to describe the whole hierarchical MDP. 

The adapted version of the value equation used to calculate the value of each state is just a 

minor alteration of the earlier version, adapted for action n-tuples 𝑎: 

 𝑉𝜋(𝑠, 𝑡) = 𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′

𝑎
[�̃� + 𝛾𝑉𝜋(𝑠′)]𝑠′  

Note of course that there is an equivalent formulation using state-action pairs (technically now 

a set of state-action mn-tuples) or Q-values, which is constructed in an equivalent way, but 

starting from the action value or Q-value formulation of the Bellman value equation.  As 
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previously noted, it is actually the Q-value formulation rather than the traditional state value 

version that is a more natural formulation for an agent-based system owing to the nature of 

agents as software entities that chose best-value actions, but the principles are equivalent. 

Next consider a state vector pair 𝑠 = (𝑠1, 𝑠2, 𝑠3, … 𝑠𝑁) at the strategic or planning decision layer 

and 𝜎 = (𝜎1, 𝜎2, 𝜎3, … 𝜎𝑀) at the control decision layer, with a decision at the strategic layer to 

choose from a set of actions 𝑎 = (𝑎1, 𝑎2, … 𝑎𝑃 , ) and a decision at the control layer to choose 

from a set of actions 𝛼 = (𝛼1, 𝛼2, … 𝛼𝑄).  The combined reward function will be �̃� = �̃�(𝑟𝑠, 𝑟𝑐) 

of a functional form to be determined based on individual system context, where 𝑟𝑠, 𝑟𝑐 are the 

rewards from the strategic and control layers respectively but �̃� is the combined reward that 

should be used in value calculations. 

Then the block matrix 𝑆 ⊗ 𝐴 orders every possible combination of state and action tuples, with 

each block of the matrix corresponding to one of the state m-tuples and containing all of the 

possible action combinations that could be selected. 

Then: 

 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠𝑖, 𝑠𝑗) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠,𝑠′
𝑎

𝑠′ [�̃� + 𝛾𝑉𝜋(𝑠′)] 

 

defines the value of each element of matrix 𝑆 (or alternatively, the sum over each block of 

matrix 𝑆 ⊗ 𝐴, where the sum over 𝑎 represents the sum over all elements in the corresponding 

blocks), and these values can be placed in a second matrix array: 

 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠𝑖, 𝑠𝑗) = [
𝑉𝜋(𝑠1, 𝑠1) … 𝑉𝜋(𝑠1, 𝑠𝑁)

⋮ ⋱ ⋮
𝑉𝜋(𝑠𝑁 , 𝑠1) … 𝑉𝜋(𝑠𝑁, 𝑠𝑁)

] 

Iterative policy estimation can be carried out on the elements of this matrix to identify the 

actual values (and hence identify an optimal policy). 
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Alternatively, using Q-values, a block matrix can be used: 

𝑄𝜋(𝑠, 𝑎) =  …. 

[
 
 
 
 
 
 
 
𝑄𝜋((𝑠1, 𝑠1), (𝑎1, 𝑎1)) … 𝑄𝜋((𝑠1, 𝑠1), (𝑎1, 𝑎𝑀))

⋮ ⋱ ⋮
𝑄𝜋((𝑠1, 𝑠1), (𝑎𝑀, 𝑎1)) … 𝑄𝜋((𝑠1, 𝑠1), (𝑎𝑀 , 𝑎𝑀))

…
…
…

𝑄𝜋((𝑠1, 𝑠𝑁), (𝑎1, 𝑎1)) … 𝑄𝜋((𝑠1, 𝑠𝑁), (𝑎1, 𝑎𝑀))

⋮ ⋱ ⋮
𝑄𝜋((𝑠1, 𝑠𝑁), (𝑎𝑀 , 𝑎1)) … 𝑄𝜋((𝑠1, 𝑠𝑁), (𝑎𝑀 , 𝑎𝑀))

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑄𝜋((𝑠𝑁 , 𝑠1), (𝑎1, 𝑎1)) … 𝑄𝜋((𝑠𝑁 , 𝑠1), (𝑎1, 𝑎𝑀))

⋮ ⋱ ⋮
𝑄𝜋((𝑠𝑁 , 𝑠1), (𝑎𝑀, 𝑎1)) … 𝑄𝜋((𝑠𝑁 , 𝑠1), (𝑎𝑀, 𝑎𝑀))

…
…
…

𝑄𝜋((𝑠𝑁 , 𝑠𝑁), (𝑎1, 𝑎1)) … 𝑄𝜋((𝑠𝑁 , 𝑠𝑁), (𝑎1, 𝑎𝑀))

⋮ ⋱ ⋮
𝑄𝜋((𝑠𝑁 , 𝑠𝑁), (𝑎𝑀 , 𝑎1)) … 𝑄𝜋((𝑠𝑁 , 𝑠𝑁), (𝑎𝑀 , 𝑎𝑀))]

 
 
 
 
 
 
 

  

 

and iterative policy iteration can be carried out on the elements of individual blocks within this 

matrix to identify an optimal policy solution. 

The equivalent structure as above can be used for the control level MDP, using states 𝜎 and 

actions 𝛼.  The key is to select an appropriate functional form for the combined reward function 

�̃� used in value updates in the selected solution, calculated with respect to the goals and action 

selections on both layers and then used in value updates across both layers, to ensure the 

optimal policy generated supports all system goals at all levels of decision making. 

One can already see that the number of state-action combinations is already becoming a 

problem for presenting the array.  However, high dimensionality is often unavoidable and the 

typical value or policy iteration algorithms that will solve MDP problem, even in these higher 

dimensions, will still be an improvement on direct calculation. 

All the developments in this section have assumed two layers.  This is just for simplicity of 

presentation in written form.  For three or more layers, an analogous approach can be used, but 

the resulting arrays will now be higher dimensional arrays and best handled by computer.  In 

this way though, the system designer has the flexibility to build a layered set of hierarchical 

MDPs for multi-layered systems in the way that they require. 
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Chapter 8 

8 Experimental Problem, Simulation 

and Analysis 

8.1 Motivating Example: Synchronised Robotics on the 

Industrial Production Line 

The technical challenge that motivated this research is that of the synchronous operation of co-

located production line robots.  This is not the only application domain in which challenges 

with synchronising robotic operations might be anticipated, but it does provide perhaps the 

most widespread use of simple robotic automata for which robust learning techniques could 

have significant future benefit.  In particular, this work has been motivated by the work of 

Doltsinis, Ferreira and Lohse into the potential application of Q-learning to improve the ramp 

up period of automated production lines [28].  That work considered the ramp up period for 

workstations on a production line, and the performance that Q-learners could deliver as a 

substitute for the human decision making process during ramp up; that is, the process of 

adopting a pattern of behaviour with sufficient confidence that cyclical or episodic repetition 

of that behaviour will deliver the desired performance against the relevant criteria, specifically 

in that case functionality, quality and performance criteria. 

The promising results of that research motivated investigation of whether the technique could 

be generalised to concurrent co-located workstations.  Doltsinis et al. considered a single 

workstation and the ramp up time associated with learning the optimal behaviour for a 

particular automaton – not the ramp up time or subsequent performance associated with a 

number of them working simultaneously and interacting (or interfering) with each other.  

Extending this thinking to this more advanced problem presented an ideal case study for this 

PhD. 
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Figure 41 – Production Line Automaton with Robotic Effectors 

 

It can be assumed that a manufacturing director is unlikely to choose to co-locate automata 

when there is sufficient space or time available to conduct tasks separately and there is no 

pressing driver for concurrency.  Nevertheless, there are foreseeable circumstances in which 

there might be benefit or necessity in doing do.  These include, but are not limited to:  

1. Space-constrained factories, where new projects require new or additional equipment 

but there is a desire not to locate away from the existing premises.  Reversing this logic, 

were speedy and effective synchronous operation of multiple automata sufficiently 

robust, there is the possibility that some organisations might actively seek to locate to 

smaller premises for commercial reasons. 

2. Fast turnaround manufacturing runs, where relatively small numbers of items are 

required.  The time taken to physically reconfigure the facility, moving machinery 

around and then reconfiguring the necessary units for the new assignment can be a 

significant overhead.  The ability to leave them in place and reliably work around them 

would enable much speedier turnaround. 
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3. Mass production runs, where on some tasks there may be scope for greater concurrency 

on the production line to increase throughput.  One obvious approach to take to support 

this is to enable multiple automata to operate on a particular production element 

simultaneously. 

From the point of view of the industrial ramp up problem, Doltsinis et al. have already 

demonstrated the potential efficacy of Q-learners to the problem of machine learning industrial 

production line techniques.  However the work they conducted represented a single workstation 

and the ramp up time associated with learning and adopting the optimal behaviour for that 

particular automaton.  Not addressed by that work was the question of whether Q-learners 

would remain an effective approach to speedy solution of the ramp up problem should the 

automata controlled by said agents have to interact with one another – for example should they 

simultaneously be working on the same object.  A further challenge arises from having the 

learning agents interacting with each other, as part of each other’s environment, where the 

evolution of that environment is not inherently predictable to that agent (i.e. assuming limited 

or no communication between agents). 

 

 

Figure 42 – Production Line Automaton in situ 
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Clearly in an ideal world the individual automata would be separated, with little possibility to 

physically collide with one another.  However not all industrial plants will be able to support 

having as many pieces of equipment as they would like available at any time, and some may 

see operational advantages in being able to increase the number of automata that they are able 

to keep on the factory floor, to reduce the time and effort associated with rearranging the factory 

layout for new production runs.  Even if there is ample physical space, there is clear potential 

for operational and commercial advantage through reducing the number of distinct steps in a 

production line – and one obvious step to take to support this is to enable multiple automata to 

operate on a particular production element simultaneously.  For example, if there are four 

distinct cuts that need to be made with a laser, the production line will be able to produce more 

units more quickly if two or even four lasers could be able to operate on the same piece of 

metal simultaneously (when this is possible). 

In theory of course each individual automaton could be programmed separately with a 

particular sequence of control actions, and each coordinated to ensure that it will not get in the 

way of what the others are doing.  There may still be operational advantage in doing this, but 

the ramp up time will be much longer.  Not only does each automaton have to be configured 

and programmed separately, but then once each one is configured and tested, there is the risk 

that when another interacting automaton is added to the production line then not only will that 

new automaton require ramp up time for configuration and testing, but each existing automaton 

may require reconfiguration and further testing to ensure the control policy it was going to 

follow is still appropriate in the presence of the new unit.  It cannot be assumed that multiple 

automata configured individually can be left to operate side by side and acceptable performance 

will still be achieved – there is a clear risk of emergent behaviours, as well as the more obvious 

risk of impedance. 

In much the way that Doltsinis et al. proposed that a reinforcement learning methodology such 

as Q-learning might provide a mechanism for automata to more speedily ramp up, so it follows 

that network of Q learners might provide a mechanism for multiple automata to more speedily 

ramp up and find a synchronous configuration that will be acceptable overall.  It is to be 

expected that the control policy and thus the observed behaviours from the multiple automata 

will not simply be the superposition of their individual control policies – such a scenario would 

be relatively trivial.  It is expected that more complex patterns of behaviour from the interaction 

of the Q-learning agents will be observed. 
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8.2 Experimental Approach to the Simulation of 

Synchronised Robotics 

To begin investigating this supposition, a simplified example of multiple interacting automata 

has been developed and demonstrated.  The key research question is whether or not acceptable 

patterns of behaviour can speedily and effectively emerge from co-located systems using 

networked reinforcement learning agents.  Successful demonstration of this proposition will 

represent an initial proof of concept, which might then unlock the possibility of more extensive 

deployment of networked learning agents in more complex problems, with larger state spaces, 

greater numbers of automata and different state space models or geometries. 

The systems modelling paradigm and the mathematical framework is based on that developed 

in the earlier sections of this thesis. 

An experimental simulation-based test bed was developed specifically for his PhD.  It has been 

designed to be extensible for future enhancements (specifically the addition of more agents 

and/or more complex patterns of required behaviour, as these are loadable elements into the 

test bed), but is initially exercised with a much simpler and more comprehendible problem.  

The mechanics of this experimental simulation-based test bed, including pseudocode for the 

Q-learning agents and other major functions, is described more fully in Annex A to this thesis. 

8.2.1 Introductory Problem 

Suppose that an industrial automaton is required to guide a laser along a predefined arc on a 

piece of metal.  The factory owner would like to have multiple automata conducting several 

such tasks simultaneously if possible (for reasons of factory space and/or throughput).  The 

arcs that each individual laser has to trace need not be the same shape. 

The laser head is fitted to a rotating gimbal and the natural geometry to use is polar coordinate 

geometry (𝑟, 𝜃).  For initial simplicity consider the two dimensional case, where 𝑟 is the 

distance between the laser head and the target point, and 𝜃 is the rotational angle (the third 

dimension, which is the downward pointing angle from the suspended laser head down to the 

surface is neglected for simplicity). 

The gimbal rotates – without loss of generality this is assumed to be in the anticlockwise 

direction.  It has the ability to adjust its cutting angle and orientation but only in the direction 
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it is rotating.  Projected into two dimensions, or looking down directly from above, this means 

that 𝑟 and 𝜃 vary as the gimbal rotates. 

The gimbal can adjust the speed of its rotation – for initial simplicity assume the options are 

fast, slow, and still.  Whether the laser is to be turned on or off is a decision available to the 

controlling agents.  This is not included in the first version of the model, but one might assume 

that when the automaton is stationary the laser is turned off, and when to turn it on or off would 

be controlled by a separate agent from the one controlling the automaton’s movement.  This is 

an instantiation of the example application area discussed in detail in Chapter 5.5.1 and 

illustrated in Figure 17, only with the control of the laser in this example taking the place of 

the ‘applicator control’ decision process in that general statement of the problem. 

Once the workstation is configured, tasks will be repetitive episodic tasks; that is, identical 

patterns of behaviour completed within a period and repeated according to a defined schedule.  

However, each individual automaton has a different task and these may not take the same 

amount of time to complete, requiring slack time for some of the automata.  Furthermore, the 

amount of time each individual task is expected to take could be aperiodic with respect to each 

other. 

With more than one automaton each deploying a separate laser head, the requirement is for 

them not to collide with each other; that is, when they would otherwise cross each other’s path, 

they should be able to adjust their position and orientation to maintain the path of the laser 

along the required arc. 

The mathematical construction of this problem is therefore as follows: 

• The state space is a discretised torus parametrised by discrete (𝑟, 𝜃), where 𝑟 ranges 

from 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥 based on the orientation of the laser head, and where 𝜃 ranges from 

0 to 2𝜋 radians. 

• The action space is a set of seven distinct actions: Rotate slow; Rotate in slow; Rotate 

out slow; Rotate fast; Rotate in fast; Rotate out fast; Remain stationary. 

• Task is a requirement to trace out a parametrised curve in the 𝑥 − 𝑦 plane, with a 

completion time of period 𝑡 (as it will be repeated episodically). 

• Each agent will have a different task, including a different period, and optionally may 

use a different state space model (although this has not been used in the initial 

experiments).  The action space remains the same throughout. 
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Figure 43 – Discretised Toroidal State Space for Initial Simulation, Single Agent 
Learning Arc Progression 

 

This model needs to be discretised in order to be suitable for solution by a reinforcement 

learning agent.  Therefore a lattice of (𝑟, 𝜃) points around the torus is the spatial state space 

(see Figure 43).  The density of the state space is a variable to be decided, trading off the 

increasingly accurate reflection of the true physical state space versus the exponentially 

increasing computational burden associated with solving the reinforcement learning problem.  

A number of state space densities have been experimented with during the course of this work. 

For time, the natural method for discretising time intervals is by defining them as a series of 

unitary time steps.  That is, if a task has period 𝑇 then the natural discretisation for initial studies 

is to have 𝑇 increments of 1 time unit.  In general application, the exact scaling and 

consequentially the representation of time as a state depends on the properties of the particular 

system and task. 

The action space is already discretised, therefore given the state space model for this problem 

is (𝑟, 𝜃), the extended Q-space for Q-learning is (𝑟, 𝜃, 𝑎𝑡), where 𝑎𝑡 is the action selected at 

time 𝑡. 

The other elements that need to be defined in a reinforcement learning problem are the state 

transition model and the reward scheme – that is, the mapping from state-action pair (or a point 
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in Q-space) to a new state, and the mapping from a state-action pair to a real number 𝑅, which 

define what state transition will occur following the execution of an action, and a reward 

enumerating how good it was relative to system objectives.  Transition models are in the 

general formulation stochastic, however in a tightly constrained problem such as this, where 

there is little probability of the robot physically malfunctioning during normal operation and 

producing entirely the wrong behaviour, it is reasonable to adopt a deterministic transition 

model and therefore define explicitly what the state transition is within the state space 

following a given choice of action. 

The reward scheme is the mechanism by which the agent differentiates good actions (in the 

sense of moving it towards its goal or objective) from bad ones (in the sense that some actions 

are ineffective or even counter-productive).  The reward scheme must therefore encapsulate 

what the goals and requirements of that system actually are.  A correctly implemented Q-

learning system will optimise its behaviour to that promoted by the reward scheme – it is 

therefore vital to ensure that the reward scheme is incentivising the right behaviours in the first 

place.  In this case, the objective is to maintain a trace of a defined curve, and to maintain this 

trace on an episodic schedule.  After some initial experimentation, the reward scheme chosen 

was as follows: all points in Q-space are initialised with value 0, and all actions that leave the 

system in a state from which is unable to ‘see’ the arc it is supposed to be tracing earn reward 

0.  Any actions that leave the system in a state from which it can see the arc earn reward 1.  

Reward 2 is given for actions which leave the system in the ‘ideal’ position (i.e. directly tracing 

the arc, or in a 2D projection being directly overhead).  Reward is then scaled by where in the 

period the system currently is.  If the action chosen has left the system trailing where it needs 

to be in order to trace the arc on schedule, reward is reduced by a factor proportional to the 

degree of delay.  The proportionality is to ensure that if a system is tracing the arc behind 

schedule, it is incentivised to catch up and disincentivised to fall even further behind, which is 

important if an automated system is to recover from interruptions by itself without having to 

stop and rest the whole line (or part of the line).  In this manner, reward can only be maximised 

by tracing the arc as closely as possible in the time period prescribed.  Maximum reward can 

only be obtained by correctly tracing out the arc and completing it on schedule. 

Policy is the mapping of state to action that a system is currently following.  An initial learning 

or conditioning phase will have an exploration factor which determines the (non-zero) 

probability of sampling any given action from each state.  After a sufficient period of state 

space exploration and reward propagation, the policy can be defined as the optimal action to 
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take from a given state (i.e. the action corresponding to the maximum Q-value).  This could 

potentially be updated or refreshed, perhaps with learning on going in the background – indeed 

this is the mechanism that enables Q-learners to be robust to dynamic environments. 

In isolation, this is a conventional Q-learning problem.  Although there are many additional 

variables to take into account (e.g. quality scores) in the Doltsinis paper [28], this simple 

representation of the space-time geometry of the problem should still be sufficient to 

demonstrate the efficacy of Q-learners.  There are also clear qualitative similarities with other 

traditional machine learning and Q-learning problems, such as Watkins’ navigation agent that 

motivated the original introduction of Q-learning approaches [67], not to mention clear 

similarities with the parallel decision making discussion and exemplars from Chapter 6. 

The feature that will make this more than just another example of a Q-learning navigation 

problem and instead a more advanced synchronised robotics problem is the requirement for the 

Q-learning agents to adapt their behaviours in response to obstructions that they cause each 

other.  In other words, despite anticipating interactions between agents, no explicit guidance is 

pre-programmed into the agents in advance for what to do, allowing the learning agents to 

solve this by themselves. 

In this initial model, interactions consist of a sense-and-avoid routine where, before each action 

selection by the learning agent, the set of allowed actions is pruned to remove actions that could 

bring the automaton into a collision with any other entities detected within the locally 

neighbouring states.  There is no communication between agents, rather there is a reactive 

redefinition of the internal logic.  Thus, when there is a potential collision, which is guaranteed 

to happen at regular aperiodic intervals (with the model designed to ensure it), the agents will 

find that they do not have the option of the action they would have chosen in the absence of 

the other entity, and must instead conduct online recalculation of the best alternative action to 

take.  Action filtering in the event of an unexpected obstacle impeding what would otherwise 

have been an optimal action under the local control policy was seen in the detailed worked 

example developed through Chapter 6 of this thesis, specifically during the discussion of 

variable operating regions accompanying Figure 36 to Figure 38 in Chapter 6.4.  This is now a 

real example of the phenomenon – otherwise optimal actions suddenly becoming undesirable 

(or outright being removed, if only temporarily, from the set of selectable actions) by virtue of 

one of the other systems with which one is interacting becoming an obstacle. 
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To demonstrate the potential efficacy of Q-learners to the synchronised automata problem, it 

is necessary to demonstrate that: 

1. These techniques can be applied in this way and still converge to effective control 

policies despite perturbations caused by complex interaction; and 

2. That the policies generated still deliver appropriate behaviour within the defined 

geometric constraints. 

Figure 44 below provides an illustration of the learning agents captured mid-learning phase.  

Four learning agents are seen learning their assignments, all following the same arc but with 

aperiodic schedules.  Path histories represented by line plots, which are coloured differently 

purely to help differentiate them when overlaid on the master view.  Larger markers on the 

reference arc represent where each agent should be at that point in its own cycle.  The four 

individual local perspectives of the individual agents, with no awareness or cognisance of each 

other, can be seen, in addition to the composited behaviour of all four agents together as a 

global collective view (noting that during the learning phase captured here, this is not at this 

point in time a meaningful representation of an overall system behaviour – but it will be once 

the agents are operating ‘for real’ based on their learned policies). 

 

Figure 44 – Four Learning Agents, Local and Global Views of Arc Progression 
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Note that enforced state space exploration is optionally enabled in order to speed convergence, 

accounting for the large jump in the path of Agent 3.  This is not an allowed behaviour in a 

control policy, it is merely a tool to accelerate the learning phase. 

8.2.2 Larger Scale Problem 

Following this initial implementation to demonstrate the efficacy of Q-learners, a more 

complex problem more representative of robot automata undertaking different activities but 

with inevitable overlaps or moments of conflict was required.  A larger model was designed 

featuring an increase to ten agents tracing out arcs of different shapes, some going clockwise 

and some anticlockwise, with arcs that were designed to partly overlap, to enforce potential 

conflicts between the agents’ goals and thus their learned optimal control policies. 

Ten agents are simulated as operating within this lattice.  Each agent has a particular pattern of 

motion that it is required to learn.  They are not programmed with the specific path they are 

required to follow nor any awareness of the other agents that are operating robots around them. 

During a learning phase, the agents follow a series of state-action transitions (random walks on 

the lattice) and rewards are calculated based on the outcome of each agent’s state transition. 

Note that the simulation environment and design logic is the same as with the initial simulation 

and is not described again.  The differences here are that: 

• The number of agents increases to 10. 

• Toroidal state spaces are replaced for convenience with a regular discrete square lattice, 

parametrised in the usual way (50 by 50). 

• Tasks continue to be to trace out an arc to a defined episodic schedule, but using 

polygon shapes which more naturally align to a grid lattice, and with some agents 

required to go clockwise and some anticlockwise in order to increase the complexity of 

the required learning and of the learned behaviours. 

• Based on learning from the initial simulation, some novel extensions were made to the 

standard mathematical formulation to capture some particular characteristics of this 

problem.  These are detailed in the next section. 
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The overall test environment with ten Q-learners taking random walks (again denoted by using 

different path colours) to learn the value of different state-action pairs in the state space is 

illustrated in Figure 45. 

 

Figure 45 – Visualisation of 2D Agent Training Environment 

 

8.3 Novel Aspects 

In order to capture the required behaviours of the ten learning agents, a number of novel 

features were added to the standard mathematical formulation of parallel decision making 

within a multi-agent system as described across Chapters 5 and 6. 

8.3.1 Temporal Extension to the State Space 

Each agent will be expected to learn to complete its arc to a specific time scale.  This means 

that a state is only the correct state to be in at a specific time, and the reward received for a 
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move into this state must reflect this if the agent is to learn from it.  Hence the introduction of 

a temporally extended state space: 

{𝑆} → {𝑆∗} = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑁) × 𝑇 

This reflects the need for a point in state space to have different values and hence action 

selection strategies at different points or epochs within the episodic window to complete the 

task.  Within a Q-learning context, it is no longer the value of action 𝑎 when in state 𝑠 that 

determines the optimal control policy, but the value of action 𝑎 when in state 𝑠 at time point 𝑡, 

or equivalently the value of state-epoch pair (𝑠, 𝑡), noting that this will in general lead to 

different ‘best action’ selections from the same state at different time points in the episode. 

In terms of implementation, this adds an extra dimension to the Q-value array and inevitably 

slows learning time.  However it is necessary to differentiate between similar spatial positions 

at different times because states have different intrinsic values at different points in the episodic 

period, based on how likely it is the agent can complete its task from that position in whatever 

time remains. 

There are things which can be done to reduce the impact of the significantly increased size of 

the state space.  For example, if it is known when the system should have reached a particular 

point on the arc, rather than defining all of the possible time steps as individual points in the 

extended state space, it might be more efficient to partition the temporally extended state space 

into only three state-time points – the given point in space at 1) a time before when the system 

‘should’ have reached it, 2) the time when it ‘should’ reach it (perhaps including a small 

interval either side for flexibility), and 3) any time after when it ‘should’ have reached it.  In 

this way, although the state space has been temporally extended, it is not by nearly as much, 

limiting the impact on computational run-time. 

Whether this proposed partitioning or a more finely grained alternative is appropriate depends 

on the characteristics of the system in question and what the system designer is trying to 

achieve.  The problem with the above simplification is that compressing the entire range of 

times ‘before’ and ‘after’ into a single point in the temporally extended state space is that it 

assumes a single action will always be the most appropriate at any specific time within that 

period.  If there is an unexpected or unplanned interruption, for example another automaton 

regularly impeding one’s path, then a system may learn that at one particular point during this 

long time interval something different should be done and associate that alternative strategy 

with that particular point in space-time.  It would not be able to differentiate the greater value 
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of a different action at that particular point had that point been subsumed into a lengthier time 

interval for the majority of which the unexpected obstacle does not arise and the alternative 

strategy would not be (and would not need to be) recognised.  For this reason, it was not 

appropriate to make such simplification in the model developed and the computational time 

penalty from the significantly expanded state space had to be accepted.  In general application, 

care should be taken if considering such compressions of the temporally extended state space 

to determine whether or not this would be similarly counterproductive, by losing the ability to 

learn the value of unanticipated policy differences at particular space-time points in the 

temporally extended state space. 

8.3.2 Action Filtering 

As the premise of this work is that the agents should be simple and be unaware of the other 

agents, it will be necessary to incorporate some sort of environmental signal to guide agents in 

the case of possible collisions.  While this could be achieved through giving a heavily negative 

value to reward 𝑅 when a state transition either leads to a collision, or leads to a state that has 

increased the probability of collision, this is an unsuitable approach in this case.  Firstly in 

practical terms an operator will probably rather prohibit such actions so as to prevent damage 

to physical equipment. Secondly, on a theoretical level, if a negative reward is received 

following a particular transition that particular transition is devalued, even when in the absence 

of the obstacle it would actually be the correct move.  One has to be careful with rewards that 

they accurately capture the desired behave, and any potential confusion should be avoided. 

An alternative approach is to use an action filter, as has been alluded to earlier in this thesis.  It 

is not used in the learning phase, as the intention is for each agent to learn what they should 

ordinarily do – their optimal policy.  It does not matter if they crash into each other in a 

simulated virtual training phase, indeed it might be beneficial to let them do so, to learn what 

they should not do.  In the subsequent execution phase however, an action filter serves to create 

a subset of the usual action space: 

𝐴𝑇 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁}\{𝑎𝑖, 𝑎𝑗 , … }  

This subset contains only those actions which would not cause a transition to a potential 

collision state, i.e. {𝑎𝑖, 𝑎𝑗 , … }.  It is assumed that the robot has a simple motion detector or 

equivalent device, which is alerted to the presence of something the system could collide with, 

thereby warning the agent which actions are not to be taken at this time and filtering them out 
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from current policy options.  It can be assumed this is only a temporary exclusion for as long 

as the obstacle remains, but in general the actual action space from which actions can be 

selected will be the filtered action space 𝐴𝑇 with only the currently permitted subset of 

permissible actions. 𝐴𝑇 is a subset of action space 𝐴 and is a set with variable membership 

whose composition changes in time, continually updated and refreshed depending on what is 

detected in the local external environment.  This does not constitute the introduction of 

coordination between the agents since any external objects could also cause obstructions, and 

the agent would have no communication or data exchange in either case. 

If either no actions are filtered or those that remain after filtering include the action that the 

calculated optimal policy would have selected anyway, then behaviour will remain the same.  

The novelty here arises when the optimal action is amongst any that are filtered out.  This is 

where the Q-learning approach is powerful, because it is a simple matter to obtain from the 

agents’ Q-value tables what the new optimal action should be based only on this subset of the 

action space.  Recall from Chapter 5.6.6 that given an optimal policy: 

 𝜋∗(𝑆, 𝐴) = 𝑚𝑎𝑥𝜋(𝑄𝜋(𝑆, 𝐴)) 

The optimal action (or a set of equally optimal actions) will be: 

𝑎∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑄𝜋(𝑠, 𝐴)) 

What action filtering does is limit this to a subset of values already contained within the optimal 

policy and so, importantly, requiring no further calculation (other than maintaining any on-

going learning iteration in an online learning implementation, which would be occurring 

anyway).  The filtered optimal control policy is therefore: 

𝜋∗,𝑇(𝑆, 𝐴𝑇 ⊆ 𝐴) = 𝑚𝑎𝑥𝜋(𝑄𝜋(𝑆, 𝐴
𝑇)) 

The optimal action post filtering then follows logically as: 

 𝑎∗,𝑇(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑇(𝜋
∗(𝑠, 𝐴𝑇)) 

Note that 𝑎∗,𝑇(𝑠) ≠ 𝑎∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝜋
∗(𝑠, 𝐴)) for 𝑎∗(𝑠) ∈ 𝐴𝑇. 

This is a form of policy switching based on local observation which enables the agent to adapt 

and follow a different plan to avoid the hazard without needing to re-learn or re-sample. 

Essentially, action filtering and policy adaptation in this manner utilises the volume of data 

contained within the Q-value tables within the agent but ordinarily unused.  This is the attribute 

of Q-learning that makes it a suitable candidate for synchronised autonomy, because the agents 
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should be able to implicitly learn to avoid each other through learning a large set of 

‘contingency’ policies without any additional knowledge or training time being required. 

It should be noted that the optimal action post filtering may not be the same as the optimal 

action under the unfiltered optimal policy, nor will it necessarily be the same as the preceding 

optimal action in the case of one filtered action space changing to another filtered action space 

at the next time step.  One can imagine situations where, to give a simple example inspired by 

the worked example from Chapter 6, an uncooperative or hostile entity in the environment 

blocks one’s path.  Imagine the optimal policy is to head, for example, east, but following 

action filtering this is no longer an available option, and so the system automatically adopts the 

‘best remaining’ policy, which is to head instead, for the sake of argument, north.  But then 

soon after, potentially as soon as the very next time step, another obstacle appears to the north, 

prompting another action filter, resulting in a new optimal action to head, say, south.  What 

result action filtering will have depends on the environment around the agent and is something 

outside of the agent’s control.  There is therefore no guarantee that the changes in optimal 

policy due to action filtering will be in any sense ‘close’ to the true optimal policy action under 

the unfiltered action set.  An avenue for future research might be to investigate the theoretical 

implications of action filtering like this on some of the analytical results in the wider machine 

learning literature.  For present purposes, what is important is that it is producing useful and 

observable behaviour in practice. 

8.4 Simulation Results and Analysis 

8.4.1 Introductory Problem 

The rates of convergence to the a priori calculated optimal control policy for the four agents 

both in isolation and with the ability to detect each other’s presence are shown in Figure 46.  

An example of the behaviour of the synchronised automata is captured in Figure 47. 

Regarding convergence, Figure 46 shows the convergence of learned policy to the optimal 

control policy that was calculated a priori.  Solid lines are the convergence rates of agents in 

isolation (i.e. ignoring potential interactions) and dashed lines are those allowing for 

perturbation.  It is clear that allowing for interactions and resulting path perturbation usually 

causes policy convergence to take longer (as any deviation results in some state-action pairs 

not being sampled as they might have been, requiring further sampling), but it is clear that the 
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effect is small as a proportion of the time the simpler process required anyway without this 

additional consideration.  In the one case where this did not happen (the line coloured light 

blue), the policy convergence rates were almost identical, and the difference is believed to be 

a consequence of randomised state space exploration (i.e. a simulation artefact rather than a 

property of the underlying system).  A more extensive simulation averaging these results over 

many random trials is recommended in order to verify this conclusion. 

It is clear that introducing the ability to recognise obstacles has not significantly altered the 

convergence rate for the agents.  This is an encouraging result, as it indicates that the novel 

elements applied to model the interactions are not affecting the overall learning performance 

of the system.  Simulation run times were also similar, and can surely be improved upon 

following deeper consideration of the sampling strategies and state space models. 

 

Figure 46 – Convergence of Learned Policy to the Optimal Control Policy 
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Figure 47 – Two Learning Agents Arc Tracing (with Action Filtering) 

 

Figure 47 shows two agents learning their assignments with action filtering enabled (Agents 3 

and 4 were also part of the simulation but have been omitted from the figure for clarity).  The 

agents are still in their learning period, hence the sudden jump in the agents’ paths as they re-

initialise for another trial. 

Regarding Figure 47, note the path of Agent 1 in the lower left portion of the arc, where it can 

be clearly seen to have stepped aside in order to bypass Agent 2.  Such a perturbation is within 

the observation range of the automaton and within the geometric constraint or bound of an 

operating annulus centred on the arc.  It demonstrates that the policies that are being learned 

are enabling the agents to adapt to the presence of other automata with no knowledge other 

than of their own task and that there is an entity to avoid.  This is consistent with the 

convergence results which show that, despite these aperiodic perturbations, the agents are still 

able to learn stable control policies that deliver behaviour slightly perturbed from the optimal 

policy but still within the relevant constraints.  This is encouraging evidence that the desired 

application of interacting learning agents to the synchronisation of automata can be achieved 

with relatively simple models, without substantial system configuration and extended ramp up 

time. 
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8.4.2 Larger Scale Problem 

The test environment with ten agents illustrated in Figure 45 was used to generate a number of 

Q-value arrays and optimal policies.  The ten agents learn concurrently, but without awareness 

of each other. It could not be done like this in practice because there would be many physical 

collisions and a lot of potentially damaged assets, but in simulation this is beneficial during the 

training phase.  The arcs were chosen to be spatially dispersed across the lattice, but with 

concentrated areas and overlapping portions of arcs to ensure robustness under action filtering 

would be tested.  These arcs were also scaled to ensure an optimal policy to complete each arc 

will require the selection of both single and double steps, to ensure action space coverage. 

Q-value arrays and optimal policies were produced after 100,000 learning steps, and then at 

increments of 100,000 steps up to 2,000,000 steps.  It transpired that the agents had learn to 

follow their arc to the required schedule in less than 1,000,000 steps.  Without incorporating 

collisions, this is an expected result since the problem formulation (learning a rectangular 

angular walk) is not especially difficult.  The reason it takes as long as it does is the learning 

of the schedule – the extended temporal dimension to the state space significantly increases the 

learning time both due to the overall larger number of states, but also due to the longer time to 

even reach portions of the state space as consecutive states visited will tend to be clustered. 

During the execution phase, collision detection is enabled.  This means that the optimal policies 

that the agents have learned might now be defining optimal actions to take from a given state 

which will actually be forbidden at particular points on the arc (and the test environment was 

deliberately set up so that a number of path conflicts were inevitable, to force this to occur). 

A screenshot illustrating the observed behaviour is provided in Figure 48.  This was produced 

with the agents following the policy produced after 1,000,000 learning steps, and it is clear that 

the agents have by this time learned to follow their intended arcs.  There are also some instances 

where a simple digression from the arc is clearly distinguishable – these occur when the optimal 

action to continue along the arc is unavailable and an alternative action has to be selected 

instead. 
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Figure 48 – 2D Visualisation of Trained Agents Performing Learned Path Tracking with 
Controlled Deviation 

 

An unexpected emergent property was that both colliding agents might respond with the same 

avoiding move and thereby still be blocking each other – similar to the situation where two 

people meet in a corridor and both move the same way to avoid each other.  To avoid these 

situations, as the agents are internally numbered from one to ten, the lower numbered agent 

was programmed to choose and then make its avoiding move first, so the higher numbered one 

did not need to.  This simple fix was to allow these simulations to run to completion, but may 

be indicative of the kind of practical fixes that might be employed with real automata. 

There are two primary criteria that determine how well the chosen method is performing: (i) 

how well are the agents performing their task, and (ii) how robust is their performance to 

perturbation.  The former was investigated in the initial experimental simulation work but the 

example therein is acknowledged to be simplistic, in that all the agents in that work were trying 

to do the same task at different speeds.  In this more complex example there are more agents 
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and more conflicts, and it is not trivial to determine in advanced when and where any diversions 

should be and what performance implications these might have. 

Figure 49 and Figure 50 summarise the key findings regarding these two criteria.  Figure 49 

illustrates the average mean position error across an episodic period, averaged over 100 trials.  

For clarity only the results for four agents are illustrated, as is the performance for three 

calculated optimal policies – the policies generated after 100,000 learning steps and after 

1,000,000 learning steps (which has converged to optimal as it is clearly seen to deliver the 

required behaviour), and an intermediate policy produced after 500,000 learning steps. 

 

Figure 49 – Average Mean Error per Agent Across One Episodic Period per Learning 
Period over 100 Trials 

 

Note that the results in Figure 49 are limited to the first four agents and three examples of 

policies for clarity. 

These cases are sufficient to illustrate the anticipated result (convergence to the desired 

behaviour), and to capture the timescale required (on a standard desktop PC running MATLAB 

2014a, these policies were generated in approximately 20 minutes, 90 minutes, and 3 hours 



 

 

187 

each).  For each agent, it is clear that the networked Q-learning approach with its novel 

adaptations is capable of solving this problem and producing coordinated behaviour. 

Of more importance is Figure 50.  This represents the equivalent data when in execution mode 

with collision avoidance enabled.  The 1,000,000 step policy is clearly seen to be capable of 

making small digressions from its optimal policy.  These steps are when an obstacle was 

detected and a simple sideways move was undertaken until the obstacle had passed. When the 

action space returned to its full size, the agent was able to immediately return to its original 

task.  Agents 1 to 3 all display examples of this, although Agent 3 was not able to subsequently 

complete its task on its original timescale.  This is because it faced several obstacles and 

deviations that used up enough time that it was not able to recover (i.e. it was not able to fully 

‘catch up’ with where it would otherwise have been) in what time remained in that episodic 

period.  This could be resolved in future work either by extending the episodic period, or by 

allowing the agents three or more step moves rather than the current limit of two. 

 

Figure 50 – Average Mean Error per Agent Across One Episodic Period during 
Execution Phase over 100 Trials 

 

Note that the results in Figure 50 are limited to the first four agents and three examples of 

policies for clarity. 
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Note that in both figures, the deviations in the vertical direction are the average mean error per 

step across the episode.  Clearly this is greater with the less mature policies that had shorter 

learning periods.  It is important to recognise that this is the average error incurred at that point 

in the episode, not a cumulative error.  The problem with a cumulative error calculation in the 

given geometry is that different actions allow the agent to move backwards and forwards.  One 

can make almost every step incorrectly and not trace out much of the arc at all, and yet end up 

in about the right place.  Hence the cumulative track error is not a useful metric in this context, 

and the average error per step is presented instead.  Hence although the errors appear small, it 

should be understood that when the error line is consistently offset from the optimal policy 

line, the physically observable error could be growing exponentially. 
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Chapter 9 

9 Conclusions and Further Work 

9.1 Conclusions 

This thesis has presented a fusion of systems design process and underpinning mathematics to 

construct a novel method of decomposing complex systems into networks of Markov Decision 

Processes, adaptable for many varied system organisational structures via hierarchical and 

parallel decision processes.  The underpinning mathematical background, including some 

original contributions from the author prior to the commencement of this PhD, has been 

extended as part of this PhD with further original contributions to enable this particular 

application, and the result is a novel methodology with analytical potential for modelling and, 

in due course, controlling the behaviour of complex multi-agent systems. 

It is accepted that for many traditional systems, this would be considered unnecessary overkill, 

and that existing techniques and methodologies are quite adequate.  The usual drawback of 

reinforcement learning techniques, and of using MDPs in general, is the required overhead in 

designing the models, selecting state and action representations and reward schemes that 

accurately reflect the important characteristics of systems and thus incentivise the right 

behaviours.  The learning or conditioning phase with such techniques is sometimes inefficient 

by comparison to alternative methods. 

However, the premise behind this thesis is that, when dealing with complex multi-agent 

systems, most of these other techniques cease to be applicable or effective.  From the 

engineering perspective, system design, assurance and lifecycle management techniques and 

practices struggle to deal with emergent properties within systems, something that readily 

arises in complex multi-agent systems.  Assurance of autonomous systems is already a problem 

that has stymied the uptake of technology that was once attracting significant funding and 

research effort and had many potential exploitations routes, due in large part to the on-going 

inability to be able to prove they can be relied upon to perform safely.  Combining this problem 
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with the assurance of autonomous agents with a lack of tools and techniques to apply formal 

analytical methods to such systems creates a space where new approaches are required.  Whilst 

this thesis has not attempted to prove the approach is a perfect solution for all manner of 

problems, it has built up a proposed approach to complex multi-agent system design and control 

based on aligning systems science principles with systems engineering practical requirements.  

It is a novel candidate for a problem domain that is lacking in viable alternatives. 

From the mathematical perspective, MDPs have been shown to be applicable in areas not 

widely explored in the literature but for which the author has long believed they had greater 

potential.  The work contained within this thesis has demonstrated how to generalise the 

mathematical formulation into scalable networks of MDPs that may mirror systems’ 

organisational structures, and demonstrated that at least one solution technique (the 

reinforcement learning technique known as Q-learning) can be readily adapted to generate 

solutions to these structured networks of MDPs.  This provides a potential gateway to 

modelling and understanding (and more importantly, controlling) the complex and potential 

emergent behaviours of multi-agent systems.  Again, it is a novel candidate for a problem 

domain that is not completely lacking in alternatives, but is lacking an alternative that can be 

used in quite this way and which is aligned with the engineering community’s practical 

requirements. 

A simple case study has been developed and demonstrated as part of this PhD, inspired by the 

synchronised autonomy displayed by production line assembly robots.  Restricted initially to 

2D simulation for clarity and convenience, models of initially 4 and subsequently 10 agents 

have been developed showing a multi-agent system approach to such modelling and controlling 

such problems, where forced interactions between agents tracing arcs represents the potential 

for inadvertent collision or obstruction by the production line robots.  The results reported in 

this thesis in Chapter 8 (and in a number of external publications listed in the Declarations 

section at the beginning of this thesis) has demonstrated that networked Q-learning is a novel 

but viable approach for attempting to produce robust solutions to the synchronised autonomy 

problem.  Incorporating novel features such as temporal extensions to the state space and action 

filtering allow learning agents to undertake a number of concurrent, overlapping tasks to a fixed 

schedule.  This approach is not a perfect solution – for example, in the published results from 

the experimental work, it was clear that Agent 3 became unable to complete its arc as required 

within the episode following enforced deviations due to external obstructions, but there are 

foreseeable solutions to these problems given more development time. 
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The usual drawback of reinforcement learning methods such as Q-learning is the relatively 

lengthy learning time in comparison with other established machine learning techniques.  This 

is worsened through temporal state space extension.  However, the attribute that enables rapid 

adaptation when using a run-time action filter is that Q-learners are maintaining large Q-value 

arrays full of continually updated orderings of contingency policies, which enables immediate 

policy adaptation.  Essentially, Q-learners can be relatively slow because they are learning and 

updating a full set of multiple scenarios all at once – a negative if one only needs the optimal 

solution quickly, but a positive in situations like this where maintaining the ability to adapt 

rapidly to follow the best available policy (which is itself being updated in real-time) is vital. 

In summary, it has been demonstrated how the Q-learning solution technique teaches an agent 

not just an optimal course of action, but also multiple prioritised courses of action which, when 

certain actions become unavailable during operation, immediately provide ‘next best’ 

contingency plans without any retraining being required.  The drawback of applying such 

techniques normally is that they are often a more onerous means to determine an optimal 

control policy than other techniques might have been.  But in this context these approaches 

have shown their worth, in that the extra burden on model establishment and greater agent 

training time results in a family of prioritised and continually refined control policies, and 

therefore greater resilience in the face of unplanned deviation or obstruction.  Demonstrating 

how traditional weaknesses with a technique can be turned into a significant strength is a 

valuable result that puts the potential application of these techniques in a new perspective and, 

it is hoped, makes them more attractive for use in complex systems scenarios once again, not 

least in application areas such as synchronised robotics and autonomy, but also the challenging 

domain of complex multi-agent systems more generally. 

9.2 Further Work 

Throughout the course of this research and the process of compiling this thesis, a great many 

ideas from across different research domains and application areas have been covered – from 

machine learning to systems design processes, from the conceptual domain of systems science 

to practical considerations about simulation toolsets in an industrial time-sensitive 

environment.  The material presented has been trimmed to fit around a core argument about 

the proposed modelling and mathematical framework for complex multi-agent systems, why 

this is important for niche problem areas with particular characteristics that are difficult to 
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tackle with techniques in the current engineering or mathematical toolkit, and conducting some 

relatively simple ‘proof of concept’ simulation work to a) demonstrate that networks of Q-

learners can be applied in new and novel applications such as synchronised autonomy, and b) 

show that the techniques and models have demonstrated basic proof-of-concept that complex 

emergent behaviours within multi-agent system can be implicitly ‘designed in’ and that agents 

can be seen to adapt to unexpected events in a way that still remains within acceptable operating 

bounds, and from which the agent can attempt to recover lost time and return to its original 

assignment and schedule. 

It has not been possible to include everything within this thesis: 

• Related areas of interest such as software architectures for the agent implementations, 

and some of the anticipated impacts on engineering tools and methodologies, has had 

to be left out of this thesis in order to appropriately focus the thesis on the core 

argument. 

• Two alternative applications areas were partially developed before identifying the 

industrial exemplar from within Warwick Manufacturing Group’s research interests; 

the work that was undertaken is documented for the record in Annex B, but these 

models have yet to be taken further into detailed simulation or analysis. 

• A significant area for further research is to identify complementary mathematical 

techniques to address the system proving and assurance problem; it was beyond the 

scope of one PhD to tackle both the control and assurance problems, but the work the 

author has done on the latter (including some background joint work, and some updates 

and further thoughts produced in the early part of this PhD) are documented for the 

record in Annex C. 

All of these topics present avenues for potentially fruitful research and development activities 

in future work.  In addition to these topics, this final section of this thesis also documents some 

other recommendations for further research, grouped by the subject matter within this thesis to 

which they relate. 

9.2.1 Proposed Enhancements to the Exemplar Simulations 

Interesting avenues for further research relating to the experimental simulations of the 

industrial case study were identified in the published work: 
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1. External obstructions that occur randomly and at different points with the state space; 

an agent cannot learn through habit to avoid these. 

2. More thorough parameter sensitivity analysis.  Different learning rates and exploration 

strategies might further speed up learning performance, as might some parallel 

processing techniques. 

3. Increasing the volume of agents by an order of magnitude and investigating any 

emergent effect in particularly clustered areas of the state space. 

There are other avenues for potential extensions or further development of the experimental 

simulations and test beds.  Given that the detailed description of how these multi-agent system 

models were designed and simulated is presented in Annex A, the recommendations for further 

developments in this area are covered there, in particular in Annex A Section A.4. 

9.2.2 Engineering Process Considerations 

The proposed modelling approach has been shown to describe the behaviour of complex 

systems through the novel representation of the system’s state and action spaces, incorporating 

the expected consequences of interactions, and making the system more robust to the 

occurrence of complex or emergent behaviours.  The extent of this approach’s scalability to 

increasingly complex systems needs further research; computational constraints could 

potentially limit applicability.  However, wherever this limit lies, it is still expected to be an 

improvement on techniques not designed for complex systems at all, that are not suitable for 

assessing system failures that do not arise from traceable component faults. 

Hierarchical MDP models based on the three-axis decomposition principles have been defined, 

however the exemplar developed in detail only featured the ‘parallel’ aspects of decision 

making.  A (very simple) instance of a layered decision process was demonstrated in the 

author’s precursor work, but producing a far more complex model of a system with multiple 

layers, and parallel decision making on each layer, has not yet been attempted – essentially, for 

reasons of time and scope, it has not been possible to fully test the scalability and efficacy of 

the proposed framework in its entirety.  This would be the logical next step for this work, to 

really test the scalability and efficacy of these proposals. 

Whether the proposed method is scalable to increasingly large state spaces is a valid concern, 

not least because of computational overheads.  As is usual with such problems, the fidelity of 

the model is compromised if the state space is too course, but the computational burden could 
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make the entire process infeasible if the state space is too fine. Important design choices will 

have to be made early on, which could have unforeseen consequences on the practicality of the 

proposed approach.  It has not been within scope of this PhD, but a recommended future activity 

is to consider the issues of scale and of the computational burden of the proposed approach, 

perhaps in the context of one of the exemplars. 

Some further specific proposal for future research related to this topic include: 

• Formal development of a design process for complex systems incorporating the 

mathematical insights outlined in this thesis and, possibly, applying techniques from 

linear algebra to optimise the state space architecture. 

• Investigation of where non-linearity may arise in decision hierarchies, possibly 

resulting from asymmetric connections across levels of the hierarchy, or from cyclic 

dependencies of components on particular levels. 

• Demonstration that the decision control framework for systems of subsystems is 

equally applicable to collectives of systems (i.e. vertical scalability within the 

hierarchy), ultimately leading to an integrated hierarchical structure for collectives of 

multi-layered complex systems. 

• Investigation of further and/or alternative algorithmic solution techniques for the 

decision controller, which may increase the scope and robustness of the hierarchical 

approach.  In particular, MDP planning algorithms might facilitate online refinement 

of the world model, potentially improving system sensitivity to changing environmental 

conditions.  Another option the author recommends considering further is the work by 

Barry et al. looking at techniques for approximating solutions to very large MDPs by 

decomposition into solvable hierarchies [6], to determine whether these approaches can 

simplify the process of learning solutions to these kinds of problems without accepting 

too great a degree of suboptimality of solution due to the approximation. 

9.2.3 Theoretical Aspects of Decision Process Design 

Selecting the architecture of the state space is a crucial stage in the design process.  It must 

answer the basic control system requirements of observability (that the state space provides a 

sufficient representation of the true system state and one has or can obtain sufficient 

information to understand the system’s behaviour without ambiguity) and controllability (that 

controlling the state achieves the desired actions).  These two properties tend to increase the 
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size of the state space by increasing either or both of its dimension (i.e. the number of 

independent state variables) or, to an extent, the density of significant values in each state 

variable.  The dependence of performance on these structural factors was apparent during the 

development of the experimental simulations.  These can be sensitive to variations in the 

specific choice of state variables.  This is a consequence of the engineering trade-off between 

model complexity (in terms of the number of states required) and the fidelity of the 

‘represented’ state to the ‘actual’ state; in other words, no approximated, discretised model can 

ever truly have full observability. 

Assuming that a basis (i.e. a set of independent state variables) can be found which both 

adequately represents the behaviour and also offers useful control actions, then the system 

designer or engineer may begin to consider some form of modular decomposition of the state 

space in an attempt to abstract complex behaviour into a set of simpler components.  In this, 

although this has not been explicitly explored in this PhD, one might follow the criteria 

proposed by Bertrand Meyer [47]: 

• Decomposability: The structure must help the engineer split the overall design into 

simpler components, each of which is independent enough to be worked on separately. 

• Composability:  It is desirable that the engineer can re-use such components from 

previous designs, thereby reducing the cost of a new design and increasing the assurance 

for the individual components. 

• Understandability: The engineer should be able to understand the operation and 

limitations of each component without excessive reference to any others. 

• Continuity: A change to one component should have the least possible effect (at design 

time) on any other component. 

• Protection: A fault condition in one component (during operation) should have the least 

possible effect on the operation of any other component. 

At the same time, since this work has been concerned with systems which are amenable to 

mathematical analysis, this requires systematic techniques for decomposition which have a 

well-defined mathematical representation.  A number of potential strategies and techniques for 

this have appeared, detailed analysis of which would be a useful future research direction.  One 

example is the work of Puterman [56] to express the dynamics of the MDP in the notation and 

concepts of functional analysis, which raises the possibility that tools such as Fourier analysis 

might be applied to synthesise complex behaviours (policies) from a number of simpler ones – 
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in effect, the competing goals mechanism.  The work of Barry et al. [6] mentioned above might 

also be relevant to further work in this area. 

One particular challenge which may arise with such models is the problem of ‘cyclic 

dependencies’, or relationships between state variables which either prevent the separation of 

components, or create interfaces between them which contravene the criteria suggested by 

Meyer for well-structured systems.  This area warrants further research because it has a direct 

bearing on the ability to realise effective models of complex systems. 

9.2.4 Partially Observable Markov Decision Processes 

The use of the Partially Observable Markov Decision Process (POMDP) was discussed in 

Chapters 5.6.8 and 6.5.3.  This is distinguished from the MDP by the property that variation in 

the environment, which manifests as uncertainty in the system state, is explicitly incorporated 

into the design process.  It should therefore be possible to model the expected statistical 

behaviour of the environment in far greater detail.  This suggests follow-on work into the use 

of the POMDP as a technique for optimising the information flows required for collaborative 

systems.  However, the lack of a general, tractable solution to the general form of the POMDP 

remains a major stumbling block. 

9.2.5 The Topological Approach to Agent Communities 

The topological approach to agent community formation, and to complex and continually 

evolving internal dependency structures and associations, needs to be consolidated around a 

mathematical model for the conceptual approach introduced in Chapter 5.8 of this thesis. 

In particular, there is a need to: 

• Define a structure for the topology for the system state. 

• Define ‘actions’ which modify the topology. 

• Interpret behaviour as the distribution of elements within that topology. 

To formalise this model, the following assertions will need to be further evaluated and proven: 

• Topological subcovers provide a basis for a hierarchical composition of nested MDPs. 

• Then MDP decision actions can be represented as a topological transformation. 
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It may turn out that ‘emergent behaviour’ can be identified by its topological properties.  As an 

example, it might transpire that the state trajectory of an element when analysed in isolation is 

connected but becomes disconnected when it interacts with others. 

 

 

System state at any instant is defined by 
the topology induced by the value of the 
state variables.   

An event is effective by modifying the 
state variable topology.  This can be 
regarded mathematically as an 
automorphism on the power set of the 
state space. 

Stability = ‘stable orbit’? 
 

Figure 51 – Topological Interpretation 

 

One way of looking at the action of events on the topology of the system state space is to view 

each one as an automorphism on the power set of the state space (because each topology is a 

member of the power set). 

• This portrays the time evolution of the system as a set of ‘group actions’. 

• This allows an alternative representation of trajectories and orbits within the state space 

which might prove more tractable than trying to explicitly track individual elements. 
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Annex A 

A. Description of Experimental 

Simulation Test Beds 

A.1 Context 

The techniques developed in the main body of this thesis need to be simulated in order to 

demonstrate that appropriate adaptive behaviour within a multi-agent system can be learned, 

and that the behaviour which is learned can be seen to include unplanned or unprompted 

adaptations in response to interactions whilst remaining bounded and with a speedy return to 

the originally intended pattern of behaviour. 

MATLAB was chosen as a suitable tool for this purpose.  It should be noted from the outset 

that the simulations developed are not claimed to be optimised or suitable for deployment, nor 

is the choice of MATLAB as the simulation tool a recommendation that it is the tool that should 

be used in future should techniques such as these be taken further or applied in real world 

applications.  MATLAB was chosen because of its ease of use and the native support for 

graphical visualisations at run time, which were vital for extensive debugging and 

experimentation by the author, as well as for capturing snapshots of the simulations to illustrate 

the behaviours being induced (presented as figures in Chapter 8). 

Two experimental simulation test beds were developed as part of this PhD, for the introductory 

and larger scale problems are described in Chapters 8.2.1 and 8.2.2 respectively.  Whilst the 

introductory problem, and correspondingly the first simulation test bed, were useful for 

demonstrating the efficacy of the proposed techniques for enabling agents to learn bounds to 

their potential adaptive behaviour, it was clear that the problem (using polar coordinates and a 

simple orbital arc) was insufficiently complex to evaluate multiple forced interactions of 

greater numbers of agents in a visually clear and easily identifiable way.  Expanding to the 

larger scale problem required a switch to cartesian lattices with alternative mechanics for 
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loading assignments and initiating agents within the simulation test bed. Although not the 

primary intention, which as with the first test bed was to provide an experimental platform for 

developing and demonstrating the learning techniques and bounded adaptive behaviours, the 

second test bed was more indicative in terms of logical structure as to how a real tool might be 

used, with the ability to define assignments in separate files and have these ‘loaded’ into the 

learning environment.  The second version of the simulation test bed is therefore closer to being 

a prototype for a practical tool than the first, although producing such a prototype was not a 

primary objective of this PhD, and it certainly would need further work before it could be 

claimed to be a proper prototype. 

Developing the second version of the simulation test bed also provided an opportunity to apply 

some lessons learned from the development and use of the first test bed to ensure that the 

second version was more in line with the natural logic of information flow within a multi-agent 

system without intra-agent communication (i.e. using global variables for environment 

parameters and persistent variables within the virtual agents for local state information and 

calculation).  As a result, whilst there are many similarities between the two simulation test 

beds, there are some important differences in implementation. 

In this Annex A to this thesis, an overview of the mechanics of the two simulation test beds is 

provided, including pseudocode for the major functions, as a guide for how to recreate or 

extend these approaches in the future. 

A.2 Experimental Simulation Test Bed for the 

Introductory Problem  

The first version of the simulation test bed was developed in order to simulate the learning 

process and the learned behaviours of a set of four virtual agents learning acceptable patterns 

of motion in the ‘introductory problem’ scenario as described in Chapter 8.2.1, as well as to 

calculate and record a number of performance metrics about the learning process for 

subsequent analysis.  A logical architecture for the simulation test bed built for the introductory 

problem is provided in Figure 52, followed by summary descriptions of the main elements.  It 

consists of a number of functional modules, differentiated as: 

• Functions necessary to create the simulated environment in which the virtual agents 

live.  This includes the executable script AgentTestEnvironment which initialises all 
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other variables and maintains the ‘ground truth’ of the state space lattice, the current 

positions of the agents, and all parametric information necessary to drive the simulation.  

Two additional functions called by AgentTestEnvironment calculate the transitions the 

various agents make once they have selected their next action, and make determinations 

about when there is a collision risk between agents.  These are calculated every time 

increment, with current states updated and provided as inputs to the virtual agents, along 

with collision warnings and lists of restricted actions when appropriate (for action 

filtering by the agent). 

• Functions necessary to simulate the agents themselves.  The main function here is 

Agent, which contains most of the internal logic of an agent, receiving as inputs only 

environmental signals from AgentTestEnvironment (current state and time, and any 

warnings and restricted action lists when appropriate).  Only one agent script is used 

and an agent number label maintained by AgentTestEnvironment (and provided as an 

additional input to Agent) is used to differentiate which instantiation is which.  An 

additional function called by Agent is used to calculate rewards based on the observed 

outcome following from the state transition after the previous calling of that agent, once 

AgentTestEnvironment has updated all agents’ states, which requires the recording of 

the last state and last action information for each agent internally using persistent 

variables.  A PolicyComparison function is also included for the agent to incrementally 

update global variables monitoring how quickly the agent is learning what has been 

pre-calculated to be the optimal policy – data gathering at run time, rather than being a 

part of the agents’ decision making processes.  This function was used to collect the 

data to investigate convergence results such as those presented in Figure 46.  [It should 

be noted that this approach, whilst effective through careful use of global variables, is 

not in keeping with the natural information flow in an agent-based system, and was one 

of the elements changed in the second version, with such calculations being more 

logically conducted within the test environment rather than within the agent.] 

• Functions which provide tools for running the simulations.  LoadAssignments is a user-

editable script in which the coordinates and parameters of the required assignments can 

be entered and edited manually.  Visualisation produces the graphical representations 

for debugging purposes and to demonstrate the behaviours that the agents are learning 

to follow (and was used to create Figure 44 and Figure 47), but can optionally be 

disabled in the master AgentTestEnvironment to significantly speed up the simulation.  
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StateIndexCalculator is simple tool used for expediency, to index all states tuples with 

an integer.  AgentTestEnvironment calls this function to translate states that it has 

knowledge of into a unique integer identifier, which the agent needs in order to maintain 

internal state-action value arrays and operate a Q-learning algorithm.  Finally, the 

function OptimalPolicyCalculator calculates from the outset what the optimal policy 

should be (based on the loaded assignment, which is simple enough in the first instance 

that the true optimal policy can be worked out analytically by the user beforehand).  

This is an analysis tool rather than part of the learning process, because learning would 

be trivial if the answer were known by the agent at the outset.  Instead, this is calculated 

up front but is not shared with the agent, so that there is then a baseline against which 

to compare the incrementally improving control policies learned by the agents (using 

the PolicyComparison tool discussed previously). 

 

 

Figure 52 – Logical Architecture of the Experimental Simulation Test Bed for the 
Introductory Problem 
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There are two ways in which the users could interact with the test environment.  One is by 

controlling the inputs which are read into the simulation at the outset, and the other is via the 

graphical display.  The goal was that eventually these would be merged, so that the user would 

have the ability to place waypoints and times directly on a display, choose the coordinate 

system and episodic period, and configure any other useful parameters, and then watch the 

agents progress in real time.  Beyond that, there should also be longer-term potential for task 

reconfiguration and agent adaptation (for example, amending assignments mid-period, or 

deliberately inserting obstacles to test control policy robustness).  However, in the initial simple 

model the interface was not (and did not need to be) that advanced, and only by directly editing 

parameters within the scripts could the user influence the simulation. Developing this tool 

further was another of those paths this research could have taken, but ultimately was tangential 

to the main research objectives of this PhD (see Chapter 1.2.5).  It could be pursued further in 

future work. 

In the following subsections, each of these functions is described individually, and some 

pseudocode is provided for those that have non-trivial or algorithmic content relevant to the 

techniques described in this thesis. 

A.2.1 AgentTestEnvironment 

This is the master file or the main executable for the whole simulation test bed.  This master 

file contains global state information (specifically the current location of each agent and the 

global system time) and therefore represents ‘ground truth’ for the whole model.  In this sense 

it is simultaneously serving as both a simple simulated environment for the agents and as the 

simulation test bed controller. 

Pseudocode for the AgentTestEnvironment function is as follows: 

1. Initialise all the necessary global variables and arrays. 

2. Call LoadAssignments to load the descriptions of the tasks the agents are required to 

complete and other necessary configuration information as specified by the user. 

3. Call OptimalPolicyCalculator to calculate an optimal policy based on rules determined 

by the user, which has been pre-determined to define the desired pattern of behaviour. 

4. Initialise the desired number of agents by calling Agent that many times in a loop using 

a different index for AgentNumber.  For simplicity, the agent index number is the same 
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as the assignment number (so assignment one goes to agent one, with no loss of 

generality so long as all virtual agents function similarly). 

5. Set initial states for each agent. [Currently, the user writes this directly into the script.  

A graphical interface for this was considered but time prevented it.] 

6. Call the Visualisation script to initialise the graphical display if required (determined 

by a binary variable edited by the user in the main script amongst the global variables 

initialised at the start). 

7. Commence a control loop for incremental learning.  For 𝑡 from 1 to user-specified 𝑇𝑚𝑎𝑥, 

then for each agent from 1 to 𝑛 in turn: 

a. Call CollisionDetector.  This requires the agent index and its current state, and 

checks whether that agent is in close proximity to any other agent at that point 

in time.  It will return a binary warning flag, and an array of restricted actions 

(actions that would bring the agent closer to collision if undertaken next), or an 

empty array if there is no warning. 

b. Call each agent in turn (in practice, call Agent 𝑛 times with a different index for 

each initialised agent) to select a next action.  Agent requires as inputs its index 

(purely for internal cross-referencing to the appropriate Q-value array) as well 

as the current state of that agent, current time, and the warning flag and restricted 

actions list.  The agent returns the selected next action.  [For analytical purposes 

it also returns information about reward received, a pointer to the latest 

increment of its Q-value array in order to measure the rate of policy convergence 

during testing (noting that this does not play a part in the actual simulation), as 

well as debugging information.  This is noted to be unrepresentative of a real 

implementation, and much of this calculation was conducted outside of Agent 

in the second version of this test bed.] 

c. Call Transition.  This requires the agent index, its current state, and the action 

the agent has just reported, and determines what the next state will be. 

d. To facilitate the visualisations when active, and in any case for debugging 

purposes, record a string of the past actions, transitions and rewards as a new 

row in a path history array.  [This array is not provided to or accessible by Agent 

and does not form part of the core simulation.] 
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e. When required, call Visualisation to update the graphical display in real time to 

reflect that agent’s chosen action.  The most recent entries of the path history 

array (ten prior entries in the figures presented in this thesis) are provided to 

Visualisation when active to facilitate this. 

A.2.2 Transition 

This function requires as input an agent index, and the current state and the just-selected action 

for that agent, which will have been selected and output by the Agent function immediately 

prior to the calling of this function.  It identifies the coordinate system (polar in the original 

implementation, but later adapted to be able to select a polar or cartesian geometry) and using 

simple rules it calculates what state transition will occur given that input state and action.  The 

output is simply the index of the next state that agent will be in.  In the implemented models 

this is a deterministic function, always returning one specific next state depending on the input 

state and action.  This function ultimately is a set of simple state transition rules (moves from 

one point in the coordinate space to another), plus logging functions for analytical purposes. 

As well as potentially including some stochasticity to state transitions should one wish to model 

behaviour in an uncertain or dynamic environment, this function could also be extended to 

work in more complex geometries and/or in more dimensions, as the script includes a look-up 

from an extendable list of recognised coordinate systems (although enabling work would be 

needed to define the states and state transitions that would occur in new coordinate systems). 

A.2.3 CollisionDetector 

This function represents the agents’ (limited) cognisance of their immediate surroundings.  The 

problem definition supposes that the agents are able to detect the presence of any other objects 

within a specified (but small) radius from themselves – representing a simple collision 

avoidance detector or proximity sensor.  It is not necessary for these purposes to actually 

simulate a sensor; a function that reports on any other agents within a specified radius of the 

current agent is emulating such a system. 

Action filtering is the novel feature added to this implementation of Q-learners, where, in the 

event a nearby object is detected, any actions that might bring them closer together is 
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temporarily excluded from the list of available actions.  This is changing the mathematical 

model of the Q-learning problem (removing part of the policy matrix, requiring renormalisation 

over the remaining permissible actions) and may result in policy changes (where what would 

have been the optimal policy action is now removed from the action space). 

To enable this, this function when called requires the index of the relevant agent and access to 

the global state variables.  Simple rules written into the script are then applied to calculate 

whether any of the other agents’ current states are within the specified radius.  If there are any, 

the variable WarningFlag is set to 1 and further calculations based on simple rules written into 

the script are then applied to calculate the direction of the nearby agents, and thereby the actions 

which, if selected next, would move the current agent closer to the nearby agents.  These actions 

are then enumerated and collated into a vector of RestrictedActions, and this and WarningFlag 

are the outputs.  If there are no other agents within the specified radius, WarningFlag is set to 

0 and this plus a null vector are the outputs. 

A.2.4 LoadAssignments 

This is a simple read-in function that specifies a number of assignments that the agents are 

expected to undertake, consisting of waypoints, times, and reference geometry (currently only 

2D polar and 2D Cartesian, but designed to allow for expansion).  For simplicity, one 

assignment per agent is intended.  This function has no inputs or outputs.  It simply accesses a 

global variable initiated by AgentTestEnvironment and writes the corresponding assignments 

into this state variable, as part of the initialisation of the simulation.  The reason for establishing 

this as a separate function was to enable this to ultimately be replaced by a more complex 

function or even a graphical interface to manually input assignments.  However, such directions 

were tangential to the primary research objectives for this PhD and this is left as an objective 

for any future work, with the simple reading in of assignments manually typed into this script 

being adequate for present purposes. 

A.2.5 Visualisation 

Currently this function is a passive graphics generator, with no user control enabled.  To enable 

the graphics to run in real time a global background is generated on initialisation, as are a large 

number of image handles for the variable elements being represented.  How much of the agents’ 



 

 

206 

path history is to be represented is a variable the user currently has to set manually (choosing 

to show ten time steps back from the path history in the figures presented earlier in this thesis).  

Thereafter the function is called within the main control loop within AgentTestEnvironment 

for each agent after each action selection and state transition, leading to the erasure of the last 

most image handles and addition of the latest ones.  The effect is to produce a real time 

simulation of the agents moving around the simulated environment, and also featuring the 

‘target’ point for where the agents should be at that point in time if they were following the 

optimal policy without interruption or perturbation.  Visualisation has access to all global 

variables held within AgentTestEnvironment, including PathHistory that is compiled 

incrementally each time step by recording all state, action, transition and other data reported 

by Agent each time it is called. 

Pseudocode for this function is not provided partly because it is not relevant to the functioning 

of the core Q-learning algorithm, and partly because it is a lengthy series of image handle 

updates and native plotting tools, which would result in a long section of pseudocode that was 

not at all illuminating as to how the techniques proposed in this thesis actually function. 

A.2.6 StateIndexCalculator 

State is a (currently two dimensional) coordinate and a current time (within the episodic 

period).  These have to be enumerated by discrete integers to enable Q-learning, which requires 

a discrete number of enumerated states.  This script is therefore a coordinate transformation, to 

turn coordinates into discrete state numbers, representing the agent’s internal logic for where 

it is at and what its situation is.  In the original implementation this was limited to polar 

coordinates, but an updated version of the function has as an additional input variable the state 

space system being applied, and has within it the ability to apply polar or cartesian coordinate 

transformations as required. 

A nested function called InverseStateIndexCalculator does the reverse, transforming 

enumerated states back into physical coordinates (using whichever coordinate system has been 

specified amongst the inputs) for debugging purposes. 
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A.2.7 OptimalPolicyCalculator 

This function is called once by AgentTestEnvironment immediately following the calling of 

LoadAssignments and the loading of the user’s specified assignments to calculate what an 

optimal solution to the given problem would be.  This function would not exist in reality – after 

all there is no point having agents learning the solution to a complex problem if it were possible 

to explicitly calculate a solution a priori.  This function is included within this experimental 

simulation activity in order to determine whether the learning agents are indeed converging to 

optimal solutions.  For model fidelity, clearly the output of this function (the solution which 

the agents are trying to find) cannot be made available to the agents and is held in the main 

memory of the AgentTestEnvironment for later comparison (as well as to allow Visualisation 

to plot the target position when active). 

This function works by accessing the global variable Assignments that contains all the 

assignments that have just been read in by LoadAssignments.  One of the reasons for using 

simple orbits in the introductory problem (and regular polygons thereafter) is because these can 

be defined by waypoints and required times to reach each waypoint.  It can be easily determined 

how many time steps will pass in the time it is expected to take to traverse a particular edge or 

arc length, and so expected positions at each intermediate time can be interpolated using simple 

rules written into this script.  Once this is known, at each time point in the episodic period the 

location the agent should have reached is known, and the optimal actions to take can be easily 

calculated and collated into an optimal policy array, which is returned as the output from this 

function for future comparative analysis. 

It is acknowledged that this simple calculation of an optimal policy is a deliberate consequence 

of the use of simple coordinate geometries and assignments that involve tracing out regular 

shapes, which is unrealistic in reality.  This has been done deliberately so that the true optimal 

policy can be derived mathematically without needing any learning – but then learning it 

anyway, to prove that the agents are learning, and to gather evidence and metrics about their 

learning.  This is also beneficial later because, knowing what the uninterrupted optimal policy 

should have been and being able to present this visually, makes it considerably easier to identify 

when complex emergent behaviours are subsequently being observed (i.e. recurring, orderly 

but limited deviations from this ideal pattern of behaviour followed by a speedy return and 

catch up). 
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A.2.8 Agent 

This function is the Q-learning agent that is the entity being modelled, tested and assessed.  It 

is called from AgentTestEnvironment for instantiation, and thereafter repeatedly called in a 

control loop, and the inputs received from the test environment and outputs returned to the test 

environment are the interactions of primary interest. 

In practice, one Agent function is repeatedly called for, simulating each of several agents.  This 

is making an implicit assumption that each agent within a multi-agent system would have 

similar control logic (in this case, each one being a Q-learner).  It would be possible to have 

multiple functions for Agent 1, Agent 2, and so on, but if one is assuming that all agents have 

the same control logic then this is adding complexity and multiple copies of substantially the 

same script for no obvious benefit.  An alternative approach which has been adopted here is to 

have a single function covering all agents, with all variables calculated and recorded within the 

agent being indexed by which ‘version’ of the agent (or which virtual agent) is being called 

each time.  This is achieved by requiring an agent index number as an input each time the Agent 

function is called.  The first time it is called with index 1, it initialises the agent with a number 

of persistent variables all indexed by 1, then when it is called again with index 2 it initialises a 

matching set of persistent variables all indexed by 2, and so on.  Then on all subsequent calls, 

the agent only uses those persistent variables corresponding to the current agent index, and 

thereby the whole multi-agent system has its decision making all contained within one function.  

[If there were a need to simulate agents with fundamentally different internal logic (i.e. not just 

using different parameters, but using different algorithms entirely) then this approach could 

still be followed by using conditional logic to determine which portions of code to apply during 

which instantiation, but it might be easier in practice to separate into multiple Agent functions 

in such cases.] 

Most information a Q-learning agent needs is internal to the agent, specifically the current Q-

value table (initialised as zero arrays) and a variety of fixed parameters.  These include learning 

rate 𝛼 and discount rate 𝛾 in the terminology used in Chapter 5.6, which are both written into 

the script as 0.5 in the initial implementation, but which could be varied.  This also includes a 

state space exploration rate which determines (in the learning phase) how often the system 

should take the current highest value action and how often it should take a lower value one, to 

ensure state space coverage and to determine through sampling what the true values are.  This 

was written into the script as 0.75 in the simulation runs presented in this thesis, but could also 
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be varied.  [It should be noted that different values could have been adopted for different agents, 

indexed using the agent index input described above, but this has not been explored in the work 

performed to date where the same parameters were used for all virtual agents to enable clear 

comparison of outcomes.  Applying different learning strategies amongst the agents might be 

an interesting direction for further work, but was an unnecessary complication at this initial 

proof-of-concept stage.] 

A Q-learner will have a number of internal variables, chiefly its policy and the Q-value array 

that places values on different combinations of states and actions.  In the current model, these 

are large arrays held in persistent memory so as to have a separate pair of arrays for each agent.  

It is how these arrays change from time step to time step that determines how the agent learns 

and how policies converge. 

Knowing the last action the agent took and its previous state, then the reward scheme (which 

is internal to the agent) will output the reward corresponding to the agent’s last move.  Given 

a defined set of actions, a current Q-value array, and all the internal parameters having been 

set, the currently observed state is the only additional piece of information needed to apply the 

Q-learning update formula (as defined in Chapter 5.6.6): 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

In this implementation, with the novel feature of action filtering, some additional inputs are 

also needed.  Binary variable WarningFlag and an array RestrictedActions (as determined by 

CollisionDetector) are also required as inputs to this version of Agent. 

The only output from a normal Q-learner is the selected action, as what consequence that choice 

has is not down to the agent (it is calculated and updated within AgentTestEnvironment and its 

subfunction Transition, and is affected by the choices which the other virtual agents make).  

For debugging purposes, as well as to monitor the rate of policy convergence, the Agent 

function also outputs a number of what would normally remain its internal variables – what its 

current policy is, but also how it is determining reward each time step, what its current Q-

values are, and some metrics describing overall state space coverage and state revisitation rates 

during learning.  These outputs play no part in the Q-learning process nor in updating the global 

state space by AgentTestEnvironment, but they are outputs to that function which are then 

collated into PathHistory, used in visualisations and in post-learning data analysis. 

Finally, one feature to note of the initial implementation of this test bed is that, at specified 

times and on completion, PolicyComparison can be called by Agent to compare the agent’s 
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most recent internal action selection policy (i.e. its internal Q-value array) against the pre-

calculated optimal policy solution (stored within AgentTestEnvironment as a global variable) 

to determine the rate of convergence to this solution (by comparing all elements of the array, 

and counting the number that match the optimal solution).  Although the global variable 

containing the true optimal policy is not used during the Q-learning, it was recognised after 

implementation that this was a curious way of setting up the PolicyComparison, to have it 

called from within the Agent function, when in reality an agent would not have access to global 

‘truth’ such as the pre-calculated optimal policy.  This was removed from the second version 

of the test bed, but for completeness it is correct to document here that this is the way this was 

originally implemented in the first version. 

Pseudocode for the Agent function is as follows: 

1. Initialise the necessary persistent variables and arrays. 

a. On first call, initialise all variables and create a subarray indexed with the first 

agent index number. 

b. On subsequent calls, create further subarrays indexed with each subsequent 

agent index number, until all variables exist with parallel subarrays for each 

virtual agent. 

c. [Note: Q-values hereafter form a structure with a set of 𝑛 subarrays, one for 

each agent from 1 to 𝑛; at this stage, all entries are zero.  The dimensions for 

each Q-value subarray are the number of states (as enumerated by 

StateIndexCalculator) multiplied by the number of possible actions (which is 

fixed), and for convenience these can be read by Agent from the global variable 

SimParameters within AgentTestEnvironment, as a one-off accessing of global 

information just to facilitate initialisation.] 

2. Set previous state and previous action for each agent to be empty initially. 

3. Initialise Policy (highest value action per state).  This has been implemented using an 

internal function called PolicyCalculator.  In the initial implementation, for each state 

in the state space in turn, PolicyCalculator first calls StateIndexCalculator to enumerate 

each state, then uses simple rules to exclude certain actions from states identified as 

boundary states (i.e. those on the edge of the grid cannot have a subsequent action that 

would take the agent beyond the edge of the grid).  Then a simple argmax function 



 

 

211 

identifies the highest value in that column of the Q-value array, and the index of that 

value is the number of the highest value action, which is therefore saved in Policy as 

the action to take when in that state.  [Note: Action filtering is applied at a later stage 

in this initial version.] 

Then for all subsequent agent calls, using only the relevant subarrays indexed by the agent 

index number included amongst the input arguments each time: 

4. If input variable WarningFlag is 1, filter the action space by taking the input variable 

RestrictedActions, and creating a new array PermittedActions whose entries are all the 

actions whose indices are not contained within RestrictedActions. [Note: This is the 

implementation of the action filtering step.] 

5. Extract previous state and previous actions for the relevant agent from persistent 

variables. 

6. Call RewardCalculator to calculate the appropriate reward given the current state 

(amongst the input arguments) and the past states and actions (from the persistent data 

accessed in the preceding step). 

7. Update the relevant Q-value subarray according to the usual Q-learning formula.  In 

pseudocode terms, this means for the recorded previous state and previous action, the 

entry in the Q-value array corresponding to that state and action ‘OldQ’ is replaced by 

‘NewQ’ = ‘OldQ’ + ‘LearningRate’*(‘Reward’ + (‘DiscountRate’*’MaxQ’) – ‘OldQ’), 

where the rates are stored within persistent variables and ‘MaxQ’ is simply extracted 

from the current Q-value array as being the maximum value in the column of the array 

corresponding to the agent’s current state.  Note that the set of available actions is 

limited to those actions whose indices appear in PermittedActions if WarningFlag is 1. 

8. Optionally, recalculate policy by calling the internal function PolicyCalculator again at 

this point.  [It is not necessary to do this every time during the learning phase, but it 

may be useful for debugging or for learning rate analysis.  A marker variable can be 

used to determine how frequently this is undertaken.] 

9. Each time policy is recalculated, call PolicyComparison to calculate how closely the 

agent’s current policy matches the pre-calculated optimal policy held in a global 

variable by AgentTestEnvironment but not otherwise used by this function.  How 

closely the current and optimal policies match is then recorded outside of the simulation 

test bed (and is used to create results like Figure 46). 
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10. Calculate next action. 

a. During the learning phase, firstly create a random number. 

b. If this random number is less than the fixed parameter ExplorationRate, 

randomly select one of the actions (limited to randomly selecting one of the 

PermittedActions when WarningFlag is 1). 

c. If this random number is greater than the fixed parameter ExplorationRate, 

follow current policy (either calculated in the preceding step, or from the most 

recently saved version in the persistent variables if not), and given the agent’s 

current state select the action whose index is the same as the index of the highest 

value element in the column of the Q-value array corresponding to current state. 

d. If the learning phase has completed and the test bed is set to continue simulating 

the learned policy for illustrative or analytical purposes, then follow the last 

calculated policy, as per above. 

11. Save current state and the action calculated in the previous step as the persistent 

variables previous state and previous action (because they will be the previous state and 

action by the next time that Agent is called with this same agent index number). 

12. Output the identified action.  Also output reward, Q-values, and other ‘internal’ agent 

parameters for debugging purposes or for analysis, even though these do not need to be 

outputs for the purposes of Q-learning. 

Also included within Agent but left out of the above pseudocode are some state space coverage 

metrics, to measure how comprehensively the agent has covered the state space and repeatedly 

sampled each state.  This takes the form of a ‘heat map’ of state visitations.  A reset marker is 

included amongst the state variables if it is beneficial to relocate the agent back to somewhere 

on the intended arc, so that the agent does not waste learning time resampling outlying low-

value regions of the state space.  This is an internal fix to speed up learning time, and can be 

deactivated if one is not concerned about lengthening learning times and prefers the simpler, 

purist approach of allowing sufficiently many random walks for a long enough period of time 

to ensure state space coverage and adequate sampling. 

Coverage metrics and learning reset markers are part of the mechanics of the simulation and 

do not play any part in the actual Q-learning process, other than a reset marker equalling 1 

resulting in Agent not conducting a Q-learning increment on that occasion (because the 
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observed transition would make no physical sense and does not correspond to anything the 

agent did or could have done that would make sense within its model, and as such any reward 

or Q-value update – if they could even be defined – would be misleading). 

A.2.9 RewardCalculator 

An agent only knows what state it was in and what action it took last time, and what state it is 

in now.  It needs to receive a reward in order to learn from it experience whether the previous 

action selection was a good choice from that state or not.  Due to the criticality and potential 

complexity of this function, it was implemented as a separate function from the rest of the 

Agent function.  In the initial simulation test bed, the approach that was selected was to issue 

a simple reward of +1 if the agent was on track and on time or ahead of where it should be, a 

reward of 0 if the agent was on track but behind where it should be time-wise, and a reward of 

-1 if it was not on track at all.  RewardCalculator therefore has as its input variables the agent 

index number, the agent’s current state, and the current time.  It then loads the assignment 

corresponding to that agent from the global variable Assignments within the 

AgentTestEnvironment function.  Then the nearest point on the arc that the agent is supposed 

to be following relative to the current state is calculated.  Current time is converted to episodic 

time (i.e. how far through the given episode is the agent, using modulo arithmetic).  Based on 

the relevant entry in Assignments, it is then a simple calculation whether, given episodic time, 

the agent is on time or ahead of schedule, or behind schedule, and the correct reward is then 

output accordingly.  Some data, including phase differences, are calculated and stored as 

persistent variables, with the idea being to enable increasing or decreasing rewards on 

subsequent steps depending on whether the agent is making up any lost time or falling further 

behind; however there was not time to implement this, and in the results presented in this thesis 

rewards followed the fixed reward scheme described here.  Whether a more complex system 

as envisaged would speed up learning time is something that could be investigated in future. 

It should also be noted that alternative reward schemes could be applied, either written into this 

script in place of the current reward scheme, or alternatively replacing this function with an 

alternative.  This was a further motivation for separating this function from Agent, because the 

logic inside Agent is unlikely to change from implementation to implementation, whereas the 

reward mechanism delivered by this function is likely to change from implementation to 

implementation, which is easier to manage if instantiated as a separate function. 
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A.2.10 PolicyComparison 

This function is used to compare the latest or final policies calculated by the agents against the 

optimal policy calculated a priori by OptimalPolicyCalculator.  This is purely for the purpose 

of determining how well the agents are performing and does not represent part of the agents’ 

actual deliberations.  As noted previously, it is acknowledged that having this function called 

from Agent is not representative of how a real agent would work.  It was implemented in this 

manner because policy iteration occurred inside the Agent function and was not, as originally 

implemented, available to any other function, so inserting the function call for 

PolicyComparison inside Agent was a practical solution.  An alternative and more logical 

approach was adopted for the second version of simulation test bed (by making use of global 

and persistent variables structures to make data notionally internal to Agent like policy readable 

to other functions), to remove any perception of illogicality from future versions of the 

simulation test bed. 

A.3 Experimental Simulation Test Bed for the Larger 

Scale Problem 

As noted previously, the rationale for rebuilding the test bed was that to effectively present a 

larger number of agents undertaking a larger number of concurrent overlapping assignments, a 

different geometry and a more diverse range of tasks was required than four agents tracing out 

the same orbit, effective though that first scenario was for proof-of-concept.  This prompted a 

change to a cartesian coordinate lattice, and the use of rectangular arcs that deliberately 

overlapped to ensure some agents would come into contact with each other as they learned. 

As a result, a second version of the simulation test bed was developed in order to simulate the 

learning process and the learned behaviours of a larger set of virtual agents learning acceptable 

patterns of motion in the ‘larger scale problem’ scenario as described in Chapter 8.2.2, as well 

as to calculate and record a number of performance metrics about the learning process for 

subsequent analysis.  A logical architecture for the simulation test bed built for the larger scale 

problem is provided in Figure 53. 
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Figure 53 – Logical Architecture of the Experimental Simulation Test Bed for the 
Larger Scale Problem 

 

By comparison to Figure 52, it is clear that the two test beds have many similarities.  The 

second test bed is an evolution of the first, with some common functions and other functions 

that are extensions or enhancements of earlier functions.  However several of the functions 

needed to be replaced to facilitate this larger scale model.  This presented the opportunity to 

revisit and improve a number of features within the first simulation test bed based on lessons 

learned. 

It is not proposed to describe the second test bed in as much detail as the first, given that many 

functions are the same or very similar.  The following describes the key differences from the 

first version, and should be read in conjunction with the detailed descriptions of the functions 

in the earlier version in the previous section: 

• The CollisionDetector function was removed from the simulated environment part of 

the test bed and replaced by ActionChecker inside the simulated agents part of the test 

bed, as a function now called directly by Agent.  This is more representative of realistic 

information flows within an agent-based system, with the ActionChecker function 

serving as a simple emulation of that agent’s proximity alert sensor.  ActionChecker 
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requires an additional input variable of the relevant agent’s index number as well as the 

agent’s current state, but it has access to global state information and can report back 

to Agent an AvailableActionList.  Binary warning flags and a restricted action list are 

no longer required; by calling this function from within Agent and getting straight to 

AvailableActionList, the agent is able to modify its own actions list and filter its own 

Q-value arrays automatically, removing the need for a number of additional sorting and 

sifting phases from Agent and other functions.  This is a more representative approach 

and a more convenient approach in terms of reducing the complexity of code in other 

functions. The functionality inside ActionChecker is the same as was inside 

CollisionDetector, based on simple rules written into the script to determine whether 

any next actions would lead to a state that another agent is already in. 

• The PolicyComparison function is removed completely, and replaced with a simplified 

version of the Agent function called ReferenceAgent, which is called from 

AgentTestEnvironment.  This change removed perhaps the most glaring concern from 

the first version, which was giving the agent notional access to the true optimal policy 

to calculate for itself how well it was doing.  Although for justifiable analytical purposes 

and carefully implemented so as not to corrupt the Q-learning process, this was 

nonetheless illogical in terms of information flows.  The alternative approach is to 

maintain a second set of (much simpler) virtual ‘reference agents’ based on a slimmed 

down version of the Agent function.  These reference agents are initialised at the same 

time as the Q-learning agents, corresponding one-to-one. At initialisation, they are 

loaded with the pre-calculated optimal policies, and only follow these throughout.  At 

each time step and for each agent, AgentTestEnvironment will first call 

ReferenceAgent and obtain a next action to inform the reference agent’s next step, and 

then call Agent and obtain a next action to inform the virtual agent’s next step.  

ReferenceAgent has all the Q-learning functionality removed and always follows the 

true optimal policy, whilst Agent is a Q-learner as before and operates similarly to that 

in the first version of the test bed.  AgentTestEnvironment maintains both, and is able 

to produce all the data for comparative analysis (such as the average mean error plots 

contained in Figure 49 and Figure 50) and to support visualisations (where the path of 

the reference agent is by construction exactly the same as the ‘target point’, denoted in 

Figure 45 by the red dots following the prescribed arcs).  Introducing reference agents 

transforms the simulation into one where the Q-learning agent is essentially learning to 
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follow or ‘keep up with’ the reference agent, and policy convergence can then be 

metricated by the mean square difference between reference and virtual agents – how 

well does the Q-learner mimic the reference agent, and when it is forced to deviate, how 

effectively does it catch up with and resume mimicking the reference agent. 

• As a consequence of the above change, OptimalPolicyCalculator as a test bed tool is 

replaced by DefineReferencePolicy as a function called by ReferenceAgent.  Each time 

ReferenceAgent is called to initialise a new reference agent associated with a particular 

assignment, one of ReferenceAgent’s first steps is to call DefineReferencePolicy for 

each newly initialised reference agent in order to generate and load a control policy into 

the relevant indexed subarray within ReferenceAgent, after which this policy is the one 

followed by ReferenceAgent throughout the simulation.  The functionality inside 

DefineReferencePolicy is the same as was inside OptimalPolicyCalculator in the first 

version of the test bed, still based on user-specified pre-determined rules but operating 

in this case on the new type of assignments based on cartesian coordinate logic. 

• PolicyCalculator is separated from the main script of Agent to become a separate script, 

called by Agent when required.  This was to support future generality.  The basic 

operation and internal logic of the function is the same as in the first test bed. 

• LoadAssignments, StateIndexCalculator. RewardCalculator and Transition have all 

been extended to reflect new geometries.  All still operate on defined rules written into 

the scripts, but now feature the ability to recognise the coordinate system being used in 

a particular implementation and apply one set of rules or the other.  They have already 

been described in the previous sections. 

• Changes have been made to data structures throughout the model, principally 

concerning the use of global and persistent variables and ensuring the information flows 

are more representative of real agent-based system information flows.  More simulation 

parameters useful for analysis and debugging are held within global variables in 

AgentTestEnvironment, reducing the number of inputs and outputs being passed 

between functions, and improving the comprehensibility of the functions. 

The AgentTestEnvironment and Agent functions had many consequential amendments as a 

result of these changes, primarily to variables names, inputs and outputs, and where key 

parameters are obtained from given the changes to data structures.  These follow from the 

changes described above and are not listed individually. 
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In addition, the AgentTestEnvironment function has also been amended to record the key 

PathHistory data and a record of policies (both Q-learned and reference policies) to facilitate 

offline data analysis and plotting after the simulation has concluded.  None of these 

amendments change the basic logic of this function.  The pseudocode presented in Chapter 

A.2.1 is essentially the same for the second version, other than: 

• Step 3 (calling OptimalPolicyCalculator) and Step 7a in the control loop (repeatedly 

calling CollisionDetector) are omitted. 

• Step 4 (calling Agent 𝑛 times with a different index number to initialise 𝑛 virtual agents) 

now needs to be read as 𝑛 pairs of calls to Agent and to ReferenceAgent, to initialise 𝑛 

corresponding pairs of virtual and reference agents. 

• Within the Step 7 control loop, each time Agent is called to identify its chosen next 

action, the corresponding ReferenceAgent should also be called (to move the ‘target 

point’ along to its next state as well). 

• An additional step is added at the end, to conduct the external data recording. 

The second version of the Agent function also has some amendments.  The pseudocode 

presented in Chapter A.2.8 for the Agent function is essentially the same for the second version, 

other than: 

• In Step 3 and Step 8, using PolicyCalculator is now an external call to a separate 

function. 

• Step 4 is replaced. WarningFlag and RestrictedActions are no longer provided inputs.  

Instead, at this stage in the control loop, ActionChecker is called and produces 

AvailableActions, and the action space and corresponding value arrays in the rest of the 

control loop are then filtered based on this. All references to actions in the Agent 

function’s pseudocode after this point should instead be read as references to 

AvailableActions when considering the second implementation. 

• Step 9 (PolicyComparison) is omitted.  This is now assessed offline based on data 

recorded by AgentTestEnvironment. 

The key Q-learning stages (steps 5 to 11, other than step 9) are the same as in the earlier version, 

other than for using AvailableActions and filtered action arrays throughout the loop rather than 

filtering in real time.  The policy update rules are the same as described in the earlier 

pseudocode. 
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Finally, pseudocode for the ReferenceAgent function is a slimmed down version of the 

pseudocode for the Agent function, removing all the steps related to Q-learning and inserting 

an additional call to DefineReferencePolicy on the initiation of each reference agent. 

With reference to the Agent function’s pseudocode, the ReferenceAgent function’s pseudocode 

consists only of: 

• Step 1 (including additional initialisation calls to DefineReferencePolicy for each 

agent). 

• Step 3 (which is reduced to be a look-up from the calculated reference policy). 

• Step 10 (only allowing the option of following a defined policy, with no learning mode 

or exploration rate). 

• Step 12 (only outputting the selected action is required, but outputting any other 

parameters for debugging purposes is optional). 

All other steps from the Agent function’s pseudocode are not a part of ReferenceAgent’s 

pseudocode. 

A.4 Areas for Future Improvement 

Through the development and use of two versions of the experimental simulation test bed a 

number of ideas for future improvement or enhancement have been identified, and for both 

completeness and posterity these are summarised below: 

• To support future generality, allowing AgentTestEnvironment to be initialised with a 

user-specified coordinate set up from a range of options (polar and cartesian, with the 

potential to introduce others) rather than writing this directly into functions’ scripts. 

• Introducing 3D coordinate systems and assignments, more representative of the 

physical movements required in real examples such as production line automata. 

• Using graphical interfaces tools (such as pointers and image handles) to allow user-

specification of many assignments and parameters via Visualisation rather than through 

editing of the scripts.  Potentially this could also facilitate real-time adaptation, either 

through changing assignments, or through introducing additional assignments or 

obstacles, in order to test robustness. 
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• Introducing ‘pop up’ obstructions, to test the agents’ adaptability and robustness.  This 

would have been possible within the existing versions by directly editing the functions’ 

scripts, but was not pursued as it would have been a distraction from the primary 

research objectives given that the problem had already been designed so that the agents 

would cause obstructions to one another. 

• Exploring not-1-to-1 mappings of assignments to agents was considered.  This was not 

pursued because it is not clear how realistic it would be to implement a real system in 

this manner; however this may be an interesting avenue for theoretical investigation. 

• Exploring dynamic re-allocation of assignments to agents (i.e. job swapping).  

Alternatively, exploring the addition of new assignments and agents partway through 

the other agents’ operation (i.e. forced replanning).  Either of these could be 

implemented through a relatively simple extension to the current functions.  This was 

not prioritised as these scenarios are unlikely to arise in a system with a stable 

configuration and fixed roles for its parts like a set of interacting production line 

automata, which was the primary exemplar in this work.  It may have more relevance 

to other applications, particularly assignment allocations within a fleet of autonomous 

vehicles, which was discussed in the main body of this thesis. 

• Improving the visualisation functions to highlight a permissible operating envelope for 

each agent (for example, a shaded or coloured band either side of the prescribed arc).  

This would communicate effectively that there was permitted flexibility for the agent 

when it needed to adapt, and the requirement was to demonstrate that the agent could 

demonstrate suitably bounded adaptation.  With the visualisation function as it is, this 

would make the figures produced cluttered and unreadable and so was omitted, but this 

would be a feature worth revisiting in future.  This is expected to be a particularly useful 

and informative feature to add to future test beds if simulating more complex problems 

that may feature different shapes and sizes of permissible operating regions for different 

agents, or which go further and feature dynamic permissible operating regions changing 

during run-time, which would be beyond the current test beds’ capability to illustrate. 

• Real time plotting of performance metrics such as policy convergence (similar to Figure 

46) and mean position error (similar to Figure 49 and Figure 50) would be useful for 

debugging activity, as well as indicating how such a simulation might be employed in 

reality were it to be further developed into a practical development tool. 
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There are two final observations to make regarding future directions for the test beds: 

• Developing real engineering tools was not a research objective for this PhD.  The test 

beds developed should not be considered to be prototypes for future tools.  Nonetheless, 

it is hoped that they provide a first look at what future tools for these purposes might 

look like, in the same way that the theoretical developments in the main body of the 

thesis are intended to provide underpinnings for what might in future become a 

recognised approach to system design and proving (in conjunction with further 

developments to the topics discussed in Annex C).  Transforming the test beds 

developed in this PhD into real tools would be a large development task rather than a 

research activity, and it is not necessarily the case that one would continue to use 

MATLAB for this purpose.  Whether or if alternative coding languages or software 

development environments should be applied would be one of the first questions that 

would need to be answered.  There would also need to be further design work 

considering how user interfaces would work, what kind of results and metrics would 

need to be presented to whom, and also (outside of the tool itself but of key importance 

to its design) how such a tool would fit into a recognised systems engineering processes, 

with accompanying documentation.  All of these elements would be necessary future 

work to bring the vision behind this PhD to fruition. 

• The assurance part of the overall systems design and proving challenge (introduced in 

Chapter 4.4 and discussed further in Annex C) is discussed in this thesis as important 

context, but was not part of the key research objectives.  As such, the simulation test 

beds have not been designed to support experimentation or visualisation of any such 

tools or techniques from this area of proposed work.  This would be an obvious area for 

further development of the test beds, in conjunction with further development on the 

theoretical underpinnings.  Ideas such as illustrating the permissible operating bound 

for each agent as proposed above is a step in this direction, as would be more complex 

implementations such as dynamic permissible operating regions, seen to be changing 

during run-time via the test beds.  If other techniques are identified in future as part of 

a more comprehensive solution to the assurance part of this problem domain (from 

computational geometry, fractal bounding methods, network discovery algorithms 

arising from the discussion of topological underpinnings in Chapters 5.8.2 and 5.8.3, or 

otherwise) then it would be valuable to explore whether these could be integrated into 

a common test bed, with the aim of providing an end-to-end solution. 
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Annex B 

B. Models for Alternative Applications 

B.1 Context 

Before the industrial exemplar aligned with Warwick Manufacturing Group’s research interests 

in automotive manufacture and digital lifecycle management was identified as an ideal case 

study for this PhD, two interesting application areas had already been identified as candidates 

on which to base a case study.  Some preliminary work was undertaken considering these 

applications areas, how models of multi-agent systems might be constructed as representations 

of these scenarios, and the complex emergent behaviours anticipated from them. 

Although these models became superfluous once the decision was made to concentrate on the 

production line automata case study, this annex presents the work that was conducted towards 

building up these alternative case studies.  There are two reasons for this.  Firstly, so the work 

can be seen and perhaps motivate further development of these alternative applications in future 

work, either by the author or by another reader of this thesis in the future.  Secondly, and 

perhaps more importantly, because nothing demonstrates the applicability of a system 

modelling approach to multiple applications better than having been seen to be applied to 

multiple applications.  The development to date of the logistics management and sensor 

coordination case studies is just that – evidence that, at least in principle, the mathematics 

developed and the modelling approach trialled within the synchronised automata problem 

domain in the main body of this thesis can be applied far more broadly, and this annex gives 

an indication as to how. 

B.2 The Logistics Management Problem 

Any large logistical deployment provides a perfect example of a large multi-agent system – for 

example, disaster response, humanitarian relief, or an emergency services or military 
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deployment.  Each division within the deployment has a requirement for supplies, including 

food, fuel, equipment for the staff, and many other items, and there are obviously practical 

limitations that affect who can have what quantity of which resource provided when, 

immediately setting up the potential for internal disputes over how best to allocate and 

distribute resources.  The challenge for the logistician is to make decisions about how best to 

support the deployment based on incomplete data and potentially inaccurate assumptions about 

what the current and foreseeable needs of the whole task force really are. 

The basic problem is that of the transportation problem, in which there are known supply bases, 

customer demands and costs for each route from supply base to customer, with the objective 

to minimise time and cost while meeting all demands within the evolving operation.  Classical 

techniques have sought to look for optimal solutions using algorithms, simulation and 

modelling, queuing, and stochastic methods to optimise or improve the real-world problem.  

But in reality optimality is only applicable to a static problem, and the logistics problem is 

dynamic and contextual, with requirements constantly changing, and as such appears to be an 

ideal problem to tackle using autonomous agents. 

Considering the logistic supply bases, distribution resources and end users as independent 

entities, it is possible to envisage the system operating an internal market, in which case the 

need of the individual to maximise their gain may not be to the overall advantage of the whole 

deployment if individuals are working with an incomplete picture of the relative priorities.  A 

balance between the individual’s gain and the overall gain would seem to be a more appropriate 

approach.  The question then becomes how one might apply a complex state machine approach 

to suitably manage the behaviours of the entities within this model.  Presented here is the work-

to-date on a candidate model for this task based on the principles developed in this thesis. 

B.2.1 The Agent Perspective 

It is assumed that: 

• There is a finite number of ‘types of resource’ which need to be distributed. 

• A finite number of courier agents handle the distribution, each of which can carry a 

number of ‘units of resource’ up to some specified maximum capacity for that courier. 

• Neither the total unit capacity nor the breakdown of different types of units that can be 

carried needs to be similar across different couriers. 
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• The world in which they exist is represented by a network of two types of nodes, supply 

depots (sources) and distribution points (sinks). 

• Between discrete time steps, courier agents can either stay at the node they are at or 

move along one edge of the network to a neighbouring node. 

• At a source, courier agents gain units of resource, up to their maximum capacity. 

• At a sink, courier agents deliver units of resource to the node, up to a maximum of 

whatever the courier is carrying. 

The state of a courier agent at each time step can be written as 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛, 𝑝), where 

𝑠𝑖 = number of units of resource 𝑖 carried and 𝑝 = current position in the network, for which 

there are alternative labels, the logical one for the example given being grid coordinates, so 

𝑝 = (𝑝1, 𝑝2) where 𝑝1, 𝑝2 ∈ {1,2, . . . ,5}, and so 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛, 𝑝1, 𝑝2). 

Each distribution point has a requirement for some number of units of each type of resource, 

and the goal for the system is to fulfil as many of these requirements as possible as expediently 

as possible.  The actions that a courier agent therefore has to take are a series of moves and 

deliveries.  Assuming they cannot instantaneously jump to their chosen node, possible actions 

can be defined as being a change in coordinate of one step in whichever direction is chosen (if 

permissible).  For example, a move to the right in the example model above would correspond 

to a state transition of 𝑝2 ↦ 𝑝2′: 𝑖 → 𝑖 + 1, or 𝑠′ = 𝑠 + (0, . . . ,0,0,1) = (𝑠1, . . . , 𝑠𝑛, 𝑝1, (𝑝2 +

1)), and the other possible moves can be defined similarly. 

Alternatively, a courier agent could choose to make a delivery, which corresponds to no move 

taking place but instead a transfer of some number of units of resource.  For example, a delivery 

of three units of resource 1 and one unit of resource 2 causes the state transition 𝑠′ = 𝑠 +

(−3,−1,0, . . . ,0,0,0). 

Note that when visiting a supply node and taking on extra resource, the state transition is just 

like making a delivery, only the quantities are non-negative and one can assume the decision 

as to how much is taken on is at least in part outside of the courier agent’s control (and in any 

event is constrained by the quantity of resources available at the supply node).  A simple option 

for initial consideration is to consider the supply process as being a separate decision process 

external to the courier (and so part of the courier’s environment). 
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Figure 54 – Logistics Model (Agent Perspective) 

 

Based on the template described above, a simple reward scheme might for a courier agent to 

receive +1 for every unit resource they deliver.  One may wish to include temporal discounting, 

to reward timely delivery (which would also require orders to not just be wish lists but 

requirements with a specified due date), in which case reward schemes such as +1 for every 
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unit delivered on or before the requested due date (which would presumably be defined as one 

of the time steps), and the ratio (due date divided by delivery date) for every unit delivered 

thereafter. 

There are many other factors that could be incorporated into the model, such as costs for 

travelling along particular network edges (or even incorporating a dynamic network, where the 

network edges and the costs associated with travelling along them can change, or even where 

the number of nodes can change).  One could also introduce costs for travelling with too great 

a load, prompting a decision about what the optimal load to carry will be in order to maintain 

flexibility to meet requirements without unnecessarily burdening oneself.  Other additions to 

the model can also be envisaged. 

B.2.2 The System Perspective 

Considering the logistical operation within a large organisation hierarchically, assume that the 

system as a whole consists of a central management hub, local (possibly mobile) bases, and 

distribution assets belonging to those bases.  Operational requirements flow from the central 

management down the hierarchy, until placed on an individual at the right point in the hierarchy 

to fulfil it.  In practice, organisational arrangements could be more complex than this, with 

more levels of decision making, maybe different lines of authority for different assignments, 

perhaps with different practices and processes. 

However, due to the dynamic nature of operations and the prospect of ‘live updates’ to 

operational requirements, this task assignment process will generally require at least some 

degree of flexibility and adaptability.  It is for this reason that much of decision making 

authority has to be devolved away from the central management, leaving them the role of 

providing the overall governance and guidance, as the ‘owner’ of all resources.  They have to 

consider not necessarily the particulars of the requirements themselves, but the overall capacity 

of the system to fulfil them.  The state information needed to represent this must therefore 

describe as succinctly as possible how the current resource distribution through the network 

matches up to the currently understood requirements on the overall system. 

It is assumed that: 

• The system can acquire new resource as it needs them (not realistic in practice, but the 

focus of this model is on the distribution problem, not the procurement problem). 
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• New resource will appear at a source node and is represented as the state of the node 

�̃� = (𝑠1, 𝑠2, . . . , 𝑠𝑛), defined similarly as for the agents (only without the notion of a 

position). 

• The courier agents could either have full, partial, or no knowledge of the resource levels 

at each source node.  This would be the designer’s choice.  (They will of course need 

knowledge of at least some of the requirements of the sink nodes, but not necessarily 

all.) 

• A system could be defined where the courier agents have the ability to reallocate 

resources already delivered to other nodes in response to subsequent higher priority 

requirements, which will require measures of resource availability at each node and the 

inclusion of each of these measures in the following definitions in the logical way.  It 

will also require the extension of the action model for the individual agents to include 

the collection of resource from sink nodes (positive delivery values). 

The total capacity of the systems is 𝑆 = (∑ 𝑠1𝑠,�̃� , ∑ 𝑠2𝑠,�̃� , . . . , ∑ 𝑠𝑛𝑠,�̃� ), or the n-vector giving 

the sum total of all resource in the system’s courier and supply nodes. 

The total requirement on the system is 𝑅 = (∑ 𝑟1𝑟 , ∑ 𝑟2𝑟 , . . . , ∑ 𝑟𝑛𝑟 ), where 𝑟𝑖 =

(𝑟1, 𝑟2, . . . , 𝑟𝑛)𝑖 is the quantity of each of the 𝑛 commodities required at node 𝑖. 

Choosing to not include the procurement problem into this model means that when ∑ 𝑠𝑖𝑠,�̃� <

∑ 𝑟𝑖𝑟  for some commodity 𝑖, the difference in commodity level has to be instantaneously 

delivered to the source nodes (whether this should be all at one node or separated over several 

is up to the designer).  This is entirely idealised procurement and supply, but adequate for a 

model where the focus of interest is on how the courier agents respond. 

In its simplest form, the actions on the system are essentially trivial.  A requirement for 

commodity 𝑖 at node 𝑗 is communicated to all couriers currently carrying this commodity, 

amending their goal profile.  More complicated models are possible however, for example 

passing the requirement (amending the goal profile, and potentially changing the community 

structure) to all couriers carrying commodity 𝑖 within some given number of steps from node 

𝑗, or to all courier agents, irrespective of their current possession of any of commodity 𝑖, that 

are within some other given number of steps from a source node.  This would be an interesting 

scenario for future experimentation. 
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Rewards for the system could be as simple as those described in the initial basic template, 

namely -2 for each unfulfilled requirements and -1 for each ‘exhausted’ courier agents at each 

time step.  Again, some experimental ‘tweaking’ will no doubt be useful, but a simple initial 

option is to define, at each time step, �̂� = ∑ �̂�𝑖𝑗𝑖,𝑗 + ∑ �̃�𝑖𝑘𝑖,𝑘 , where �̂�𝑖𝑗 = −2 when 𝑟𝑖 > 0 at 

node 𝑗 and �̂�𝑖𝑗 = 0 otherwise, and �̃�𝑖𝑘 = −1 when 𝑠𝑖 = 0 for courier agent 𝑘 and 0 otherwise. 

The next step with this model will be to produce a basic implementation with which to 

experiment, tweak as appropriate, and generally explore whether, as is believed theoretically, 

this set-up will produce observable – but understandable – complex emergent behaviours, and 

how one might use this understanding to respond to it. 

B.3 The Sensor Coordination Problem 

Modern sensors are complex systems, and to aid human users they increasingly feature greater 

levels of automatic processing built into them.  As technology advances, one should anticipate 

in the future having the ability to deploy networks of sensors that will be able to work together 

autonomously, with not just automated processing but also significantly reduced or even 

eliminated need for human involvement in the deployment and operation of the network.  

Security operations such as policing, protection of critical national infrastructure or security of 

events or public areas are the obvious examples, but alternative applications in ground or 

oceanic survey, disaster recovery and military applications can also be envisaged. 

Networked sensor management has a number of challenges that makes that it a domain ideally 

suited to autonomous agents: 

• Optimal sensor deployment and coverage is context dependent and may change with 

the evolving environmental conditions. 

• The computational cost of central management of this type of system is exponential to 

the number of sensors. 

• The system elements are not co-located and the management system must manage 

computational and information resources that are physically distributed. 

• Sensor networks may be dynamic systems that are affected both by the internal status 

of the sensors and by the effects of the environment. 
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• The system may be resource limited due to the individual sensor power and 

communications bandwidth available at any point in time. 

• In managing the network, it may be necessary to coordinate different sensors (and types 

of sensor) in order to achieve tasks that could not be achieved by individual sensors. 

In a given context, one can identify a set of potential decisions that will need to be supported, 

and thus the information required from the deployed sensors that will be needed to support the 

making of these decisions.  Sensor management could mean managing a set of sensors with 

respect to their capability, where one may wish for them to be deployed in order to achieve 

certain coverage, or to enable the sensors to extract particular information in order to best 

support the decision making process.   

In any such deployment, there will be a number of sensors each with a number of attributes 

such as their capabilities, position, and health.  For each sensor, the central ‘management’ could 

provide for it a set of prioritised objectives against which the individual sensors acting as agents 

could seek to provide the maximum return, and the effectiveness of such an approach could be 

measured using measurements such as coverage and accuracy. 

It is not necessary for there to be a networked sensor management problem that the sensors in 

the network be mobile or deployed, as there will be a degree of local control required for 

reorientation or refocusing of the sensor even for mounted sensors that remain in the same 

location (in addition to having digital settings to readjust as necessary).  However many of the 

most promising application areas, for example in survey work or in crisis and disaster 

management, will depend on mobile sensors fitted to mobile platforms such as UAVs.  

Therefore for an initial approach to tackling this problem domain, a network of mobile 

deployed sensors was considered, which have to manoeuvre themselves and set their sensing 

fields of view to provide the best overall coverage required to achieve their assigned objectives. 

As a starting point, assume a mobile sensor is maintaining coverage over a particular area, 

when a new requirement is received that requires it to take a detailed look at one specific 

location just on the edge of its current field of view.  This will require an adaption of some 

kind, either by a) reorienting the sensor in its current position, or b) moving the sensor to obtain 

a better look angle closer to the target location (the dynamics and control mechanisms for 

movement of the deployment platform being a separate issue neglected here).  To assist with 

visualising the problem, graphical representations are provided by Figure 55 illustrating the 

reorientation solution and by Figure 56 illustrating the relocation solution. 
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Figure 55 – Reorientation of Mobile Deployed Sensor 

 

 

Figure 56 – Relocation of Mobile Deployed Sensor 
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Which solution to take, or whether to take a hybrid solution (for example, moving part of the 

distance but also partly reorienting), is a detailed matter for the sensor experts and operational 

design specialists.  The key point for this discussion is that there are choices to be made with 

competing objectives to balance.  Reorient the sensor and it remains in the ideal position to 

resume overall surveillance at any time; however this will not result in the close up view of the 

particular target of interest that might be required.  Relocate the sensor and this may provide 

the best close up view of the target, however the deployment platform is now out of place, 

which may compromise the ability of that sensor to maintain overall coverage of the area as it 

used to and/or introducing a delay before the deployment platform could return to where it was. 

Generalising to a network of deployed sensors, consider the same situation where one deployed 

sensor is assigned the same task (to take a detailed look at one specific location just on the edge 

of its current field of view).  In the figures below, this is the bottom right of four deployed 

sensors illustrated.  The choices for that deployed sensor system are the same, reorient or 

relocate.  What is different is that, as part of a multi-agent system, other entities in the network 

might be able to adapt their own positions or fields of view to compensate for the impact of the 

reassigned sensor’s choice (either through collaborative planning or reactive adaptation). 

 

 

Figure 57 – Reorientation of One Sensor Prompting Reorientation of Peer Sensor 
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For example, Figure 57 above illustrates the situation if the reassigned sensor reorients itself to 

focus on the target of interest, and a neighbouring peer then reorients its field of view as well 

in order to maintain some level of coverage of the area formerly monitored by the first sensor.  

The overall coverage may not be as comprehensive as it was initially, but that is an inevitable 

consequence of the choice to reassign one of the assets in the sensor network.  However, the 

overall coverage given compensatory network adaptation should be better than had such 

compensatory adaptation not occurred (strictly speaking, the decrease in coverage is less that 

it might otherwise have been). 

For completeness, Figure 58 illustrates a similar potential compensatory mechanism where the 

reassigned sensor chooses to relocate in order to focus on the target of interest, and the 

neighbouring peer also relocates slightly in order to cover some of the first sensor’s original 

coverage area.  If one were to look only at the movement of the deployment platforms, 

situations such as this would seem like two autonomous agents with some dependency causing 

a correlation in their movements (perhaps a hidden dependency depending on the type of 

information communicated between entities and between levels within the system). 

 

 

Figure 58 – Relocation of One Sensor Prompting Relocation of Peer Sensor 
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Note that it is not prescribed that reorientation should prompt reorientation, and relocation 

should prompt relocation.  It may be better in a given context for the reassigned system to 

relocate but the neighbouring system to reorient itself to compensate, or vice versa.  Any 

compensatory action could involve multiple peers – for example, the two nearest peers could 

relocate or reorient themselves in an attempt to cover the first sensor’s coverage area, whilst 

the fourth may make a smaller reorientation or relocation to backfill any areas that those 

previous two sensors have now left with reduced coverage.  Much as the first sensor could 

choose a hybrid solution of partly relocating and partly reorienting, so could any of the other 

systems choose hybrid solutions as part of any compensatory response.  The key point is that 

relatively simple choices could lead to complex ripple effects across the sensor network. 

B.3.1 The Agent Perspective 

Suppose that the objective is to maintain maximum coverage of an area of interest, whilst 

maintaining the operational flexibility to be able to redeploy assets to focus on particular 

locations or objects within the domain.  Responsiveness to local developments motivates the 

devolution of decision making capability to local agents. 

For a simple model, consider the following simple model: 

• A number of autonomous sensor agents are trying to maintain coverage of a specified 

area of interest.  They can adjust their coverage area to improve their coverage of 

particular features or objects of interest. 

• It is assumed that there are a number of features or objects of interest, which the sensors 

will need to adapt to improve their coverage of. 

• Complexity may arise from the sensors making their own decisions as to how to adapt 

to cover the features of interest which may not correspond to the best global solution 

for maintaining coverage of the whole area of interest. 

Perhaps the easiest way to visualise the problem, and certainly the perspective on the problem 

prompted by the representation developed herein, is when adapting to focus on a particular 

feature means a geographical movement in order to follow another (perhaps moving) object.  

Figure 59 provides an illustration of this perspective.  However, similar logic would apply to a 

system that is moving in the sense of diverting its own resources to use a different type of 

sensor at the expense of another, or reorienting itself from one direction to another. 
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Figure 59 – Intelligent Mobile Sensor Network 

 

To model this system, one needs to define what is meant by the state of the agent, what are its 

goals, and what are the actions and rewards which determine the agents’ behaviour.  The state 

of a sensor agent can be described by its position with respect to the intended surveillance area, 

and its position with respect to the object of interest. 
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Additional complexity would result from describing the agent’s position with respect to 

multiple objects of interest, a possible solution for which is to have the system focus only on 

the nearest, or nearest not-otherwise-monitored, object of interest.  This should make the model 

more tractable but at the cost of making it even less likely that the overall system will be able 

to identify a globally optimal solution. 

In this simple case, a grid coordinate system attends to the portion of the state information 

relating to the individual agent’s position, and a candidate for the latter would be a 2-vector 

describing, admittedly coarsely, the approximate distance and bearing of the proposed target 

from the current position (or multiple such 2-vectors in the multiple targets case).  This gives 

a state of the form 𝑠 = (𝑥, 𝑦, 𝑟, 𝜃) for suitably defined coordinates, say 𝑥, 𝑦 ∈

{0,±1, ±2, . . . ±𝑛} for the local grid coordinates and 𝑟𝑖 ∈ {1,2, . . . ,2𝑛} and 𝜃𝑖 ∈

{0,45,90, . . . ,315} for the approximate range and bearing of the 𝑖th target from the current 

position. 

The action in this model is just a move, represented as a vector addition to the current grid 

coordinates.  In this situation however, the state transition is stochastic, because the state of the 

target is outside of the control of the sensor agent, and it will not be known ahead of making 

the decision what the range and bearing of the target will be. 

The goal is to maintain coverage of both the whole area and of particular targets, which are not 

necessarily complementary goals.  A reward scheme that might reflect this situation, working 

on a cellular lattice model as illustrated above, would be to give a sensor agent a reward of +1 

for each cell under surveillance that is in the target area and -1 for each cell under surveillance 

that is outside this area, in theory incentivising remaining within the target area.  Additional 

reward of +2 could be gained whenever a target of interest is under surveillance, incentivising 

actions that achieve this and thereby creating the possibility of conflict when this leads to an 

overlap with another sensor agent or movement outside of the target area. 

There are of course many alternative ways of weighting the rewards that could influence the 

resulting behaviour; whether the optimal policy that results from this particular suggestion for 

a reward scheme produces desirable behaviour from the sensor agents is something to be 

investigated through implementation.  In practice, parameter-tuning should be anticipated. 
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B.3.2 The System Perspective 

In the autonomous systems context, it is implied that there is at least some degree of human-

free decision making in the overall coordination and allocation of sensor assets.  The system 

perspective in this case means the software monitoring or coordinating the network, depending 

on the level of control required of the system in question. 

The state of the whole system must describe the current coverage of the target area.  This is 

trivial to formulate in this case; the number or proportion of monitored cells will suffice. 

The actions taken by the whole system could be of the form of an overrule of a particular sensor 

agent, which would be formulated the same way as for the agents. 

One could impose a reward of -1 for any cell under surveillance within the target area, and -2 

for any cell outside the target area, which is under surveillance by more than one sensor agent, 

to incentivise efficient use of resource.  A reward of -2 could also be imposed whenever any 

target of interest is not being monitored by any agents. 

Note that to implement this, some indexing of which cells are monitored by which agents will 

be necessary.  Also assumed throughout is that the sensor agents have knowledge (or can learn) 

where targets of interest are and where the boundaries of the total area of interest are.  In 

operational circumstances where either of these things can change, more interesting behaviours 

can be expected to result. 
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Annex C 

C. Bounded State Spaces and Safe 

Operating Regions 

C.1 Novel Approaches to Safety Assurance 

Safety assurance involves analysing a system for weaknesses inherent in the design.  To certify 

a system as safe, a systems safety engineer needs to gather evidence for a safety case, which is 

defined by Bishop and Bloomfield [12] as: 

"A documented body of evidence that provides a convincing and valid argument that a 

system is adequately safe for a given application in a given environment." 

Numerous techniques exist in conventional safety case analysis, including Fault Tree Analysis 

(FTA) and Failure Modes and Effects Analysis (FMEA), which examine what can go wrong 

with the system’s operation.  FTA identifies a failure that could occur, then shows which 

components need to fail to cause this failure, then which subsystems need to fail to cause that, 

and so on until a tree of causal links exists which captures the likelihood of that failure 

occurring.  FMEA takes an alternative approach of considering the system as a block diagram 

of system components, and tabulating the anticipated consequences associated with each block 

in the system failing.  All such methodologies are based on the fundamental principle of the 

predictability of the system’s behaviour under the circumstances the system is designed for and 

expected to operate in. 

Such methodologies can give high degrees of assurance that systems will operate as intended.  

However, the systems in question are typically closed systems in the sense that the system 

design constrains to some extent how the components interact with each other.  The phrase ‘to 

some extent’ reflects the fact that when systems fail it could well be because of consequences 

implicit in the design of the system that were simply not anticipated – for example, the critical 

resonant frequency of wobbly bridges was inherent in the design, but was not anticipated prior 



 

 

238 

to some of the infamous bridge collapses.  The same could potentially be true of any engineered 

system.  However, one would in general expect well-designed and thoroughly tested systems 

to behave essentially predictably and to allow the safety engineer to determine to an extremely 

high degree of accuracy what the possible types of system failure are and what circumstances 

will bring them about. 

In the world of autonomous systems, including agent-based systems, the situation is less 

straightforward.  Notwithstanding the potential complexity of the systems themselves, the 

applications one might envisage in difficult and dynamic environments will typically feature 

significant external or environmental influence on systems.  Furthermore, if operations are 

foreseen with multiple autonomous systems interacting with one another, or with changing 

mission plans, variable weather or hostile or disruptive action, then the operation of an 

autonomous system cannot be said to be closed (or even necessarily predictable) in the sense 

that one can control or reasonably anticipate virtually everything that can affect the system.  

This would be especially true for a system permitted to adapt to such problems as it encountered 

them.  Traditional safety assurance methodologies may struggle with inherently unpredictable 

and potentially chaotic operating environments anyway, but the notion of autonomous systems 

making decisions under their own authority and adapting to situations they find themselves in 

would seem to be incompatible with the notion of predictable behaviour.  With safety 

certification typically predicated by predictable behaviour, it is not obvious what could 

contribute to a formal safety case for a system intended to operate autonomously in such 

environments. 

The premise underpinning this thesis was that safety assurance could be undertaken with an 

assessment of whether or not the actions an autonomous system is allowed to take will result 

in bounded behaviour; whether the control policy will result in the system remaining within 

some bounded, ‘safe’ region of the state space.  Essentially, the idea is to remove the explicit 

need for absolute predictability of what will occur and replace it with a mathematically sound 

process for ensuring the overall behaviour of the system will not be unsafe.  If such assurance 

can be given, then autonomous systems could be deployed with at least some degree of 

adaptability for operations in dynamic environments, and the designer has some assurance that 

the overall system behaviour should not stray into operational states that are considered unsafe.  

The following subsections consider how this problem might be tackled. 

Note that throughout this work, ‘safe’ is loosely defined as those operating parameters the 

system is designed, permitted or desired to remain within – precisely what is meant by ‘safe’ 
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will depend entirely on the system in question and the operational context, and a formal 

definition of safety will not be given. 

C.1.1 Applying Novel Approaches to Safety Assurance 

The key concept to outline in this final annex is the proposal that geometric techniques for 

safety certification could be applied in practice.  The analytical approach would be to say that, 

given some initial starting point in the state space, a series of control actions defined by some 

policy produces an orbit through the state space.  The (typically continuous) trajectory through 

the state space that corresponds to this orbit will have to be assessed against whatever safety 

criteria have been specified (note that even when the state space one is using in a control model 

is a discretisation, in reality the whole of the continuous path the system takes will likely have 

to remain within the state space and not just the discrete end points). 

It would be helpful if the behaviour of the system can be shown to converge to a steady and 

predictable pattern; for example, in the experimental example developed as part of this PhD, if 

there were a solid body of evidence that agents have learned to trace out their required arcs, 

with any perturbation to avoid collisions being within an acceptable tolerance.  Analytical 

solutions might be useful if the steady and predictable patterns were an attractor of a dynamical 

system, but not all problems will meet this criterion.  Notwithstanding the problem of 

classifying whether an attractor (if it exists) is in a safe or unsafe region (and what to do if 

straddles both), a potential problem foreseen with this approach is that the action functions may 

not always be contractions (meaning in this context actions of sufficient impact to cause 

perturbations in patterns of behaviour to grow more pronounced).  Although assuming action 

functions are contractions is not unreasonable in traditional control problems (since one would 

not typically allow actions that are likely to lead to unstable behaviour) this might not continue 

to hold when adaptive behaviours are allowed – indeed, temporarily allowing state transitions 

of greater magnitude might allow a system to move away from an unanticipated local 

disturbance and might actually be safer in the long run.  However, allowing for such adaptation 

could lead to reachable state spaces expanding over time, and so potentially not converging to 

any bounded subset, safe or otherwise, complicating the application of techniques based on 

convergence to attractors even when such an attract can be defined. 

In effect, allowing autonomous systems to adapt to unpredictable environments (using the 

terminology from Chapter 4.5.1, moving from an approach (b) to an approach (c) level of 
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control) potentially complicates the use of traditional analytical approaches.  As an alternative, 

as part of the precursor work, Williams [68] considered the application of Iterated Function 

Systems (IFSs), further extended by Deeks (the author of this thesis) and Williams [23].  An 

original motivation for this PhD was for the author to continue to develop this research, into 

IFSs or a wider range of candidate solutions from computational geometry, but as noted earlier 

in this thesis this aspect of the research was parked.  What follows is an update of the earlier 

work from [23] with as much revision and extension as the author had undertaken by that point.  

However, the novel proposal, which is for a geometric rather than dynamical systems approach 

to forming a ‘novel safety assurance’ process, has not changed. 

The following flowchart in Figure 60 describes the main stages in the kind of safety assurance 

process envisaged.  The IFS techniques described herein for a traditional system (or amended 

versions of these techniques for adaptive systems) could then serve as a subsequent verification 

stage for the assurance and certification of the finalised optimal control policy. 

 

Figure 60 – The Proposed ‘Novel Safety Assurance’ Process 

 

Working with a toolset similar to that developed in the main body of this thesis, stage one 

would involve generating an optimal policy for the system to follow, perhaps based on training 

data gained from an artificial environment (it would not have to be a Q-learning algorithm in 

general – one should pick a solution method suitable to the problem in question).  Stage two 

would be primarily a simulation exercise, to highlight where any of the issues discussed might 

arise (concerning safe operating regions and ensuring the operating policy remains safe), to 

facilitate any subsequent (iterative) improvement of the control policy or refinement of the 
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model (depending on which is determined to be more appropriate).  Stage three would then be 

a performance analysis of how well the system performed against the necessary safety criteria 

when following its optimal control policy.  Note that, in practice, there might be many more 

stages than this, with more thorough training and assessment of control policies, and an 

investigation into the performance of such methods at identifying and classifying safe 

behaviours.  The process described above and the theoretical background that follows are 

intended to give a broad overview of the key stages that are envisaged. 

C.1.2 Safe Operation, Boundedness, and Optimal 

Control Policies 

The question considered in this annex is whether the mathematical models and toolsets 

developed for the complex systems control problem in the main body of this thesis can be taken 

further to also provide an analytical basis for the subsequent assurance problem – 

demonstrating and proving that the observed behaviours are safe and appropriate as part of the 

novel safety certification process proposed.  The end goal would be to have developed novel 

certification techniques for the purpose of verifying the bounded behaviour of an autonomous 

(or multi-agent) system with a hierarchical decision controller, with additional consideration 

given to the challenge posed by decision-making-under-uncertainty problems.  The connection 

with MDPs is that if an optimal policy for an assignment has been determined, using the 

techniques described in this thesis or otherwise, then that policy defines all the actions the 

system should take and thus determines the possible dynamics of the system in state space.  

Analysis of these dynamics should reveal whether or not the system can be said to be bounded 

within any particular region of the state space. 

Translated into the language of MDPs, the proposition is that the actions specified by an 

optimal control policy correspond to a safe policy when: 

a) The appropriate safe operating parameters define a bounded region of the state space, 

known hereafter as a safe operating region.  [Subsets of this are also safe operating 

regions, and they could be disjoint from each other in certain contexts.] 

b) The system operates within this safe operating region. 

c) The actions selected when in the safe operating region and following an optimal policy 

are bounded (in the sense that they do not take the system out of this region). 
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Condition (c) means that, given a system’s current state is within a safe operating region of the 

state space, the state transitions likely to follow from selecting the optimal action keep the 

system within this safe region of the state space.  Combined with condition (a), this means that 

an optimal policy that leads to state transitions being bounded within a safe operating region 

can be described as a safe policy.  The easily-overlooked condition (b) is required to ensure the 

system is in the safe region in the first place – the boundedness conditions are redundant if the 

system is never even in that region.  If these three conditions can be verified, this could be a 

valuable contribution to or even the basis for a safety case. 

Note that despite the comment that safe operating regions could be disjoint, in practice this 

would often not be useful since most applications will involve continuous movement of an 

autonomous system.  Passing through an unsafe region on the way from one safe region to 

another is still unsafe.  Since the possible applications for disjoint safe regions appear rather 

limited (software agent applications that deal with logical states are one possibility), these 

discussions focus on connected safe operating regions – connected meaning that all points in 

the safe region can be reached without leaving the safe region, analogous to the formal 

definition of a connected set from set theory. 

The next step is to consider these conditions applied to the simple MDP examples described 

during the development of the mathematical framework in this thesis (Chapter 5).  Referring 

back to the example of the grazing cow from Chapter 5.6.3, one could define a safe policy to 

be one which does not involve wadding across the stream (imagine the stream is now a much 

deeper, wider river following a torrential rainstorm).  If one starts on the right hand side of the 

river, the optimal and safe policies agree – you should stay there. Being on the right hand side 

of the river and following the optimal control policy together satisfy conditions (a) and (c) – 

assuming condition (b), that you are indeed on that side of the river, then behaviour can be said 

to be safe.  However, if one starts on the left hand side of the river they disagree – the optimal 

policy suggests you should risk a crossing and the safe policy says you should not.  In this case 

the system cannot be declared safe without first altering either the safety requirements or the 

optimal policy (the latter would typical involve redefining the system goals, via changes to the 

reward policy). 

The other simple example, featuring the crossing of a rickety bridge, has an optimal policy 

which implies that one should stay on the left hand side of the bridge.  The logical safety criteria 

would be to specify the left hand side of the bridge as the safe region, and then the optimal and 

safe policies agree and the system could be declared safe.  Problems arise with this example if, 
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for some reason, the right hand side were to be declared the safe region.  It would then be 

impossible to satisfy the safe and optimal policies simultaneously. Although this is 

acknowledged to be a rather artificial example as the right hand side of the bridge in this simple 

example is a terminal state, and it would be unusual to specify that a system is only safe once 

it has terminated.  The key feature being highlighted is the potential for inconsistency or 

disagreement and thus necessary trade-offs between safety and optimality. 

Figure 61 below illustrates a more general example of an optimal policy applied to a region of 

the state space being bounded within that region.  The arrows are the possible actions that are 

identified as optimal actions (i.e. those which maximise the expected return from the current 

state, or maximise the value of that state).  If the system is within the bounded region, where 

the bounds correspond to some prescribed safety criteria, then the bold purple arrows represent 

the safe and optimal actions corresponding to the safe region in question. 

 

Figure 61 – A Safe or Optimal Subset of the State Space 

 

The safe and optimal policies here do not match up exactly – there are other optimal actions 

identified that are labelled as potentially unsafe (black arrows out of the safe region).  If these 

can be explicitly identified then they can be deleted from the optimal policy (perhaps using an 

action filtering technique such as was introduced and demonstrated in the experimental activity 

within this PhD reported in Chapter 8), suggesting that in some cases the intersection of safe 

and optimal policies will suffice.  Note this will not always work, as the intersection would be 

an empty set if every optimal action were declared unsafe.  However, in many cases (such as 

the example illustrated by Figure 61), restricting a system’s choices just to those actions 

represented by purple arrows is both safe and optimal, and under such a policy the system could 

be declared safe (provided of course that the easily overlooked condition (b) is also satisfied – 

the system must be in the safe region in the first place for any of this to apply). 
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In practice, it should be expected that state space dynamics and the corresponding geometry 

will be more complex than identifying the particular state one might want to remain within (as 

with the two simple examples) or boxing off a corner of a discrete state space lattice (such as 

in Figure 61).  Higher-dimensional geometries would be characteristic of many problems, 

depending on which state space representation is most suitable for the system in question.  

Systems will also typically have continuous state spaces for most applications, and they should 

remain safe during state transition as well as in the state at each end of the transition (as noted 

above in the discussion about disjoint safe regions).  Depending on how the state space is 

defined, this could be an important and challenging consideration during the safety assessment. 

C.2 Iterated Function Systems and Fractal Geometry 

The vision of earlier research to which the author contributed [68],[23] was that the effects of 

action selections on the state space of a system should be modelled, within the MDP 

framework, as an Iterated Function System (IFS).  Each action selection is then an iteration on 

the system’s state space, leading to a corresponding geometric transformation of that state 

space and the geometric (typically fractal) pattern associated with that IFS emerging.  Analysis 

of these patterns should then help determine the safe operation of the system (or otherwise).  In 

this section, the key concepts behind IFSs and their fractal representations are summarised. 

[It should be noted that the background thinking and the innovation to apply the IFS formalism 

is not a contribution from the author directly.  The content of this subsection is based on work 

conducted in parallel to the author’s own precursor work and also draws from the well-known 

text by Barnsley [4], but it is necessary to explain it so that the author’s own contributions 

covered in the subsequent sections make sense.] 

An IFS is a set of functions {𝑤𝑖}𝑖=1,2,...𝑛, where each 𝑤𝑖 is a contraction mapping from some 

region of the state space to itself.  A contraction mapping is a mapping where, for all 𝑤𝑖 in the 

IFS and for some 𝑠 ∈ [0,1) (called the contractivity factor), 𝑑(𝑤𝑖(𝑥),𝑤𝑖(𝑦)) ≤ 𝑠 ⋅ 𝑑(𝑥, 𝑦) for 

any two points 𝑥 and 𝑦 in the state space. 

Since 𝑑(⋅,⋅) means the distance between the two points and 𝑠 < 1 by construction, the name 

contraction refers to the fact the mappings 𝑤𝑖 are bringing all the points closer together, literally 

contracting the state space.  As a series of mappings 𝑤𝑖 are made, the state space continues to 

contract towards an attractor, which can best be described as the set of points that remain 
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reachable after infinitely many mappings.  Typically, this attractor will be a fractal pattern in 

the state space. 

A formal definition is given by Barnsley [[4], p80, definition 7.1] along with much more 

background material on metric spaces that it is not necessary to repeat here.  (Technically, one 

has to ascertain that the state space in question and the metric with which one calculates 

distance is properly defined as a metric space in order for any of the following to be valid.) 

A series of mappings from the IFS on an initial starting point 𝑝 results in an orbit through the 

state space - a sequence of points {𝑝, 𝑤1(𝑝),𝑤2(𝑤1(𝑝)), 𝑤3 (𝑤2(𝑤1(𝑝))) , . . . . . } where each 

of 𝑤1, 𝑤2, 𝑤3, . . .. are chosen from the possible 𝑤𝑖 in the IFS.  Each combination of mappings 

𝑤1, 𝑤2, 𝑤3, . . .. selected results in motion around the state space that may seem arbitrary but 

does in fact correspond to that particular sequence of control actions in a deterministic way 

(sometimes uniquely). 

If the appropriate conditions are satisfied, then left to run indefinitely the orbit of some point 

in the state space will end up at or arbitrarily close to the attractor of the underlying IFS, which 

is the set of limit points for the orbits of any possible combination of 𝑤𝑖 that could have been 

selected.  A starting point on or sufficiently near to the attractor (formally, a starting point 

within the basin of attraction for that attractor) will lead to bounded behaviour, as the orbit of 

the point is guaranteed to converge to the attractor. 

To illustrate an IFS and its fractal attractor, the following is an adaptation of a common example 

of the Cantor set, which is an example widely used in the literature on fractals and more general 

set theory (Barnsley [4] and Falconer [31] are two of many examples). 

Consider the IFS over the two-dimensional state space 𝑆0 = [0,1] × [0,1] (for convenience) 

defined by the functions: 

{
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Each of these four functions is a contraction (since the state space is contracted by a factor of 

a quarter each time), and maps the state space to one of four corresponding but smaller subsets 
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of the original space.  Choosing another of these mappings and transforming the state space 

again, mapping the state space to one of sixteen even smaller regions of the state space. 

The two-dimensional Cantor set 𝑆𝑛 generated by this IFS is the set of all points that can be 

reached following a series of n such mappings.  Illustrated in Figure 62 below are 𝑆0, 𝑆1 and 

𝑆2 – the set of points one could be in after zero, one or two mappings.  What further iterations 

of the system will look like from here following further such mappings is hopefully clear. 

 

S0 S1 S2 
 

Figure 62 – Two-Dimensional Cantor Set Generated by an Iterated Function System 

 

The attractor of this system is the set of reachable points after infinitely many of these 

mappings, which will be a totally disconnected (i.e. no point in the attractor connected to any 

other).  This is the same set as the set of all the limit points of the IFS.  This is impossible to 

illustrate, but hopefully the reader will have in mind what this would look like.  Since the 

mappings in the IFS are all contraction mappings, for any point in the original state space 𝑆0 

and any combination of mappings 𝑤1, 𝑤2, 𝑤3, . . .. then the orbit is guaranteed to be arbitrarily 

close to the attractor after some number of mappings. 

The problem that may arise with this mathematically simple construction is that a totally 

disconnected attractor may not allow for paths between points in the attractor to remain within 

the attractor themselves.  In Figure 62, for example, it is easy to see that the bottom left most 

point (0,0) and the top right most point (1,1) are both within the attractor (both are reachable 

by one of the mappings 𝑤𝑖 and will remain so at all time steps), but after just one iteration it is 

no longer possible to draw a path between them without passing through unreachable points. 

This is important because of the discussion in the previous subsection about disjoint safe 

regions – if the eventual aim is to have the IFS modelling the control actions decided by a 

system controller, and the system is meant to operate safely, then it is not just the attractor of 
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the system which should be within the safe operating region.  Paths between reachable points 

must also be within the safe operating region.  But if the attractor is totally disconnected and 

spread across the entire state space (as in this example), then the safe operating region must 

either be a set of disjoint safe operating regions or be one safe operating region covering much 

if not all of the state space.  In the former case, state transitions (mappings from point to point) 

cannot be said to be safe even when they appear to be (because the trajectory between two 

points in safe regions of the state space passes through potentially unsafe regions) and in the 

latter case any further analysis is trivial since virtually every state and possible subsequent 

transition is deemed to be safe. 

The proposed solution to the problem of connectedness is related to the concept of code space 

and the labelling of different orbits with the combination of mappings necessary to reach the 

current point from the starting point.  Barnsley covered this in detail and Williams summarised 

it [68], and it is not necessary to repeat the detail here.  The important point is that the attracting 

regions need to be made to overlap (which includes simply bordering each other) so that 

transitions through the state space can remain in safe operating regions.  Williams provided an 

example of this concept, by modifying two of the functions in the IFS defined above: 

 

{
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Now, the sets 𝑆0, 𝑆1, 𝑆2 are: 

 

 

S0 S1 S2 
 

Figure 63 – Modified IFS’s Reachable Set (featuring overlap) 
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This IFS has resulted in a continuous path in the state space from the bottom left corner to the 

top right corner, and this path will be there in all reachable sets 𝑆𝑛.  In the area along the 

overlapping diagonal, the system has a choice of paths from point to point, just as one would 

require of any real-world system (albeit a constrained choice of paths).  This is more like the 

shape of attractor that will be needed by any practical control system. 

Unfortunately though, because of the ambiguity inherent in an overlapping IFS (there are points 

that can now be reached by more than one combination of mappings, rendering the behaviour 

non-deterministic) the system is now considerably harder to analyse.  One solution Williams 

recommended for this problem was to make use of Barnsley’s Shadow Theorem [[4], IV 

section 6].  By imagining the fractal pattern is actually the shadow of several separate reachable 

sets in higher dimensions (in this case, the two dimensional shadow of a three dimension family 

of reachable sets) it is possible to define entirely deterministic orbits through the state space 

even if the paths between points pass outside these sets – these reachable points and the 

permissible paths between them could all lie in the contiguous shadow of the fractal.  This was 

illustrated with the following diagram: 

 

 

Figure 64 – Illustrating the Shadow Theorem 

 

It was not thought possible to go into any greater detail, because how to construct such shadow 

projections would be highly dependent on the particulars of the system in question, and would 

therefore best be illustrated by detailed analysis of a case study.  This work has yet to be 

undertaken.  As usual, further detail on the theoretical principles can be found in Barnsley [4]; 

the key point for this discussion is that an IFS that produces disconnected attractors (and thus 
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disjoint safe regions) may still be able to produce continuous trajectories between points if 

appropriate shadow projections can be constructed. 

It is important to specify the difference between the attractor and the basin of attraction for a 

system.  The attractor is the set of limit points to which the series is converging.  The basin of 

attraction is the set of points that will, given enough mappings, converge to this attractor.  

Ideally of course the basin of attraction will be the entire state space and the analysis will be 

simpler, but unfortunately this will not generally be the case.  It is easy to imagine a system 

with two or more attractors, where from some states one attractor is reachable and from other 

states the other attractor is reachable (think about some over-balancing object and the 

difference between being at a small angle on each side of the tipping point). 

The attractors themselves are either safe or unsafe (neglecting the possibility that the attractor 

straddles safe and unsafe regions).  To assess the safety of the system, one must consider 

whether the basins of attraction for those attractors representing safe behaviour: 

• Are entirely contained within the safe operating region of the state space; 

• Contain all of the allowed initial conditions. 

If both of these are true, then the system can be said to be safe (at least in normal operation). 

A slightly weaker form of this assurance is that: 

• The attractor is entirely contained within the safe operating region; 

• The basin of attraction contains all the allowed initial conditions; 

• All trajectories leading from the allowed initial conditions to the attractor are disjoint 

from any unsafe regions. 

If all of these are true, then the system can also be said to be safe (at least in normal operation).  

Note however the additional condition imposed, namely that if the basin of attraction intersects 

any unsafe regions, then one must restrict the system only to those trajectories that remain in 

the safe region, which will require additional analysis.  It would in general be preferable to 

have the entire basin of attraction within a safe region, but whether this is possible will depend 

on the particulars of the system in question. 

Note that if an attractor straddles safe and unsafe regions, it will be more difficult to follow 

these safety criteria.  It is unclear how to deal with this eventuality within the IFS framework, 

and typically one would have to consider using a different set of mappings and/or a different 
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state space representation that better incorporates the safety criteria from the outset.  Indeed, 

designing the system’s controller in such a way that it is more amenable to safety assessment 

will be important, although it is unfortunate that it is not always clear from the outset how to 

do this – one possible approach to engineering safe behaviours into the controller is one of the 

features demonstrated by the model developed in this research (see Chapter 5).  Avenues for 

further investigation remain regarding how to deal with attractors that are not clearly safe or 

unsafe. 

C.3 Assurance of Complex Multi-Agent Systems 

The goal that motivated this PhD was to begin to translate these concepts into the context of a 

complex or multi-agent system.  The earlier proposals for ‘novel safety assurance’ techniques 

for autonomous systems are a logical place to begin, since agents within a complex multi-agent 

system are a form of autonomous system.  Whether any of the theoretical discussions about 

convergence of dynamical systems, novel geometric constructions and safe operating regions 

within state spaces could be translated into this more complex problem domain was not clear, 

given that the prior theoretical treatment was for a single autonomous system and in any case 

was only a proposition, but this was one of the original research intentions behind this PhD. 

The annex has been structured as it has for a reason.  The preceding subsections are a summary 

with only minor revisions and updates of some relevant mathematical background and some 

earlier work led by Williams which the author of this thesis only played a supporting role in.  

The remainder of this annex picks the story up from there, and is the author’s own work, 

revisiting the earlier content, considering how feasible it would be to extend it to the domain 

of interacting autonomous systems and ultimately into the domain of complex multi-agent 

systems, and presenting the author’s thoughts on where and how these proposals might be 

applied.  Some updated conclusions and recommendations are provided at the end. 

C.3.1 The Iterated Function System Model 

Traditional control is concerned with two issues: the correct behaviour of the controlled system, 

and its stability.  In relation to safety assurance, the notion of ‘correct’ behaviour is simplified 

to ‘bounded’ behaviour, and the aim is to identify methods which discover the bounds of the 

reachable region of state space, which can be equated with the bounds of the behaviour of the 
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system.  However, there is a strong connection between boundedness and correct behaviour, 

and the proposed modelling methodology summarised in the previous sections may provide a 

means to investigate this. 

The IFS approach is a finite set of mappings on a suitable metric space which, after infinitely 

many mappings, produces a fractal pattern.  This seemingly abstract piece of mathematics 

provides a potential mechanism for constructing models of the reachable state space of a 

system, if the functions in the IFS are representations of control actions and the space on which 

the IFS operates is an appropriate system state space.  Finite numbers of mappings may not 

produce formal fractals, but might provide the necessary mathematical structure to analyse the 

span of reachable states. 

The earlier work considered the possible application of this approach to autonomous systems 

applications, and the integration with the MDP control approach to produce an integrated 

design approach for autonomous systems.  Given the ‘fit’ of the MDP control approach and the 

proposed IFS assurance approach, and the generalisation of the MDP approach to support a 

whole spectrum of complex systems paradigms as covered in this thesis, it is logical to consider 

whether the IFS approach can similarly be generalised to a spectrum of more complex systems, 

including complex multi-agent systems. 

First however, it is important to document some of the modelling assumptions that underpin 

the IFS approach (in addition to all those assumptions listed in the previous section).  Formally 

(adapting Barnsley’s definition), each possible action selection is required to be a function 𝑎𝑖  

acting on state space S, where (𝑆, 𝑑) forms a metric space with a suitable metric d and each 𝑎𝑖  

is a contraction mapping.  Note that, for this model to be valid one has to assume that each 

action 𝑎𝑖  can be approximated by an affine transform 𝑇𝑖(𝑠) = 𝐴𝑖𝑆 + 𝑏𝑖, where 𝐴𝑖  is a linear 

transform and 𝑏𝑖  is a constant vector in the state space. 

Two concepts to introduce for the unfamiliar reader are that of the metric space and the 

contraction mapping: 

• A metric is a distance measure which has to satisfy particular properties (positive 

definiteness, symmetry, and the so-called triangle inequality), a similar concept to but 

not the same as a norm.  A mathematical space coupled with a suitable metric defines 

a metric space.  Familiar Euclidean geometry with the normal ‘distance’ metric 

qualifies as a metric space.  However, there are many other kinds.  Generally speaking, 

most state spaces in which human-designed systems will operate in will be metric 
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spaces, and this issue will not be addressed further herein.  However, many of the 

necessary analytical assumptions would require this to be formally verified before any 

analysis can be considered valid. 

• A contraction mapping is a particular kind of mapping on a metric space that requires 

that two points in the state space prior to the mapping cannot be moved farther apart by 

the mapping.  A constant known as the contractivity factor, which is a positive value 

strictly less than 1, is the maximum ratio of the distance between the images of the two 

points in the state space after the mapping has taken place compared to the distance 

between the two points before the mapping took place. 

Contractivity does initially seem to be quite a restrictive condition to place on a control 

function, but what it corresponds to is guidance that all actions selected by the controller do 

not deliberately cause the divergence of the system in state space.  Considering that the state 

space representation is meant to be a reflection of the real behaviour of the system in normal 

space, divergences in state space should correspond to divergences in the real world which 

would generally be undesirable, and therefore such a restriction is not unreasonable. Some 

loosening of this requirement, in terms of allowing slightly more flexibility from the controller 

as long as the potentially digression is strictly less than certain parameters linked to the degree 

of environmental perturbation has been explored previously (Williams’ half of [23]). 

How does this help with determining the boundedness or stability of the behaviour of an agent? 

The answer is that, provided all the relevant assumptions are valid and given suitable state and 

action spaces have been defined, the range of possible actions available to a system controller 

can be represented as an IFS, and the consequences of the control policy that the controller is 

following duly correspond to particular trajectories through the IFS.  The IFS formulation is 

particularly useful because the mathematical apparatus for IFS’s will carry over directly to the 

assurance problem.  A series of mappings from one of the actions defined as part of an IFS 

creates a series of subsets of the state space that the agent should now be in. 

The boundedness condition can be difficult to demonstrate.  Simple algorithms can be found 

in the literature on computer graphics (for example Edalat [29] and Chu and Chen [19]), but 

these only attempt to discover simple closed convex spaces: boxes and spheres.  While these 

are adequate for the purpose of displaying a fractal on a monitor, they do not address the more 

complex issues which arise when a specific operating envelope must be achieved.  Fractal 

bounds are proposed as a possible approach to a more general solution for this problem. 
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C.3.2 Overview of the Proposed Approach 

Traditional approaches to assurance involve the detailed analysis of a system’s design, to 

provide evidence of its compliance with those requirements that it is expected to satisfy.  This 

includes detailed analysis of documentation, formal design reviews, techniques such fault tree 

analysis or others, techniques based on the application of first order logic, and other inputs, 

depending on what is suitable for the system in question.  The goal is to build a body of 

evidence that demonstrate the acceptable behaviour of a system.  Multi-agent systems are an 

example of an emerging technology area where the systems have become too complex for this 

to be practicable, complete or reliable (i.e. the system complexity is too big for humans to 

reliably assess, and to be sure of how reliably they have assessed), and, as discussed in Chapter 

4.4, where the risk of complex or emergent behaviours is a significant stumbling block, which 

is not accounted for at all by traditional approaches. 

In practice, techniques to model, understand and analyse complex behaviours are expected to 

supplement other inputs into the assurance process, rather than be an end in themselves.  Note 

that it is often the performance requirements (as opposed to the procedural requirements) that 

become particularly difficult with increasing system complexity, and nothing in these 

discussions is intended to apply to procedural aspects; for example, validating the software 

engineering methodologies followed.  It is specifically understanding the ‘holistic’ system 

behaviour and understanding the implications of complex system designs that is the particular 

‘missing link’ that this work attempts to address. 

 

 

Figure 65 – Novel Assurance for Complex Systems 
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Figure 65 represents the relationship between the proposed approach to the analysis of system 

behaviour and ‘normal’ assurance, supplementing the conventional approaches with additional 

analysis of the whole system behaviour.  This should capture more information about any 

emergent ‘subtleties’ in behaviour that might otherwise have been missed, which should 

provide a higher degree of confidence in the thoroughness and fidelity of the assessment. 

C.3.3 Geometric Representation of Requirements 

The essence of the proposed approach is to represent the full span of possible behaviours 

geometrically, generated by an IFS, and determine the compliance (or otherwise) of this span 

against a geometric representation of the requirements.  The IFS will provide the geometric 

representation of behaviours and some of the analytical tools, but first there is a question as to 

what is meant by a geometric representation of requirements. 

It is important to reiterate the distinction between procedural compliance (not addressed by 

this work) and performance compliance.  To formally validate system performance, it must be 

possible to appropriately metricate system requirements.  Requirements of the form “The 

system shall be efficient” (which the author has seen in a genuine customer requirements 

document) do not have any formal or parametric meaning, and are impossible to metricate.  Of 

course, unmetricated requirements are generally not enforceable anyway due to ambiguity in 

what they really mean.  The important point is that this work is focused exclusively on 

demonstrating compliance with formally metricated requirements; for example, “The operating 

temperature shall not exceed x degrees” or more pertinently “Controlled deviations from the 

required trace shall not exceed x metres” (relating back to the experimental models presented 

in Chapter 8). 

Assuming such, the logic of the IFS approach is as follows: 

• If the state of a system is described or measured by some set of quantifiable parameters; 

and 

• If the behaviour of the system is the observable or measurable progression between 

states; and 

• If the requirements expected of a system can be defined as a range of allowable states, 

and hence a set of allowable parameters; 



 

 

255 

• Then behaviour compliant with requirements means that the span of reachable states is 

either within, or can be constrained to be within, the range of allowable states 

(parametrised as appropriate). 

Suppose, for example, that the state of a system can be adequately represented by two variables 

𝑥 and 𝑦 (for example, displacement and temperature, position, and time...).  Performance 

requirements could take the form of bounded or unbounded operating regions, for example:  

 

 

Figure 66 – System Performance Requirement Translated into Geometric Envelopes 
within the Reachable State Space (1) 

 

 

 

Figure 67 – System Performance Requirement Translated into Geometric Envelopes 
within the Reachable State Space (2) 
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Given the full set of applicable requirements, from the customer or from any relevant regulatory 

authorities, this should be compiled into the overall permissible state space, or the ‘operating 

envelope’.  In theory, it should not be necessary to do any more than to accurately define the 

starting point and the possible reachable state space implied by the system’s control algorithm 

(by generating the reachable span by interpreting the control algorithm as an IFS), and to 

compare this against this identified allowable span. 

 

 

Figure 68 – System Performance Requirements Translated into Geometric Bounds 

 

In reality, state spaces will generally not be convenient two dimensional spaces, and acceptable 

state space ranges will not generally be a set of overlapping circles and rectangles.  Interpreting 

requirements will often be more complicated and more subtle than this.  The actual operating 

region will in general be a composition of different regions of different combinations of state 

space variables, with the overall ‘operating envelope’ described by a set relation consisting of 

a suitable composition of set unions, intersections and complements corresponding to the 

appropriate requirements. 

In general, requirements may imply a disconnected or even discrete set of permissible states.  

Not only is this harder to visualise but the allowable state space created from the composition 

of all the requirements could also be disconnected or discrete.  However, this is not inconsistent 

with the allowable operating region being described by a composition of set unions, 

intersections and complements, nor is it inconsistent with the representation of a control 

algorithm as an IFS.  That the same representation can simultaneously include continuous and 

discrete variables as part of an overall operational boundary for the whole system is the primary 

reason for advocating the IFS approach. 
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A few other points to note: 

• The proposed approach has some logical similarities to the conventional ‘formal logic’ 

approach to demonstrating compliance. 

• Actually representing the permissible state space graphically is not necessary, presented 

here for illustrative purposes.  Indeed, higher dimensionality and increasing numbers 

of state space variables would rapidly make a visualisation difficult if not impossible to 

even produce, never mind for a systems safety practitioner to draw meaning from.  In 

practice, as which much modern geometry, analysis would have to be done numerically, 

by computer. 

• ‘Geometrically representing the requirements’ really means ‘A geometrically inspired 

method for compiling the requirements’.  The logical nature of the requirements 

themselves, and what they imply for the allowable behaviour of the system, should not 

be changed by their geometric compilation (assuming that they are well formulated, 

internally consistent, and measurable requirements to begin with). 

C.3.4 Geometric Representation of Compliance 

Compliance, in the behavioural or performance sense, means that all initial and reachable 

conditions of the system are within the allowable space (i.e. that all possible choices of action 

lead to a state change that remains within the allowable space and, where applicable, transits 

only through allowable regions of the state space).  The essence of the proposed approach is to 

‘match up shapes’; in other words, to construct a geometric object that represents the span of 

reachable behaviours given a particular starting state and control algorithm definition, and to 

compare this span against the operating envelope corresponding to system requirements, to 

demonstrate the extent to which behaviour will be appropriately bounded. 

With assurance being about the provision of evidence, the ideal outcome would be to show that 

the preferred control algorithm for a system can only lead to system behaviour that is fully 

compliant with the (measurable) performance requirements of the system.  However, it would 

still be a useful output to be able to identify any non-compliances, and specifically the 

circumstances or chain-of-events that would cause these non-compliances. 

The use of the IFS method for generating reachable state space spans provides a means to 

generate this kind of evidence.  This section discusses the key steps that would need to be taken 
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in order to apply this method to the generation of evidence to support assurance.  Recall that 

the primary motivation for using an IFS model is to generate representations of state space 

spans, and the corresponding notion of code space.  The reachable state space is the set of 

points that can be reached by an allowed series of control actions, and the orbit or trajectory 

of the system in state space is a representation of the series of control actions taken, connecting 

the system’s starting state to its anticipated finishing state (the smoothness of the curve 

dependent on the frequency of actions been taken). 

 

 

Figure 69 – IFS Representation of a System’s State Space Trajectory 

 

As illustrated in Figure 69 above, this trajectory can be concisely described by a code space 

signature, identifying the series of actions to which that trajectory corresponds.  A code is a 

sequence of numbers labelling the series of actions taken, where finite substrings of the code 

correspond to regions of the reachable state space, i.e. given some initial condition (starting 

point, initial state) and a set of possible actions {𝑎1, 𝑎2, 𝑎3… , 𝑎𝑛} then a series of actions (e.g. 

𝑎1 then 𝑎2 then 𝑎1 again) defines a subset coded by the substring (e.g. {121}), which 

geometrically corresponds to the region in which the system’s state should be found following 

that sequence of actions from a given starting state. 

In the limit, a code such as {12132531242… } will describe the precise state of the system 

(barring significant system reconfiguration or environmental change.  In practice, being able 

to identify the finite substring that corresponds to an undesirable region should be sufficient 

evidence of things not being right.  In other words, code space provides a simple and concise 

mathematical representation of ‘non-compliances’ corresponding to particular strings (for 

particular non-compliant points) or substrings (for sets or regions of non-compliant points). 



 

 

259 

By reversing this process (i.e. firstly identify the undesirable regions of the reachable state 

space span and thereby identify the undesirable substrings and the corresponding sequences of 

non-compliant actions that would lead into those undesirable regions) it might be possible to 

create a mechanism for identifying those aspects of particular implementations that are those 

expected to cause undesirable behaviour, represented by Figure 70 below. 

 

 

Figure 70 – Geometric Approach to Comparing Behavioural Span Against System 
Requirements 

 

Identifying these non-compliances, and more importantly identifying the control substrings 

these non-compliances correspond to, gives the engineer ‘options’: 

• Ban the implementation of undesirable substrings in particular circumstances (which is 

another instance of action filtering). 

• Alert a user when particular substrings are (or are about to be) implemented. 

• Change the control policy so that these substrings are no longer permissible. 

Which of these responses, if any, is the most appropriate course of action is inevitably context 

specific.  The key point is the early provision (ideally at the controller design stage) of evidence 

of any anticipated non-compliances implicit in the design, so an early decision can be made 

regarding mitigation of the problem, with justifying evidence to support to subsequent 

assurance. 
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Note that this process is analogous to a generalised model checking technique such SMV 

(Symbolic Model Verification, see Huth and Ryan [37], section 3.6) and CSP (Communicating 

Sequential Processing, see Roscoe [57]).  It might be asked what particular benefits there are 

in proceeding with such an analysis of system behaviour when there are existing techniques 

that are logically quite similar.  The primary benefits are the easy integration with the MDP 

control model, to provide an integrated and streamlined design process, and also the anticipated 

scalability to complexity discussed in the next section. 

This method naturally supports the analysis of the acceptability of expected behaviour under a 

range of conditions, including variable starting conditions and external perturbation, with only 

relatively minor parametric changes required.  This would be particularly useful were analysis 

to be conducted with a specialised or bespoke software toolbox.  For example: 

• Assessment of the acceptability of behaviour in the event of change in the system’s 

starting configuration could be represented simply by a transposition of the state space 

span within the requirement envelope, as illustrated by Figure 71. 

 

Figure 71 – Behavioural Compliance Under Changing Initial Conditions 
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• Assessment of the acceptability of behaviour in the event of significant external (e.g. 

environmental) perturbation can be represented as a distortion of the state space span, 

as illustrated by Figure 72.  (The requirement envelope could also be distorted in some 

contexts, although this has not been illustrated.) 

 

 

Figure 72 – Behavioural Compliance Under External Perturbation 

 

It is important to note that behaviour does not necessarily need to be totally or finitely bounded.  

If certain variables are non-critical, then allowing some fluctuation in those variables may be 

acceptable, requiring the designer only to demonstrate the boundedness of those variables that 

are deemed to be critical.  In other cases, proving certain bounds may be unnecessary if they 

are in some way implicit (e.g. it would be unnecessary to demonstrate that the temperature of 

a system component is greater than absolute zero; leaving an infinite lower bound is sound in 

such cases, since physics mandates the bound is there without needing to have it verified). 

The important thing is to show that the expected span of system behaviour is suitably bounded 

by those appropriate operational requirements; whether these bounds are finite or infinite, 

discrete or continuous, depends on the context.  The only requirement that cannot be avoided 

is the need for the bounds to be quantifiable or parametrisable, as discussed previously.  This 



 

 

262 

is the reason for the continuing interest in the IFS approach – techniques already exist for 

demonstrating the boundedness of a fractal, even though such objects are characteristically 

complex, discrete shapes. 

As noted above, there are some existing approaches to demonstrating the boundedness of an 

IFS, for example Edalat [29] and Chu & Chen [19].  Typically the approach is to demonstrate 

that there is a simpler geometric object (such as a box or a sphere) that contains the entirety of 

the fractal pattern generated by the IFS.  Proving the overall boundedness of an IFS may be a 

useful input, but such techniques are not likely to be sufficient by themselves.  The challenge 

is to demonstrate the system is bounded by its operational envelope, which is probably not 

going to be a convenient box or sphere. 

However, the apparent limitations of these existing tools and techniques are not considered to 

be an insurmountable problem: 

• If branches of the reachable span generated by the IFS (limited subsets of the overall 

behavioural span) can be shown to be bounded within, for example, a box or a sphere, 

and this box or sphere can be shown to be within the operational envelope, then a piece-

by-piece transitive approach to assessing all branches of the fractal could be conducted. 

It is not so elegant as a single, whole system solution, and computational burden may 

become an issue if a particularly fine granularity is necessary to obtain ‘pieces’ of the 

reachable span that are can be definitively determined to be ‘in or out’ of the envelope, 

but there is the possibility that in at least some cases a piecewise approach using existing 

tools could be sufficient. 

• Fractal bounding methods are available, and it may be possible to implement a 

‘boundedness checker’ using techniques from this field.  A more thorough investigation 

of the potential application of such approaches is recommended. 

What practical benefits might the IFS approach bring to the assurance process? 

• The anticipated range of behaviour is represented by the state space span, and so as 

long as appropriate mitigations for any non-compliances with the operational envelope 

are identified, then, strictly from the point of view of demonstrating suitable 

boundedness, this should be good evidence to support assurance.  (If behaviour within 

the boundary needs to be more strictly regulated within these overall bounds, then 

demonstrating appropriate stability of behaviour might also be necessary.) 
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How does this relate to the earlier discussion about faults and failures in Chapter 4.4.1? 

• Part of the assurance process is to consider what the system will do in the event of a 

fault condition.  Fault conditions will be caused either by the controller definition being 

incorrect (i.e. not identifying the correct optimal action, a policy error), or those actions 

identified by the controller being implemented incorrectly or not having the anticipated 

effect (i.e. identifying the action that should be correct, but factors external to the 

controller cause it not to have the desired effect, perhaps because of a physical defect 

or damage, or because of greater-than-anticipated environmental perturbation). 

• In the case that the control policy itself is wrong, the IFS approach is an advantage 

because the full behavioural span of the system implicitly contains all possible actions, 

with the assessment of possible non-compliances based on an analysis of the full 

spectrum of reachable states.  If appropriate mitigations for potential non-compliances 

are identified, then the controller definition that results is already ‘conditioned’ against 

this type of fault, because, while a suboptimal choice of action may not be an ideal 

operation, it should at least be compliant, so it does not present a problem for safety 

assurance.  This ‘holistic’ approach implicitly incorporates consideration of these types 

of failure conditions, without needing further assessment of any possible faults. 

• In the case that the implementation of the control policy is wrong, the cause of any 

identified failure modes here will have to be considered on a case-by-case basis.  

However, this is no worse than the normal situation.  The proposed representation may 

at least make it easier to identify and evaluate hypotheses such as the environment 

perturbation factor being larger than expected (i.e. generating another state space 

projection with specific parametric changes would be required to evaluate such 

hypotheses).  Note that non-contractive functions in the IFS could lead to unstable 

behaviour in this case (digressions, potentially unconstrained, away from the stable 

operating configuration). 

One final point to note is that if systems are to be designed with fail-safe modes, or with some 

degree of reconfigurability in the event of unexpected failure modes, then there is nothing 

apparent in the theory that would preclude the proposed techniques being used to assess the 

likely consequences.  It has been beyond the scope of this initial work to consider such 

instances specifically.  However, in the event of a fundamental change to the system’s control 

policy, the effect this would have on the proposed approach would be for the system’s state 
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space projection to experience a fractal bifurcation – in other words, as the control policy 

abruptly changes, and more importantly as the system parameters that inform this control 

policy change, the mathematical formulation of the IFS changes, and so does its geometric 

projection.  The sudden change in qualitative behaviour of a dynamical system as a result of a 

change in parameter values is a bifurcation; reconfiguration in control systems would then be 

represented mathematically as an abrupt change in the shape and structure of the reachable 

state space, hence the description fractal bifurcation. 

This is not a simple problem to analyse, using methods described here or otherwise, hence the 

perennial difficulty of not knowing how to safely manage or control reconfiguration in systems.  

The partial solution that arises from this work is that, while existing analysis of the compliance 

of a system would become invalid and need to be re-examined in the event of a significant 

system change, potentially with a different set of non-compliant substrings identified and 

mitigations to be determined, the process for conducting the analysis would be similar, so long 

as the new formulation of control policy is (at least approximately) understood or identifiable.  

The theoretical scalability of the approach even to such ‘hard’ problems like reconfigurable 

systems is a significant motivation for researching such an approach, although it is 

acknowledged that computational limitations would need to be considered before being sure of 

their efficacy to these envisaged applications. 

C.4 Application to Complex Multi-Agent Systems 

In the case of complex multi-agent systems, not only must the set of initial and reachable 

conditions for the system lie within the operational envelope identified for the system, but the 

initial and reachable conditions of subsystems and of individual components must lie within 

appropriate subsets of this operating envelope, and therein lies the challenge.  If a system is 

complex, and the behaviour and hence the reachable span are different from those implied by 

the expected behaviours of the components and subsystems, then the operating envelope will 

not in general be a composition of the simpler equivalent ‘sub-envelopes’.  A particular 

consequence of this is that demonstrating the compliance of the individual components (i.e. 

that their reachable spans lie within their particular operating envelopes) does not imply that is 

true of the whole system, and vice versa.  Assurance will require all relevant levels of 

granularity within the system to be demonstrably compliant, and it is neither obvious how to 

do this nor will it necessarily be tractable to do so by conventional means. 
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The proposition that this annex has been building towards is that if the system model and 

controller definition are: 

• Designed for complex systems, with a decomposed state space structure and reward 

signals that can be shown to represent complex behaviour; 

• Capable of representing subsystems as separate entities within a system using a state 

space projection, with an appropriate model for the relationship between local and 

global behaviour; 

• In a form suitable for representing the control algorithms as transformations on a state 

space; then: 

• The IFS approach applied individually to relevant combinations of components and 

subsystems should produce a family of operational envelopes for each combination, 

each of which can be assessed (automatically or manually) as described. 

The essence of this proposed approach, and the reason for surmising a link with the three-axis 

MDP-based modelling paradigm, is that this structure, with the necessary modifications to 

model the differences between local and global state spaces, seems like a promising candidate 

for approaching this task, and the application of the IFS approach designed for simpler, 

interactive autonomy applications would hopefully carry over to the complex multi-agent 

systems domain in the logical way. 

This appears to be a deceptively simple step, but given an appropriate model for complex multi-

agent systems, then the subsequent step of projecting the reachable span and assessing this for 

compliance against (parametrisable) requirements is logical.  Put another way, the assurance 

challenge arises from basic assumptions about the relationship between components and 

systems, and faults and failures, that is invalid in the case of complex systems, so the root cause 

of the problem and thus the source of the solution lies in identifying how to adapt the modelling 

and control steps to reflect this change, and then how to amend the solution tools to apply to 

these models. 

What in practice would the application of the proposed process to a complex multi-agent 

system consist of? 

• The engineer should do all those things described in the previous section, but for 

different subsystems and combinations of components as well as for the whole system.  

The three-axis model is specifically designed to support such segmentation.  At a 
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minimum, the engineer should generate a suitable ‘requirement envelope’ and 

behavioural span for each desired subsystem, including where appropriate any variation 

in initial condition or external perturbation. 

• The aim is to (presumably algorithmically) demonstrate either that the generated 

behavioural span is bounded by the appropriate operational envelope, or to identify 

where it is not and identify the relevant substrings corresponding to particular control 

sequences for further consideration.  The only difference is that this process is 

conducted, perhaps concurrently if computing resources allow, for a multitude of 

relevant system component combinations. 

• Theoretically, this could be every component (i.e. every agent in a multi-agent system) 

and every grouping of them, up to including the whole system behaviour – the power 

set of the multi-agent system.  In practice, a lot of combinations will be unnecessary, 

because those particular components or agents could not influence each other, and so 

consideration of that system combination adds little value.  Exactly which combinations 

of components are relevant is inevitably context-specific, and will be a design choice 

particular to individual systems. 

• The result is a family of so-called ‘mini-fractals’ that are (improper) subsets of the 

overall representation of the system’s behaviour, each analysed against the appropriate 

operational envelope for that combination of components.  It would be useful to 

represent this graphically, but it is not at all clear how to represent subsets of multi-

dimensional reachable spans that are potentially ‘distorted’ (due to complex 

interactions) from proper subsets of the full system span.  In practice of course this 

should not be a problem since the analysis would be conducted numerically. 

• The result is the potentially concurrent use of one approach to analyse the behavioural 

compliance of the systems at all relevant ‘levels’ (theoretically, if needed, at all ‘levels’) 

within the system, based on the three-axis decomposition model.  Such an approach 

should generate evidence for where system failures (the non-compliances) due to 

complex interactions might occur, and the circumstances that cause them (sequences of 

control actions given particular starting states), to inform possible mitigations.  This is 

just the sort of evidence needed for assurance, only generated without relying on the 

fundamental assumptions of a causal link between fault and failures that is invalid for 

complex systems. 
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C.5 Recommendations 

The recommended next step is to apply the proposed method to a simple multi-agent exemplar 

problem.  The aim of this will be to demonstrate the practical application of the proposed steps 

and explore some of the issues that may arise.  In Annex B, two exemplars were developed 

based on areas of possible application of multi-agent technology (logistics management and 

intelligent sensor management), in addition to the exemplar of synchronised production line 

automata developed in the main body of this thesis.  Hierarchical MDP models based on the 

three-axis decomposition principles have been defined, and it was originally proposed to use 

one of these as modelling exemplars for this purpose.  The opportunity to return to this second 

phase of work, making use this material or alternative models, should be taken up. 

Whether the proposed method is scalable to increasingly large state spaces is a valid concern.  

As is usual with such problems, the fidelity of the model is compromised if the state space is 

too course, but the computational burden could make the entire process infeasible if the state 

space is too fine.  Important design choices will have to be made early on, which could have 

unforeseen consequences on the practicality of the proposed approach.  A recommended future 

activity is to consider the issue of scale and the computational burden of the proposed approach, 

probably in the context of one of the exemplars noted above. 

Due to the focus on the assurance aspects in this annex, ‘control’ aspects have only been 

addressed where necessary, this having already been covered in depth in the main body. 

However, an apparent application for the techniques developed might be to inform adaptive, 

responsive control in increasingly autonomous systems, i.e. systems detecting and adapting to 

their own ‘failure modes’ (undesirable deviations from expected patterns of behaviour).  Quite 

how the proposed method could inform, for example, learning algorithms for intelligent self-

adapting systems, might be worth considering further in the future. 

Finally, the discussion above also briefly touched on the issue of system reconfiguration, 

arguably the hardest problem in the whole field of systems engineering, since virtually no part 

of system engineering theory or practice knows how to cope when the basic building blocks of 

a system having a recognisable boundary and purpose turn out to be variables.  The theoretical 

basis for this (the so-called ‘fractal bifurcation’) has not been considered in depth, but, at first 

glance, promises much in terms of recognising, and potentially having the ability to adapt to, 

physical or control level system changes.  The potentially transformational nature of such a 

capability suggests that this possibility is also worth considering in greater depth. 
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